| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Fast Ethernet Controller (ENET) PTP driver for MX6x. | 
 |  * | 
 |  * Copyright (C) 2012 Freescale Semiconductor, Inc. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/string.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/io.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/phy.h> | 
 | #include <linux/fec.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_gpio.h> | 
 | #include <linux/of_net.h> | 
 |  | 
 | #include "fec.h" | 
 |  | 
 | /* FEC 1588 register bits */ | 
 | #define FEC_T_CTRL_SLAVE                0x00002000 | 
 | #define FEC_T_CTRL_CAPTURE              0x00000800 | 
 | #define FEC_T_CTRL_RESTART              0x00000200 | 
 | #define FEC_T_CTRL_PERIOD_RST           0x00000030 | 
 | #define FEC_T_CTRL_PERIOD_EN		0x00000010 | 
 | #define FEC_T_CTRL_ENABLE               0x00000001 | 
 |  | 
 | #define FEC_T_INC_MASK                  0x0000007f | 
 | #define FEC_T_INC_OFFSET                0 | 
 | #define FEC_T_INC_CORR_MASK             0x00007f00 | 
 | #define FEC_T_INC_CORR_OFFSET           8 | 
 |  | 
 | #define FEC_T_CTRL_PINPER		0x00000080 | 
 | #define FEC_T_TF0_MASK			0x00000001 | 
 | #define FEC_T_TF0_OFFSET		0 | 
 | #define FEC_T_TF1_MASK			0x00000002 | 
 | #define FEC_T_TF1_OFFSET		1 | 
 | #define FEC_T_TF2_MASK			0x00000004 | 
 | #define FEC_T_TF2_OFFSET		2 | 
 | #define FEC_T_TF3_MASK			0x00000008 | 
 | #define FEC_T_TF3_OFFSET		3 | 
 | #define FEC_T_TDRE_MASK			0x00000001 | 
 | #define FEC_T_TDRE_OFFSET		0 | 
 | #define FEC_T_TMODE_MASK		0x0000003C | 
 | #define FEC_T_TMODE_OFFSET		2 | 
 | #define FEC_T_TIE_MASK			0x00000040 | 
 | #define FEC_T_TIE_OFFSET		6 | 
 | #define FEC_T_TF_MASK			0x00000080 | 
 | #define FEC_T_TF_OFFSET			7 | 
 |  | 
 | #define FEC_ATIME_CTRL		0x400 | 
 | #define FEC_ATIME		0x404 | 
 | #define FEC_ATIME_EVT_OFFSET	0x408 | 
 | #define FEC_ATIME_EVT_PERIOD	0x40c | 
 | #define FEC_ATIME_CORR		0x410 | 
 | #define FEC_ATIME_INC		0x414 | 
 | #define FEC_TS_TIMESTAMP	0x418 | 
 |  | 
 | #define FEC_TGSR		0x604 | 
 | #define FEC_TCSR(n)		(0x608 + n * 0x08) | 
 | #define FEC_TCCR(n)		(0x60C + n * 0x08) | 
 | #define MAX_TIMER_CHANNEL	3 | 
 | #define FEC_TMODE_TOGGLE	0x05 | 
 | #define FEC_HIGH_PULSE		0x0F | 
 |  | 
 | #define FEC_CC_MULT	(1 << 31) | 
 | #define FEC_COUNTER_PERIOD	(1 << 31) | 
 | #define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC | 
 | #define FEC_CHANNLE_0		0 | 
 | #define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0 | 
 |  | 
 | #define FEC_PTP_MAX_NSEC_PERIOD		4000000000ULL | 
 | #define FEC_PTP_MAX_NSEC_COUNTER	0x80000000ULL | 
 |  | 
 | /** | 
 |  * fec_ptp_enable_pps | 
 |  * @fep: the fec_enet_private structure handle | 
 |  * @enable: enable the channel pps output | 
 |  * | 
 |  * This function enble the PPS ouput on the timer channel. | 
 |  */ | 
 | static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable) | 
 | { | 
 | 	unsigned long flags; | 
 | 	u32 val, tempval; | 
 | 	struct timespec64 ts; | 
 | 	u64 ns; | 
 |  | 
 | 	if (fep->pps_enable == enable) | 
 | 		return 0; | 
 |  | 
 | 	fep->pps_channel = DEFAULT_PPS_CHANNEL; | 
 | 	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD; | 
 |  | 
 | 	spin_lock_irqsave(&fep->tmreg_lock, flags); | 
 |  | 
 | 	if (enable) { | 
 | 		/* clear capture or output compare interrupt status if have. | 
 | 		 */ | 
 | 		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel)); | 
 |  | 
 | 		/* It is recommended to double check the TMODE field in the | 
 | 		 * TCSR register to be cleared before the first compare counter | 
 | 		 * is written into TCCR register. Just add a double check. | 
 | 		 */ | 
 | 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); | 
 | 		do { | 
 | 			val &= ~(FEC_T_TMODE_MASK); | 
 | 			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); | 
 | 			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); | 
 | 		} while (val & FEC_T_TMODE_MASK); | 
 |  | 
 | 		/* Dummy read counter to update the counter */ | 
 | 		timecounter_read(&fep->tc); | 
 | 		/* We want to find the first compare event in the next | 
 | 		 * second point. So we need to know what the ptp time | 
 | 		 * is now and how many nanoseconds is ahead to get next second. | 
 | 		 * The remaining nanosecond ahead before the next second would be | 
 | 		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds | 
 | 		 * to current timer would be next second. | 
 | 		 */ | 
 | 		tempval = fep->cc.read(&fep->cc); | 
 | 		/* Convert the ptp local counter to 1588 timestamp */ | 
 | 		ns = timecounter_cyc2time(&fep->tc, tempval); | 
 | 		ts = ns_to_timespec64(ns); | 
 |  | 
 | 		/* The tempval is  less than 3 seconds, and  so val is less than | 
 | 		 * 4 seconds. No overflow for 32bit calculation. | 
 | 		 */ | 
 | 		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval; | 
 |  | 
 | 		/* Need to consider the situation that the current time is | 
 | 		 * very close to the second point, which means NSEC_PER_SEC | 
 | 		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer | 
 | 		 * is still running when we calculate the first compare event, it is | 
 | 		 * possible that the remaining nanoseonds run out before the compare | 
 | 		 * counter is calculated and written into TCCR register. To avoid | 
 | 		 * this possibility, we will set the compare event to be the next | 
 | 		 * of next second. The current setting is 31-bit timer and wrap | 
 | 		 * around over 2 seconds. So it is okay to set the next of next | 
 | 		 * seond for the timer. | 
 | 		 */ | 
 | 		val += NSEC_PER_SEC; | 
 |  | 
 | 		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current | 
 | 		 * ptp counter, which maybe cause 32-bit wrap. Since the | 
 | 		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second. | 
 | 		 * We can ensure the wrap will not cause issue. If the offset | 
 | 		 * is bigger than fep->cc.mask would be a error. | 
 | 		 */ | 
 | 		val &= fep->cc.mask; | 
 | 		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel)); | 
 |  | 
 | 		/* Calculate the second the compare event timestamp */ | 
 | 		fep->next_counter = (val + fep->reload_period) & fep->cc.mask; | 
 |  | 
 | 		/* * Enable compare event when overflow */ | 
 | 		val = readl(fep->hwp + FEC_ATIME_CTRL); | 
 | 		val |= FEC_T_CTRL_PINPER; | 
 | 		writel(val, fep->hwp + FEC_ATIME_CTRL); | 
 |  | 
 | 		/* Compare channel setting. */ | 
 | 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); | 
 | 		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); | 
 | 		val &= ~(1 << FEC_T_TDRE_OFFSET); | 
 | 		val &= ~(FEC_T_TMODE_MASK); | 
 | 		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET); | 
 | 		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); | 
 |  | 
 | 		/* Write the second compare event timestamp and calculate | 
 | 		 * the third timestamp. Refer the TCCR register detail in the spec. | 
 | 		 */ | 
 | 		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel)); | 
 | 		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; | 
 | 	} else { | 
 | 		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel)); | 
 | 	} | 
 |  | 
 | 	fep->pps_enable = enable; | 
 | 	spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fec_ptp_pps_perout(struct fec_enet_private *fep) | 
 | { | 
 | 	u32 compare_val, ptp_hc, temp_val; | 
 | 	u64 curr_time; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&fep->tmreg_lock, flags); | 
 |  | 
 | 	/* Update time counter */ | 
 | 	timecounter_read(&fep->tc); | 
 |  | 
 | 	/* Get the current ptp hardware time counter */ | 
 | 	temp_val = readl(fep->hwp + FEC_ATIME_CTRL); | 
 | 	temp_val |= FEC_T_CTRL_CAPTURE; | 
 | 	writel(temp_val, fep->hwp + FEC_ATIME_CTRL); | 
 | 	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE) | 
 | 		udelay(1); | 
 |  | 
 | 	ptp_hc = readl(fep->hwp + FEC_ATIME); | 
 |  | 
 | 	/* Convert the ptp local counter to 1588 timestamp */ | 
 | 	curr_time = timecounter_cyc2time(&fep->tc, ptp_hc); | 
 |  | 
 | 	/* If the pps start time less than current time add 100ms, just return. | 
 | 	 * Because the software might not able to set the comparison time into | 
 | 	 * the FEC_TCCR register in time and missed the start time. | 
 | 	 */ | 
 | 	if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) { | 
 | 		dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n"); | 
 | 		spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	compare_val = fep->perout_stime - curr_time + ptp_hc; | 
 | 	compare_val &= fep->cc.mask; | 
 |  | 
 | 	writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel)); | 
 | 	fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask; | 
 |  | 
 | 	/* Enable compare event when overflow */ | 
 | 	temp_val = readl(fep->hwp + FEC_ATIME_CTRL); | 
 | 	temp_val |= FEC_T_CTRL_PINPER; | 
 | 	writel(temp_val, fep->hwp + FEC_ATIME_CTRL); | 
 |  | 
 | 	/* Compare channel setting. */ | 
 | 	temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); | 
 | 	temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); | 
 | 	temp_val &= ~(1 << FEC_T_TDRE_OFFSET); | 
 | 	temp_val &= ~(FEC_T_TMODE_MASK); | 
 | 	temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET); | 
 | 	writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel)); | 
 |  | 
 | 	/* Write the second compare event timestamp and calculate | 
 | 	 * the third timestamp. Refer the TCCR register detail in the spec. | 
 | 	 */ | 
 | 	writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel)); | 
 | 	fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; | 
 | 	spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer) | 
 | { | 
 | 	struct fec_enet_private *fep = container_of(timer, | 
 | 					struct fec_enet_private, perout_timer); | 
 |  | 
 | 	fec_ptp_pps_perout(fep); | 
 |  | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | /** | 
 |  * fec_ptp_read - read raw cycle counter (to be used by time counter) | 
 |  * @cc: the cyclecounter structure | 
 |  * | 
 |  * this function reads the cyclecounter registers and is called by the | 
 |  * cyclecounter structure used to construct a ns counter from the | 
 |  * arbitrary fixed point registers | 
 |  */ | 
 | static u64 fec_ptp_read(const struct cyclecounter *cc) | 
 | { | 
 | 	struct fec_enet_private *fep = | 
 | 		container_of(cc, struct fec_enet_private, cc); | 
 | 	u32 tempval; | 
 |  | 
 | 	tempval = readl(fep->hwp + FEC_ATIME_CTRL); | 
 | 	tempval |= FEC_T_CTRL_CAPTURE; | 
 | 	writel(tempval, fep->hwp + FEC_ATIME_CTRL); | 
 |  | 
 | 	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE) | 
 | 		udelay(1); | 
 |  | 
 | 	return readl(fep->hwp + FEC_ATIME); | 
 | } | 
 |  | 
 | /** | 
 |  * fec_ptp_start_cyclecounter - create the cycle counter from hw | 
 |  * @ndev: network device | 
 |  * | 
 |  * this function initializes the timecounter and cyclecounter | 
 |  * structures for use in generated a ns counter from the arbitrary | 
 |  * fixed point cycles registers in the hardware. | 
 |  */ | 
 | void fec_ptp_start_cyclecounter(struct net_device *ndev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(ndev); | 
 | 	unsigned long flags; | 
 | 	int inc; | 
 |  | 
 | 	inc = 1000000000 / fep->cycle_speed; | 
 |  | 
 | 	/* grab the ptp lock */ | 
 | 	spin_lock_irqsave(&fep->tmreg_lock, flags); | 
 |  | 
 | 	/* 1ns counter */ | 
 | 	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC); | 
 |  | 
 | 	/* use 31-bit timer counter */ | 
 | 	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD); | 
 |  | 
 | 	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST, | 
 | 		fep->hwp + FEC_ATIME_CTRL); | 
 |  | 
 | 	memset(&fep->cc, 0, sizeof(fep->cc)); | 
 | 	fep->cc.read = fec_ptp_read; | 
 | 	fep->cc.mask = CLOCKSOURCE_MASK(31); | 
 | 	fep->cc.shift = 31; | 
 | 	fep->cc.mult = FEC_CC_MULT; | 
 |  | 
 | 	/* reset the ns time counter */ | 
 | 	timecounter_init(&fep->tc, &fep->cc, 0); | 
 |  | 
 | 	spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  * fec_ptp_adjfine - adjust ptp cycle frequency | 
 |  * @ptp: the ptp clock structure | 
 |  * @scaled_ppm: scaled parts per million adjustment from base | 
 |  * | 
 |  * Adjust the frequency of the ptp cycle counter by the | 
 |  * indicated amount from the base frequency. | 
 |  * | 
 |  * Scaled parts per million is ppm with a 16-bit binary fractional field. | 
 |  * | 
 |  * Because ENET hardware frequency adjust is complex, | 
 |  * using software method to do that. | 
 |  */ | 
 | static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) | 
 | { | 
 | 	s32 ppb = scaled_ppm_to_ppb(scaled_ppm); | 
 | 	unsigned long flags; | 
 | 	int neg_adj = 0; | 
 | 	u32 i, tmp; | 
 | 	u32 corr_inc, corr_period; | 
 | 	u32 corr_ns; | 
 | 	u64 lhs, rhs; | 
 |  | 
 | 	struct fec_enet_private *fep = | 
 | 	    container_of(ptp, struct fec_enet_private, ptp_caps); | 
 |  | 
 | 	if (ppb == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (ppb < 0) { | 
 | 		ppb = -ppb; | 
 | 		neg_adj = 1; | 
 | 	} | 
 |  | 
 | 	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC; | 
 | 	 * Try to find the corr_inc  between 1 to fep->ptp_inc to | 
 | 	 * meet adjustment requirement. | 
 | 	 */ | 
 | 	lhs = NSEC_PER_SEC; | 
 | 	rhs = (u64)ppb * (u64)fep->ptp_inc; | 
 | 	for (i = 1; i <= fep->ptp_inc; i++) { | 
 | 		if (lhs >= rhs) { | 
 | 			corr_inc = i; | 
 | 			corr_period = div_u64(lhs, rhs); | 
 | 			break; | 
 | 		} | 
 | 		lhs += NSEC_PER_SEC; | 
 | 	} | 
 | 	/* Not found? Set it to high value - double speed | 
 | 	 * correct in every clock step. | 
 | 	 */ | 
 | 	if (i > fep->ptp_inc) { | 
 | 		corr_inc = fep->ptp_inc; | 
 | 		corr_period = 1; | 
 | 	} | 
 |  | 
 | 	if (neg_adj) | 
 | 		corr_ns = fep->ptp_inc - corr_inc; | 
 | 	else | 
 | 		corr_ns = fep->ptp_inc + corr_inc; | 
 |  | 
 | 	spin_lock_irqsave(&fep->tmreg_lock, flags); | 
 |  | 
 | 	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK; | 
 | 	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET; | 
 | 	writel(tmp, fep->hwp + FEC_ATIME_INC); | 
 | 	corr_period = corr_period > 1 ? corr_period - 1 : corr_period; | 
 | 	writel(corr_period, fep->hwp + FEC_ATIME_CORR); | 
 | 	/* dummy read to update the timer. */ | 
 | 	timecounter_read(&fep->tc); | 
 |  | 
 | 	spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fec_ptp_adjtime | 
 |  * @ptp: the ptp clock structure | 
 |  * @delta: offset to adjust the cycle counter by | 
 |  * | 
 |  * adjust the timer by resetting the timecounter structure. | 
 |  */ | 
 | static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) | 
 | { | 
 | 	struct fec_enet_private *fep = | 
 | 	    container_of(ptp, struct fec_enet_private, ptp_caps); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&fep->tmreg_lock, flags); | 
 | 	timecounter_adjtime(&fep->tc, delta); | 
 | 	spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fec_ptp_gettime | 
 |  * @ptp: the ptp clock structure | 
 |  * @ts: timespec structure to hold the current time value | 
 |  * | 
 |  * read the timecounter and return the correct value on ns, | 
 |  * after converting it into a struct timespec. | 
 |  */ | 
 | static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) | 
 | { | 
 | 	struct fec_enet_private *fep = | 
 | 	    container_of(ptp, struct fec_enet_private, ptp_caps); | 
 | 	u64 ns; | 
 | 	unsigned long flags; | 
 |  | 
 | 	mutex_lock(&fep->ptp_clk_mutex); | 
 | 	/* Check the ptp clock */ | 
 | 	if (!fep->ptp_clk_on) { | 
 | 		mutex_unlock(&fep->ptp_clk_mutex); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	spin_lock_irqsave(&fep->tmreg_lock, flags); | 
 | 	ns = timecounter_read(&fep->tc); | 
 | 	spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
 | 	mutex_unlock(&fep->ptp_clk_mutex); | 
 |  | 
 | 	*ts = ns_to_timespec64(ns); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fec_ptp_settime | 
 |  * @ptp: the ptp clock structure | 
 |  * @ts: the timespec containing the new time for the cycle counter | 
 |  * | 
 |  * reset the timecounter to use a new base value instead of the kernel | 
 |  * wall timer value. | 
 |  */ | 
 | static int fec_ptp_settime(struct ptp_clock_info *ptp, | 
 | 			   const struct timespec64 *ts) | 
 | { | 
 | 	struct fec_enet_private *fep = | 
 | 	    container_of(ptp, struct fec_enet_private, ptp_caps); | 
 |  | 
 | 	u64 ns; | 
 | 	unsigned long flags; | 
 | 	u32 counter; | 
 |  | 
 | 	mutex_lock(&fep->ptp_clk_mutex); | 
 | 	/* Check the ptp clock */ | 
 | 	if (!fep->ptp_clk_on) { | 
 | 		mutex_unlock(&fep->ptp_clk_mutex); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ns = timespec64_to_ns(ts); | 
 | 	/* Get the timer value based on timestamp. | 
 | 	 * Update the counter with the masked value. | 
 | 	 */ | 
 | 	counter = ns & fep->cc.mask; | 
 |  | 
 | 	spin_lock_irqsave(&fep->tmreg_lock, flags); | 
 | 	writel(counter, fep->hwp + FEC_ATIME); | 
 | 	timecounter_init(&fep->tc, &fep->cc, ns); | 
 | 	spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
 | 	mutex_unlock(&fep->ptp_clk_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&fep->tmreg_lock, flags); | 
 | 	writel(0, fep->hwp + FEC_TCSR(channel)); | 
 | 	spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fec_ptp_enable | 
 |  * @ptp: the ptp clock structure | 
 |  * @rq: the requested feature to change | 
 |  * @on: whether to enable or disable the feature | 
 |  * | 
 |  */ | 
 | static int fec_ptp_enable(struct ptp_clock_info *ptp, | 
 | 			  struct ptp_clock_request *rq, int on) | 
 | { | 
 | 	struct fec_enet_private *fep = | 
 | 	    container_of(ptp, struct fec_enet_private, ptp_caps); | 
 | 	ktime_t timeout; | 
 | 	struct timespec64 start_time, period; | 
 | 	u64 curr_time, delta, period_ns; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (rq->type == PTP_CLK_REQ_PPS) { | 
 | 		ret = fec_ptp_enable_pps(fep, on); | 
 |  | 
 | 		return ret; | 
 | 	} else if (rq->type == PTP_CLK_REQ_PEROUT) { | 
 | 		/* Reject requests with unsupported flags */ | 
 | 		if (rq->perout.flags) | 
 | 			return -EOPNOTSUPP; | 
 |  | 
 | 		if (rq->perout.index != DEFAULT_PPS_CHANNEL) | 
 | 			return -EOPNOTSUPP; | 
 |  | 
 | 		fep->pps_channel = DEFAULT_PPS_CHANNEL; | 
 | 		period.tv_sec = rq->perout.period.sec; | 
 | 		period.tv_nsec = rq->perout.period.nsec; | 
 | 		period_ns = timespec64_to_ns(&period); | 
 |  | 
 | 		/* FEC PTP timer only has 31 bits, so if the period exceed | 
 | 		 * 4s is not supported. | 
 | 		 */ | 
 | 		if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) { | 
 | 			dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n"); | 
 | 			return -EOPNOTSUPP; | 
 | 		} | 
 |  | 
 | 		fep->reload_period = div_u64(period_ns, 2); | 
 | 		if (on && fep->reload_period) { | 
 | 			/* Convert 1588 timestamp to ns*/ | 
 | 			start_time.tv_sec = rq->perout.start.sec; | 
 | 			start_time.tv_nsec = rq->perout.start.nsec; | 
 | 			fep->perout_stime = timespec64_to_ns(&start_time); | 
 |  | 
 | 			mutex_lock(&fep->ptp_clk_mutex); | 
 | 			if (!fep->ptp_clk_on) { | 
 | 				dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n"); | 
 | 				mutex_unlock(&fep->ptp_clk_mutex); | 
 | 				return -EOPNOTSUPP; | 
 | 			} | 
 | 			spin_lock_irqsave(&fep->tmreg_lock, flags); | 
 | 			/* Read current timestamp */ | 
 | 			curr_time = timecounter_read(&fep->tc); | 
 | 			spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
 | 			mutex_unlock(&fep->ptp_clk_mutex); | 
 |  | 
 | 			/* Calculate time difference */ | 
 | 			delta = fep->perout_stime - curr_time; | 
 |  | 
 | 			if (fep->perout_stime <= curr_time) { | 
 | 				dev_err(&fep->pdev->dev, "Start time must larger than current time!\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			/* Because the timer counter of FEC only has 31-bits, correspondingly, | 
 | 			 * the time comparison register FEC_TCCR also only low 31 bits can be | 
 | 			 * set. If the start time of pps signal exceeds current time more than | 
 | 			 * 0x80000000 ns, a software timer is used and the timer expires about | 
 | 			 * 1 second before the start time to be able to set FEC_TCCR. | 
 | 			 */ | 
 | 			if (delta > FEC_PTP_MAX_NSEC_COUNTER) { | 
 | 				timeout = ns_to_ktime(delta - NSEC_PER_SEC); | 
 | 				hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL); | 
 | 			} else { | 
 | 				return fec_ptp_pps_perout(fep); | 
 | 			} | 
 | 		} else { | 
 | 			fec_ptp_pps_disable(fep, fep->pps_channel); | 
 | 		} | 
 |  | 
 | 		return 0; | 
 | 	} else { | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 | } | 
 |  | 
 | int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config, | 
 | 		struct netlink_ext_ack *extack) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(ndev); | 
 |  | 
 | 	switch (config->tx_type) { | 
 | 	case HWTSTAMP_TX_OFF: | 
 | 		fep->hwts_tx_en = 0; | 
 | 		break; | 
 | 	case HWTSTAMP_TX_ON: | 
 | 		fep->hwts_tx_en = 1; | 
 | 		break; | 
 | 	default: | 
 | 		return -ERANGE; | 
 | 	} | 
 |  | 
 | 	switch (config->rx_filter) { | 
 | 	case HWTSTAMP_FILTER_NONE: | 
 | 		fep->hwts_rx_en = 0; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		fep->hwts_rx_en = 1; | 
 | 		config->rx_filter = HWTSTAMP_FILTER_ALL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(ndev); | 
 |  | 
 | 	config->flags = 0; | 
 | 	config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; | 
 | 	config->rx_filter = (fep->hwts_rx_en ? | 
 | 			     HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); | 
 | } | 
 |  | 
 | /* | 
 |  * fec_time_keep - call timecounter_read every second to avoid timer overrun | 
 |  *                 because ENET just support 32bit counter, will timeout in 4s | 
 |  */ | 
 | static void fec_time_keep(struct work_struct *work) | 
 | { | 
 | 	struct delayed_work *dwork = to_delayed_work(work); | 
 | 	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep); | 
 | 	unsigned long flags; | 
 |  | 
 | 	mutex_lock(&fep->ptp_clk_mutex); | 
 | 	if (fep->ptp_clk_on) { | 
 | 		spin_lock_irqsave(&fep->tmreg_lock, flags); | 
 | 		timecounter_read(&fep->tc); | 
 | 		spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
 | 	} | 
 | 	mutex_unlock(&fep->ptp_clk_mutex); | 
 |  | 
 | 	schedule_delayed_work(&fep->time_keep, HZ); | 
 | } | 
 |  | 
 | /* This function checks the pps event and reloads the timer compare counter. */ | 
 | static irqreturn_t fec_pps_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct net_device *ndev = dev_id; | 
 | 	struct fec_enet_private *fep = netdev_priv(ndev); | 
 | 	u32 val; | 
 | 	u8 channel = fep->pps_channel; | 
 | 	struct ptp_clock_event event; | 
 |  | 
 | 	val = readl(fep->hwp + FEC_TCSR(channel)); | 
 | 	if (val & FEC_T_TF_MASK) { | 
 | 		/* Write the next next compare(not the next according the spec) | 
 | 		 * value to the register | 
 | 		 */ | 
 | 		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel)); | 
 | 		do { | 
 | 			writel(val, fep->hwp + FEC_TCSR(channel)); | 
 | 		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK); | 
 |  | 
 | 		/* Update the counter; */ | 
 | 		fep->next_counter = (fep->next_counter + fep->reload_period) & | 
 | 				fep->cc.mask; | 
 |  | 
 | 		event.type = PTP_CLOCK_PPS; | 
 | 		ptp_clock_event(fep->ptp_clock, &event); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	return IRQ_NONE; | 
 | } | 
 |  | 
 | /** | 
 |  * fec_ptp_init | 
 |  * @pdev: The FEC network adapter | 
 |  * @irq_idx: the interrupt index | 
 |  * | 
 |  * This function performs the required steps for enabling ptp | 
 |  * support. If ptp support has already been loaded it simply calls the | 
 |  * cyclecounter init routine and exits. | 
 |  */ | 
 |  | 
 | void fec_ptp_init(struct platform_device *pdev, int irq_idx) | 
 | { | 
 | 	struct net_device *ndev = platform_get_drvdata(pdev); | 
 | 	struct fec_enet_private *fep = netdev_priv(ndev); | 
 | 	int irq; | 
 | 	int ret; | 
 |  | 
 | 	fep->ptp_caps.owner = THIS_MODULE; | 
 | 	strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name)); | 
 |  | 
 | 	fep->ptp_caps.max_adj = 250000000; | 
 | 	fep->ptp_caps.n_alarm = 0; | 
 | 	fep->ptp_caps.n_ext_ts = 0; | 
 | 	fep->ptp_caps.n_per_out = 1; | 
 | 	fep->ptp_caps.n_pins = 0; | 
 | 	fep->ptp_caps.pps = 1; | 
 | 	fep->ptp_caps.adjfine = fec_ptp_adjfine; | 
 | 	fep->ptp_caps.adjtime = fec_ptp_adjtime; | 
 | 	fep->ptp_caps.gettime64 = fec_ptp_gettime; | 
 | 	fep->ptp_caps.settime64 = fec_ptp_settime; | 
 | 	fep->ptp_caps.enable = fec_ptp_enable; | 
 |  | 
 | 	fep->cycle_speed = clk_get_rate(fep->clk_ptp); | 
 | 	if (!fep->cycle_speed) { | 
 | 		fep->cycle_speed = NSEC_PER_SEC; | 
 | 		dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n"); | 
 | 	} | 
 | 	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed; | 
 |  | 
 | 	spin_lock_init(&fep->tmreg_lock); | 
 |  | 
 | 	fec_ptp_start_cyclecounter(ndev); | 
 |  | 
 | 	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep); | 
 |  | 
 | 	hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL); | 
 | 	fep->perout_timer.function = fec_ptp_pps_perout_handler; | 
 |  | 
 | 	irq = platform_get_irq_byname_optional(pdev, "pps"); | 
 | 	if (irq < 0) | 
 | 		irq = platform_get_irq_optional(pdev, irq_idx); | 
 | 	/* Failure to get an irq is not fatal, | 
 | 	 * only the PTP_CLOCK_PPS clock events should stop | 
 | 	 */ | 
 | 	if (irq >= 0) { | 
 | 		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt, | 
 | 				       0, pdev->name, ndev); | 
 | 		if (ret < 0) | 
 | 			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n", | 
 | 				 ret); | 
 | 	} | 
 |  | 
 | 	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev); | 
 | 	if (IS_ERR(fep->ptp_clock)) { | 
 | 		fep->ptp_clock = NULL; | 
 | 		dev_err(&pdev->dev, "ptp_clock_register failed\n"); | 
 | 	} | 
 |  | 
 | 	schedule_delayed_work(&fep->time_keep, HZ); | 
 | } | 
 |  | 
 | void fec_ptp_stop(struct platform_device *pdev) | 
 | { | 
 | 	struct net_device *ndev = platform_get_drvdata(pdev); | 
 | 	struct fec_enet_private *fep = netdev_priv(ndev); | 
 |  | 
 | 	cancel_delayed_work_sync(&fep->time_keep); | 
 | 	hrtimer_cancel(&fep->perout_timer); | 
 | 	if (fep->ptp_clock) | 
 | 		ptp_clock_unregister(fep->ptp_clock); | 
 | } |