| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * arch-independent dma-mapping routines | 
 |  * | 
 |  * Copyright (c) 2006  SUSE Linux Products GmbH | 
 |  * Copyright (c) 2006  Tejun Heo <teheo@suse.de> | 
 |  */ | 
 | #include <linux/memblock.h> /* for max_pfn */ | 
 | #include <linux/acpi.h> | 
 | #include <linux/dma-map-ops.h> | 
 | #include <linux/export.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/kmsan.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 | #include "debug.h" | 
 | #include "direct.h" | 
 |  | 
 | #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ | 
 | 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ | 
 | 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) | 
 | bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT); | 
 | #endif | 
 |  | 
 | /* | 
 |  * Managed DMA API | 
 |  */ | 
 | struct dma_devres { | 
 | 	size_t		size; | 
 | 	void		*vaddr; | 
 | 	dma_addr_t	dma_handle; | 
 | 	unsigned long	attrs; | 
 | }; | 
 |  | 
 | static void dmam_release(struct device *dev, void *res) | 
 | { | 
 | 	struct dma_devres *this = res; | 
 |  | 
 | 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, | 
 | 			this->attrs); | 
 | } | 
 |  | 
 | static int dmam_match(struct device *dev, void *res, void *match_data) | 
 | { | 
 | 	struct dma_devres *this = res, *match = match_data; | 
 |  | 
 | 	if (this->vaddr == match->vaddr) { | 
 | 		WARN_ON(this->size != match->size || | 
 | 			this->dma_handle != match->dma_handle); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * dmam_free_coherent - Managed dma_free_coherent() | 
 |  * @dev: Device to free coherent memory for | 
 |  * @size: Size of allocation | 
 |  * @vaddr: Virtual address of the memory to free | 
 |  * @dma_handle: DMA handle of the memory to free | 
 |  * | 
 |  * Managed dma_free_coherent(). | 
 |  */ | 
 | void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, | 
 | 			dma_addr_t dma_handle) | 
 | { | 
 | 	struct dma_devres match_data = { size, vaddr, dma_handle }; | 
 |  | 
 | 	dma_free_coherent(dev, size, vaddr, dma_handle); | 
 | 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); | 
 | } | 
 | EXPORT_SYMBOL(dmam_free_coherent); | 
 |  | 
 | /** | 
 |  * dmam_alloc_attrs - Managed dma_alloc_attrs() | 
 |  * @dev: Device to allocate non_coherent memory for | 
 |  * @size: Size of allocation | 
 |  * @dma_handle: Out argument for allocated DMA handle | 
 |  * @gfp: Allocation flags | 
 |  * @attrs: Flags in the DMA_ATTR_* namespace. | 
 |  * | 
 |  * Managed dma_alloc_attrs().  Memory allocated using this function will be | 
 |  * automatically released on driver detach. | 
 |  * | 
 |  * RETURNS: | 
 |  * Pointer to allocated memory on success, NULL on failure. | 
 |  */ | 
 | void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, | 
 | 		gfp_t gfp, unsigned long attrs) | 
 | { | 
 | 	struct dma_devres *dr; | 
 | 	void *vaddr; | 
 |  | 
 | 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp); | 
 | 	if (!dr) | 
 | 		return NULL; | 
 |  | 
 | 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); | 
 | 	if (!vaddr) { | 
 | 		devres_free(dr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	dr->vaddr = vaddr; | 
 | 	dr->dma_handle = *dma_handle; | 
 | 	dr->size = size; | 
 | 	dr->attrs = attrs; | 
 |  | 
 | 	devres_add(dev, dr); | 
 |  | 
 | 	return vaddr; | 
 | } | 
 | EXPORT_SYMBOL(dmam_alloc_attrs); | 
 |  | 
 | static bool dma_go_direct(struct device *dev, dma_addr_t mask, | 
 | 		const struct dma_map_ops *ops) | 
 | { | 
 | 	if (likely(!ops)) | 
 | 		return true; | 
 | #ifdef CONFIG_DMA_OPS_BYPASS | 
 | 	if (dev->dma_ops_bypass) | 
 | 		return min_not_zero(mask, dev->bus_dma_limit) >= | 
 | 			    dma_direct_get_required_mask(dev); | 
 | #endif | 
 | 	return false; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Check if the devices uses a direct mapping for streaming DMA operations. | 
 |  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large | 
 |  * enough. | 
 |  */ | 
 | static inline bool dma_alloc_direct(struct device *dev, | 
 | 		const struct dma_map_ops *ops) | 
 | { | 
 | 	return dma_go_direct(dev, dev->coherent_dma_mask, ops); | 
 | } | 
 |  | 
 | static inline bool dma_map_direct(struct device *dev, | 
 | 		const struct dma_map_ops *ops) | 
 | { | 
 | 	return dma_go_direct(dev, *dev->dma_mask, ops); | 
 | } | 
 |  | 
 | dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, | 
 | 		size_t offset, size_t size, enum dma_data_direction dir, | 
 | 		unsigned long attrs) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	dma_addr_t addr; | 
 |  | 
 | 	BUG_ON(!valid_dma_direction(dir)); | 
 |  | 
 | 	if (WARN_ON_ONCE(!dev->dma_mask)) | 
 | 		return DMA_MAPPING_ERROR; | 
 |  | 
 | 	if (dma_map_direct(dev, ops) || | 
 | 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size)) | 
 | 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); | 
 | 	else | 
 | 		addr = ops->map_page(dev, page, offset, size, dir, attrs); | 
 | 	kmsan_handle_dma(page, offset, size, dir); | 
 | 	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs); | 
 |  | 
 | 	return addr; | 
 | } | 
 | EXPORT_SYMBOL(dma_map_page_attrs); | 
 |  | 
 | void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, | 
 | 		enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	BUG_ON(!valid_dma_direction(dir)); | 
 | 	if (dma_map_direct(dev, ops) || | 
 | 	    arch_dma_unmap_page_direct(dev, addr + size)) | 
 | 		dma_direct_unmap_page(dev, addr, size, dir, attrs); | 
 | 	else if (ops->unmap_page) | 
 | 		ops->unmap_page(dev, addr, size, dir, attrs); | 
 | 	debug_dma_unmap_page(dev, addr, size, dir); | 
 | } | 
 | EXPORT_SYMBOL(dma_unmap_page_attrs); | 
 |  | 
 | static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, | 
 | 	 int nents, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	int ents; | 
 |  | 
 | 	BUG_ON(!valid_dma_direction(dir)); | 
 |  | 
 | 	if (WARN_ON_ONCE(!dev->dma_mask)) | 
 | 		return 0; | 
 |  | 
 | 	if (dma_map_direct(dev, ops) || | 
 | 	    arch_dma_map_sg_direct(dev, sg, nents)) | 
 | 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); | 
 | 	else | 
 | 		ents = ops->map_sg(dev, sg, nents, dir, attrs); | 
 |  | 
 | 	if (ents > 0) { | 
 | 		kmsan_handle_dma_sg(sg, nents, dir); | 
 | 		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs); | 
 | 	} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM && | 
 | 				ents != -EIO && ents != -EREMOTEIO)) { | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return ents; | 
 | } | 
 |  | 
 | /** | 
 |  * dma_map_sg_attrs - Map the given buffer for DMA | 
 |  * @dev:	The device for which to perform the DMA operation | 
 |  * @sg:		The sg_table object describing the buffer | 
 |  * @nents:	Number of entries to map | 
 |  * @dir:	DMA direction | 
 |  * @attrs:	Optional DMA attributes for the map operation | 
 |  * | 
 |  * Maps a buffer described by a scatterlist passed in the sg argument with | 
 |  * nents segments for the @dir DMA operation by the @dev device. | 
 |  * | 
 |  * Returns the number of mapped entries (which can be less than nents) | 
 |  * on success. Zero is returned for any error. | 
 |  * | 
 |  * dma_unmap_sg_attrs() should be used to unmap the buffer with the | 
 |  * original sg and original nents (not the value returned by this funciton). | 
 |  */ | 
 | unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, | 
 | 		    int nents, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs); | 
 | 	if (ret < 0) | 
 | 		return 0; | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(dma_map_sg_attrs); | 
 |  | 
 | /** | 
 |  * dma_map_sgtable - Map the given buffer for DMA | 
 |  * @dev:	The device for which to perform the DMA operation | 
 |  * @sgt:	The sg_table object describing the buffer | 
 |  * @dir:	DMA direction | 
 |  * @attrs:	Optional DMA attributes for the map operation | 
 |  * | 
 |  * Maps a buffer described by a scatterlist stored in the given sg_table | 
 |  * object for the @dir DMA operation by the @dev device. After success, the | 
 |  * ownership for the buffer is transferred to the DMA domain.  One has to | 
 |  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the | 
 |  * ownership of the buffer back to the CPU domain before touching the | 
 |  * buffer by the CPU. | 
 |  * | 
 |  * Returns 0 on success or a negative error code on error. The following | 
 |  * error codes are supported with the given meaning: | 
 |  * | 
 |  *   -EINVAL		An invalid argument, unaligned access or other error | 
 |  *			in usage. Will not succeed if retried. | 
 |  *   -ENOMEM		Insufficient resources (like memory or IOVA space) to | 
 |  *			complete the mapping. Should succeed if retried later. | 
 |  *   -EIO		Legacy error code with an unknown meaning. eg. this is | 
 |  *			returned if a lower level call returned | 
 |  *			DMA_MAPPING_ERROR. | 
 |  *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified | 
 |  *			in the sg_table. This will not succeed if retried. | 
 |  */ | 
 | int dma_map_sgtable(struct device *dev, struct sg_table *sgt, | 
 | 		    enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	int nents; | 
 |  | 
 | 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); | 
 | 	if (nents < 0) | 
 | 		return nents; | 
 | 	sgt->nents = nents; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_map_sgtable); | 
 |  | 
 | void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, | 
 | 				      int nents, enum dma_data_direction dir, | 
 | 				      unsigned long attrs) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	BUG_ON(!valid_dma_direction(dir)); | 
 | 	debug_dma_unmap_sg(dev, sg, nents, dir); | 
 | 	if (dma_map_direct(dev, ops) || | 
 | 	    arch_dma_unmap_sg_direct(dev, sg, nents)) | 
 | 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs); | 
 | 	else if (ops->unmap_sg) | 
 | 		ops->unmap_sg(dev, sg, nents, dir, attrs); | 
 | } | 
 | EXPORT_SYMBOL(dma_unmap_sg_attrs); | 
 |  | 
 | dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, | 
 | 		size_t size, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	dma_addr_t addr = DMA_MAPPING_ERROR; | 
 |  | 
 | 	BUG_ON(!valid_dma_direction(dir)); | 
 |  | 
 | 	if (WARN_ON_ONCE(!dev->dma_mask)) | 
 | 		return DMA_MAPPING_ERROR; | 
 |  | 
 | 	if (dma_map_direct(dev, ops)) | 
 | 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs); | 
 | 	else if (ops->map_resource) | 
 | 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs); | 
 |  | 
 | 	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs); | 
 | 	return addr; | 
 | } | 
 | EXPORT_SYMBOL(dma_map_resource); | 
 |  | 
 | void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, | 
 | 		enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	BUG_ON(!valid_dma_direction(dir)); | 
 | 	if (!dma_map_direct(dev, ops) && ops->unmap_resource) | 
 | 		ops->unmap_resource(dev, addr, size, dir, attrs); | 
 | 	debug_dma_unmap_resource(dev, addr, size, dir); | 
 | } | 
 | EXPORT_SYMBOL(dma_unmap_resource); | 
 |  | 
 | void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	BUG_ON(!valid_dma_direction(dir)); | 
 | 	if (dma_map_direct(dev, ops)) | 
 | 		dma_direct_sync_single_for_cpu(dev, addr, size, dir); | 
 | 	else if (ops->sync_single_for_cpu) | 
 | 		ops->sync_single_for_cpu(dev, addr, size, dir); | 
 | 	debug_dma_sync_single_for_cpu(dev, addr, size, dir); | 
 | } | 
 | EXPORT_SYMBOL(dma_sync_single_for_cpu); | 
 |  | 
 | void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, | 
 | 		size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	BUG_ON(!valid_dma_direction(dir)); | 
 | 	if (dma_map_direct(dev, ops)) | 
 | 		dma_direct_sync_single_for_device(dev, addr, size, dir); | 
 | 	else if (ops->sync_single_for_device) | 
 | 		ops->sync_single_for_device(dev, addr, size, dir); | 
 | 	debug_dma_sync_single_for_device(dev, addr, size, dir); | 
 | } | 
 | EXPORT_SYMBOL(dma_sync_single_for_device); | 
 |  | 
 | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | 
 | 		    int nelems, enum dma_data_direction dir) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	BUG_ON(!valid_dma_direction(dir)); | 
 | 	if (dma_map_direct(dev, ops)) | 
 | 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); | 
 | 	else if (ops->sync_sg_for_cpu) | 
 | 		ops->sync_sg_for_cpu(dev, sg, nelems, dir); | 
 | 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); | 
 | } | 
 | EXPORT_SYMBOL(dma_sync_sg_for_cpu); | 
 |  | 
 | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | 
 | 		       int nelems, enum dma_data_direction dir) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	BUG_ON(!valid_dma_direction(dir)); | 
 | 	if (dma_map_direct(dev, ops)) | 
 | 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir); | 
 | 	else if (ops->sync_sg_for_device) | 
 | 		ops->sync_sg_for_device(dev, sg, nelems, dir); | 
 | 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir); | 
 | } | 
 | EXPORT_SYMBOL(dma_sync_sg_for_device); | 
 |  | 
 | /* | 
 |  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems | 
 |  * that the intention is to allow exporting memory allocated via the | 
 |  * coherent DMA APIs through the dma_buf API, which only accepts a | 
 |  * scattertable.  This presents a couple of problems: | 
 |  * 1. Not all memory allocated via the coherent DMA APIs is backed by | 
 |  *    a struct page | 
 |  * 2. Passing coherent DMA memory into the streaming APIs is not allowed | 
 |  *    as we will try to flush the memory through a different alias to that | 
 |  *    actually being used (and the flushes are redundant.) | 
 |  */ | 
 | int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, | 
 | 		void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
 | 		unsigned long attrs) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	if (dma_alloc_direct(dev, ops)) | 
 | 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, | 
 | 				size, attrs); | 
 | 	if (!ops->get_sgtable) | 
 | 		return -ENXIO; | 
 | 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); | 
 | } | 
 | EXPORT_SYMBOL(dma_get_sgtable_attrs); | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | /* | 
 |  * Return the page attributes used for mapping dma_alloc_* memory, either in | 
 |  * kernel space if remapping is needed, or to userspace through dma_mmap_*. | 
 |  */ | 
 | pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) | 
 | { | 
 | 	if (dev_is_dma_coherent(dev)) | 
 | 		return prot; | 
 | #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE | 
 | 	if (attrs & DMA_ATTR_WRITE_COMBINE) | 
 | 		return pgprot_writecombine(prot); | 
 | #endif | 
 | 	return pgprot_dmacoherent(prot); | 
 | } | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | /** | 
 |  * dma_can_mmap - check if a given device supports dma_mmap_* | 
 |  * @dev: device to check | 
 |  * | 
 |  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to | 
 |  * map DMA allocations to userspace. | 
 |  */ | 
 | bool dma_can_mmap(struct device *dev) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	if (dma_alloc_direct(dev, ops)) | 
 | 		return dma_direct_can_mmap(dev); | 
 | 	return ops->mmap != NULL; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_can_mmap); | 
 |  | 
 | /** | 
 |  * dma_mmap_attrs - map a coherent DMA allocation into user space | 
 |  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
 |  * @vma: vm_area_struct describing requested user mapping | 
 |  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs | 
 |  * @dma_addr: device-view address returned from dma_alloc_attrs | 
 |  * @size: size of memory originally requested in dma_alloc_attrs | 
 |  * @attrs: attributes of mapping properties requested in dma_alloc_attrs | 
 |  * | 
 |  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user | 
 |  * space.  The coherent DMA buffer must not be freed by the driver until the | 
 |  * user space mapping has been released. | 
 |  */ | 
 | int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, | 
 | 		void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
 | 		unsigned long attrs) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	if (dma_alloc_direct(dev, ops)) | 
 | 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, | 
 | 				attrs); | 
 | 	if (!ops->mmap) | 
 | 		return -ENXIO; | 
 | 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); | 
 | } | 
 | EXPORT_SYMBOL(dma_mmap_attrs); | 
 |  | 
 | u64 dma_get_required_mask(struct device *dev) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	if (dma_alloc_direct(dev, ops)) | 
 | 		return dma_direct_get_required_mask(dev); | 
 | 	if (ops->get_required_mask) | 
 | 		return ops->get_required_mask(dev); | 
 |  | 
 | 	/* | 
 | 	 * We require every DMA ops implementation to at least support a 32-bit | 
 | 	 * DMA mask (and use bounce buffering if that isn't supported in | 
 | 	 * hardware).  As the direct mapping code has its own routine to | 
 | 	 * actually report an optimal mask we default to 32-bit here as that | 
 | 	 * is the right thing for most IOMMUs, and at least not actively | 
 | 	 * harmful in general. | 
 | 	 */ | 
 | 	return DMA_BIT_MASK(32); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_get_required_mask); | 
 |  | 
 | void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, | 
 | 		gfp_t flag, unsigned long attrs) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	void *cpu_addr; | 
 |  | 
 | 	WARN_ON_ONCE(!dev->coherent_dma_mask); | 
 |  | 
 | 	/* | 
 | 	 * DMA allocations can never be turned back into a page pointer, so | 
 | 	 * requesting compound pages doesn't make sense (and can't even be | 
 | 	 * supported at all by various backends). | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(flag & __GFP_COMP)) | 
 | 		return NULL; | 
 |  | 
 | 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) | 
 | 		return cpu_addr; | 
 |  | 
 | 	/* let the implementation decide on the zone to allocate from: */ | 
 | 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); | 
 |  | 
 | 	if (dma_alloc_direct(dev, ops)) | 
 | 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); | 
 | 	else if (ops->alloc) | 
 | 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); | 
 | 	else | 
 | 		return NULL; | 
 |  | 
 | 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs); | 
 | 	return cpu_addr; | 
 | } | 
 | EXPORT_SYMBOL(dma_alloc_attrs); | 
 |  | 
 | void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, | 
 | 		dma_addr_t dma_handle, unsigned long attrs) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) | 
 | 		return; | 
 | 	/* | 
 | 	 * On non-coherent platforms which implement DMA-coherent buffers via | 
 | 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting | 
 | 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to | 
 | 	 * sleep on some machines, and b) an indication that the driver is | 
 | 	 * probably misusing the coherent API anyway. | 
 | 	 */ | 
 | 	WARN_ON(irqs_disabled()); | 
 |  | 
 | 	if (!cpu_addr) | 
 | 		return; | 
 |  | 
 | 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); | 
 | 	if (dma_alloc_direct(dev, ops)) | 
 | 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); | 
 | 	else if (ops->free) | 
 | 		ops->free(dev, size, cpu_addr, dma_handle, attrs); | 
 | } | 
 | EXPORT_SYMBOL(dma_free_attrs); | 
 |  | 
 | static struct page *__dma_alloc_pages(struct device *dev, size_t size, | 
 | 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	if (WARN_ON_ONCE(!dev->coherent_dma_mask)) | 
 | 		return NULL; | 
 | 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) | 
 | 		return NULL; | 
 | 	if (WARN_ON_ONCE(gfp & __GFP_COMP)) | 
 | 		return NULL; | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 | 	if (dma_alloc_direct(dev, ops)) | 
 | 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp); | 
 | 	if (!ops->alloc_pages) | 
 | 		return NULL; | 
 | 	return ops->alloc_pages(dev, size, dma_handle, dir, gfp); | 
 | } | 
 |  | 
 | struct page *dma_alloc_pages(struct device *dev, size_t size, | 
 | 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) | 
 | { | 
 | 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp); | 
 |  | 
 | 	if (page) | 
 | 		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0); | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_alloc_pages); | 
 |  | 
 | static void __dma_free_pages(struct device *dev, size_t size, struct page *page, | 
 | 		dma_addr_t dma_handle, enum dma_data_direction dir) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 | 	if (dma_alloc_direct(dev, ops)) | 
 | 		dma_direct_free_pages(dev, size, page, dma_handle, dir); | 
 | 	else if (ops->free_pages) | 
 | 		ops->free_pages(dev, size, page, dma_handle, dir); | 
 | } | 
 |  | 
 | void dma_free_pages(struct device *dev, size_t size, struct page *page, | 
 | 		dma_addr_t dma_handle, enum dma_data_direction dir) | 
 | { | 
 | 	debug_dma_unmap_page(dev, dma_handle, size, dir); | 
 | 	__dma_free_pages(dev, size, page, dma_handle, dir); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_free_pages); | 
 |  | 
 | int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, | 
 | 		size_t size, struct page *page) | 
 | { | 
 | 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 |  | 
 | 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) | 
 | 		return -ENXIO; | 
 | 	return remap_pfn_range(vma, vma->vm_start, | 
 | 			       page_to_pfn(page) + vma->vm_pgoff, | 
 | 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_mmap_pages); | 
 |  | 
 | static struct sg_table *alloc_single_sgt(struct device *dev, size_t size, | 
 | 		enum dma_data_direction dir, gfp_t gfp) | 
 | { | 
 | 	struct sg_table *sgt; | 
 | 	struct page *page; | 
 |  | 
 | 	sgt = kmalloc(sizeof(*sgt), gfp); | 
 | 	if (!sgt) | 
 | 		return NULL; | 
 | 	if (sg_alloc_table(sgt, 1, gfp)) | 
 | 		goto out_free_sgt; | 
 | 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp); | 
 | 	if (!page) | 
 | 		goto out_free_table; | 
 | 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); | 
 | 	sg_dma_len(sgt->sgl) = sgt->sgl->length; | 
 | 	return sgt; | 
 | out_free_table: | 
 | 	sg_free_table(sgt); | 
 | out_free_sgt: | 
 | 	kfree(sgt); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, | 
 | 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	struct sg_table *sgt; | 
 |  | 
 | 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES)) | 
 | 		return NULL; | 
 | 	if (WARN_ON_ONCE(gfp & __GFP_COMP)) | 
 | 		return NULL; | 
 |  | 
 | 	if (ops && ops->alloc_noncontiguous) | 
 | 		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs); | 
 | 	else | 
 | 		sgt = alloc_single_sgt(dev, size, dir, gfp); | 
 |  | 
 | 	if (sgt) { | 
 | 		sgt->nents = 1; | 
 | 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs); | 
 | 	} | 
 | 	return sgt; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous); | 
 |  | 
 | static void free_single_sgt(struct device *dev, size_t size, | 
 | 		struct sg_table *sgt, enum dma_data_direction dir) | 
 | { | 
 | 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address, | 
 | 			 dir); | 
 | 	sg_free_table(sgt); | 
 | 	kfree(sgt); | 
 | } | 
 |  | 
 | void dma_free_noncontiguous(struct device *dev, size_t size, | 
 | 		struct sg_table *sgt, enum dma_data_direction dir) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); | 
 | 	if (ops && ops->free_noncontiguous) | 
 | 		ops->free_noncontiguous(dev, size, sgt, dir); | 
 | 	else | 
 | 		free_single_sgt(dev, size, sgt, dir); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_free_noncontiguous); | 
 |  | 
 | void *dma_vmap_noncontiguous(struct device *dev, size_t size, | 
 | 		struct sg_table *sgt) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 |  | 
 | 	if (ops && ops->alloc_noncontiguous) | 
 | 		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); | 
 | 	return page_address(sg_page(sgt->sgl)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous); | 
 |  | 
 | void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	if (ops && ops->alloc_noncontiguous) | 
 | 		vunmap(vaddr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous); | 
 |  | 
 | int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, | 
 | 		size_t size, struct sg_table *sgt) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	if (ops && ops->alloc_noncontiguous) { | 
 | 		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 |  | 
 | 		if (vma->vm_pgoff >= count || | 
 | 		    vma_pages(vma) > count - vma->vm_pgoff) | 
 | 			return -ENXIO; | 
 | 		return vm_map_pages(vma, sgt_handle(sgt)->pages, count); | 
 | 	} | 
 | 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous); | 
 |  | 
 | static int dma_supported(struct device *dev, u64 mask) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	/* | 
 | 	 * ->dma_supported sets the bypass flag, so we must always call | 
 | 	 * into the method here unless the device is truly direct mapped. | 
 | 	 */ | 
 | 	if (!ops) | 
 | 		return dma_direct_supported(dev, mask); | 
 | 	if (!ops->dma_supported) | 
 | 		return 1; | 
 | 	return ops->dma_supported(dev, mask); | 
 | } | 
 |  | 
 | bool dma_pci_p2pdma_supported(struct device *dev) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	/* if ops is not set, dma direct will be used which supports P2PDMA */ | 
 | 	if (!ops) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Note: dma_ops_bypass is not checked here because P2PDMA should | 
 | 	 * not be used with dma mapping ops that do not have support even | 
 | 	 * if the specific device is bypassing them. | 
 | 	 */ | 
 |  | 
 | 	return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported); | 
 |  | 
 | int dma_set_mask(struct device *dev, u64 mask) | 
 | { | 
 | 	/* | 
 | 	 * Truncate the mask to the actually supported dma_addr_t width to | 
 | 	 * avoid generating unsupportable addresses. | 
 | 	 */ | 
 | 	mask = (dma_addr_t)mask; | 
 |  | 
 | 	if (!dev->dma_mask || !dma_supported(dev, mask)) | 
 | 		return -EIO; | 
 |  | 
 | 	arch_dma_set_mask(dev, mask); | 
 | 	*dev->dma_mask = mask; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(dma_set_mask); | 
 |  | 
 | int dma_set_coherent_mask(struct device *dev, u64 mask) | 
 | { | 
 | 	/* | 
 | 	 * Truncate the mask to the actually supported dma_addr_t width to | 
 | 	 * avoid generating unsupportable addresses. | 
 | 	 */ | 
 | 	mask = (dma_addr_t)mask; | 
 |  | 
 | 	if (!dma_supported(dev, mask)) | 
 | 		return -EIO; | 
 |  | 
 | 	dev->coherent_dma_mask = mask; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(dma_set_coherent_mask); | 
 |  | 
 | /** | 
 |  * dma_addressing_limited - return if the device is addressing limited | 
 |  * @dev:	device to check | 
 |  * | 
 |  * Return %true if the devices DMA mask is too small to address all memory in | 
 |  * the system, else %false.  Lack of addressing bits is the prime reason for | 
 |  * bounce buffering, but might not be the only one. | 
 |  */ | 
 | bool dma_addressing_limited(struct device *dev) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) < | 
 | 			 dma_get_required_mask(dev)) | 
 | 		return true; | 
 |  | 
 | 	if (unlikely(ops)) | 
 | 		return false; | 
 | 	return !dma_direct_all_ram_mapped(dev); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_addressing_limited); | 
 |  | 
 | size_t dma_max_mapping_size(struct device *dev) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	size_t size = SIZE_MAX; | 
 |  | 
 | 	if (dma_map_direct(dev, ops)) | 
 | 		size = dma_direct_max_mapping_size(dev); | 
 | 	else if (ops && ops->max_mapping_size) | 
 | 		size = ops->max_mapping_size(dev); | 
 |  | 
 | 	return size; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_max_mapping_size); | 
 |  | 
 | size_t dma_opt_mapping_size(struct device *dev) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	size_t size = SIZE_MAX; | 
 |  | 
 | 	if (ops && ops->opt_mapping_size) | 
 | 		size = ops->opt_mapping_size(); | 
 |  | 
 | 	return min(dma_max_mapping_size(dev), size); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_opt_mapping_size); | 
 |  | 
 | bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	if (dma_map_direct(dev, ops)) | 
 | 		return dma_direct_need_sync(dev, dma_addr); | 
 | 	return ops->sync_single_for_cpu || ops->sync_single_for_device; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_need_sync); | 
 |  | 
 | unsigned long dma_get_merge_boundary(struct device *dev) | 
 | { | 
 | 	const struct dma_map_ops *ops = get_dma_ops(dev); | 
 |  | 
 | 	if (!ops || !ops->get_merge_boundary) | 
 | 		return 0;	/* can't merge */ | 
 |  | 
 | 	return ops->get_merge_boundary(dev); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dma_get_merge_boundary); |