| // SPDX-License-Identifier: GPL-2.0-only | 
 | /**************************************************************************** | 
 |  * Driver for Solarflare network controllers and boards | 
 |  * Copyright 2018 Solarflare Communications Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License version 2 as published | 
 |  * by the Free Software Foundation, incorporated herein by reference. | 
 |  */ | 
 |  | 
 | #include "net_driver.h" | 
 | #include <linux/module.h> | 
 | #include <linux/iommu.h> | 
 | #include "efx.h" | 
 | #include "nic.h" | 
 | #include "rx_common.h" | 
 |  | 
 | /* This is the percentage fill level below which new RX descriptors | 
 |  * will be added to the RX descriptor ring. | 
 |  */ | 
 | static unsigned int rx_refill_threshold; | 
 | module_param(rx_refill_threshold, uint, 0444); | 
 | MODULE_PARM_DESC(rx_refill_threshold, | 
 | 		 "RX descriptor ring refill threshold (%)"); | 
 |  | 
 | /* RX maximum head room required. | 
 |  * | 
 |  * This must be at least 1 to prevent overflow, plus one packet-worth | 
 |  * to allow pipelined receives. | 
 |  */ | 
 | #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) | 
 |  | 
 | /* Check the RX page recycle ring for a page that can be reused. */ | 
 | static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) | 
 | { | 
 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 	struct efx_rx_page_state *state; | 
 | 	unsigned int index; | 
 | 	struct page *page; | 
 |  | 
 | 	if (unlikely(!rx_queue->page_ring)) | 
 | 		return NULL; | 
 | 	index = rx_queue->page_remove & rx_queue->page_ptr_mask; | 
 | 	page = rx_queue->page_ring[index]; | 
 | 	if (page == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	rx_queue->page_ring[index] = NULL; | 
 | 	/* page_remove cannot exceed page_add. */ | 
 | 	if (rx_queue->page_remove != rx_queue->page_add) | 
 | 		++rx_queue->page_remove; | 
 |  | 
 | 	/* If page_count is 1 then we hold the only reference to this page. */ | 
 | 	if (page_count(page) == 1) { | 
 | 		++rx_queue->page_recycle_count; | 
 | 		return page; | 
 | 	} else { | 
 | 		state = page_address(page); | 
 | 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, | 
 | 			       PAGE_SIZE << efx->rx_buffer_order, | 
 | 			       DMA_FROM_DEVICE); | 
 | 		put_page(page); | 
 | 		++rx_queue->page_recycle_failed; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Attempt to recycle the page if there is an RX recycle ring; the page can | 
 |  * only be added if this is the final RX buffer, to prevent pages being used in | 
 |  * the descriptor ring and appearing in the recycle ring simultaneously. | 
 |  */ | 
 | static void efx_recycle_rx_page(struct efx_channel *channel, | 
 | 				struct efx_rx_buffer *rx_buf) | 
 | { | 
 | 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); | 
 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 	struct page *page = rx_buf->page; | 
 | 	unsigned int index; | 
 |  | 
 | 	/* Only recycle the page after processing the final buffer. */ | 
 | 	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) | 
 | 		return; | 
 |  | 
 | 	index = rx_queue->page_add & rx_queue->page_ptr_mask; | 
 | 	if (rx_queue->page_ring[index] == NULL) { | 
 | 		unsigned int read_index = rx_queue->page_remove & | 
 | 			rx_queue->page_ptr_mask; | 
 |  | 
 | 		/* The next slot in the recycle ring is available, but | 
 | 		 * increment page_remove if the read pointer currently | 
 | 		 * points here. | 
 | 		 */ | 
 | 		if (read_index == index) | 
 | 			++rx_queue->page_remove; | 
 | 		rx_queue->page_ring[index] = page; | 
 | 		++rx_queue->page_add; | 
 | 		return; | 
 | 	} | 
 | 	++rx_queue->page_recycle_full; | 
 | 	efx_unmap_rx_buffer(efx, rx_buf); | 
 | 	put_page(rx_buf->page); | 
 | } | 
 |  | 
 | /* Recycle the pages that are used by buffers that have just been received. */ | 
 | void efx_recycle_rx_pages(struct efx_channel *channel, | 
 | 			  struct efx_rx_buffer *rx_buf, | 
 | 			  unsigned int n_frags) | 
 | { | 
 | 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); | 
 |  | 
 | 	if (unlikely(!rx_queue->page_ring)) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		efx_recycle_rx_page(channel, rx_buf); | 
 | 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf); | 
 | 	} while (--n_frags); | 
 | } | 
 |  | 
 | void efx_discard_rx_packet(struct efx_channel *channel, | 
 | 			   struct efx_rx_buffer *rx_buf, | 
 | 			   unsigned int n_frags) | 
 | { | 
 | 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); | 
 |  | 
 | 	efx_recycle_rx_pages(channel, rx_buf, n_frags); | 
 |  | 
 | 	efx_free_rx_buffers(rx_queue, rx_buf, n_frags); | 
 | } | 
 |  | 
 | static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue) | 
 | { | 
 | 	unsigned int bufs_in_recycle_ring, page_ring_size; | 
 | 	struct efx_nic *efx = rx_queue->efx; | 
 |  | 
 | 	bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx); | 
 | 	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / | 
 | 					    efx->rx_bufs_per_page); | 
 | 	rx_queue->page_ring = kcalloc(page_ring_size, | 
 | 				      sizeof(*rx_queue->page_ring), GFP_KERNEL); | 
 | 	if (!rx_queue->page_ring) | 
 | 		rx_queue->page_ptr_mask = 0; | 
 | 	else | 
 | 		rx_queue->page_ptr_mask = page_ring_size - 1; | 
 | } | 
 |  | 
 | static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue) | 
 | { | 
 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 	int i; | 
 |  | 
 | 	if (unlikely(!rx_queue->page_ring)) | 
 | 		return; | 
 |  | 
 | 	/* Unmap and release the pages in the recycle ring. Remove the ring. */ | 
 | 	for (i = 0; i <= rx_queue->page_ptr_mask; i++) { | 
 | 		struct page *page = rx_queue->page_ring[i]; | 
 | 		struct efx_rx_page_state *state; | 
 |  | 
 | 		if (page == NULL) | 
 | 			continue; | 
 |  | 
 | 		state = page_address(page); | 
 | 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, | 
 | 			       PAGE_SIZE << efx->rx_buffer_order, | 
 | 			       DMA_FROM_DEVICE); | 
 | 		put_page(page); | 
 | 	} | 
 | 	kfree(rx_queue->page_ring); | 
 | 	rx_queue->page_ring = NULL; | 
 | } | 
 |  | 
 | static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, | 
 | 			       struct efx_rx_buffer *rx_buf) | 
 | { | 
 | 	/* Release the page reference we hold for the buffer. */ | 
 | 	if (rx_buf->page) | 
 | 		put_page(rx_buf->page); | 
 |  | 
 | 	/* If this is the last buffer in a page, unmap and free it. */ | 
 | 	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { | 
 | 		efx_unmap_rx_buffer(rx_queue->efx, rx_buf); | 
 | 		efx_free_rx_buffers(rx_queue, rx_buf, 1); | 
 | 	} | 
 | 	rx_buf->page = NULL; | 
 | } | 
 |  | 
 | int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) | 
 | { | 
 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 	unsigned int entries; | 
 | 	int rc; | 
 |  | 
 | 	/* Create the smallest power-of-two aligned ring */ | 
 | 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); | 
 | 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); | 
 | 	rx_queue->ptr_mask = entries - 1; | 
 |  | 
 | 	netif_dbg(efx, probe, efx->net_dev, | 
 | 		  "creating RX queue %d size %#x mask %#x\n", | 
 | 		  efx_rx_queue_index(rx_queue), efx->rxq_entries, | 
 | 		  rx_queue->ptr_mask); | 
 |  | 
 | 	/* Allocate RX buffers */ | 
 | 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), | 
 | 				   GFP_KERNEL); | 
 | 	if (!rx_queue->buffer) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	rc = efx_nic_probe_rx(rx_queue); | 
 | 	if (rc) { | 
 | 		kfree(rx_queue->buffer); | 
 | 		rx_queue->buffer = NULL; | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | void efx_init_rx_queue(struct efx_rx_queue *rx_queue) | 
 | { | 
 | 	unsigned int max_fill, trigger, max_trigger; | 
 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 	int rc = 0; | 
 |  | 
 | 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | 
 | 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); | 
 |  | 
 | 	/* Initialise ptr fields */ | 
 | 	rx_queue->added_count = 0; | 
 | 	rx_queue->notified_count = 0; | 
 | 	rx_queue->granted_count = 0; | 
 | 	rx_queue->removed_count = 0; | 
 | 	rx_queue->min_fill = -1U; | 
 | 	efx_init_rx_recycle_ring(rx_queue); | 
 |  | 
 | 	rx_queue->page_remove = 0; | 
 | 	rx_queue->page_add = rx_queue->page_ptr_mask + 1; | 
 | 	rx_queue->page_recycle_count = 0; | 
 | 	rx_queue->page_recycle_failed = 0; | 
 | 	rx_queue->page_recycle_full = 0; | 
 |  | 
 | 	/* Initialise limit fields */ | 
 | 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; | 
 | 	max_trigger = | 
 | 		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; | 
 | 	if (rx_refill_threshold != 0) { | 
 | 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; | 
 | 		if (trigger > max_trigger) | 
 | 			trigger = max_trigger; | 
 | 	} else { | 
 | 		trigger = max_trigger; | 
 | 	} | 
 |  | 
 | 	rx_queue->max_fill = max_fill; | 
 | 	rx_queue->fast_fill_trigger = trigger; | 
 | 	rx_queue->refill_enabled = true; | 
 |  | 
 | 	/* Initialise XDP queue information */ | 
 | 	rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev, | 
 | 			      rx_queue->core_index, 0); | 
 |  | 
 | 	if (rc) { | 
 | 		netif_err(efx, rx_err, efx->net_dev, | 
 | 			  "Failure to initialise XDP queue information rc=%d\n", | 
 | 			  rc); | 
 | 		efx->xdp_rxq_info_failed = true; | 
 | 	} else { | 
 | 		rx_queue->xdp_rxq_info_valid = true; | 
 | 	} | 
 |  | 
 | 	/* Set up RX descriptor ring */ | 
 | 	efx_nic_init_rx(rx_queue); | 
 | } | 
 |  | 
 | void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) | 
 | { | 
 | 	struct efx_rx_buffer *rx_buf; | 
 | 	int i; | 
 |  | 
 | 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | 
 | 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); | 
 |  | 
 | 	del_timer_sync(&rx_queue->slow_fill); | 
 | 	if (rx_queue->grant_credits) | 
 | 		flush_work(&rx_queue->grant_work); | 
 |  | 
 | 	/* Release RX buffers from the current read ptr to the write ptr */ | 
 | 	if (rx_queue->buffer) { | 
 | 		for (i = rx_queue->removed_count; i < rx_queue->added_count; | 
 | 		     i++) { | 
 | 			unsigned int index = i & rx_queue->ptr_mask; | 
 |  | 
 | 			rx_buf = efx_rx_buffer(rx_queue, index); | 
 | 			efx_fini_rx_buffer(rx_queue, rx_buf); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	efx_fini_rx_recycle_ring(rx_queue); | 
 |  | 
 | 	if (rx_queue->xdp_rxq_info_valid) | 
 | 		xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info); | 
 |  | 
 | 	rx_queue->xdp_rxq_info_valid = false; | 
 | } | 
 |  | 
 | void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) | 
 | { | 
 | 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | 
 | 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); | 
 |  | 
 | 	efx_nic_remove_rx(rx_queue); | 
 |  | 
 | 	kfree(rx_queue->buffer); | 
 | 	rx_queue->buffer = NULL; | 
 | } | 
 |  | 
 | /* Unmap a DMA-mapped page.  This function is only called for the final RX | 
 |  * buffer in a page. | 
 |  */ | 
 | void efx_unmap_rx_buffer(struct efx_nic *efx, | 
 | 			 struct efx_rx_buffer *rx_buf) | 
 | { | 
 | 	struct page *page = rx_buf->page; | 
 |  | 
 | 	if (page) { | 
 | 		struct efx_rx_page_state *state = page_address(page); | 
 |  | 
 | 		dma_unmap_page(&efx->pci_dev->dev, | 
 | 			       state->dma_addr, | 
 | 			       PAGE_SIZE << efx->rx_buffer_order, | 
 | 			       DMA_FROM_DEVICE); | 
 | 	} | 
 | } | 
 |  | 
 | void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, | 
 | 			 struct efx_rx_buffer *rx_buf, | 
 | 			 unsigned int num_bufs) | 
 | { | 
 | 	do { | 
 | 		if (rx_buf->page) { | 
 | 			put_page(rx_buf->page); | 
 | 			rx_buf->page = NULL; | 
 | 		} | 
 | 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf); | 
 | 	} while (--num_bufs); | 
 | } | 
 |  | 
 | void efx_rx_slow_fill(struct timer_list *t) | 
 | { | 
 | 	struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); | 
 |  | 
 | 	/* Post an event to cause NAPI to run and refill the queue */ | 
 | 	efx_nic_generate_fill_event(rx_queue); | 
 | 	++rx_queue->slow_fill_count; | 
 | } | 
 |  | 
 | void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) | 
 | { | 
 | 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10)); | 
 | } | 
 |  | 
 | /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers | 
 |  * | 
 |  * @rx_queue:		Efx RX queue | 
 |  * | 
 |  * This allocates a batch of pages, maps them for DMA, and populates | 
 |  * struct efx_rx_buffers for each one. Return a negative error code or | 
 |  * 0 on success. If a single page can be used for multiple buffers, | 
 |  * then the page will either be inserted fully, or not at all. | 
 |  */ | 
 | static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) | 
 | { | 
 | 	unsigned int page_offset, index, count; | 
 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 	struct efx_rx_page_state *state; | 
 | 	struct efx_rx_buffer *rx_buf; | 
 | 	dma_addr_t dma_addr; | 
 | 	struct page *page; | 
 |  | 
 | 	count = 0; | 
 | 	do { | 
 | 		page = efx_reuse_page(rx_queue); | 
 | 		if (page == NULL) { | 
 | 			page = alloc_pages(__GFP_COMP | | 
 | 					   (atomic ? GFP_ATOMIC : GFP_KERNEL), | 
 | 					   efx->rx_buffer_order); | 
 | 			if (unlikely(page == NULL)) | 
 | 				return -ENOMEM; | 
 | 			dma_addr = | 
 | 				dma_map_page(&efx->pci_dev->dev, page, 0, | 
 | 					     PAGE_SIZE << efx->rx_buffer_order, | 
 | 					     DMA_FROM_DEVICE); | 
 | 			if (unlikely(dma_mapping_error(&efx->pci_dev->dev, | 
 | 						       dma_addr))) { | 
 | 				__free_pages(page, efx->rx_buffer_order); | 
 | 				return -EIO; | 
 | 			} | 
 | 			state = page_address(page); | 
 | 			state->dma_addr = dma_addr; | 
 | 		} else { | 
 | 			state = page_address(page); | 
 | 			dma_addr = state->dma_addr; | 
 | 		} | 
 |  | 
 | 		dma_addr += sizeof(struct efx_rx_page_state); | 
 | 		page_offset = sizeof(struct efx_rx_page_state); | 
 |  | 
 | 		do { | 
 | 			index = rx_queue->added_count & rx_queue->ptr_mask; | 
 | 			rx_buf = efx_rx_buffer(rx_queue, index); | 
 | 			rx_buf->dma_addr = dma_addr + efx->rx_ip_align + | 
 | 					   EFX_XDP_HEADROOM; | 
 | 			rx_buf->page = page; | 
 | 			rx_buf->page_offset = page_offset + efx->rx_ip_align + | 
 | 					      EFX_XDP_HEADROOM; | 
 | 			rx_buf->len = efx->rx_dma_len; | 
 | 			rx_buf->flags = 0; | 
 | 			++rx_queue->added_count; | 
 | 			get_page(page); | 
 | 			dma_addr += efx->rx_page_buf_step; | 
 | 			page_offset += efx->rx_page_buf_step; | 
 | 		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); | 
 |  | 
 | 		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; | 
 | 	} while (++count < efx->rx_pages_per_batch); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void efx_rx_config_page_split(struct efx_nic *efx) | 
 | { | 
 | 	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align + | 
 | 				      EFX_XDP_HEADROOM + EFX_XDP_TAILROOM, | 
 | 				      EFX_RX_BUF_ALIGNMENT); | 
 | 	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : | 
 | 		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / | 
 | 		efx->rx_page_buf_step); | 
 | 	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / | 
 | 		efx->rx_bufs_per_page; | 
 | 	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, | 
 | 					       efx->rx_bufs_per_page); | 
 | } | 
 |  | 
 | /* efx_fast_push_rx_descriptors - push new RX descriptors quickly | 
 |  * @rx_queue:		RX descriptor queue | 
 |  * | 
 |  * This will aim to fill the RX descriptor queue up to | 
 |  * @rx_queue->@max_fill. If there is insufficient atomic | 
 |  * memory to do so, a slow fill will be scheduled. | 
 |  * | 
 |  * The caller must provide serialisation (none is used here). In practise, | 
 |  * this means this function must run from the NAPI handler, or be called | 
 |  * when NAPI is disabled. | 
 |  */ | 
 | void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) | 
 | { | 
 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 	unsigned int fill_level, batch_size; | 
 | 	int space, rc = 0; | 
 |  | 
 | 	if (!rx_queue->refill_enabled) | 
 | 		return; | 
 |  | 
 | 	/* Calculate current fill level, and exit if we don't need to fill */ | 
 | 	fill_level = (rx_queue->added_count - rx_queue->removed_count); | 
 | 	EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); | 
 | 	if (fill_level >= rx_queue->fast_fill_trigger) | 
 | 		goto out; | 
 |  | 
 | 	/* Record minimum fill level */ | 
 | 	if (unlikely(fill_level < rx_queue->min_fill)) { | 
 | 		if (fill_level) | 
 | 			rx_queue->min_fill = fill_level; | 
 | 	} | 
 |  | 
 | 	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; | 
 | 	space = rx_queue->max_fill - fill_level; | 
 | 	EFX_WARN_ON_ONCE_PARANOID(space < batch_size); | 
 |  | 
 | 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, | 
 | 		   "RX queue %d fast-filling descriptor ring from" | 
 | 		   " level %d to level %d\n", | 
 | 		   efx_rx_queue_index(rx_queue), fill_level, | 
 | 		   rx_queue->max_fill); | 
 |  | 
 | 	do { | 
 | 		rc = efx_init_rx_buffers(rx_queue, atomic); | 
 | 		if (unlikely(rc)) { | 
 | 			/* Ensure that we don't leave the rx queue empty */ | 
 | 			efx_schedule_slow_fill(rx_queue); | 
 | 			goto out; | 
 | 		} | 
 | 	} while ((space -= batch_size) >= batch_size); | 
 |  | 
 | 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, | 
 | 		   "RX queue %d fast-filled descriptor ring " | 
 | 		   "to level %d\n", efx_rx_queue_index(rx_queue), | 
 | 		   rx_queue->added_count - rx_queue->removed_count); | 
 |  | 
 |  out: | 
 | 	if (rx_queue->notified_count != rx_queue->added_count) | 
 | 		efx_nic_notify_rx_desc(rx_queue); | 
 | } | 
 |  | 
 | /* Pass a received packet up through GRO.  GRO can handle pages | 
 |  * regardless of checksum state and skbs with a good checksum. | 
 |  */ | 
 | void | 
 | efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, | 
 | 		  unsigned int n_frags, u8 *eh, __wsum csum) | 
 | { | 
 | 	struct napi_struct *napi = &channel->napi_str; | 
 | 	struct efx_nic *efx = channel->efx; | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	skb = napi_get_frags(napi); | 
 | 	if (unlikely(!skb)) { | 
 | 		struct efx_rx_queue *rx_queue; | 
 |  | 
 | 		rx_queue = efx_channel_get_rx_queue(channel); | 
 | 		efx_free_rx_buffers(rx_queue, rx_buf, n_frags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (efx->net_dev->features & NETIF_F_RXHASH && | 
 | 	    efx_rx_buf_hash_valid(efx, eh)) | 
 | 		skb_set_hash(skb, efx_rx_buf_hash(efx, eh), | 
 | 			     PKT_HASH_TYPE_L3); | 
 | 	if (csum) { | 
 | 		skb->csum = csum; | 
 | 		skb->ip_summed = CHECKSUM_COMPLETE; | 
 | 	} else { | 
 | 		skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? | 
 | 				  CHECKSUM_UNNECESSARY : CHECKSUM_NONE); | 
 | 	} | 
 | 	skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); | 
 |  | 
 | 	for (;;) { | 
 | 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, | 
 | 				   rx_buf->page, rx_buf->page_offset, | 
 | 				   rx_buf->len); | 
 | 		rx_buf->page = NULL; | 
 | 		skb->len += rx_buf->len; | 
 | 		if (skb_shinfo(skb)->nr_frags == n_frags) | 
 | 			break; | 
 |  | 
 | 		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); | 
 | 	} | 
 |  | 
 | 	skb->data_len = skb->len; | 
 | 	skb->truesize += n_frags * efx->rx_buffer_truesize; | 
 |  | 
 | 	skb_record_rx_queue(skb, channel->rx_queue.core_index); | 
 |  | 
 | 	napi_gro_frags(napi); | 
 | } | 
 |  | 
 | /* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because | 
 |  * (a) this is an infrequent control-plane operation and (b) n is small (max 64) | 
 |  */ | 
 | struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx) | 
 | { | 
 | 	struct list_head *head = &efx->rss_context.list; | 
 | 	struct efx_rss_context *ctx, *new; | 
 | 	u32 id = 1; /* Don't use zero, that refers to the master RSS context */ | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&efx->rss_lock)); | 
 |  | 
 | 	/* Search for first gap in the numbering */ | 
 | 	list_for_each_entry(ctx, head, list) { | 
 | 		if (ctx->user_id != id) | 
 | 			break; | 
 | 		id++; | 
 | 		/* Check for wrap.  If this happens, we have nearly 2^32 | 
 | 		 * allocated RSS contexts, which seems unlikely. | 
 | 		 */ | 
 | 		if (WARN_ON_ONCE(!id)) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	/* Create the new entry */ | 
 | 	new = kmalloc(sizeof(*new), GFP_KERNEL); | 
 | 	if (!new) | 
 | 		return NULL; | 
 | 	new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID; | 
 | 	new->rx_hash_udp_4tuple = false; | 
 |  | 
 | 	/* Insert the new entry into the gap */ | 
 | 	new->user_id = id; | 
 | 	list_add_tail(&new->list, &ctx->list); | 
 | 	return new; | 
 | } | 
 |  | 
 | struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id) | 
 | { | 
 | 	struct list_head *head = &efx->rss_context.list; | 
 | 	struct efx_rss_context *ctx; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&efx->rss_lock)); | 
 |  | 
 | 	list_for_each_entry(ctx, head, list) | 
 | 		if (ctx->user_id == id) | 
 | 			return ctx; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void efx_free_rss_context_entry(struct efx_rss_context *ctx) | 
 | { | 
 | 	list_del(&ctx->list); | 
 | 	kfree(ctx); | 
 | } | 
 |  | 
 | void efx_set_default_rx_indir_table(struct efx_nic *efx, | 
 | 				    struct efx_rss_context *ctx) | 
 | { | 
 | 	size_t i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++) | 
 | 		ctx->rx_indir_table[i] = | 
 | 			ethtool_rxfh_indir_default(i, efx->rss_spread); | 
 | } | 
 |  | 
 | /** | 
 |  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient | 
 |  * @spec: Specification to test | 
 |  * | 
 |  * Return: %true if the specification is a non-drop RX filter that | 
 |  * matches a local MAC address I/G bit value of 1 or matches a local | 
 |  * IPv4 or IPv6 address value in the respective multicast address | 
 |  * range.  Otherwise %false. | 
 |  */ | 
 | bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) | 
 | { | 
 | 	if (!(spec->flags & EFX_FILTER_FLAG_RX) || | 
 | 	    spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) | 
 | 		return false; | 
 |  | 
 | 	if (spec->match_flags & | 
 | 	    (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && | 
 | 	    is_multicast_ether_addr(spec->loc_mac)) | 
 | 		return true; | 
 |  | 
 | 	if ((spec->match_flags & | 
 | 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == | 
 | 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { | 
 | 		if (spec->ether_type == htons(ETH_P_IP) && | 
 | 		    ipv4_is_multicast(spec->loc_host[0])) | 
 | 			return true; | 
 | 		if (spec->ether_type == htons(ETH_P_IPV6) && | 
 | 		    ((const u8 *)spec->loc_host)[0] == 0xff) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | bool efx_filter_spec_equal(const struct efx_filter_spec *left, | 
 | 			   const struct efx_filter_spec *right) | 
 | { | 
 | 	if ((left->match_flags ^ right->match_flags) | | 
 | 	    ((left->flags ^ right->flags) & | 
 | 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) | 
 | 		return false; | 
 |  | 
 | 	return memcmp(&left->vport_id, &right->vport_id, | 
 | 		      sizeof(struct efx_filter_spec) - | 
 | 		      offsetof(struct efx_filter_spec, vport_id)) == 0; | 
 | } | 
 |  | 
 | u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) | 
 | { | 
 | 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, vport_id) & 3); | 
 | 	return jhash2((const u32 *)&spec->vport_id, | 
 | 		      (sizeof(struct efx_filter_spec) - | 
 | 		       offsetof(struct efx_filter_spec, vport_id)) / 4, | 
 | 		      0); | 
 | } | 
 |  | 
 | #ifdef CONFIG_RFS_ACCEL | 
 | bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, | 
 | 			bool *force) | 
 | { | 
 | 	if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { | 
 | 		/* ARFS is currently updating this entry, leave it */ | 
 | 		return false; | 
 | 	} | 
 | 	if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { | 
 | 		/* ARFS tried and failed to update this, so it's probably out | 
 | 		 * of date.  Remove the filter and the ARFS rule entry. | 
 | 		 */ | 
 | 		rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; | 
 | 		*force = true; | 
 | 		return true; | 
 | 	} else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ | 
 | 		/* ARFS has moved on, so old filter is not needed.  Since we did | 
 | 		 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will | 
 | 		 * not be removed by efx_rps_hash_del() subsequently. | 
 | 		 */ | 
 | 		*force = true; | 
 | 		return true; | 
 | 	} | 
 | 	/* Remove it iff ARFS wants to. */ | 
 | 	return true; | 
 | } | 
 |  | 
 | static | 
 | struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, | 
 | 				       const struct efx_filter_spec *spec) | 
 | { | 
 | 	u32 hash = efx_filter_spec_hash(spec); | 
 |  | 
 | 	lockdep_assert_held(&efx->rps_hash_lock); | 
 | 	if (!efx->rps_hash_table) | 
 | 		return NULL; | 
 | 	return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; | 
 | } | 
 |  | 
 | struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, | 
 | 					const struct efx_filter_spec *spec) | 
 | { | 
 | 	struct efx_arfs_rule *rule; | 
 | 	struct hlist_head *head; | 
 | 	struct hlist_node *node; | 
 |  | 
 | 	head = efx_rps_hash_bucket(efx, spec); | 
 | 	if (!head) | 
 | 		return NULL; | 
 | 	hlist_for_each(node, head) { | 
 | 		rule = container_of(node, struct efx_arfs_rule, node); | 
 | 		if (efx_filter_spec_equal(spec, &rule->spec)) | 
 | 			return rule; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, | 
 | 				       const struct efx_filter_spec *spec, | 
 | 				       bool *new) | 
 | { | 
 | 	struct efx_arfs_rule *rule; | 
 | 	struct hlist_head *head; | 
 | 	struct hlist_node *node; | 
 |  | 
 | 	head = efx_rps_hash_bucket(efx, spec); | 
 | 	if (!head) | 
 | 		return NULL; | 
 | 	hlist_for_each(node, head) { | 
 | 		rule = container_of(node, struct efx_arfs_rule, node); | 
 | 		if (efx_filter_spec_equal(spec, &rule->spec)) { | 
 | 			*new = false; | 
 | 			return rule; | 
 | 		} | 
 | 	} | 
 | 	rule = kmalloc(sizeof(*rule), GFP_ATOMIC); | 
 | 	*new = true; | 
 | 	if (rule) { | 
 | 		memcpy(&rule->spec, spec, sizeof(rule->spec)); | 
 | 		hlist_add_head(&rule->node, head); | 
 | 	} | 
 | 	return rule; | 
 | } | 
 |  | 
 | void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) | 
 | { | 
 | 	struct efx_arfs_rule *rule; | 
 | 	struct hlist_head *head; | 
 | 	struct hlist_node *node; | 
 |  | 
 | 	head = efx_rps_hash_bucket(efx, spec); | 
 | 	if (WARN_ON(!head)) | 
 | 		return; | 
 | 	hlist_for_each(node, head) { | 
 | 		rule = container_of(node, struct efx_arfs_rule, node); | 
 | 		if (efx_filter_spec_equal(spec, &rule->spec)) { | 
 | 			/* Someone already reused the entry.  We know that if | 
 | 			 * this check doesn't fire (i.e. filter_id == REMOVING) | 
 | 			 * then the REMOVING mark was put there by our caller, | 
 | 			 * because caller is holding a lock on filter table and | 
 | 			 * only holders of that lock set REMOVING. | 
 | 			 */ | 
 | 			if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) | 
 | 				return; | 
 | 			hlist_del(node); | 
 | 			kfree(rule); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	/* We didn't find it. */ | 
 | 	WARN_ON(1); | 
 | } | 
 | #endif | 
 |  | 
 | int efx_probe_filters(struct efx_nic *efx) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	mutex_lock(&efx->mac_lock); | 
 | 	rc = efx->type->filter_table_probe(efx); | 
 | 	if (rc) | 
 | 		goto out_unlock; | 
 |  | 
 | #ifdef CONFIG_RFS_ACCEL | 
 | 	if (efx->type->offload_features & NETIF_F_NTUPLE) { | 
 | 		struct efx_channel *channel; | 
 | 		int i, success = 1; | 
 |  | 
 | 		efx_for_each_channel(channel, efx) { | 
 | 			channel->rps_flow_id = | 
 | 				kcalloc(efx->type->max_rx_ip_filters, | 
 | 					sizeof(*channel->rps_flow_id), | 
 | 					GFP_KERNEL); | 
 | 			if (!channel->rps_flow_id) | 
 | 				success = 0; | 
 | 			else | 
 | 				for (i = 0; | 
 | 				     i < efx->type->max_rx_ip_filters; | 
 | 				     ++i) | 
 | 					channel->rps_flow_id[i] = | 
 | 						RPS_FLOW_ID_INVALID; | 
 | 			channel->rfs_expire_index = 0; | 
 | 			channel->rfs_filter_count = 0; | 
 | 		} | 
 |  | 
 | 		if (!success) { | 
 | 			efx_for_each_channel(channel, efx) { | 
 | 				kfree(channel->rps_flow_id); | 
 | 				channel->rps_flow_id = NULL; | 
 | 			} | 
 | 			efx->type->filter_table_remove(efx); | 
 | 			rc = -ENOMEM; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | out_unlock: | 
 | 	mutex_unlock(&efx->mac_lock); | 
 | 	return rc; | 
 | } | 
 |  | 
 | void efx_remove_filters(struct efx_nic *efx) | 
 | { | 
 | #ifdef CONFIG_RFS_ACCEL | 
 | 	struct efx_channel *channel; | 
 |  | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		cancel_delayed_work_sync(&channel->filter_work); | 
 | 		kfree(channel->rps_flow_id); | 
 | 		channel->rps_flow_id = NULL; | 
 | 	} | 
 | #endif | 
 | 	efx->type->filter_table_remove(efx); | 
 | } | 
 |  | 
 | #ifdef CONFIG_RFS_ACCEL | 
 |  | 
 | static void efx_filter_rfs_work(struct work_struct *data) | 
 | { | 
 | 	struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, | 
 | 							      work); | 
 | 	struct efx_nic *efx = efx_netdev_priv(req->net_dev); | 
 | 	struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); | 
 | 	int slot_idx = req - efx->rps_slot; | 
 | 	struct efx_arfs_rule *rule; | 
 | 	u16 arfs_id = 0; | 
 | 	int rc; | 
 |  | 
 | 	rc = efx->type->filter_insert(efx, &req->spec, true); | 
 | 	if (rc >= 0) | 
 | 		/* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */ | 
 | 		rc %= efx->type->max_rx_ip_filters; | 
 | 	if (efx->rps_hash_table) { | 
 | 		spin_lock_bh(&efx->rps_hash_lock); | 
 | 		rule = efx_rps_hash_find(efx, &req->spec); | 
 | 		/* The rule might have already gone, if someone else's request | 
 | 		 * for the same spec was already worked and then expired before | 
 | 		 * we got around to our work.  In that case we have nothing | 
 | 		 * tying us to an arfs_id, meaning that as soon as the filter | 
 | 		 * is considered for expiry it will be removed. | 
 | 		 */ | 
 | 		if (rule) { | 
 | 			if (rc < 0) | 
 | 				rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; | 
 | 			else | 
 | 				rule->filter_id = rc; | 
 | 			arfs_id = rule->arfs_id; | 
 | 		} | 
 | 		spin_unlock_bh(&efx->rps_hash_lock); | 
 | 	} | 
 | 	if (rc >= 0) { | 
 | 		/* Remember this so we can check whether to expire the filter | 
 | 		 * later. | 
 | 		 */ | 
 | 		mutex_lock(&efx->rps_mutex); | 
 | 		if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID) | 
 | 			channel->rfs_filter_count++; | 
 | 		channel->rps_flow_id[rc] = req->flow_id; | 
 | 		mutex_unlock(&efx->rps_mutex); | 
 |  | 
 | 		if (req->spec.ether_type == htons(ETH_P_IP)) | 
 | 			netif_info(efx, rx_status, efx->net_dev, | 
 | 				   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", | 
 | 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", | 
 | 				   req->spec.rem_host, ntohs(req->spec.rem_port), | 
 | 				   req->spec.loc_host, ntohs(req->spec.loc_port), | 
 | 				   req->rxq_index, req->flow_id, rc, arfs_id); | 
 | 		else | 
 | 			netif_info(efx, rx_status, efx->net_dev, | 
 | 				   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", | 
 | 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", | 
 | 				   req->spec.rem_host, ntohs(req->spec.rem_port), | 
 | 				   req->spec.loc_host, ntohs(req->spec.loc_port), | 
 | 				   req->rxq_index, req->flow_id, rc, arfs_id); | 
 | 		channel->n_rfs_succeeded++; | 
 | 	} else { | 
 | 		if (req->spec.ether_type == htons(ETH_P_IP)) | 
 | 			netif_dbg(efx, rx_status, efx->net_dev, | 
 | 				  "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n", | 
 | 				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", | 
 | 				  req->spec.rem_host, ntohs(req->spec.rem_port), | 
 | 				  req->spec.loc_host, ntohs(req->spec.loc_port), | 
 | 				  req->rxq_index, req->flow_id, rc, arfs_id); | 
 | 		else | 
 | 			netif_dbg(efx, rx_status, efx->net_dev, | 
 | 				  "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n", | 
 | 				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", | 
 | 				  req->spec.rem_host, ntohs(req->spec.rem_port), | 
 | 				  req->spec.loc_host, ntohs(req->spec.loc_port), | 
 | 				  req->rxq_index, req->flow_id, rc, arfs_id); | 
 | 		channel->n_rfs_failed++; | 
 | 		/* We're overloading the NIC's filter tables, so let's do a | 
 | 		 * chunk of extra expiry work. | 
 | 		 */ | 
 | 		__efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, | 
 | 						     100u)); | 
 | 	} | 
 |  | 
 | 	/* Release references */ | 
 | 	clear_bit(slot_idx, &efx->rps_slot_map); | 
 | 	dev_put(req->net_dev); | 
 | } | 
 |  | 
 | int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, | 
 | 		   u16 rxq_index, u32 flow_id) | 
 | { | 
 | 	struct efx_nic *efx = efx_netdev_priv(net_dev); | 
 | 	struct efx_async_filter_insertion *req; | 
 | 	struct efx_arfs_rule *rule; | 
 | 	struct flow_keys fk; | 
 | 	int slot_idx; | 
 | 	bool new; | 
 | 	int rc; | 
 |  | 
 | 	/* find a free slot */ | 
 | 	for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) | 
 | 		if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) | 
 | 			break; | 
 | 	if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (flow_id == RPS_FLOW_ID_INVALID) { | 
 | 		rc = -EINVAL; | 
 | 		goto out_clear; | 
 | 	} | 
 |  | 
 | 	if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { | 
 | 		rc = -EPROTONOSUPPORT; | 
 | 		goto out_clear; | 
 | 	} | 
 |  | 
 | 	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { | 
 | 		rc = -EPROTONOSUPPORT; | 
 | 		goto out_clear; | 
 | 	} | 
 | 	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { | 
 | 		rc = -EPROTONOSUPPORT; | 
 | 		goto out_clear; | 
 | 	} | 
 |  | 
 | 	req = efx->rps_slot + slot_idx; | 
 | 	efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, | 
 | 			   efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, | 
 | 			   rxq_index); | 
 | 	req->spec.match_flags = | 
 | 		EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | | 
 | 		EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | | 
 | 		EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; | 
 | 	req->spec.ether_type = fk.basic.n_proto; | 
 | 	req->spec.ip_proto = fk.basic.ip_proto; | 
 |  | 
 | 	if (fk.basic.n_proto == htons(ETH_P_IP)) { | 
 | 		req->spec.rem_host[0] = fk.addrs.v4addrs.src; | 
 | 		req->spec.loc_host[0] = fk.addrs.v4addrs.dst; | 
 | 	} else { | 
 | 		memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, | 
 | 		       sizeof(struct in6_addr)); | 
 | 		memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, | 
 | 		       sizeof(struct in6_addr)); | 
 | 	} | 
 |  | 
 | 	req->spec.rem_port = fk.ports.src; | 
 | 	req->spec.loc_port = fk.ports.dst; | 
 |  | 
 | 	if (efx->rps_hash_table) { | 
 | 		/* Add it to ARFS hash table */ | 
 | 		spin_lock(&efx->rps_hash_lock); | 
 | 		rule = efx_rps_hash_add(efx, &req->spec, &new); | 
 | 		if (!rule) { | 
 | 			rc = -ENOMEM; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 		if (new) | 
 | 			rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; | 
 | 		rc = rule->arfs_id; | 
 | 		/* Skip if existing or pending filter already does the right thing */ | 
 | 		if (!new && rule->rxq_index == rxq_index && | 
 | 		    rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) | 
 | 			goto out_unlock; | 
 | 		rule->rxq_index = rxq_index; | 
 | 		rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; | 
 | 		spin_unlock(&efx->rps_hash_lock); | 
 | 	} else { | 
 | 		/* Without an ARFS hash table, we just use arfs_id 0 for all | 
 | 		 * filters.  This means if multiple flows hash to the same | 
 | 		 * flow_id, all but the most recently touched will be eligible | 
 | 		 * for expiry. | 
 | 		 */ | 
 | 		rc = 0; | 
 | 	} | 
 |  | 
 | 	/* Queue the request */ | 
 | 	dev_hold(req->net_dev = net_dev); | 
 | 	INIT_WORK(&req->work, efx_filter_rfs_work); | 
 | 	req->rxq_index = rxq_index; | 
 | 	req->flow_id = flow_id; | 
 | 	schedule_work(&req->work); | 
 | 	return rc; | 
 | out_unlock: | 
 | 	spin_unlock(&efx->rps_hash_lock); | 
 | out_clear: | 
 | 	clear_bit(slot_idx, &efx->rps_slot_map); | 
 | 	return rc; | 
 | } | 
 |  | 
 | bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota) | 
 | { | 
 | 	bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); | 
 | 	struct efx_nic *efx = channel->efx; | 
 | 	unsigned int index, size, start; | 
 | 	u32 flow_id; | 
 |  | 
 | 	if (!mutex_trylock(&efx->rps_mutex)) | 
 | 		return false; | 
 | 	expire_one = efx->type->filter_rfs_expire_one; | 
 | 	index = channel->rfs_expire_index; | 
 | 	start = index; | 
 | 	size = efx->type->max_rx_ip_filters; | 
 | 	while (quota) { | 
 | 		flow_id = channel->rps_flow_id[index]; | 
 |  | 
 | 		if (flow_id != RPS_FLOW_ID_INVALID) { | 
 | 			quota--; | 
 | 			if (expire_one(efx, flow_id, index)) { | 
 | 				netif_info(efx, rx_status, efx->net_dev, | 
 | 					   "expired filter %d [channel %u flow %u]\n", | 
 | 					   index, channel->channel, flow_id); | 
 | 				channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; | 
 | 				channel->rfs_filter_count--; | 
 | 			} | 
 | 		} | 
 | 		if (++index == size) | 
 | 			index = 0; | 
 | 		/* If we were called with a quota that exceeds the total number | 
 | 		 * of filters in the table (which shouldn't happen, but could | 
 | 		 * if two callers race), ensure that we don't loop forever - | 
 | 		 * stop when we've examined every row of the table. | 
 | 		 */ | 
 | 		if (index == start) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	channel->rfs_expire_index = index; | 
 | 	mutex_unlock(&efx->rps_mutex); | 
 | 	return true; | 
 | } | 
 |  | 
 | #endif /* CONFIG_RFS_ACCEL */ |