|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  | /* | 
|  | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | 
|  | * | 
|  | * Copyright IBM Corporation, 2008 | 
|  | * | 
|  | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 
|  | *	    Manfred Spraul <manfred@colorfullife.com> | 
|  | *	    Paul E. McKenney <paulmck@linux.ibm.com> | 
|  | * | 
|  | * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> | 
|  | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 
|  | * | 
|  | * For detailed explanation of Read-Copy Update mechanism see - | 
|  | *	Documentation/RCU | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "rcu: " fmt | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/rcupdate_wait.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/debug.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/panic.h> | 
|  | #include <linux/panic_notifier.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <uapi/linux/sched/types.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/trace_events.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/sysrq.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/smpboot.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched/isolation.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/kasan.h> | 
|  | #include <linux/context_tracking.h> | 
|  | #include "../time/tick-internal.h" | 
|  |  | 
|  | #include "tree.h" | 
|  | #include "rcu.h" | 
|  |  | 
|  | #ifdef MODULE_PARAM_PREFIX | 
|  | #undef MODULE_PARAM_PREFIX | 
|  | #endif | 
|  | #define MODULE_PARAM_PREFIX "rcutree." | 
|  |  | 
|  | /* Data structures. */ | 
|  |  | 
|  | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { | 
|  | .gpwrap = true, | 
|  | #ifdef CONFIG_RCU_NOCB_CPU | 
|  | .cblist.flags = SEGCBLIST_RCU_CORE, | 
|  | #endif | 
|  | }; | 
|  | static struct rcu_state rcu_state = { | 
|  | .level = { &rcu_state.node[0] }, | 
|  | .gp_state = RCU_GP_IDLE, | 
|  | .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, | 
|  | .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), | 
|  | .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), | 
|  | .name = RCU_NAME, | 
|  | .abbr = RCU_ABBR, | 
|  | .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), | 
|  | .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), | 
|  | .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, | 
|  | }; | 
|  |  | 
|  | /* Dump rcu_node combining tree at boot to verify correct setup. */ | 
|  | static bool dump_tree; | 
|  | module_param(dump_tree, bool, 0444); | 
|  | /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ | 
|  | static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); | 
|  | #ifndef CONFIG_PREEMPT_RT | 
|  | module_param(use_softirq, bool, 0444); | 
|  | #endif | 
|  | /* Control rcu_node-tree auto-balancing at boot time. */ | 
|  | static bool rcu_fanout_exact; | 
|  | module_param(rcu_fanout_exact, bool, 0444); | 
|  | /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ | 
|  | static int rcu_fanout_leaf = RCU_FANOUT_LEAF; | 
|  | module_param(rcu_fanout_leaf, int, 0444); | 
|  | int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; | 
|  | /* Number of rcu_nodes at specified level. */ | 
|  | int num_rcu_lvl[] = NUM_RCU_LVL_INIT; | 
|  | int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ | 
|  |  | 
|  | /* | 
|  | * The rcu_scheduler_active variable is initialized to the value | 
|  | * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the | 
|  | * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE, | 
|  | * RCU can assume that there is but one task, allowing RCU to (for example) | 
|  | * optimize synchronize_rcu() to a simple barrier().  When this variable | 
|  | * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required | 
|  | * to detect real grace periods.  This variable is also used to suppress | 
|  | * boot-time false positives from lockdep-RCU error checking.  Finally, it | 
|  | * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU | 
|  | * is fully initialized, including all of its kthreads having been spawned. | 
|  | */ | 
|  | int rcu_scheduler_active __read_mostly; | 
|  | EXPORT_SYMBOL_GPL(rcu_scheduler_active); | 
|  |  | 
|  | /* | 
|  | * The rcu_scheduler_fully_active variable transitions from zero to one | 
|  | * during the early_initcall() processing, which is after the scheduler | 
|  | * is capable of creating new tasks.  So RCU processing (for example, | 
|  | * creating tasks for RCU priority boosting) must be delayed until after | 
|  | * rcu_scheduler_fully_active transitions from zero to one.  We also | 
|  | * currently delay invocation of any RCU callbacks until after this point. | 
|  | * | 
|  | * It might later prove better for people registering RCU callbacks during | 
|  | * early boot to take responsibility for these callbacks, but one step at | 
|  | * a time. | 
|  | */ | 
|  | static int rcu_scheduler_fully_active __read_mostly; | 
|  |  | 
|  | static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, | 
|  | unsigned long gps, unsigned long flags); | 
|  | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); | 
|  | static void invoke_rcu_core(void); | 
|  | static void rcu_report_exp_rdp(struct rcu_data *rdp); | 
|  | static void sync_sched_exp_online_cleanup(int cpu); | 
|  | static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); | 
|  | static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); | 
|  | static bool rcu_rdp_cpu_online(struct rcu_data *rdp); | 
|  | static bool rcu_init_invoked(void); | 
|  | static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); | 
|  | static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); | 
|  |  | 
|  | /* | 
|  | * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" | 
|  | * real-time priority(enabling/disabling) is controlled by | 
|  | * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. | 
|  | */ | 
|  | static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; | 
|  | module_param(kthread_prio, int, 0444); | 
|  |  | 
|  | /* Delay in jiffies for grace-period initialization delays, debug only. */ | 
|  |  | 
|  | static int gp_preinit_delay; | 
|  | module_param(gp_preinit_delay, int, 0444); | 
|  | static int gp_init_delay; | 
|  | module_param(gp_init_delay, int, 0444); | 
|  | static int gp_cleanup_delay; | 
|  | module_param(gp_cleanup_delay, int, 0444); | 
|  |  | 
|  | // Add delay to rcu_read_unlock() for strict grace periods. | 
|  | static int rcu_unlock_delay; | 
|  | #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD | 
|  | module_param(rcu_unlock_delay, int, 0444); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This rcu parameter is runtime-read-only. It reflects | 
|  | * a minimum allowed number of objects which can be cached | 
|  | * per-CPU. Object size is equal to one page. This value | 
|  | * can be changed at boot time. | 
|  | */ | 
|  | static int rcu_min_cached_objs = 5; | 
|  | module_param(rcu_min_cached_objs, int, 0444); | 
|  |  | 
|  | // A page shrinker can ask for pages to be freed to make them | 
|  | // available for other parts of the system. This usually happens | 
|  | // under low memory conditions, and in that case we should also | 
|  | // defer page-cache filling for a short time period. | 
|  | // | 
|  | // The default value is 5 seconds, which is long enough to reduce | 
|  | // interference with the shrinker while it asks other systems to | 
|  | // drain their caches. | 
|  | static int rcu_delay_page_cache_fill_msec = 5000; | 
|  | module_param(rcu_delay_page_cache_fill_msec, int, 0444); | 
|  |  | 
|  | /* Retrieve RCU kthreads priority for rcutorture */ | 
|  | int rcu_get_gp_kthreads_prio(void) | 
|  | { | 
|  | return kthread_prio; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); | 
|  |  | 
|  | /* | 
|  | * Number of grace periods between delays, normalized by the duration of | 
|  | * the delay.  The longer the delay, the more the grace periods between | 
|  | * each delay.  The reason for this normalization is that it means that, | 
|  | * for non-zero delays, the overall slowdown of grace periods is constant | 
|  | * regardless of the duration of the delay.  This arrangement balances | 
|  | * the need for long delays to increase some race probabilities with the | 
|  | * need for fast grace periods to increase other race probabilities. | 
|  | */ | 
|  | #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */ | 
|  |  | 
|  | /* | 
|  | * Return true if an RCU grace period is in progress.  The READ_ONCE()s | 
|  | * permit this function to be invoked without holding the root rcu_node | 
|  | * structure's ->lock, but of course results can be subject to change. | 
|  | */ | 
|  | static int rcu_gp_in_progress(void) | 
|  | { | 
|  | return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of callbacks queued on the specified CPU. | 
|  | * Handles both the nocbs and normal cases. | 
|  | */ | 
|  | static long rcu_get_n_cbs_cpu(int cpu) | 
|  | { | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  |  | 
|  | if (rcu_segcblist_is_enabled(&rdp->cblist)) | 
|  | return rcu_segcblist_n_cbs(&rdp->cblist); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void rcu_softirq_qs(void) | 
|  | { | 
|  | rcu_qs(); | 
|  | rcu_preempt_deferred_qs(current); | 
|  | rcu_tasks_qs(current, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the current CPU's ->dynticks counter to indicate that the | 
|  | * newly onlined CPU is no longer in an extended quiescent state. | 
|  | * This will either leave the counter unchanged, or increment it | 
|  | * to the next non-quiescent value. | 
|  | * | 
|  | * The non-atomic test/increment sequence works because the upper bits | 
|  | * of the ->dynticks counter are manipulated only by the corresponding CPU, | 
|  | * or when the corresponding CPU is offline. | 
|  | */ | 
|  | static void rcu_dynticks_eqs_online(void) | 
|  | { | 
|  | if (ct_dynticks() & RCU_DYNTICKS_IDX) | 
|  | return; | 
|  | ct_state_inc(RCU_DYNTICKS_IDX); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Snapshot the ->dynticks counter with full ordering so as to allow | 
|  | * stable comparison of this counter with past and future snapshots. | 
|  | */ | 
|  | static int rcu_dynticks_snap(int cpu) | 
|  | { | 
|  | smp_mb();  // Fundamental RCU ordering guarantee. | 
|  | return ct_dynticks_cpu_acquire(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the snapshot returned from rcu_dynticks_snap() | 
|  | * indicates that RCU is in an extended quiescent state. | 
|  | */ | 
|  | static bool rcu_dynticks_in_eqs(int snap) | 
|  | { | 
|  | return !(snap & RCU_DYNTICKS_IDX); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the CPU corresponding to the specified rcu_data | 
|  | * structure has spent some time in an extended quiescent state since | 
|  | * rcu_dynticks_snap() returned the specified snapshot. | 
|  | */ | 
|  | static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) | 
|  | { | 
|  | return snap != rcu_dynticks_snap(rdp->cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the referenced integer is zero while the specified | 
|  | * CPU remains within a single extended quiescent state. | 
|  | */ | 
|  | bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) | 
|  | { | 
|  | int snap; | 
|  |  | 
|  | // If not quiescent, force back to earlier extended quiescent state. | 
|  | snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; | 
|  | smp_rmb(); // Order ->dynticks and *vp reads. | 
|  | if (READ_ONCE(*vp)) | 
|  | return false;  // Non-zero, so report failure; | 
|  | smp_rmb(); // Order *vp read and ->dynticks re-read. | 
|  |  | 
|  | // If still in the same extended quiescent state, we are good! | 
|  | return snap == ct_dynticks_cpu(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let the RCU core know that this CPU has gone through the scheduler, | 
|  | * which is a quiescent state.  This is called when the need for a | 
|  | * quiescent state is urgent, so we burn an atomic operation and full | 
|  | * memory barriers to let the RCU core know about it, regardless of what | 
|  | * this CPU might (or might not) do in the near future. | 
|  | * | 
|  | * We inform the RCU core by emulating a zero-duration dyntick-idle period. | 
|  | * | 
|  | * The caller must have disabled interrupts and must not be idle. | 
|  | */ | 
|  | notrace void rcu_momentary_dyntick_idle(void) | 
|  | { | 
|  | int seq; | 
|  |  | 
|  | raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); | 
|  | seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); | 
|  | /* It is illegal to call this from idle state. */ | 
|  | WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); | 
|  | rcu_preempt_deferred_qs(current); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); | 
|  |  | 
|  | /** | 
|  | * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle | 
|  | * | 
|  | * If the current CPU is idle and running at a first-level (not nested) | 
|  | * interrupt, or directly, from idle, return true. | 
|  | * | 
|  | * The caller must have at least disabled IRQs. | 
|  | */ | 
|  | static int rcu_is_cpu_rrupt_from_idle(void) | 
|  | { | 
|  | long nesting; | 
|  |  | 
|  | /* | 
|  | * Usually called from the tick; but also used from smp_function_call() | 
|  | * for expedited grace periods. This latter can result in running from | 
|  | * the idle task, instead of an actual IPI. | 
|  | */ | 
|  | lockdep_assert_irqs_disabled(); | 
|  |  | 
|  | /* Check for counter underflows */ | 
|  | RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, | 
|  | "RCU dynticks_nesting counter underflow!"); | 
|  | RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, | 
|  | "RCU dynticks_nmi_nesting counter underflow/zero!"); | 
|  |  | 
|  | /* Are we at first interrupt nesting level? */ | 
|  | nesting = ct_dynticks_nmi_nesting(); | 
|  | if (nesting > 1) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If we're not in an interrupt, we must be in the idle task! | 
|  | */ | 
|  | WARN_ON_ONCE(!nesting && !is_idle_task(current)); | 
|  |  | 
|  | /* Does CPU appear to be idle from an RCU standpoint? */ | 
|  | return ct_dynticks_nesting() == 0; | 
|  | } | 
|  |  | 
|  | #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) | 
|  | // Maximum callbacks per rcu_do_batch ... | 
|  | #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. | 
|  | static long blimit = DEFAULT_RCU_BLIMIT; | 
|  | #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. | 
|  | static long qhimark = DEFAULT_RCU_QHIMARK; | 
|  | #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit. | 
|  | static long qlowmark = DEFAULT_RCU_QLOMARK; | 
|  | #define DEFAULT_RCU_QOVLD_MULT 2 | 
|  | #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) | 
|  | static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. | 
|  | static long qovld_calc = -1;	  // No pre-initialization lock acquisitions! | 
|  |  | 
|  | module_param(blimit, long, 0444); | 
|  | module_param(qhimark, long, 0444); | 
|  | module_param(qlowmark, long, 0444); | 
|  | module_param(qovld, long, 0444); | 
|  |  | 
|  | static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; | 
|  | static ulong jiffies_till_next_fqs = ULONG_MAX; | 
|  | static bool rcu_kick_kthreads; | 
|  | static int rcu_divisor = 7; | 
|  | module_param(rcu_divisor, int, 0644); | 
|  |  | 
|  | /* Force an exit from rcu_do_batch() after 3 milliseconds. */ | 
|  | static long rcu_resched_ns = 3 * NSEC_PER_MSEC; | 
|  | module_param(rcu_resched_ns, long, 0644); | 
|  |  | 
|  | /* | 
|  | * How long the grace period must be before we start recruiting | 
|  | * quiescent-state help from rcu_note_context_switch(). | 
|  | */ | 
|  | static ulong jiffies_till_sched_qs = ULONG_MAX; | 
|  | module_param(jiffies_till_sched_qs, ulong, 0444); | 
|  | static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ | 
|  | module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ | 
|  |  | 
|  | /* | 
|  | * Make sure that we give the grace-period kthread time to detect any | 
|  | * idle CPUs before taking active measures to force quiescent states. | 
|  | * However, don't go below 100 milliseconds, adjusted upwards for really | 
|  | * large systems. | 
|  | */ | 
|  | static void adjust_jiffies_till_sched_qs(void) | 
|  | { | 
|  | unsigned long j; | 
|  |  | 
|  | /* If jiffies_till_sched_qs was specified, respect the request. */ | 
|  | if (jiffies_till_sched_qs != ULONG_MAX) { | 
|  | WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); | 
|  | return; | 
|  | } | 
|  | /* Otherwise, set to third fqs scan, but bound below on large system. */ | 
|  | j = READ_ONCE(jiffies_till_first_fqs) + | 
|  | 2 * READ_ONCE(jiffies_till_next_fqs); | 
|  | if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) | 
|  | j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; | 
|  | pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); | 
|  | WRITE_ONCE(jiffies_to_sched_qs, j); | 
|  | } | 
|  |  | 
|  | static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) | 
|  | { | 
|  | ulong j; | 
|  | int ret = kstrtoul(val, 0, &j); | 
|  |  | 
|  | if (!ret) { | 
|  | WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); | 
|  | adjust_jiffies_till_sched_qs(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) | 
|  | { | 
|  | ulong j; | 
|  | int ret = kstrtoul(val, 0, &j); | 
|  |  | 
|  | if (!ret) { | 
|  | WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); | 
|  | adjust_jiffies_till_sched_qs(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct kernel_param_ops first_fqs_jiffies_ops = { | 
|  | .set = param_set_first_fqs_jiffies, | 
|  | .get = param_get_ulong, | 
|  | }; | 
|  |  | 
|  | static const struct kernel_param_ops next_fqs_jiffies_ops = { | 
|  | .set = param_set_next_fqs_jiffies, | 
|  | .get = param_get_ulong, | 
|  | }; | 
|  |  | 
|  | module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); | 
|  | module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); | 
|  | module_param(rcu_kick_kthreads, bool, 0644); | 
|  |  | 
|  | static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); | 
|  | static int rcu_pending(int user); | 
|  |  | 
|  | /* | 
|  | * Return the number of RCU GPs completed thus far for debug & stats. | 
|  | */ | 
|  | unsigned long rcu_get_gp_seq(void) | 
|  | { | 
|  | return READ_ONCE(rcu_state.gp_seq); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_get_gp_seq); | 
|  |  | 
|  | /* | 
|  | * Return the number of RCU expedited batches completed thus far for | 
|  | * debug & stats.  Odd numbers mean that a batch is in progress, even | 
|  | * numbers mean idle.  The value returned will thus be roughly double | 
|  | * the cumulative batches since boot. | 
|  | */ | 
|  | unsigned long rcu_exp_batches_completed(void) | 
|  | { | 
|  | return rcu_state.expedited_sequence; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); | 
|  |  | 
|  | /* | 
|  | * Return the root node of the rcu_state structure. | 
|  | */ | 
|  | static struct rcu_node *rcu_get_root(void) | 
|  | { | 
|  | return &rcu_state.node[0]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send along grace-period-related data for rcutorture diagnostics. | 
|  | */ | 
|  | void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, | 
|  | unsigned long *gp_seq) | 
|  | { | 
|  | switch (test_type) { | 
|  | case RCU_FLAVOR: | 
|  | *flags = READ_ONCE(rcu_state.gp_flags); | 
|  | *gp_seq = rcu_seq_current(&rcu_state.gp_seq); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); | 
|  |  | 
|  | #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) | 
|  | /* | 
|  | * An empty function that will trigger a reschedule on | 
|  | * IRQ tail once IRQs get re-enabled on userspace/guest resume. | 
|  | */ | 
|  | static void late_wakeup_func(struct irq_work *work) | 
|  | { | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = | 
|  | IRQ_WORK_INIT(late_wakeup_func); | 
|  |  | 
|  | /* | 
|  | * If either: | 
|  | * | 
|  | * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work | 
|  | * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. | 
|  | * | 
|  | * In these cases the late RCU wake ups aren't supported in the resched loops and our | 
|  | * last resort is to fire a local irq_work that will trigger a reschedule once IRQs | 
|  | * get re-enabled again. | 
|  | */ | 
|  | noinstr void rcu_irq_work_resched(void) | 
|  | { | 
|  | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) | 
|  | return; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) | 
|  | return; | 
|  |  | 
|  | instrumentation_begin(); | 
|  | if (do_nocb_deferred_wakeup(rdp) && need_resched()) { | 
|  | irq_work_queue(this_cpu_ptr(&late_wakeup_work)); | 
|  | } | 
|  | instrumentation_end(); | 
|  | } | 
|  | #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ | 
|  |  | 
|  | #ifdef CONFIG_PROVE_RCU | 
|  | /** | 
|  | * rcu_irq_exit_check_preempt - Validate that scheduling is possible | 
|  | */ | 
|  | void rcu_irq_exit_check_preempt(void) | 
|  | { | 
|  | lockdep_assert_irqs_disabled(); | 
|  |  | 
|  | RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, | 
|  | "RCU dynticks_nesting counter underflow/zero!"); | 
|  | RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != | 
|  | DYNTICK_IRQ_NONIDLE, | 
|  | "Bad RCU  dynticks_nmi_nesting counter\n"); | 
|  | RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), | 
|  | "RCU in extended quiescent state!"); | 
|  | } | 
|  | #endif /* #ifdef CONFIG_PROVE_RCU */ | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | /** | 
|  | * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. | 
|  | * | 
|  | * The scheduler tick is not normally enabled when CPUs enter the kernel | 
|  | * from nohz_full userspace execution.  After all, nohz_full userspace | 
|  | * execution is an RCU quiescent state and the time executing in the kernel | 
|  | * is quite short.  Except of course when it isn't.  And it is not hard to | 
|  | * cause a large system to spend tens of seconds or even minutes looping | 
|  | * in the kernel, which can cause a number of problems, include RCU CPU | 
|  | * stall warnings. | 
|  | * | 
|  | * Therefore, if a nohz_full CPU fails to report a quiescent state | 
|  | * in a timely manner, the RCU grace-period kthread sets that CPU's | 
|  | * ->rcu_urgent_qs flag with the expectation that the next interrupt or | 
|  | * exception will invoke this function, which will turn on the scheduler | 
|  | * tick, which will enable RCU to detect that CPU's quiescent states, | 
|  | * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. | 
|  | * The tick will be disabled once a quiescent state is reported for | 
|  | * this CPU. | 
|  | * | 
|  | * Of course, in carefully tuned systems, there might never be an | 
|  | * interrupt or exception.  In that case, the RCU grace-period kthread | 
|  | * will eventually cause one to happen.  However, in less carefully | 
|  | * controlled environments, this function allows RCU to get what it | 
|  | * needs without creating otherwise useless interruptions. | 
|  | */ | 
|  | void __rcu_irq_enter_check_tick(void) | 
|  | { | 
|  | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|  |  | 
|  | // If we're here from NMI there's nothing to do. | 
|  | if (in_nmi()) | 
|  | return; | 
|  |  | 
|  | RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), | 
|  | "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); | 
|  |  | 
|  | if (!tick_nohz_full_cpu(rdp->cpu) || | 
|  | !READ_ONCE(rdp->rcu_urgent_qs) || | 
|  | READ_ONCE(rdp->rcu_forced_tick)) { | 
|  | // RCU doesn't need nohz_full help from this CPU, or it is | 
|  | // already getting that help. | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We get here only when not in an extended quiescent state and | 
|  | // from interrupts (as opposed to NMIs).  Therefore, (1) RCU is | 
|  | // already watching and (2) The fact that we are in an interrupt | 
|  | // handler and that the rcu_node lock is an irq-disabled lock | 
|  | // prevents self-deadlock.  So we can safely recheck under the lock. | 
|  | // Note that the nohz_full state currently cannot change. | 
|  | raw_spin_lock_rcu_node(rdp->mynode); | 
|  | if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { | 
|  | // A nohz_full CPU is in the kernel and RCU needs a | 
|  | // quiescent state.  Turn on the tick! | 
|  | WRITE_ONCE(rdp->rcu_forced_tick, true); | 
|  | tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); | 
|  | } | 
|  | raw_spin_unlock_rcu_node(rdp->mynode); | 
|  | } | 
|  | NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); | 
|  | #endif /* CONFIG_NO_HZ_FULL */ | 
|  |  | 
|  | /* | 
|  | * Check to see if any future non-offloaded RCU-related work will need | 
|  | * to be done by the current CPU, even if none need be done immediately, | 
|  | * returning 1 if so.  This function is part of the RCU implementation; | 
|  | * it is -not- an exported member of the RCU API.  This is used by | 
|  | * the idle-entry code to figure out whether it is safe to disable the | 
|  | * scheduler-clock interrupt. | 
|  | * | 
|  | * Just check whether or not this CPU has non-offloaded RCU callbacks | 
|  | * queued. | 
|  | */ | 
|  | int rcu_needs_cpu(void) | 
|  | { | 
|  | return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && | 
|  | !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If any sort of urgency was applied to the current CPU (for example, | 
|  | * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order | 
|  | * to get to a quiescent state, disable it. | 
|  | */ | 
|  | static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) | 
|  | { | 
|  | raw_lockdep_assert_held_rcu_node(rdp->mynode); | 
|  | WRITE_ONCE(rdp->rcu_urgent_qs, false); | 
|  | WRITE_ONCE(rdp->rcu_need_heavy_qs, false); | 
|  | if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { | 
|  | tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); | 
|  | WRITE_ONCE(rdp->rcu_forced_tick, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rcu_is_watching - RCU read-side critical sections permitted on current CPU? | 
|  | * | 
|  | * Return @true if RCU is watching the running CPU and @false otherwise. | 
|  | * An @true return means that this CPU can safely enter RCU read-side | 
|  | * critical sections. | 
|  | * | 
|  | * Although calls to rcu_is_watching() from most parts of the kernel | 
|  | * will return @true, there are important exceptions.  For example, if the | 
|  | * current CPU is deep within its idle loop, in kernel entry/exit code, | 
|  | * or offline, rcu_is_watching() will return @false. | 
|  | * | 
|  | * Make notrace because it can be called by the internal functions of | 
|  | * ftrace, and making this notrace removes unnecessary recursion calls. | 
|  | */ | 
|  | notrace bool rcu_is_watching(void) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | preempt_disable_notrace(); | 
|  | ret = !rcu_dynticks_curr_cpu_in_eqs(); | 
|  | preempt_enable_notrace(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_is_watching); | 
|  |  | 
|  | /* | 
|  | * If a holdout task is actually running, request an urgent quiescent | 
|  | * state from its CPU.  This is unsynchronized, so migrations can cause | 
|  | * the request to go to the wrong CPU.  Which is OK, all that will happen | 
|  | * is that the CPU's next context switch will be a bit slower and next | 
|  | * time around this task will generate another request. | 
|  | */ | 
|  | void rcu_request_urgent_qs_task(struct task_struct *t) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | barrier(); | 
|  | cpu = task_cpu(t); | 
|  | if (!task_curr(t)) | 
|  | return; /* This task is not running on that CPU. */ | 
|  | smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When trying to report a quiescent state on behalf of some other CPU, | 
|  | * it is our responsibility to check for and handle potential overflow | 
|  | * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. | 
|  | * After all, the CPU might be in deep idle state, and thus executing no | 
|  | * code whatsoever. | 
|  | */ | 
|  | static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) | 
|  | { | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  | if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, | 
|  | rnp->gp_seq)) | 
|  | WRITE_ONCE(rdp->gpwrap, true); | 
|  | if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) | 
|  | rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Snapshot the specified CPU's dynticks counter so that we can later | 
|  | * credit them with an implicit quiescent state.  Return 1 if this CPU | 
|  | * is in dynticks idle mode, which is an extended quiescent state. | 
|  | */ | 
|  | static int dyntick_save_progress_counter(struct rcu_data *rdp) | 
|  | { | 
|  | rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); | 
|  | if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { | 
|  | trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); | 
|  | rcu_gpnum_ovf(rdp->mynode, rdp); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns positive if the specified CPU has passed through a quiescent state | 
|  | * by virtue of being in or having passed through an dynticks idle state since | 
|  | * the last call to dyntick_save_progress_counter() for this same CPU, or by | 
|  | * virtue of having been offline. | 
|  | * | 
|  | * Returns negative if the specified CPU needs a force resched. | 
|  | * | 
|  | * Returns zero otherwise. | 
|  | */ | 
|  | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) | 
|  | { | 
|  | unsigned long jtsq; | 
|  | int ret = 0; | 
|  | struct rcu_node *rnp = rdp->mynode; | 
|  |  | 
|  | /* | 
|  | * If the CPU passed through or entered a dynticks idle phase with | 
|  | * no active irq/NMI handlers, then we can safely pretend that the CPU | 
|  | * already acknowledged the request to pass through a quiescent | 
|  | * state.  Either way, that CPU cannot possibly be in an RCU | 
|  | * read-side critical section that started before the beginning | 
|  | * of the current RCU grace period. | 
|  | */ | 
|  | if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { | 
|  | trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); | 
|  | rcu_gpnum_ovf(rnp, rdp); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Complain if a CPU that is considered to be offline from RCU's | 
|  | * perspective has not yet reported a quiescent state.  After all, | 
|  | * the offline CPU should have reported a quiescent state during | 
|  | * the CPU-offline process, or, failing that, by rcu_gp_init() | 
|  | * if it ran concurrently with either the CPU going offline or the | 
|  | * last task on a leaf rcu_node structure exiting its RCU read-side | 
|  | * critical section while all CPUs corresponding to that structure | 
|  | * are offline.  This added warning detects bugs in any of these | 
|  | * code paths. | 
|  | * | 
|  | * The rcu_node structure's ->lock is held here, which excludes | 
|  | * the relevant portions the CPU-hotplug code, the grace-period | 
|  | * initialization code, and the rcu_read_unlock() code paths. | 
|  | * | 
|  | * For more detail, please refer to the "Hotplug CPU" section | 
|  | * of RCU's Requirements documentation. | 
|  | */ | 
|  | if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { | 
|  | struct rcu_node *rnp1; | 
|  |  | 
|  | pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", | 
|  | __func__, rnp->grplo, rnp->grphi, rnp->level, | 
|  | (long)rnp->gp_seq, (long)rnp->completedqs); | 
|  | for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) | 
|  | pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", | 
|  | __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); | 
|  | pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", | 
|  | __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], | 
|  | (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, | 
|  | (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); | 
|  | return 1; /* Break things loose after complaining. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A CPU running for an extended time within the kernel can | 
|  | * delay RCU grace periods: (1) At age jiffies_to_sched_qs, | 
|  | * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set | 
|  | * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the | 
|  | * unsynchronized assignments to the per-CPU rcu_need_heavy_qs | 
|  | * variable are safe because the assignments are repeated if this | 
|  | * CPU failed to pass through a quiescent state.  This code | 
|  | * also checks .jiffies_resched in case jiffies_to_sched_qs | 
|  | * is set way high. | 
|  | */ | 
|  | jtsq = READ_ONCE(jiffies_to_sched_qs); | 
|  | if (!READ_ONCE(rdp->rcu_need_heavy_qs) && | 
|  | (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || | 
|  | time_after(jiffies, rcu_state.jiffies_resched) || | 
|  | rcu_state.cbovld)) { | 
|  | WRITE_ONCE(rdp->rcu_need_heavy_qs, true); | 
|  | /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ | 
|  | smp_store_release(&rdp->rcu_urgent_qs, true); | 
|  | } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { | 
|  | WRITE_ONCE(rdp->rcu_urgent_qs, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! | 
|  | * The above code handles this, but only for straight cond_resched(). | 
|  | * And some in-kernel loops check need_resched() before calling | 
|  | * cond_resched(), which defeats the above code for CPUs that are | 
|  | * running in-kernel with scheduling-clock interrupts disabled. | 
|  | * So hit them over the head with the resched_cpu() hammer! | 
|  | */ | 
|  | if (tick_nohz_full_cpu(rdp->cpu) && | 
|  | (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || | 
|  | rcu_state.cbovld)) { | 
|  | WRITE_ONCE(rdp->rcu_urgent_qs, true); | 
|  | WRITE_ONCE(rdp->last_fqs_resched, jiffies); | 
|  | ret = -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If more than halfway to RCU CPU stall-warning time, invoke | 
|  | * resched_cpu() more frequently to try to loosen things up a bit. | 
|  | * Also check to see if the CPU is getting hammered with interrupts, | 
|  | * but only once per grace period, just to keep the IPIs down to | 
|  | * a dull roar. | 
|  | */ | 
|  | if (time_after(jiffies, rcu_state.jiffies_resched)) { | 
|  | if (time_after(jiffies, | 
|  | READ_ONCE(rdp->last_fqs_resched) + jtsq)) { | 
|  | WRITE_ONCE(rdp->last_fqs_resched, jiffies); | 
|  | ret = -1; | 
|  | } | 
|  | if (IS_ENABLED(CONFIG_IRQ_WORK) && | 
|  | !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && | 
|  | (rnp->ffmask & rdp->grpmask)) { | 
|  | rdp->rcu_iw_pending = true; | 
|  | rdp->rcu_iw_gp_seq = rnp->gp_seq; | 
|  | irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); | 
|  | } | 
|  |  | 
|  | if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { | 
|  | int cpu = rdp->cpu; | 
|  | struct rcu_snap_record *rsrp; | 
|  | struct kernel_cpustat *kcsp; | 
|  |  | 
|  | kcsp = &kcpustat_cpu(cpu); | 
|  |  | 
|  | rsrp = &rdp->snap_record; | 
|  | rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); | 
|  | rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); | 
|  | rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); | 
|  | rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); | 
|  | rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); | 
|  | rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); | 
|  | rsrp->jiffies = jiffies; | 
|  | rsrp->gp_seq = rdp->gp_seq; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Trace-event wrapper function for trace_rcu_future_grace_period.  */ | 
|  | static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, | 
|  | unsigned long gp_seq_req, const char *s) | 
|  | { | 
|  | trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), | 
|  | gp_seq_req, rnp->level, | 
|  | rnp->grplo, rnp->grphi, s); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rcu_start_this_gp - Request the start of a particular grace period | 
|  | * @rnp_start: The leaf node of the CPU from which to start. | 
|  | * @rdp: The rcu_data corresponding to the CPU from which to start. | 
|  | * @gp_seq_req: The gp_seq of the grace period to start. | 
|  | * | 
|  | * Start the specified grace period, as needed to handle newly arrived | 
|  | * callbacks.  The required future grace periods are recorded in each | 
|  | * rcu_node structure's ->gp_seq_needed field.  Returns true if there | 
|  | * is reason to awaken the grace-period kthread. | 
|  | * | 
|  | * The caller must hold the specified rcu_node structure's ->lock, which | 
|  | * is why the caller is responsible for waking the grace-period kthread. | 
|  | * | 
|  | * Returns true if the GP thread needs to be awakened else false. | 
|  | */ | 
|  | static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, | 
|  | unsigned long gp_seq_req) | 
|  | { | 
|  | bool ret = false; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | /* | 
|  | * Use funnel locking to either acquire the root rcu_node | 
|  | * structure's lock or bail out if the need for this grace period | 
|  | * has already been recorded -- or if that grace period has in | 
|  | * fact already started.  If there is already a grace period in | 
|  | * progress in a non-leaf node, no recording is needed because the | 
|  | * end of the grace period will scan the leaf rcu_node structures. | 
|  | * Note that rnp_start->lock must not be released. | 
|  | */ | 
|  | raw_lockdep_assert_held_rcu_node(rnp_start); | 
|  | trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); | 
|  | for (rnp = rnp_start; 1; rnp = rnp->parent) { | 
|  | if (rnp != rnp_start) | 
|  | raw_spin_lock_rcu_node(rnp); | 
|  | if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || | 
|  | rcu_seq_started(&rnp->gp_seq, gp_seq_req) || | 
|  | (rnp != rnp_start && | 
|  | rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { | 
|  | trace_rcu_this_gp(rnp, rdp, gp_seq_req, | 
|  | TPS("Prestarted")); | 
|  | goto unlock_out; | 
|  | } | 
|  | WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); | 
|  | if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { | 
|  | /* | 
|  | * We just marked the leaf or internal node, and a | 
|  | * grace period is in progress, which means that | 
|  | * rcu_gp_cleanup() will see the marking.  Bail to | 
|  | * reduce contention. | 
|  | */ | 
|  | trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, | 
|  | TPS("Startedleaf")); | 
|  | goto unlock_out; | 
|  | } | 
|  | if (rnp != rnp_start && rnp->parent != NULL) | 
|  | raw_spin_unlock_rcu_node(rnp); | 
|  | if (!rnp->parent) | 
|  | break;  /* At root, and perhaps also leaf. */ | 
|  | } | 
|  |  | 
|  | /* If GP already in progress, just leave, otherwise start one. */ | 
|  | if (rcu_gp_in_progress()) { | 
|  | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); | 
|  | goto unlock_out; | 
|  | } | 
|  | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); | 
|  | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); | 
|  | WRITE_ONCE(rcu_state.gp_req_activity, jiffies); | 
|  | if (!READ_ONCE(rcu_state.gp_kthread)) { | 
|  | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); | 
|  | goto unlock_out; | 
|  | } | 
|  | trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); | 
|  | ret = true;  /* Caller must wake GP kthread. */ | 
|  | unlock_out: | 
|  | /* Push furthest requested GP to leaf node and rcu_data structure. */ | 
|  | if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { | 
|  | WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); | 
|  | WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); | 
|  | } | 
|  | if (rnp != rnp_start) | 
|  | raw_spin_unlock_rcu_node(rnp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up any old requests for the just-ended grace period.  Also return | 
|  | * whether any additional grace periods have been requested. | 
|  | */ | 
|  | static bool rcu_future_gp_cleanup(struct rcu_node *rnp) | 
|  | { | 
|  | bool needmore; | 
|  | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|  |  | 
|  | needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); | 
|  | if (!needmore) | 
|  | rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ | 
|  | trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, | 
|  | needmore ? TPS("CleanupMore") : TPS("Cleanup")); | 
|  | return needmore; | 
|  | } | 
|  |  | 
|  | static void swake_up_one_online_ipi(void *arg) | 
|  | { | 
|  | struct swait_queue_head *wqh = arg; | 
|  |  | 
|  | swake_up_one(wqh); | 
|  | } | 
|  |  | 
|  | static void swake_up_one_online(struct swait_queue_head *wqh) | 
|  | { | 
|  | int cpu = get_cpu(); | 
|  |  | 
|  | /* | 
|  | * If called from rcutree_report_cpu_starting(), wake up | 
|  | * is dangerous that late in the CPU-down hotplug process. The | 
|  | * scheduler might queue an ignored hrtimer. Defer the wake up | 
|  | * to an online CPU instead. | 
|  | */ | 
|  | if (unlikely(cpu_is_offline(cpu))) { | 
|  | int target; | 
|  |  | 
|  | target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU), | 
|  | cpu_online_mask); | 
|  |  | 
|  | smp_call_function_single(target, swake_up_one_online_ipi, | 
|  | wqh, 0); | 
|  | put_cpu(); | 
|  | } else { | 
|  | put_cpu(); | 
|  | swake_up_one(wqh); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an | 
|  | * interrupt or softirq handler, in which case we just might immediately | 
|  | * sleep upon return, resulting in a grace-period hang), and don't bother | 
|  | * awakening when there is nothing for the grace-period kthread to do | 
|  | * (as in several CPUs raced to awaken, we lost), and finally don't try | 
|  | * to awaken a kthread that has not yet been created.  If all those checks | 
|  | * are passed, track some debug information and awaken. | 
|  | * | 
|  | * So why do the self-wakeup when in an interrupt or softirq handler | 
|  | * in the grace-period kthread's context?  Because the kthread might have | 
|  | * been interrupted just as it was going to sleep, and just after the final | 
|  | * pre-sleep check of the awaken condition.  In this case, a wakeup really | 
|  | * is required, and is therefore supplied. | 
|  | */ | 
|  | static void rcu_gp_kthread_wake(void) | 
|  | { | 
|  | struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); | 
|  |  | 
|  | if ((current == t && !in_hardirq() && !in_serving_softirq()) || | 
|  | !READ_ONCE(rcu_state.gp_flags) || !t) | 
|  | return; | 
|  | WRITE_ONCE(rcu_state.gp_wake_time, jiffies); | 
|  | WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); | 
|  | swake_up_one_online(&rcu_state.gp_wq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is room, assign a ->gp_seq number to any callbacks on this | 
|  | * CPU that have not already been assigned.  Also accelerate any callbacks | 
|  | * that were previously assigned a ->gp_seq number that has since proven | 
|  | * to be too conservative, which can happen if callbacks get assigned a | 
|  | * ->gp_seq number while RCU is idle, but with reference to a non-root | 
|  | * rcu_node structure.  This function is idempotent, so it does not hurt | 
|  | * to call it repeatedly.  Returns an flag saying that we should awaken | 
|  | * the RCU grace-period kthread. | 
|  | * | 
|  | * The caller must hold rnp->lock with interrupts disabled. | 
|  | */ | 
|  | static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) | 
|  | { | 
|  | unsigned long gp_seq_req; | 
|  | bool ret = false; | 
|  |  | 
|  | rcu_lockdep_assert_cblist_protected(rdp); | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  |  | 
|  | /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ | 
|  | if (!rcu_segcblist_pend_cbs(&rdp->cblist)) | 
|  | return false; | 
|  |  | 
|  | trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); | 
|  |  | 
|  | /* | 
|  | * Callbacks are often registered with incomplete grace-period | 
|  | * information.  Something about the fact that getting exact | 
|  | * information requires acquiring a global lock...  RCU therefore | 
|  | * makes a conservative estimate of the grace period number at which | 
|  | * a given callback will become ready to invoke.	The following | 
|  | * code checks this estimate and improves it when possible, thus | 
|  | * accelerating callback invocation to an earlier grace-period | 
|  | * number. | 
|  | */ | 
|  | gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); | 
|  | if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) | 
|  | ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); | 
|  |  | 
|  | /* Trace depending on how much we were able to accelerate. */ | 
|  | if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) | 
|  | trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); | 
|  | else | 
|  | trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); | 
|  |  | 
|  | trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar to rcu_accelerate_cbs(), but does not require that the leaf | 
|  | * rcu_node structure's ->lock be held.  It consults the cached value | 
|  | * of ->gp_seq_needed in the rcu_data structure, and if that indicates | 
|  | * that a new grace-period request be made, invokes rcu_accelerate_cbs() | 
|  | * while holding the leaf rcu_node structure's ->lock. | 
|  | */ | 
|  | static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, | 
|  | struct rcu_data *rdp) | 
|  | { | 
|  | unsigned long c; | 
|  | bool needwake; | 
|  |  | 
|  | rcu_lockdep_assert_cblist_protected(rdp); | 
|  | c = rcu_seq_snap(&rcu_state.gp_seq); | 
|  | if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { | 
|  | /* Old request still live, so mark recent callbacks. */ | 
|  | (void)rcu_segcblist_accelerate(&rdp->cblist, c); | 
|  | return; | 
|  | } | 
|  | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ | 
|  | needwake = rcu_accelerate_cbs(rnp, rdp); | 
|  | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ | 
|  | if (needwake) | 
|  | rcu_gp_kthread_wake(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move any callbacks whose grace period has completed to the | 
|  | * RCU_DONE_TAIL sublist, then compact the remaining sublists and | 
|  | * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL | 
|  | * sublist.  This function is idempotent, so it does not hurt to | 
|  | * invoke it repeatedly.  As long as it is not invoked -too- often... | 
|  | * Returns true if the RCU grace-period kthread needs to be awakened. | 
|  | * | 
|  | * The caller must hold rnp->lock with interrupts disabled. | 
|  | */ | 
|  | static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) | 
|  | { | 
|  | rcu_lockdep_assert_cblist_protected(rdp); | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  |  | 
|  | /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ | 
|  | if (!rcu_segcblist_pend_cbs(&rdp->cblist)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Find all callbacks whose ->gp_seq numbers indicate that they | 
|  | * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. | 
|  | */ | 
|  | rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); | 
|  |  | 
|  | /* Classify any remaining callbacks. */ | 
|  | return rcu_accelerate_cbs(rnp, rdp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move and classify callbacks, but only if doing so won't require | 
|  | * that the RCU grace-period kthread be awakened. | 
|  | */ | 
|  | static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, | 
|  | struct rcu_data *rdp) | 
|  | { | 
|  | rcu_lockdep_assert_cblist_protected(rdp); | 
|  | if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) | 
|  | return; | 
|  | // The grace period cannot end while we hold the rcu_node lock. | 
|  | if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) | 
|  | WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); | 
|  | raw_spin_unlock_rcu_node(rnp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a | 
|  | * quiescent state.  This is intended to be invoked when the CPU notices | 
|  | * a new grace period. | 
|  | */ | 
|  | static void rcu_strict_gp_check_qs(void) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { | 
|  | rcu_read_lock(); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update CPU-local rcu_data state to record the beginnings and ends of | 
|  | * grace periods.  The caller must hold the ->lock of the leaf rcu_node | 
|  | * structure corresponding to the current CPU, and must have irqs disabled. | 
|  | * Returns true if the grace-period kthread needs to be awakened. | 
|  | */ | 
|  | static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) | 
|  | { | 
|  | bool ret = false; | 
|  | bool need_qs; | 
|  | const bool offloaded = rcu_rdp_is_offloaded(rdp); | 
|  |  | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  |  | 
|  | if (rdp->gp_seq == rnp->gp_seq) | 
|  | return false; /* Nothing to do. */ | 
|  |  | 
|  | /* Handle the ends of any preceding grace periods first. */ | 
|  | if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || | 
|  | unlikely(READ_ONCE(rdp->gpwrap))) { | 
|  | if (!offloaded) | 
|  | ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ | 
|  | rdp->core_needs_qs = false; | 
|  | trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); | 
|  | } else { | 
|  | if (!offloaded) | 
|  | ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ | 
|  | if (rdp->core_needs_qs) | 
|  | rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); | 
|  | } | 
|  |  | 
|  | /* Now handle the beginnings of any new-to-this-CPU grace periods. */ | 
|  | if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || | 
|  | unlikely(READ_ONCE(rdp->gpwrap))) { | 
|  | /* | 
|  | * If the current grace period is waiting for this CPU, | 
|  | * set up to detect a quiescent state, otherwise don't | 
|  | * go looking for one. | 
|  | */ | 
|  | trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); | 
|  | need_qs = !!(rnp->qsmask & rdp->grpmask); | 
|  | rdp->cpu_no_qs.b.norm = need_qs; | 
|  | rdp->core_needs_qs = need_qs; | 
|  | zero_cpu_stall_ticks(rdp); | 
|  | } | 
|  | rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */ | 
|  | if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) | 
|  | WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); | 
|  | if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) | 
|  | WRITE_ONCE(rdp->last_sched_clock, jiffies); | 
|  | WRITE_ONCE(rdp->gpwrap, false); | 
|  | rcu_gpnum_ovf(rnp, rdp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void note_gp_changes(struct rcu_data *rdp) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool needwake; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | rnp = rdp->mynode; | 
|  | if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && | 
|  | !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ | 
|  | !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ | 
|  | local_irq_restore(flags); | 
|  | return; | 
|  | } | 
|  | needwake = __note_gp_changes(rnp, rdp); | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | rcu_strict_gp_check_qs(); | 
|  | if (needwake) | 
|  | rcu_gp_kthread_wake(); | 
|  | } | 
|  |  | 
|  | static atomic_t *rcu_gp_slow_suppress; | 
|  |  | 
|  | /* Register a counter to suppress debugging grace-period delays. */ | 
|  | void rcu_gp_slow_register(atomic_t *rgssp) | 
|  | { | 
|  | WARN_ON_ONCE(rcu_gp_slow_suppress); | 
|  |  | 
|  | WRITE_ONCE(rcu_gp_slow_suppress, rgssp); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_gp_slow_register); | 
|  |  | 
|  | /* Unregister a counter, with NULL for not caring which. */ | 
|  | void rcu_gp_slow_unregister(atomic_t *rgssp) | 
|  | { | 
|  | WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); | 
|  |  | 
|  | WRITE_ONCE(rcu_gp_slow_suppress, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); | 
|  |  | 
|  | static bool rcu_gp_slow_is_suppressed(void) | 
|  | { | 
|  | atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); | 
|  |  | 
|  | return rgssp && atomic_read(rgssp); | 
|  | } | 
|  |  | 
|  | static void rcu_gp_slow(int delay) | 
|  | { | 
|  | if (!rcu_gp_slow_is_suppressed() && delay > 0 && | 
|  | !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) | 
|  | schedule_timeout_idle(delay); | 
|  | } | 
|  |  | 
|  | static unsigned long sleep_duration; | 
|  |  | 
|  | /* Allow rcutorture to stall the grace-period kthread. */ | 
|  | void rcu_gp_set_torture_wait(int duration) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) | 
|  | WRITE_ONCE(sleep_duration, duration); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); | 
|  |  | 
|  | /* Actually implement the aforementioned wait. */ | 
|  | static void rcu_gp_torture_wait(void) | 
|  | { | 
|  | unsigned long duration; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) | 
|  | return; | 
|  | duration = xchg(&sleep_duration, 0UL); | 
|  | if (duration > 0) { | 
|  | pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); | 
|  | schedule_timeout_idle(duration); | 
|  | pr_alert("%s: Wait complete\n", __func__); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handler for on_each_cpu() to invoke the target CPU's RCU core | 
|  | * processing. | 
|  | */ | 
|  | static void rcu_strict_gp_boundary(void *unused) | 
|  | { | 
|  | invoke_rcu_core(); | 
|  | } | 
|  |  | 
|  | // Make the polled API aware of the beginning of a grace period. | 
|  | static void rcu_poll_gp_seq_start(unsigned long *snap) | 
|  | { | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  |  | 
|  | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  |  | 
|  | // If RCU was idle, note beginning of GP. | 
|  | if (!rcu_seq_state(rcu_state.gp_seq_polled)) | 
|  | rcu_seq_start(&rcu_state.gp_seq_polled); | 
|  |  | 
|  | // Either way, record current state. | 
|  | *snap = rcu_state.gp_seq_polled; | 
|  | } | 
|  |  | 
|  | // Make the polled API aware of the end of a grace period. | 
|  | static void rcu_poll_gp_seq_end(unsigned long *snap) | 
|  | { | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  |  | 
|  | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  |  | 
|  | // If the previously noted GP is still in effect, record the | 
|  | // end of that GP.  Either way, zero counter to avoid counter-wrap | 
|  | // problems. | 
|  | if (*snap && *snap == rcu_state.gp_seq_polled) { | 
|  | rcu_seq_end(&rcu_state.gp_seq_polled); | 
|  | rcu_state.gp_seq_polled_snap = 0; | 
|  | rcu_state.gp_seq_polled_exp_snap = 0; | 
|  | } else { | 
|  | *snap = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make the polled API aware of the beginning of a grace period, but | 
|  | // where caller does not hold the root rcu_node structure's lock. | 
|  | static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  |  | 
|  | if (rcu_init_invoked()) { | 
|  | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) | 
|  | lockdep_assert_irqs_enabled(); | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | } | 
|  | rcu_poll_gp_seq_start(snap); | 
|  | if (rcu_init_invoked()) | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | } | 
|  |  | 
|  | // Make the polled API aware of the end of a grace period, but where | 
|  | // caller does not hold the root rcu_node structure's lock. | 
|  | static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  |  | 
|  | if (rcu_init_invoked()) { | 
|  | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) | 
|  | lockdep_assert_irqs_enabled(); | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | } | 
|  | rcu_poll_gp_seq_end(snap); | 
|  | if (rcu_init_invoked()) | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize a new grace period.  Return false if no grace period required. | 
|  | */ | 
|  | static noinline_for_stack bool rcu_gp_init(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long oldmask; | 
|  | unsigned long mask; | 
|  | struct rcu_data *rdp; | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  |  | 
|  | WRITE_ONCE(rcu_state.gp_activity, jiffies); | 
|  | raw_spin_lock_irq_rcu_node(rnp); | 
|  | if (!READ_ONCE(rcu_state.gp_flags)) { | 
|  | /* Spurious wakeup, tell caller to go back to sleep.  */ | 
|  | raw_spin_unlock_irq_rcu_node(rnp); | 
|  | return false; | 
|  | } | 
|  | WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ | 
|  |  | 
|  | if (WARN_ON_ONCE(rcu_gp_in_progress())) { | 
|  | /* | 
|  | * Grace period already in progress, don't start another. | 
|  | * Not supposed to be able to happen. | 
|  | */ | 
|  | raw_spin_unlock_irq_rcu_node(rnp); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Advance to a new grace period and initialize state. */ | 
|  | record_gp_stall_check_time(); | 
|  | /* Record GP times before starting GP, hence rcu_seq_start(). */ | 
|  | rcu_seq_start(&rcu_state.gp_seq); | 
|  | ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); | 
|  | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); | 
|  | rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); | 
|  | raw_spin_unlock_irq_rcu_node(rnp); | 
|  |  | 
|  | /* | 
|  | * Apply per-leaf buffered online and offline operations to | 
|  | * the rcu_node tree. Note that this new grace period need not | 
|  | * wait for subsequent online CPUs, and that RCU hooks in the CPU | 
|  | * offlining path, when combined with checks in this function, | 
|  | * will handle CPUs that are currently going offline or that will | 
|  | * go offline later.  Please also refer to "Hotplug CPU" section | 
|  | * of RCU's Requirements documentation. | 
|  | */ | 
|  | WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); | 
|  | /* Exclude CPU hotplug operations. */ | 
|  | rcu_for_each_leaf_node(rnp) { | 
|  | local_irq_save(flags); | 
|  | arch_spin_lock(&rcu_state.ofl_lock); | 
|  | raw_spin_lock_rcu_node(rnp); | 
|  | if (rnp->qsmaskinit == rnp->qsmaskinitnext && | 
|  | !rnp->wait_blkd_tasks) { | 
|  | /* Nothing to do on this leaf rcu_node structure. */ | 
|  | raw_spin_unlock_rcu_node(rnp); | 
|  | arch_spin_unlock(&rcu_state.ofl_lock); | 
|  | local_irq_restore(flags); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Record old state, apply changes to ->qsmaskinit field. */ | 
|  | oldmask = rnp->qsmaskinit; | 
|  | rnp->qsmaskinit = rnp->qsmaskinitnext; | 
|  |  | 
|  | /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ | 
|  | if (!oldmask != !rnp->qsmaskinit) { | 
|  | if (!oldmask) { /* First online CPU for rcu_node. */ | 
|  | if (!rnp->wait_blkd_tasks) /* Ever offline? */ | 
|  | rcu_init_new_rnp(rnp); | 
|  | } else if (rcu_preempt_has_tasks(rnp)) { | 
|  | rnp->wait_blkd_tasks = true; /* blocked tasks */ | 
|  | } else { /* Last offline CPU and can propagate. */ | 
|  | rcu_cleanup_dead_rnp(rnp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If all waited-on tasks from prior grace period are | 
|  | * done, and if all this rcu_node structure's CPUs are | 
|  | * still offline, propagate up the rcu_node tree and | 
|  | * clear ->wait_blkd_tasks.  Otherwise, if one of this | 
|  | * rcu_node structure's CPUs has since come back online, | 
|  | * simply clear ->wait_blkd_tasks. | 
|  | */ | 
|  | if (rnp->wait_blkd_tasks && | 
|  | (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { | 
|  | rnp->wait_blkd_tasks = false; | 
|  | if (!rnp->qsmaskinit) | 
|  | rcu_cleanup_dead_rnp(rnp); | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_rcu_node(rnp); | 
|  | arch_spin_unlock(&rcu_state.ofl_lock); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ | 
|  |  | 
|  | /* | 
|  | * Set the quiescent-state-needed bits in all the rcu_node | 
|  | * structures for all currently online CPUs in breadth-first | 
|  | * order, starting from the root rcu_node structure, relying on the | 
|  | * layout of the tree within the rcu_state.node[] array.  Note that | 
|  | * other CPUs will access only the leaves of the hierarchy, thus | 
|  | * seeing that no grace period is in progress, at least until the | 
|  | * corresponding leaf node has been initialized. | 
|  | * | 
|  | * The grace period cannot complete until the initialization | 
|  | * process finishes, because this kthread handles both. | 
|  | */ | 
|  | WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); | 
|  | rcu_for_each_node_breadth_first(rnp) { | 
|  | rcu_gp_slow(gp_init_delay); | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | rdp = this_cpu_ptr(&rcu_data); | 
|  | rcu_preempt_check_blocked_tasks(rnp); | 
|  | rnp->qsmask = rnp->qsmaskinit; | 
|  | WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); | 
|  | if (rnp == rdp->mynode) | 
|  | (void)__note_gp_changes(rnp, rdp); | 
|  | rcu_preempt_boost_start_gp(rnp); | 
|  | trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, | 
|  | rnp->level, rnp->grplo, | 
|  | rnp->grphi, rnp->qsmask); | 
|  | /* Quiescent states for tasks on any now-offline CPUs. */ | 
|  | mask = rnp->qsmask & ~rnp->qsmaskinitnext; | 
|  | rnp->rcu_gp_init_mask = mask; | 
|  | if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) | 
|  | rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); | 
|  | else | 
|  | raw_spin_unlock_irq_rcu_node(rnp); | 
|  | cond_resched_tasks_rcu_qs(); | 
|  | WRITE_ONCE(rcu_state.gp_activity, jiffies); | 
|  | } | 
|  |  | 
|  | // If strict, make all CPUs aware of new grace period. | 
|  | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) | 
|  | on_each_cpu(rcu_strict_gp_boundary, NULL, 0); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state | 
|  | * time. | 
|  | */ | 
|  | static bool rcu_gp_fqs_check_wake(int *gfp) | 
|  | { | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  |  | 
|  | // If under overload conditions, force an immediate FQS scan. | 
|  | if (*gfp & RCU_GP_FLAG_OVLD) | 
|  | return true; | 
|  |  | 
|  | // Someone like call_rcu() requested a force-quiescent-state scan. | 
|  | *gfp = READ_ONCE(rcu_state.gp_flags); | 
|  | if (*gfp & RCU_GP_FLAG_FQS) | 
|  | return true; | 
|  |  | 
|  | // The current grace period has completed. | 
|  | if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do one round of quiescent-state forcing. | 
|  | */ | 
|  | static void rcu_gp_fqs(bool first_time) | 
|  | { | 
|  | int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  |  | 
|  | WRITE_ONCE(rcu_state.gp_activity, jiffies); | 
|  | WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); | 
|  |  | 
|  | WARN_ON_ONCE(nr_fqs > 3); | 
|  | /* Only countdown nr_fqs for stall purposes if jiffies moves. */ | 
|  | if (nr_fqs) { | 
|  | if (nr_fqs == 1) { | 
|  | WRITE_ONCE(rcu_state.jiffies_stall, | 
|  | jiffies + rcu_jiffies_till_stall_check()); | 
|  | } | 
|  | WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); | 
|  | } | 
|  |  | 
|  | if (first_time) { | 
|  | /* Collect dyntick-idle snapshots. */ | 
|  | force_qs_rnp(dyntick_save_progress_counter); | 
|  | } else { | 
|  | /* Handle dyntick-idle and offline CPUs. */ | 
|  | force_qs_rnp(rcu_implicit_dynticks_qs); | 
|  | } | 
|  | /* Clear flag to prevent immediate re-entry. */ | 
|  | if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { | 
|  | raw_spin_lock_irq_rcu_node(rnp); | 
|  | WRITE_ONCE(rcu_state.gp_flags, | 
|  | READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); | 
|  | raw_spin_unlock_irq_rcu_node(rnp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Loop doing repeated quiescent-state forcing until the grace period ends. | 
|  | */ | 
|  | static noinline_for_stack void rcu_gp_fqs_loop(void) | 
|  | { | 
|  | bool first_gp_fqs = true; | 
|  | int gf = 0; | 
|  | unsigned long j; | 
|  | int ret; | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  |  | 
|  | j = READ_ONCE(jiffies_till_first_fqs); | 
|  | if (rcu_state.cbovld) | 
|  | gf = RCU_GP_FLAG_OVLD; | 
|  | ret = 0; | 
|  | for (;;) { | 
|  | if (rcu_state.cbovld) { | 
|  | j = (j + 2) / 3; | 
|  | if (j <= 0) | 
|  | j = 1; | 
|  | } | 
|  | if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { | 
|  | WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); | 
|  | /* | 
|  | * jiffies_force_qs before RCU_GP_WAIT_FQS state | 
|  | * update; required for stall checks. | 
|  | */ | 
|  | smp_wmb(); | 
|  | WRITE_ONCE(rcu_state.jiffies_kick_kthreads, | 
|  | jiffies + (j ? 3 * j : 2)); | 
|  | } | 
|  | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, | 
|  | TPS("fqswait")); | 
|  | WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); | 
|  | (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, | 
|  | rcu_gp_fqs_check_wake(&gf), j); | 
|  | rcu_gp_torture_wait(); | 
|  | WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); | 
|  | /* Locking provides needed memory barriers. */ | 
|  | /* | 
|  | * Exit the loop if the root rcu_node structure indicates that the grace period | 
|  | * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check | 
|  | * is required only for single-node rcu_node trees because readers blocking | 
|  | * the current grace period are queued only on leaf rcu_node structures. | 
|  | * For multi-node trees, checking the root node's ->qsmask suffices, because a | 
|  | * given root node's ->qsmask bit is cleared only when all CPUs and tasks from | 
|  | * the corresponding leaf nodes have passed through their quiescent state. | 
|  | */ | 
|  | if (!READ_ONCE(rnp->qsmask) && | 
|  | !rcu_preempt_blocked_readers_cgp(rnp)) | 
|  | break; | 
|  | /* If time for quiescent-state forcing, do it. */ | 
|  | if (!time_after(rcu_state.jiffies_force_qs, jiffies) || | 
|  | (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { | 
|  | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, | 
|  | TPS("fqsstart")); | 
|  | rcu_gp_fqs(first_gp_fqs); | 
|  | gf = 0; | 
|  | if (first_gp_fqs) { | 
|  | first_gp_fqs = false; | 
|  | gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; | 
|  | } | 
|  | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, | 
|  | TPS("fqsend")); | 
|  | cond_resched_tasks_rcu_qs(); | 
|  | WRITE_ONCE(rcu_state.gp_activity, jiffies); | 
|  | ret = 0; /* Force full wait till next FQS. */ | 
|  | j = READ_ONCE(jiffies_till_next_fqs); | 
|  | } else { | 
|  | /* Deal with stray signal. */ | 
|  | cond_resched_tasks_rcu_qs(); | 
|  | WRITE_ONCE(rcu_state.gp_activity, jiffies); | 
|  | WARN_ON(signal_pending(current)); | 
|  | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, | 
|  | TPS("fqswaitsig")); | 
|  | ret = 1; /* Keep old FQS timing. */ | 
|  | j = jiffies; | 
|  | if (time_after(jiffies, rcu_state.jiffies_force_qs)) | 
|  | j = 1; | 
|  | else | 
|  | j = rcu_state.jiffies_force_qs - j; | 
|  | gf = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up after the old grace period. | 
|  | */ | 
|  | static noinline void rcu_gp_cleanup(void) | 
|  | { | 
|  | int cpu; | 
|  | bool needgp = false; | 
|  | unsigned long gp_duration; | 
|  | unsigned long new_gp_seq; | 
|  | bool offloaded; | 
|  | struct rcu_data *rdp; | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  | struct swait_queue_head *sq; | 
|  |  | 
|  | WRITE_ONCE(rcu_state.gp_activity, jiffies); | 
|  | raw_spin_lock_irq_rcu_node(rnp); | 
|  | rcu_state.gp_end = jiffies; | 
|  | gp_duration = rcu_state.gp_end - rcu_state.gp_start; | 
|  | if (gp_duration > rcu_state.gp_max) | 
|  | rcu_state.gp_max = gp_duration; | 
|  |  | 
|  | /* | 
|  | * We know the grace period is complete, but to everyone else | 
|  | * it appears to still be ongoing.  But it is also the case | 
|  | * that to everyone else it looks like there is nothing that | 
|  | * they can do to advance the grace period.  It is therefore | 
|  | * safe for us to drop the lock in order to mark the grace | 
|  | * period as completed in all of the rcu_node structures. | 
|  | */ | 
|  | rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); | 
|  | raw_spin_unlock_irq_rcu_node(rnp); | 
|  |  | 
|  | /* | 
|  | * Propagate new ->gp_seq value to rcu_node structures so that | 
|  | * other CPUs don't have to wait until the start of the next grace | 
|  | * period to process their callbacks.  This also avoids some nasty | 
|  | * RCU grace-period initialization races by forcing the end of | 
|  | * the current grace period to be completely recorded in all of | 
|  | * the rcu_node structures before the beginning of the next grace | 
|  | * period is recorded in any of the rcu_node structures. | 
|  | */ | 
|  | new_gp_seq = rcu_state.gp_seq; | 
|  | rcu_seq_end(&new_gp_seq); | 
|  | rcu_for_each_node_breadth_first(rnp) { | 
|  | raw_spin_lock_irq_rcu_node(rnp); | 
|  | if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) | 
|  | dump_blkd_tasks(rnp, 10); | 
|  | WARN_ON_ONCE(rnp->qsmask); | 
|  | WRITE_ONCE(rnp->gp_seq, new_gp_seq); | 
|  | if (!rnp->parent) | 
|  | smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). | 
|  | rdp = this_cpu_ptr(&rcu_data); | 
|  | if (rnp == rdp->mynode) | 
|  | needgp = __note_gp_changes(rnp, rdp) || needgp; | 
|  | /* smp_mb() provided by prior unlock-lock pair. */ | 
|  | needgp = rcu_future_gp_cleanup(rnp) || needgp; | 
|  | // Reset overload indication for CPUs no longer overloaded | 
|  | if (rcu_is_leaf_node(rnp)) | 
|  | for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { | 
|  | rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | check_cb_ovld_locked(rdp, rnp); | 
|  | } | 
|  | sq = rcu_nocb_gp_get(rnp); | 
|  | raw_spin_unlock_irq_rcu_node(rnp); | 
|  | rcu_nocb_gp_cleanup(sq); | 
|  | cond_resched_tasks_rcu_qs(); | 
|  | WRITE_ONCE(rcu_state.gp_activity, jiffies); | 
|  | rcu_gp_slow(gp_cleanup_delay); | 
|  | } | 
|  | rnp = rcu_get_root(); | 
|  | raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ | 
|  |  | 
|  | /* Declare grace period done, trace first to use old GP number. */ | 
|  | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); | 
|  | rcu_seq_end(&rcu_state.gp_seq); | 
|  | ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); | 
|  | WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); | 
|  | /* Check for GP requests since above loop. */ | 
|  | rdp = this_cpu_ptr(&rcu_data); | 
|  | if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { | 
|  | trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, | 
|  | TPS("CleanupMore")); | 
|  | needgp = true; | 
|  | } | 
|  | /* Advance CBs to reduce false positives below. */ | 
|  | offloaded = rcu_rdp_is_offloaded(rdp); | 
|  | if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { | 
|  |  | 
|  | // We get here if a grace period was needed (“needgp”) | 
|  | // and the above call to rcu_accelerate_cbs() did not set | 
|  | // the RCU_GP_FLAG_INIT bit in ->gp_state (which records | 
|  | // the need for another grace period).  The purpose | 
|  | // of the “offloaded” check is to avoid invoking | 
|  | // rcu_accelerate_cbs() on an offloaded CPU because we do not | 
|  | // hold the ->nocb_lock needed to safely access an offloaded | 
|  | // ->cblist.  We do not want to acquire that lock because | 
|  | // it can be heavily contended during callback floods. | 
|  |  | 
|  | WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); | 
|  | WRITE_ONCE(rcu_state.gp_req_activity, jiffies); | 
|  | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); | 
|  | } else { | 
|  |  | 
|  | // We get here either if there is no need for an | 
|  | // additional grace period or if rcu_accelerate_cbs() has | 
|  | // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. | 
|  | // So all we need to do is to clear all of the other | 
|  | // ->gp_flags bits. | 
|  |  | 
|  | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); | 
|  | } | 
|  | raw_spin_unlock_irq_rcu_node(rnp); | 
|  |  | 
|  | // If strict, make all CPUs aware of the end of the old grace period. | 
|  | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) | 
|  | on_each_cpu(rcu_strict_gp_boundary, NULL, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Body of kthread that handles grace periods. | 
|  | */ | 
|  | static int __noreturn rcu_gp_kthread(void *unused) | 
|  | { | 
|  | rcu_bind_gp_kthread(); | 
|  | for (;;) { | 
|  |  | 
|  | /* Handle grace-period start. */ | 
|  | for (;;) { | 
|  | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, | 
|  | TPS("reqwait")); | 
|  | WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); | 
|  | swait_event_idle_exclusive(rcu_state.gp_wq, | 
|  | READ_ONCE(rcu_state.gp_flags) & | 
|  | RCU_GP_FLAG_INIT); | 
|  | rcu_gp_torture_wait(); | 
|  | WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); | 
|  | /* Locking provides needed memory barrier. */ | 
|  | if (rcu_gp_init()) | 
|  | break; | 
|  | cond_resched_tasks_rcu_qs(); | 
|  | WRITE_ONCE(rcu_state.gp_activity, jiffies); | 
|  | WARN_ON(signal_pending(current)); | 
|  | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, | 
|  | TPS("reqwaitsig")); | 
|  | } | 
|  |  | 
|  | /* Handle quiescent-state forcing. */ | 
|  | rcu_gp_fqs_loop(); | 
|  |  | 
|  | /* Handle grace-period end. */ | 
|  | WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); | 
|  | rcu_gp_cleanup(); | 
|  | WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Report a full set of quiescent states to the rcu_state data structure. | 
|  | * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if | 
|  | * another grace period is required.  Whether we wake the grace-period | 
|  | * kthread or it awakens itself for the next round of quiescent-state | 
|  | * forcing, that kthread will clean up after the just-completed grace | 
|  | * period.  Note that the caller must hold rnp->lock, which is released | 
|  | * before return. | 
|  | */ | 
|  | static void rcu_report_qs_rsp(unsigned long flags) | 
|  | __releases(rcu_get_root()->lock) | 
|  | { | 
|  | raw_lockdep_assert_held_rcu_node(rcu_get_root()); | 
|  | WARN_ON_ONCE(!rcu_gp_in_progress()); | 
|  | WRITE_ONCE(rcu_state.gp_flags, | 
|  | READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); | 
|  | raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); | 
|  | rcu_gp_kthread_wake(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar to rcu_report_qs_rdp(), for which it is a helper function. | 
|  | * Allows quiescent states for a group of CPUs to be reported at one go | 
|  | * to the specified rcu_node structure, though all the CPUs in the group | 
|  | * must be represented by the same rcu_node structure (which need not be a | 
|  | * leaf rcu_node structure, though it often will be).  The gps parameter | 
|  | * is the grace-period snapshot, which means that the quiescent states | 
|  | * are valid only if rnp->gp_seq is equal to gps.  That structure's lock | 
|  | * must be held upon entry, and it is released before return. | 
|  | * | 
|  | * As a special case, if mask is zero, the bit-already-cleared check is | 
|  | * disabled.  This allows propagating quiescent state due to resumed tasks | 
|  | * during grace-period initialization. | 
|  | */ | 
|  | static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, | 
|  | unsigned long gps, unsigned long flags) | 
|  | __releases(rnp->lock) | 
|  | { | 
|  | unsigned long oldmask = 0; | 
|  | struct rcu_node *rnp_c; | 
|  |  | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  |  | 
|  | /* Walk up the rcu_node hierarchy. */ | 
|  | for (;;) { | 
|  | if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { | 
|  |  | 
|  | /* | 
|  | * Our bit has already been cleared, or the | 
|  | * relevant grace period is already over, so done. | 
|  | */ | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | return; | 
|  | } | 
|  | WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ | 
|  | WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && | 
|  | rcu_preempt_blocked_readers_cgp(rnp)); | 
|  | WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); | 
|  | trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, | 
|  | mask, rnp->qsmask, rnp->level, | 
|  | rnp->grplo, rnp->grphi, | 
|  | !!rnp->gp_tasks); | 
|  | if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { | 
|  |  | 
|  | /* Other bits still set at this level, so done. */ | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | return; | 
|  | } | 
|  | rnp->completedqs = rnp->gp_seq; | 
|  | mask = rnp->grpmask; | 
|  | if (rnp->parent == NULL) { | 
|  |  | 
|  | /* No more levels.  Exit loop holding root lock. */ | 
|  |  | 
|  | break; | 
|  | } | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | rnp_c = rnp; | 
|  | rnp = rnp->parent; | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | oldmask = READ_ONCE(rnp_c->qsmask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get here if we are the last CPU to pass through a quiescent | 
|  | * state for this grace period.  Invoke rcu_report_qs_rsp() | 
|  | * to clean up and start the next grace period if one is needed. | 
|  | */ | 
|  | rcu_report_qs_rsp(flags); /* releases rnp->lock. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record a quiescent state for all tasks that were previously queued | 
|  | * on the specified rcu_node structure and that were blocking the current | 
|  | * RCU grace period.  The caller must hold the corresponding rnp->lock with | 
|  | * irqs disabled, and this lock is released upon return, but irqs remain | 
|  | * disabled. | 
|  | */ | 
|  | static void __maybe_unused | 
|  | rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) | 
|  | __releases(rnp->lock) | 
|  | { | 
|  | unsigned long gps; | 
|  | unsigned long mask; | 
|  | struct rcu_node *rnp_p; | 
|  |  | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  | if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || | 
|  | WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || | 
|  | rnp->qsmask != 0) { | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | return;  /* Still need more quiescent states! */ | 
|  | } | 
|  |  | 
|  | rnp->completedqs = rnp->gp_seq; | 
|  | rnp_p = rnp->parent; | 
|  | if (rnp_p == NULL) { | 
|  | /* | 
|  | * Only one rcu_node structure in the tree, so don't | 
|  | * try to report up to its nonexistent parent! | 
|  | */ | 
|  | rcu_report_qs_rsp(flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ | 
|  | gps = rnp->gp_seq; | 
|  | mask = rnp->grpmask; | 
|  | raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */ | 
|  | raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */ | 
|  | rcu_report_qs_rnp(mask, rnp_p, gps, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record a quiescent state for the specified CPU to that CPU's rcu_data | 
|  | * structure.  This must be called from the specified CPU. | 
|  | */ | 
|  | static void | 
|  | rcu_report_qs_rdp(struct rcu_data *rdp) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long mask; | 
|  | bool needacc = false; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | WARN_ON_ONCE(rdp->cpu != smp_processor_id()); | 
|  | rnp = rdp->mynode; | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || | 
|  | rdp->gpwrap) { | 
|  |  | 
|  | /* | 
|  | * The grace period in which this quiescent state was | 
|  | * recorded has ended, so don't report it upwards. | 
|  | * We will instead need a new quiescent state that lies | 
|  | * within the current grace period. | 
|  | */ | 
|  | rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */ | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | return; | 
|  | } | 
|  | mask = rdp->grpmask; | 
|  | rdp->core_needs_qs = false; | 
|  | if ((rnp->qsmask & mask) == 0) { | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | } else { | 
|  | /* | 
|  | * This GP can't end until cpu checks in, so all of our | 
|  | * callbacks can be processed during the next GP. | 
|  | * | 
|  | * NOCB kthreads have their own way to deal with that... | 
|  | */ | 
|  | if (!rcu_rdp_is_offloaded(rdp)) { | 
|  | /* | 
|  | * The current GP has not yet ended, so it | 
|  | * should not be possible for rcu_accelerate_cbs() | 
|  | * to return true.  So complain, but don't awaken. | 
|  | */ | 
|  | WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); | 
|  | } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { | 
|  | /* | 
|  | * ...but NOCB kthreads may miss or delay callbacks acceleration | 
|  | * if in the middle of a (de-)offloading process. | 
|  | */ | 
|  | needacc = true; | 
|  | } | 
|  |  | 
|  | rcu_disable_urgency_upon_qs(rdp); | 
|  | rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); | 
|  | /* ^^^ Released rnp->lock */ | 
|  |  | 
|  | if (needacc) { | 
|  | rcu_nocb_lock_irqsave(rdp, flags); | 
|  | rcu_accelerate_cbs_unlocked(rnp, rdp); | 
|  | rcu_nocb_unlock_irqrestore(rdp, flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if there is a new grace period of which this CPU | 
|  | * is not yet aware, and if so, set up local rcu_data state for it. | 
|  | * Otherwise, see if this CPU has just passed through its first | 
|  | * quiescent state for this grace period, and record that fact if so. | 
|  | */ | 
|  | static void | 
|  | rcu_check_quiescent_state(struct rcu_data *rdp) | 
|  | { | 
|  | /* Check for grace-period ends and beginnings. */ | 
|  | note_gp_changes(rdp); | 
|  |  | 
|  | /* | 
|  | * Does this CPU still need to do its part for current grace period? | 
|  | * If no, return and let the other CPUs do their part as well. | 
|  | */ | 
|  | if (!rdp->core_needs_qs) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Was there a quiescent state since the beginning of the grace | 
|  | * period? If no, then exit and wait for the next call. | 
|  | */ | 
|  | if (rdp->cpu_no_qs.b.norm) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Tell RCU we are done (but rcu_report_qs_rdp() will be the | 
|  | * judge of that). | 
|  | */ | 
|  | rcu_report_qs_rdp(rdp); | 
|  | } | 
|  |  | 
|  | /* Return true if callback-invocation time limit exceeded. */ | 
|  | static bool rcu_do_batch_check_time(long count, long tlimit, | 
|  | bool jlimit_check, unsigned long jlimit) | 
|  | { | 
|  | // Invoke local_clock() only once per 32 consecutive callbacks. | 
|  | return unlikely(tlimit) && | 
|  | (!likely(count & 31) || | 
|  | (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && | 
|  | jlimit_check && time_after(jiffies, jlimit))) && | 
|  | local_clock() >= tlimit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invoke any RCU callbacks that have made it to the end of their grace | 
|  | * period.  Throttle as specified by rdp->blimit. | 
|  | */ | 
|  | static void rcu_do_batch(struct rcu_data *rdp) | 
|  | { | 
|  | long bl; | 
|  | long count = 0; | 
|  | int div; | 
|  | bool __maybe_unused empty; | 
|  | unsigned long flags; | 
|  | unsigned long jlimit; | 
|  | bool jlimit_check = false; | 
|  | long pending; | 
|  | struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); | 
|  | struct rcu_head *rhp; | 
|  | long tlimit = 0; | 
|  |  | 
|  | /* If no callbacks are ready, just return. */ | 
|  | if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { | 
|  | trace_rcu_batch_start(rcu_state.name, | 
|  | rcu_segcblist_n_cbs(&rdp->cblist), 0); | 
|  | trace_rcu_batch_end(rcu_state.name, 0, | 
|  | !rcu_segcblist_empty(&rdp->cblist), | 
|  | need_resched(), is_idle_task(current), | 
|  | rcu_is_callbacks_kthread(rdp)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extract the list of ready callbacks, disabling IRQs to prevent | 
|  | * races with call_rcu() from interrupt handlers.  Leave the | 
|  | * callback counts, as rcu_barrier() needs to be conservative. | 
|  | */ | 
|  | rcu_nocb_lock_irqsave(rdp, flags); | 
|  | WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); | 
|  | pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); | 
|  | div = READ_ONCE(rcu_divisor); | 
|  | div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; | 
|  | bl = max(rdp->blimit, pending >> div); | 
|  | if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && | 
|  | (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { | 
|  | const long npj = NSEC_PER_SEC / HZ; | 
|  | long rrn = READ_ONCE(rcu_resched_ns); | 
|  |  | 
|  | rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; | 
|  | tlimit = local_clock() + rrn; | 
|  | jlimit = jiffies + (rrn + npj + 1) / npj; | 
|  | jlimit_check = true; | 
|  | } | 
|  | trace_rcu_batch_start(rcu_state.name, | 
|  | rcu_segcblist_n_cbs(&rdp->cblist), bl); | 
|  | rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); | 
|  | if (rcu_rdp_is_offloaded(rdp)) | 
|  | rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); | 
|  |  | 
|  | trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); | 
|  | rcu_nocb_unlock_irqrestore(rdp, flags); | 
|  |  | 
|  | /* Invoke callbacks. */ | 
|  | tick_dep_set_task(current, TICK_DEP_BIT_RCU); | 
|  | rhp = rcu_cblist_dequeue(&rcl); | 
|  |  | 
|  | for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { | 
|  | rcu_callback_t f; | 
|  |  | 
|  | count++; | 
|  | debug_rcu_head_unqueue(rhp); | 
|  |  | 
|  | rcu_lock_acquire(&rcu_callback_map); | 
|  | trace_rcu_invoke_callback(rcu_state.name, rhp); | 
|  |  | 
|  | f = rhp->func; | 
|  | debug_rcu_head_callback(rhp); | 
|  | WRITE_ONCE(rhp->func, (rcu_callback_t)0L); | 
|  | f(rhp); | 
|  |  | 
|  | rcu_lock_release(&rcu_callback_map); | 
|  |  | 
|  | /* | 
|  | * Stop only if limit reached and CPU has something to do. | 
|  | */ | 
|  | if (in_serving_softirq()) { | 
|  | if (count >= bl && (need_resched() || !is_idle_task(current))) | 
|  | break; | 
|  | /* | 
|  | * Make sure we don't spend too much time here and deprive other | 
|  | * softirq vectors of CPU cycles. | 
|  | */ | 
|  | if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) | 
|  | break; | 
|  | } else { | 
|  | // In rcuc/rcuoc context, so no worries about | 
|  | // depriving other softirq vectors of CPU cycles. | 
|  | local_bh_enable(); | 
|  | lockdep_assert_irqs_enabled(); | 
|  | cond_resched_tasks_rcu_qs(); | 
|  | lockdep_assert_irqs_enabled(); | 
|  | local_bh_disable(); | 
|  | // But rcuc kthreads can delay quiescent-state | 
|  | // reporting, so check time limits for them. | 
|  | if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && | 
|  | rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { | 
|  | rdp->rcu_cpu_has_work = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | rcu_nocb_lock_irqsave(rdp, flags); | 
|  | rdp->n_cbs_invoked += count; | 
|  | trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), | 
|  | is_idle_task(current), rcu_is_callbacks_kthread(rdp)); | 
|  |  | 
|  | /* Update counts and requeue any remaining callbacks. */ | 
|  | rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); | 
|  | rcu_segcblist_add_len(&rdp->cblist, -count); | 
|  |  | 
|  | /* Reinstate batch limit if we have worked down the excess. */ | 
|  | count = rcu_segcblist_n_cbs(&rdp->cblist); | 
|  | if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) | 
|  | rdp->blimit = blimit; | 
|  |  | 
|  | /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ | 
|  | if (count == 0 && rdp->qlen_last_fqs_check != 0) { | 
|  | rdp->qlen_last_fqs_check = 0; | 
|  | rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); | 
|  | } else if (count < rdp->qlen_last_fqs_check - qhimark) | 
|  | rdp->qlen_last_fqs_check = count; | 
|  |  | 
|  | /* | 
|  | * The following usually indicates a double call_rcu().  To track | 
|  | * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. | 
|  | */ | 
|  | empty = rcu_segcblist_empty(&rdp->cblist); | 
|  | WARN_ON_ONCE(count == 0 && !empty); | 
|  | WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && | 
|  | count != 0 && empty); | 
|  | WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); | 
|  | WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); | 
|  |  | 
|  | rcu_nocb_unlock_irqrestore(rdp, flags); | 
|  |  | 
|  | tick_dep_clear_task(current, TICK_DEP_BIT_RCU); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is invoked from each scheduling-clock interrupt, | 
|  | * and checks to see if this CPU is in a non-context-switch quiescent | 
|  | * state, for example, user mode or idle loop.  It also schedules RCU | 
|  | * core processing.  If the current grace period has gone on too long, | 
|  | * it will ask the scheduler to manufacture a context switch for the sole | 
|  | * purpose of providing the needed quiescent state. | 
|  | */ | 
|  | void rcu_sched_clock_irq(int user) | 
|  | { | 
|  | unsigned long j; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PROVE_RCU)) { | 
|  | j = jiffies; | 
|  | WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); | 
|  | __this_cpu_write(rcu_data.last_sched_clock, j); | 
|  | } | 
|  | trace_rcu_utilization(TPS("Start scheduler-tick")); | 
|  | lockdep_assert_irqs_disabled(); | 
|  | raw_cpu_inc(rcu_data.ticks_this_gp); | 
|  | /* The load-acquire pairs with the store-release setting to true. */ | 
|  | if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { | 
|  | /* Idle and userspace execution already are quiescent states. */ | 
|  | if (!rcu_is_cpu_rrupt_from_idle() && !user) { | 
|  | set_tsk_need_resched(current); | 
|  | set_preempt_need_resched(); | 
|  | } | 
|  | __this_cpu_write(rcu_data.rcu_urgent_qs, false); | 
|  | } | 
|  | rcu_flavor_sched_clock_irq(user); | 
|  | if (rcu_pending(user)) | 
|  | invoke_rcu_core(); | 
|  | if (user || rcu_is_cpu_rrupt_from_idle()) | 
|  | rcu_note_voluntary_context_switch(current); | 
|  | lockdep_assert_irqs_disabled(); | 
|  |  | 
|  | trace_rcu_utilization(TPS("End scheduler-tick")); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan the leaf rcu_node structures.  For each structure on which all | 
|  | * CPUs have reported a quiescent state and on which there are tasks | 
|  | * blocking the current grace period, initiate RCU priority boosting. | 
|  | * Otherwise, invoke the specified function to check dyntick state for | 
|  | * each CPU that has not yet reported a quiescent state. | 
|  | */ | 
|  | static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long flags; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | rcu_state.cbovld = rcu_state.cbovldnext; | 
|  | rcu_state.cbovldnext = false; | 
|  | rcu_for_each_leaf_node(rnp) { | 
|  | unsigned long mask = 0; | 
|  | unsigned long rsmask = 0; | 
|  |  | 
|  | cond_resched_tasks_rcu_qs(); | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | rcu_state.cbovldnext |= !!rnp->cbovldmask; | 
|  | if (rnp->qsmask == 0) { | 
|  | if (rcu_preempt_blocked_readers_cgp(rnp)) { | 
|  | /* | 
|  | * No point in scanning bits because they | 
|  | * are all zero.  But we might need to | 
|  | * priority-boost blocked readers. | 
|  | */ | 
|  | rcu_initiate_boost(rnp, flags); | 
|  | /* rcu_initiate_boost() releases rnp->lock */ | 
|  | continue; | 
|  | } | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | continue; | 
|  | } | 
|  | for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { | 
|  | struct rcu_data *rdp; | 
|  | int ret; | 
|  |  | 
|  | rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | ret = f(rdp); | 
|  | if (ret > 0) { | 
|  | mask |= rdp->grpmask; | 
|  | rcu_disable_urgency_upon_qs(rdp); | 
|  | } | 
|  | if (ret < 0) | 
|  | rsmask |= rdp->grpmask; | 
|  | } | 
|  | if (mask != 0) { | 
|  | /* Idle/offline CPUs, report (releases rnp->lock). */ | 
|  | rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); | 
|  | } else { | 
|  | /* Nothing to do here, so just drop the lock. */ | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | } | 
|  |  | 
|  | for_each_leaf_node_cpu_mask(rnp, cpu, rsmask) | 
|  | resched_cpu(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force quiescent states on reluctant CPUs, and also detect which | 
|  | * CPUs are in dyntick-idle mode. | 
|  | */ | 
|  | void rcu_force_quiescent_state(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool ret; | 
|  | struct rcu_node *rnp; | 
|  | struct rcu_node *rnp_old = NULL; | 
|  |  | 
|  | if (!rcu_gp_in_progress()) | 
|  | return; | 
|  | /* Funnel through hierarchy to reduce memory contention. */ | 
|  | rnp = raw_cpu_read(rcu_data.mynode); | 
|  | for (; rnp != NULL; rnp = rnp->parent) { | 
|  | ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || | 
|  | !raw_spin_trylock(&rnp->fqslock); | 
|  | if (rnp_old != NULL) | 
|  | raw_spin_unlock(&rnp_old->fqslock); | 
|  | if (ret) | 
|  | return; | 
|  | rnp_old = rnp; | 
|  | } | 
|  | /* rnp_old == rcu_get_root(), rnp == NULL. */ | 
|  |  | 
|  | /* Reached the root of the rcu_node tree, acquire lock. */ | 
|  | raw_spin_lock_irqsave_rcu_node(rnp_old, flags); | 
|  | raw_spin_unlock(&rnp_old->fqslock); | 
|  | if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); | 
|  | return;  /* Someone beat us to it. */ | 
|  | } | 
|  | WRITE_ONCE(rcu_state.gp_flags, | 
|  | READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); | 
|  | rcu_gp_kthread_wake(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); | 
|  |  | 
|  | // Workqueue handler for an RCU reader for kernels enforcing struct RCU | 
|  | // grace periods. | 
|  | static void strict_work_handler(struct work_struct *work) | 
|  | { | 
|  | rcu_read_lock(); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* Perform RCU core processing work for the current CPU.  */ | 
|  | static __latent_entropy void rcu_core(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); | 
|  | struct rcu_node *rnp = rdp->mynode; | 
|  | /* | 
|  | * On RT rcu_core() can be preempted when IRQs aren't disabled. | 
|  | * Therefore this function can race with concurrent NOCB (de-)offloading | 
|  | * on this CPU and the below condition must be considered volatile. | 
|  | * However if we race with: | 
|  | * | 
|  | * _ Offloading:   In the worst case we accelerate or process callbacks | 
|  | *                 concurrently with NOCB kthreads. We are guaranteed to | 
|  | *                 call rcu_nocb_lock() if that happens. | 
|  | * | 
|  | * _ Deoffloading: In the worst case we miss callbacks acceleration or | 
|  | *                 processing. This is fine because the early stage | 
|  | *                 of deoffloading invokes rcu_core() after setting | 
|  | *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process | 
|  | *                 what could have been dismissed without the need to wait | 
|  | *                 for the next rcu_pending() check in the next jiffy. | 
|  | */ | 
|  | const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); | 
|  |  | 
|  | if (cpu_is_offline(smp_processor_id())) | 
|  | return; | 
|  | trace_rcu_utilization(TPS("Start RCU core")); | 
|  | WARN_ON_ONCE(!rdp->beenonline); | 
|  |  | 
|  | /* Report any deferred quiescent states if preemption enabled. */ | 
|  | if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { | 
|  | rcu_preempt_deferred_qs(current); | 
|  | } else if (rcu_preempt_need_deferred_qs(current)) { | 
|  | set_tsk_need_resched(current); | 
|  | set_preempt_need_resched(); | 
|  | } | 
|  |  | 
|  | /* Update RCU state based on any recent quiescent states. */ | 
|  | rcu_check_quiescent_state(rdp); | 
|  |  | 
|  | /* No grace period and unregistered callbacks? */ | 
|  | if (!rcu_gp_in_progress() && | 
|  | rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { | 
|  | rcu_nocb_lock_irqsave(rdp, flags); | 
|  | if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) | 
|  | rcu_accelerate_cbs_unlocked(rnp, rdp); | 
|  | rcu_nocb_unlock_irqrestore(rdp, flags); | 
|  | } | 
|  |  | 
|  | rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); | 
|  |  | 
|  | /* If there are callbacks ready, invoke them. */ | 
|  | if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && | 
|  | likely(READ_ONCE(rcu_scheduler_fully_active))) { | 
|  | rcu_do_batch(rdp); | 
|  | /* Re-invoke RCU core processing if there are callbacks remaining. */ | 
|  | if (rcu_segcblist_ready_cbs(&rdp->cblist)) | 
|  | invoke_rcu_core(); | 
|  | } | 
|  |  | 
|  | /* Do any needed deferred wakeups of rcuo kthreads. */ | 
|  | do_nocb_deferred_wakeup(rdp); | 
|  | trace_rcu_utilization(TPS("End RCU core")); | 
|  |  | 
|  | // If strict GPs, schedule an RCU reader in a clean environment. | 
|  | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) | 
|  | queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); | 
|  | } | 
|  |  | 
|  | static void rcu_core_si(struct softirq_action *h) | 
|  | { | 
|  | rcu_core(); | 
|  | } | 
|  |  | 
|  | static void rcu_wake_cond(struct task_struct *t, int status) | 
|  | { | 
|  | /* | 
|  | * If the thread is yielding, only wake it when this | 
|  | * is invoked from idle | 
|  | */ | 
|  | if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) | 
|  | wake_up_process(t); | 
|  | } | 
|  |  | 
|  | static void invoke_rcu_core_kthread(void) | 
|  | { | 
|  | struct task_struct *t; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); | 
|  | t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); | 
|  | if (t != NULL && t != current) | 
|  | rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up this CPU's rcuc kthread to do RCU core processing. | 
|  | */ | 
|  | static void invoke_rcu_core(void) | 
|  | { | 
|  | if (!cpu_online(smp_processor_id())) | 
|  | return; | 
|  | if (use_softirq) | 
|  | raise_softirq(RCU_SOFTIRQ); | 
|  | else | 
|  | invoke_rcu_core_kthread(); | 
|  | } | 
|  |  | 
|  | static void rcu_cpu_kthread_park(unsigned int cpu) | 
|  | { | 
|  | per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; | 
|  | } | 
|  |  | 
|  | static int rcu_cpu_kthread_should_run(unsigned int cpu) | 
|  | { | 
|  | return __this_cpu_read(rcu_data.rcu_cpu_has_work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per-CPU kernel thread that invokes RCU callbacks.  This replaces | 
|  | * the RCU softirq used in configurations of RCU that do not support RCU | 
|  | * priority boosting. | 
|  | */ | 
|  | static void rcu_cpu_kthread(unsigned int cpu) | 
|  | { | 
|  | unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); | 
|  | char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); | 
|  | unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); | 
|  | int spincnt; | 
|  |  | 
|  | trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); | 
|  | for (spincnt = 0; spincnt < 10; spincnt++) { | 
|  | WRITE_ONCE(*j, jiffies); | 
|  | local_bh_disable(); | 
|  | *statusp = RCU_KTHREAD_RUNNING; | 
|  | local_irq_disable(); | 
|  | work = *workp; | 
|  | WRITE_ONCE(*workp, 0); | 
|  | local_irq_enable(); | 
|  | if (work) | 
|  | rcu_core(); | 
|  | local_bh_enable(); | 
|  | if (!READ_ONCE(*workp)) { | 
|  | trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); | 
|  | *statusp = RCU_KTHREAD_WAITING; | 
|  | return; | 
|  | } | 
|  | } | 
|  | *statusp = RCU_KTHREAD_YIELDING; | 
|  | trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); | 
|  | schedule_timeout_idle(2); | 
|  | trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); | 
|  | *statusp = RCU_KTHREAD_WAITING; | 
|  | WRITE_ONCE(*j, jiffies); | 
|  | } | 
|  |  | 
|  | static struct smp_hotplug_thread rcu_cpu_thread_spec = { | 
|  | .store			= &rcu_data.rcu_cpu_kthread_task, | 
|  | .thread_should_run	= rcu_cpu_kthread_should_run, | 
|  | .thread_fn		= rcu_cpu_kthread, | 
|  | .thread_comm		= "rcuc/%u", | 
|  | .setup			= rcu_cpu_kthread_setup, | 
|  | .park			= rcu_cpu_kthread_park, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Spawn per-CPU RCU core processing kthreads. | 
|  | */ | 
|  | static int __init rcu_spawn_core_kthreads(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; | 
|  | if (use_softirq) | 
|  | return 0; | 
|  | WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), | 
|  | "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle any core-RCU processing required by a call_rcu() invocation. | 
|  | */ | 
|  | static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, | 
|  | unsigned long flags) | 
|  | { | 
|  | /* | 
|  | * If called from an extended quiescent state, invoke the RCU | 
|  | * core in order to force a re-evaluation of RCU's idleness. | 
|  | */ | 
|  | if (!rcu_is_watching()) | 
|  | invoke_rcu_core(); | 
|  |  | 
|  | /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ | 
|  | if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Force the grace period if too many callbacks or too long waiting. | 
|  | * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() | 
|  | * if some other CPU has recently done so.  Also, don't bother | 
|  | * invoking rcu_force_quiescent_state() if the newly enqueued callback | 
|  | * is the only one waiting for a grace period to complete. | 
|  | */ | 
|  | if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > | 
|  | rdp->qlen_last_fqs_check + qhimark)) { | 
|  |  | 
|  | /* Are we ignoring a completed grace period? */ | 
|  | note_gp_changes(rdp); | 
|  |  | 
|  | /* Start a new grace period if one not already started. */ | 
|  | if (!rcu_gp_in_progress()) { | 
|  | rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); | 
|  | } else { | 
|  | /* Give the grace period a kick. */ | 
|  | rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; | 
|  | if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && | 
|  | rcu_segcblist_first_pend_cb(&rdp->cblist) != head) | 
|  | rcu_force_quiescent_state(); | 
|  | rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); | 
|  | rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RCU callback function to leak a callback. | 
|  | */ | 
|  | static void rcu_leak_callback(struct rcu_head *rhp) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check and if necessary update the leaf rcu_node structure's | 
|  | * ->cbovldmask bit corresponding to the current CPU based on that CPU's | 
|  | * number of queued RCU callbacks.  The caller must hold the leaf rcu_node | 
|  | * structure's ->lock. | 
|  | */ | 
|  | static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) | 
|  | { | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  | if (qovld_calc <= 0) | 
|  | return; // Early boot and wildcard value set. | 
|  | if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) | 
|  | WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); | 
|  | else | 
|  | WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check and if necessary update the leaf rcu_node structure's | 
|  | * ->cbovldmask bit corresponding to the current CPU based on that CPU's | 
|  | * number of queued RCU callbacks.  No locks need be held, but the | 
|  | * caller must have disabled interrupts. | 
|  | * | 
|  | * Note that this function ignores the possibility that there are a lot | 
|  | * of callbacks all of which have already seen the end of their respective | 
|  | * grace periods.  This omission is due to the need for no-CBs CPUs to | 
|  | * be holding ->nocb_lock to do this check, which is too heavy for a | 
|  | * common-case operation. | 
|  | */ | 
|  | static void check_cb_ovld(struct rcu_data *rdp) | 
|  | { | 
|  | struct rcu_node *const rnp = rdp->mynode; | 
|  |  | 
|  | if (qovld_calc <= 0 || | 
|  | ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == | 
|  | !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) | 
|  | return; // Early boot wildcard value or already set correctly. | 
|  | raw_spin_lock_rcu_node(rnp); | 
|  | check_cb_ovld_locked(rdp, rnp); | 
|  | raw_spin_unlock_rcu_node(rnp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) | 
|  | { | 
|  | static atomic_t doublefrees; | 
|  | unsigned long flags; | 
|  | bool lazy; | 
|  | struct rcu_data *rdp; | 
|  | bool was_alldone; | 
|  |  | 
|  | /* Misaligned rcu_head! */ | 
|  | WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); | 
|  |  | 
|  | if (debug_rcu_head_queue(head)) { | 
|  | /* | 
|  | * Probable double call_rcu(), so leak the callback. | 
|  | * Use rcu:rcu_callback trace event to find the previous | 
|  | * time callback was passed to call_rcu(). | 
|  | */ | 
|  | if (atomic_inc_return(&doublefrees) < 4) { | 
|  | pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func); | 
|  | mem_dump_obj(head); | 
|  | } | 
|  | WRITE_ONCE(head->func, rcu_leak_callback); | 
|  | return; | 
|  | } | 
|  | head->func = func; | 
|  | head->next = NULL; | 
|  | kasan_record_aux_stack_noalloc(head); | 
|  | local_irq_save(flags); | 
|  | rdp = this_cpu_ptr(&rcu_data); | 
|  | lazy = lazy_in && !rcu_async_should_hurry(); | 
|  |  | 
|  | /* Add the callback to our list. */ | 
|  | if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { | 
|  | // This can trigger due to call_rcu() from offline CPU: | 
|  | WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); | 
|  | WARN_ON_ONCE(!rcu_is_watching()); | 
|  | // Very early boot, before rcu_init().  Initialize if needed | 
|  | // and then drop through to queue the callback. | 
|  | if (rcu_segcblist_empty(&rdp->cblist)) | 
|  | rcu_segcblist_init(&rdp->cblist); | 
|  | } | 
|  |  | 
|  | check_cb_ovld(rdp); | 
|  | if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) | 
|  | return; // Enqueued onto ->nocb_bypass, so just leave. | 
|  | // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. | 
|  | rcu_segcblist_enqueue(&rdp->cblist, head); | 
|  | if (__is_kvfree_rcu_offset((unsigned long)func)) | 
|  | trace_rcu_kvfree_callback(rcu_state.name, head, | 
|  | (unsigned long)func, | 
|  | rcu_segcblist_n_cbs(&rdp->cblist)); | 
|  | else | 
|  | trace_rcu_callback(rcu_state.name, head, | 
|  | rcu_segcblist_n_cbs(&rdp->cblist)); | 
|  |  | 
|  | trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); | 
|  |  | 
|  | /* Go handle any RCU core processing required. */ | 
|  | if (unlikely(rcu_rdp_is_offloaded(rdp))) { | 
|  | __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ | 
|  | } else { | 
|  | __call_rcu_core(rdp, head, flags); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RCU_LAZY | 
|  | /** | 
|  | * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and | 
|  | * flush all lazy callbacks (including the new one) to the main ->cblist while | 
|  | * doing so. | 
|  | * | 
|  | * @head: structure to be used for queueing the RCU updates. | 
|  | * @func: actual callback function to be invoked after the grace period | 
|  | * | 
|  | * The callback function will be invoked some time after a full grace | 
|  | * period elapses, in other words after all pre-existing RCU read-side | 
|  | * critical sections have completed. | 
|  | * | 
|  | * Use this API instead of call_rcu() if you don't want the callback to be | 
|  | * invoked after very long periods of time, which can happen on systems without | 
|  | * memory pressure and on systems which are lightly loaded or mostly idle. | 
|  | * This function will cause callbacks to be invoked sooner than later at the | 
|  | * expense of extra power. Other than that, this function is identical to, and | 
|  | * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory | 
|  | * ordering and other functionality. | 
|  | */ | 
|  | void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) | 
|  | { | 
|  | __call_rcu_common(head, func, false); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(call_rcu_hurry); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * call_rcu() - Queue an RCU callback for invocation after a grace period. | 
|  | * By default the callbacks are 'lazy' and are kept hidden from the main | 
|  | * ->cblist to prevent starting of grace periods too soon. | 
|  | * If you desire grace periods to start very soon, use call_rcu_hurry(). | 
|  | * | 
|  | * @head: structure to be used for queueing the RCU updates. | 
|  | * @func: actual callback function to be invoked after the grace period | 
|  | * | 
|  | * The callback function will be invoked some time after a full grace | 
|  | * period elapses, in other words after all pre-existing RCU read-side | 
|  | * critical sections have completed.  However, the callback function | 
|  | * might well execute concurrently with RCU read-side critical sections | 
|  | * that started after call_rcu() was invoked. | 
|  | * | 
|  | * RCU read-side critical sections are delimited by rcu_read_lock() | 
|  | * and rcu_read_unlock(), and may be nested.  In addition, but only in | 
|  | * v5.0 and later, regions of code across which interrupts, preemption, | 
|  | * or softirqs have been disabled also serve as RCU read-side critical | 
|  | * sections.  This includes hardware interrupt handlers, softirq handlers, | 
|  | * and NMI handlers. | 
|  | * | 
|  | * Note that all CPUs must agree that the grace period extended beyond | 
|  | * all pre-existing RCU read-side critical section.  On systems with more | 
|  | * than one CPU, this means that when "func()" is invoked, each CPU is | 
|  | * guaranteed to have executed a full memory barrier since the end of its | 
|  | * last RCU read-side critical section whose beginning preceded the call | 
|  | * to call_rcu().  It also means that each CPU executing an RCU read-side | 
|  | * critical section that continues beyond the start of "func()" must have | 
|  | * executed a memory barrier after the call_rcu() but before the beginning | 
|  | * of that RCU read-side critical section.  Note that these guarantees | 
|  | * include CPUs that are offline, idle, or executing in user mode, as | 
|  | * well as CPUs that are executing in the kernel. | 
|  | * | 
|  | * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the | 
|  | * resulting RCU callback function "func()", then both CPU A and CPU B are | 
|  | * guaranteed to execute a full memory barrier during the time interval | 
|  | * between the call to call_rcu() and the invocation of "func()" -- even | 
|  | * if CPU A and CPU B are the same CPU (but again only if the system has | 
|  | * more than one CPU). | 
|  | * | 
|  | * Implementation of these memory-ordering guarantees is described here: | 
|  | * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. | 
|  | */ | 
|  | void call_rcu(struct rcu_head *head, rcu_callback_t func) | 
|  | { | 
|  | __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(call_rcu); | 
|  |  | 
|  | /* Maximum number of jiffies to wait before draining a batch. */ | 
|  | #define KFREE_DRAIN_JIFFIES (5 * HZ) | 
|  | #define KFREE_N_BATCHES 2 | 
|  | #define FREE_N_CHANNELS 2 | 
|  |  | 
|  | /** | 
|  | * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers | 
|  | * @list: List node. All blocks are linked between each other | 
|  | * @gp_snap: Snapshot of RCU state for objects placed to this bulk | 
|  | * @nr_records: Number of active pointers in the array | 
|  | * @records: Array of the kvfree_rcu() pointers | 
|  | */ | 
|  | struct kvfree_rcu_bulk_data { | 
|  | struct list_head list; | 
|  | struct rcu_gp_oldstate gp_snap; | 
|  | unsigned long nr_records; | 
|  | void *records[]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This macro defines how many entries the "records" array | 
|  | * will contain. It is based on the fact that the size of | 
|  | * kvfree_rcu_bulk_data structure becomes exactly one page. | 
|  | */ | 
|  | #define KVFREE_BULK_MAX_ENTR \ | 
|  | ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) | 
|  |  | 
|  | /** | 
|  | * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests | 
|  | * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period | 
|  | * @head_free: List of kfree_rcu() objects waiting for a grace period | 
|  | * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. | 
|  | * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period | 
|  | * @krcp: Pointer to @kfree_rcu_cpu structure | 
|  | */ | 
|  |  | 
|  | struct kfree_rcu_cpu_work { | 
|  | struct rcu_work rcu_work; | 
|  | struct rcu_head *head_free; | 
|  | struct rcu_gp_oldstate head_free_gp_snap; | 
|  | struct list_head bulk_head_free[FREE_N_CHANNELS]; | 
|  | struct kfree_rcu_cpu *krcp; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period | 
|  | * @head: List of kfree_rcu() objects not yet waiting for a grace period | 
|  | * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" | 
|  | * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period | 
|  | * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period | 
|  | * @lock: Synchronize access to this structure | 
|  | * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES | 
|  | * @initialized: The @rcu_work fields have been initialized | 
|  | * @head_count: Number of objects in rcu_head singular list | 
|  | * @bulk_count: Number of objects in bulk-list | 
|  | * @bkvcache: | 
|  | *	A simple cache list that contains objects for reuse purpose. | 
|  | *	In order to save some per-cpu space the list is singular. | 
|  | *	Even though it is lockless an access has to be protected by the | 
|  | *	per-cpu lock. | 
|  | * @page_cache_work: A work to refill the cache when it is empty | 
|  | * @backoff_page_cache_fill: Delay cache refills | 
|  | * @work_in_progress: Indicates that page_cache_work is running | 
|  | * @hrtimer: A hrtimer for scheduling a page_cache_work | 
|  | * @nr_bkv_objs: number of allocated objects at @bkvcache. | 
|  | * | 
|  | * This is a per-CPU structure.  The reason that it is not included in | 
|  | * the rcu_data structure is to permit this code to be extracted from | 
|  | * the RCU files.  Such extraction could allow further optimization of | 
|  | * the interactions with the slab allocators. | 
|  | */ | 
|  | struct kfree_rcu_cpu { | 
|  | // Objects queued on a linked list | 
|  | // through their rcu_head structures. | 
|  | struct rcu_head *head; | 
|  | unsigned long head_gp_snap; | 
|  | atomic_t head_count; | 
|  |  | 
|  | // Objects queued on a bulk-list. | 
|  | struct list_head bulk_head[FREE_N_CHANNELS]; | 
|  | atomic_t bulk_count[FREE_N_CHANNELS]; | 
|  |  | 
|  | struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; | 
|  | raw_spinlock_t lock; | 
|  | struct delayed_work monitor_work; | 
|  | bool initialized; | 
|  |  | 
|  | struct delayed_work page_cache_work; | 
|  | atomic_t backoff_page_cache_fill; | 
|  | atomic_t work_in_progress; | 
|  | struct hrtimer hrtimer; | 
|  |  | 
|  | struct llist_head bkvcache; | 
|  | int nr_bkv_objs; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { | 
|  | .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), | 
|  | }; | 
|  |  | 
|  | static __always_inline void | 
|  | debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < bhead->nr_records; i++) | 
|  | debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline struct kfree_rcu_cpu * | 
|  | krc_this_cpu_lock(unsigned long *flags) | 
|  | { | 
|  | struct kfree_rcu_cpu *krcp; | 
|  |  | 
|  | local_irq_save(*flags);	// For safely calling this_cpu_ptr(). | 
|  | krcp = this_cpu_ptr(&krc); | 
|  | raw_spin_lock(&krcp->lock); | 
|  |  | 
|  | return krcp; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) | 
|  | { | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  | } | 
|  |  | 
|  | static inline struct kvfree_rcu_bulk_data * | 
|  | get_cached_bnode(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | if (!krcp->nr_bkv_objs) | 
|  | return NULL; | 
|  |  | 
|  | WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); | 
|  | return (struct kvfree_rcu_bulk_data *) | 
|  | llist_del_first(&krcp->bkvcache); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | put_cached_bnode(struct kfree_rcu_cpu *krcp, | 
|  | struct kvfree_rcu_bulk_data *bnode) | 
|  | { | 
|  | // Check the limit. | 
|  | if (krcp->nr_bkv_objs >= rcu_min_cached_objs) | 
|  | return false; | 
|  |  | 
|  | llist_add((struct llist_node *) bnode, &krcp->bkvcache); | 
|  | WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int | 
|  | drain_page_cache(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct llist_node *page_list, *pos, *n; | 
|  | int freed = 0; | 
|  |  | 
|  | if (!rcu_min_cached_objs) | 
|  | return 0; | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  | page_list = llist_del_all(&krcp->bkvcache); | 
|  | WRITE_ONCE(krcp->nr_bkv_objs, 0); | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  |  | 
|  | llist_for_each_safe(pos, n, page_list) { | 
|  | free_page((unsigned long)pos); | 
|  | freed++; | 
|  | } | 
|  |  | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | static void | 
|  | kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, | 
|  | struct kvfree_rcu_bulk_data *bnode, int idx) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { | 
|  | debug_rcu_bhead_unqueue(bnode); | 
|  | rcu_lock_acquire(&rcu_callback_map); | 
|  | if (idx == 0) { // kmalloc() / kfree(). | 
|  | trace_rcu_invoke_kfree_bulk_callback( | 
|  | rcu_state.name, bnode->nr_records, | 
|  | bnode->records); | 
|  |  | 
|  | kfree_bulk(bnode->nr_records, bnode->records); | 
|  | } else { // vmalloc() / vfree(). | 
|  | for (i = 0; i < bnode->nr_records; i++) { | 
|  | trace_rcu_invoke_kvfree_callback( | 
|  | rcu_state.name, bnode->records[i], 0); | 
|  |  | 
|  | vfree(bnode->records[i]); | 
|  | } | 
|  | } | 
|  | rcu_lock_release(&rcu_callback_map); | 
|  | } | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  | if (put_cached_bnode(krcp, bnode)) | 
|  | bnode = NULL; | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  |  | 
|  | if (bnode) | 
|  | free_page((unsigned long) bnode); | 
|  |  | 
|  | cond_resched_tasks_rcu_qs(); | 
|  | } | 
|  |  | 
|  | static void | 
|  | kvfree_rcu_list(struct rcu_head *head) | 
|  | { | 
|  | struct rcu_head *next; | 
|  |  | 
|  | for (; head; head = next) { | 
|  | void *ptr = (void *) head->func; | 
|  | unsigned long offset = (void *) head - ptr; | 
|  |  | 
|  | next = head->next; | 
|  | debug_rcu_head_unqueue((struct rcu_head *)ptr); | 
|  | rcu_lock_acquire(&rcu_callback_map); | 
|  | trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); | 
|  |  | 
|  | if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) | 
|  | kvfree(ptr); | 
|  |  | 
|  | rcu_lock_release(&rcu_callback_map); | 
|  | cond_resched_tasks_rcu_qs(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is invoked in workqueue context after a grace period. | 
|  | * It frees all the objects queued on ->bulk_head_free or ->head_free. | 
|  | */ | 
|  | static void kfree_rcu_work(struct work_struct *work) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct kvfree_rcu_bulk_data *bnode, *n; | 
|  | struct list_head bulk_head[FREE_N_CHANNELS]; | 
|  | struct rcu_head *head; | 
|  | struct kfree_rcu_cpu *krcp; | 
|  | struct kfree_rcu_cpu_work *krwp; | 
|  | struct rcu_gp_oldstate head_gp_snap; | 
|  | int i; | 
|  |  | 
|  | krwp = container_of(to_rcu_work(work), | 
|  | struct kfree_rcu_cpu_work, rcu_work); | 
|  | krcp = krwp->krcp; | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  | // Channels 1 and 2. | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) | 
|  | list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); | 
|  |  | 
|  | // Channel 3. | 
|  | head = krwp->head_free; | 
|  | krwp->head_free = NULL; | 
|  | head_gp_snap = krwp->head_free_gp_snap; | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  |  | 
|  | // Handle the first two channels. | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) { | 
|  | // Start from the tail page, so a GP is likely passed for it. | 
|  | list_for_each_entry_safe(bnode, n, &bulk_head[i], list) | 
|  | kvfree_rcu_bulk(krcp, bnode, i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is used when the "bulk" path can not be used for the | 
|  | * double-argument of kvfree_rcu().  This happens when the | 
|  | * page-cache is empty, which means that objects are instead | 
|  | * queued on a linked list through their rcu_head structures. | 
|  | * This list is named "Channel 3". | 
|  | */ | 
|  | if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) | 
|  | kvfree_rcu_list(head); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | need_offload_krc(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) | 
|  | if (!list_empty(&krcp->bulk_head[i])) | 
|  | return true; | 
|  |  | 
|  | return !!READ_ONCE(krcp->head); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) | 
|  | if (!list_empty(&krwp->bulk_head_free[i])) | 
|  | return true; | 
|  |  | 
|  | return !!krwp->head_free; | 
|  | } | 
|  |  | 
|  | static int krc_count(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | int sum = atomic_read(&krcp->head_count); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) | 
|  | sum += atomic_read(&krcp->bulk_count[i]); | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | static void | 
|  | schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | long delay, delay_left; | 
|  |  | 
|  | delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; | 
|  | if (delayed_work_pending(&krcp->monitor_work)) { | 
|  | delay_left = krcp->monitor_work.timer.expires - jiffies; | 
|  | if (delay < delay_left) | 
|  | mod_delayed_work(system_wq, &krcp->monitor_work, delay); | 
|  | return; | 
|  | } | 
|  | queue_delayed_work(system_wq, &krcp->monitor_work, delay); | 
|  | } | 
|  |  | 
|  | static void | 
|  | kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | struct list_head bulk_ready[FREE_N_CHANNELS]; | 
|  | struct kvfree_rcu_bulk_data *bnode, *n; | 
|  | struct rcu_head *head_ready = NULL; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) { | 
|  | INIT_LIST_HEAD(&bulk_ready[i]); | 
|  |  | 
|  | list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { | 
|  | if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) | 
|  | break; | 
|  |  | 
|  | atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); | 
|  | list_move(&bnode->list, &bulk_ready[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { | 
|  | head_ready = krcp->head; | 
|  | atomic_set(&krcp->head_count, 0); | 
|  | WRITE_ONCE(krcp->head, NULL); | 
|  | } | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  |  | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) { | 
|  | list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) | 
|  | kvfree_rcu_bulk(krcp, bnode, i); | 
|  | } | 
|  |  | 
|  | if (head_ready) | 
|  | kvfree_rcu_list(head_ready); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. | 
|  | */ | 
|  | static void kfree_rcu_monitor(struct work_struct *work) | 
|  | { | 
|  | struct kfree_rcu_cpu *krcp = container_of(work, | 
|  | struct kfree_rcu_cpu, monitor_work.work); | 
|  | unsigned long flags; | 
|  | int i, j; | 
|  |  | 
|  | // Drain ready for reclaim. | 
|  | kvfree_rcu_drain_ready(krcp); | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  |  | 
|  | // Attempt to start a new batch. | 
|  | for (i = 0; i < KFREE_N_BATCHES; i++) { | 
|  | struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); | 
|  |  | 
|  | // Try to detach bulk_head or head and attach it, only when | 
|  | // all channels are free.  Any channel is not free means at krwp | 
|  | // there is on-going rcu work to handle krwp's free business. | 
|  | if (need_wait_for_krwp_work(krwp)) | 
|  | continue; | 
|  |  | 
|  | // kvfree_rcu_drain_ready() might handle this krcp, if so give up. | 
|  | if (need_offload_krc(krcp)) { | 
|  | // Channel 1 corresponds to the SLAB-pointer bulk path. | 
|  | // Channel 2 corresponds to vmalloc-pointer bulk path. | 
|  | for (j = 0; j < FREE_N_CHANNELS; j++) { | 
|  | if (list_empty(&krwp->bulk_head_free[j])) { | 
|  | atomic_set(&krcp->bulk_count[j], 0); | 
|  | list_replace_init(&krcp->bulk_head[j], | 
|  | &krwp->bulk_head_free[j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Channel 3 corresponds to both SLAB and vmalloc | 
|  | // objects queued on the linked list. | 
|  | if (!krwp->head_free) { | 
|  | krwp->head_free = krcp->head; | 
|  | get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); | 
|  | atomic_set(&krcp->head_count, 0); | 
|  | WRITE_ONCE(krcp->head, NULL); | 
|  | } | 
|  |  | 
|  | // One work is per one batch, so there are three | 
|  | // "free channels", the batch can handle. It can | 
|  | // be that the work is in the pending state when | 
|  | // channels have been detached following by each | 
|  | // other. | 
|  | queue_rcu_work(system_wq, &krwp->rcu_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  |  | 
|  | // If there is nothing to detach, it means that our job is | 
|  | // successfully done here. In case of having at least one | 
|  | // of the channels that is still busy we should rearm the | 
|  | // work to repeat an attempt. Because previous batches are | 
|  | // still in progress. | 
|  | if (need_offload_krc(krcp)) | 
|  | schedule_delayed_monitor_work(krcp); | 
|  | } | 
|  |  | 
|  | static enum hrtimer_restart | 
|  | schedule_page_work_fn(struct hrtimer *t) | 
|  | { | 
|  | struct kfree_rcu_cpu *krcp = | 
|  | container_of(t, struct kfree_rcu_cpu, hrtimer); | 
|  |  | 
|  | queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | static void fill_page_cache_func(struct work_struct *work) | 
|  | { | 
|  | struct kvfree_rcu_bulk_data *bnode; | 
|  | struct kfree_rcu_cpu *krcp = | 
|  | container_of(work, struct kfree_rcu_cpu, | 
|  | page_cache_work.work); | 
|  | unsigned long flags; | 
|  | int nr_pages; | 
|  | bool pushed; | 
|  | int i; | 
|  |  | 
|  | nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? | 
|  | 1 : rcu_min_cached_objs; | 
|  |  | 
|  | for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { | 
|  | bnode = (struct kvfree_rcu_bulk_data *) | 
|  | __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); | 
|  |  | 
|  | if (!bnode) | 
|  | break; | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  | pushed = put_cached_bnode(krcp, bnode); | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  |  | 
|  | if (!pushed) { | 
|  | free_page((unsigned long) bnode); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | atomic_set(&krcp->work_in_progress, 0); | 
|  | atomic_set(&krcp->backoff_page_cache_fill, 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | run_page_cache_worker(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | // If cache disabled, bail out. | 
|  | if (!rcu_min_cached_objs) | 
|  | return; | 
|  |  | 
|  | if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && | 
|  | !atomic_xchg(&krcp->work_in_progress, 1)) { | 
|  | if (atomic_read(&krcp->backoff_page_cache_fill)) { | 
|  | queue_delayed_work(system_wq, | 
|  | &krcp->page_cache_work, | 
|  | msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); | 
|  | } else { | 
|  | hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | krcp->hrtimer.function = schedule_page_work_fn; | 
|  | hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() | 
|  | // state specified by flags.  If can_alloc is true, the caller must | 
|  | // be schedulable and not be holding any locks or mutexes that might be | 
|  | // acquired by the memory allocator or anything that it might invoke. | 
|  | // Returns true if ptr was successfully recorded, else the caller must | 
|  | // use a fallback. | 
|  | static inline bool | 
|  | add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, | 
|  | unsigned long *flags, void *ptr, bool can_alloc) | 
|  | { | 
|  | struct kvfree_rcu_bulk_data *bnode; | 
|  | int idx; | 
|  |  | 
|  | *krcp = krc_this_cpu_lock(flags); | 
|  | if (unlikely(!(*krcp)->initialized)) | 
|  | return false; | 
|  |  | 
|  | idx = !!is_vmalloc_addr(ptr); | 
|  | bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], | 
|  | struct kvfree_rcu_bulk_data, list); | 
|  |  | 
|  | /* Check if a new block is required. */ | 
|  | if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { | 
|  | bnode = get_cached_bnode(*krcp); | 
|  | if (!bnode && can_alloc) { | 
|  | krc_this_cpu_unlock(*krcp, *flags); | 
|  |  | 
|  | // __GFP_NORETRY - allows a light-weight direct reclaim | 
|  | // what is OK from minimizing of fallback hitting point of | 
|  | // view. Apart of that it forbids any OOM invoking what is | 
|  | // also beneficial since we are about to release memory soon. | 
|  | // | 
|  | // __GFP_NOMEMALLOC - prevents from consuming of all the | 
|  | // memory reserves. Please note we have a fallback path. | 
|  | // | 
|  | // __GFP_NOWARN - it is supposed that an allocation can | 
|  | // be failed under low memory or high memory pressure | 
|  | // scenarios. | 
|  | bnode = (struct kvfree_rcu_bulk_data *) | 
|  | __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); | 
|  | raw_spin_lock_irqsave(&(*krcp)->lock, *flags); | 
|  | } | 
|  |  | 
|  | if (!bnode) | 
|  | return false; | 
|  |  | 
|  | // Initialize the new block and attach it. | 
|  | bnode->nr_records = 0; | 
|  | list_add(&bnode->list, &(*krcp)->bulk_head[idx]); | 
|  | } | 
|  |  | 
|  | // Finally insert and update the GP for this page. | 
|  | bnode->records[bnode->nr_records++] = ptr; | 
|  | get_state_synchronize_rcu_full(&bnode->gp_snap); | 
|  | atomic_inc(&(*krcp)->bulk_count[idx]); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a request for lazy invocation of the appropriate free routine | 
|  | * after a grace period.  Please note that three paths are maintained, | 
|  | * two for the common case using arrays of pointers and a third one that | 
|  | * is used only when the main paths cannot be used, for example, due to | 
|  | * memory pressure. | 
|  | * | 
|  | * Each kvfree_call_rcu() request is added to a batch. The batch will be drained | 
|  | * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will | 
|  | * be free'd in workqueue context. This allows us to: batch requests together to | 
|  | * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. | 
|  | */ | 
|  | void kvfree_call_rcu(struct rcu_head *head, void *ptr) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct kfree_rcu_cpu *krcp; | 
|  | bool success; | 
|  |  | 
|  | /* | 
|  | * Please note there is a limitation for the head-less | 
|  | * variant, that is why there is a clear rule for such | 
|  | * objects: it can be used from might_sleep() context | 
|  | * only. For other places please embed an rcu_head to | 
|  | * your data. | 
|  | */ | 
|  | if (!head) | 
|  | might_sleep(); | 
|  |  | 
|  | // Queue the object but don't yet schedule the batch. | 
|  | if (debug_rcu_head_queue(ptr)) { | 
|  | // Probable double kfree_rcu(), just leak. | 
|  | WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", | 
|  | __func__, head); | 
|  |  | 
|  | // Mark as success and leave. | 
|  | return; | 
|  | } | 
|  |  | 
|  | kasan_record_aux_stack_noalloc(ptr); | 
|  | success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); | 
|  | if (!success) { | 
|  | run_page_cache_worker(krcp); | 
|  |  | 
|  | if (head == NULL) | 
|  | // Inline if kvfree_rcu(one_arg) call. | 
|  | goto unlock_return; | 
|  |  | 
|  | head->func = ptr; | 
|  | head->next = krcp->head; | 
|  | WRITE_ONCE(krcp->head, head); | 
|  | atomic_inc(&krcp->head_count); | 
|  |  | 
|  | // Take a snapshot for this krcp. | 
|  | krcp->head_gp_snap = get_state_synchronize_rcu(); | 
|  | success = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The kvfree_rcu() caller considers the pointer freed at this point | 
|  | * and likely removes any references to it. Since the actual slab | 
|  | * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore | 
|  | * this object (no scanning or false positives reporting). | 
|  | */ | 
|  | kmemleak_ignore(ptr); | 
|  |  | 
|  | // Set timer to drain after KFREE_DRAIN_JIFFIES. | 
|  | if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) | 
|  | schedule_delayed_monitor_work(krcp); | 
|  |  | 
|  | unlock_return: | 
|  | krc_this_cpu_unlock(krcp, flags); | 
|  |  | 
|  | /* | 
|  | * Inline kvfree() after synchronize_rcu(). We can do | 
|  | * it from might_sleep() context only, so the current | 
|  | * CPU can pass the QS state. | 
|  | */ | 
|  | if (!success) { | 
|  | debug_rcu_head_unqueue((struct rcu_head *) ptr); | 
|  | synchronize_rcu(); | 
|  | kvfree(ptr); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvfree_call_rcu); | 
|  |  | 
|  | static unsigned long | 
|  | kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long count = 0; | 
|  |  | 
|  | /* Snapshot count of all CPUs */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | 
|  |  | 
|  | count += krc_count(krcp); | 
|  | count += READ_ONCE(krcp->nr_bkv_objs); | 
|  | atomic_set(&krcp->backoff_page_cache_fill, 1); | 
|  | } | 
|  |  | 
|  | return count == 0 ? SHRINK_EMPTY : count; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | int cpu, freed = 0; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | int count; | 
|  | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | 
|  |  | 
|  | count = krc_count(krcp); | 
|  | count += drain_page_cache(krcp); | 
|  | kfree_rcu_monitor(&krcp->monitor_work.work); | 
|  |  | 
|  | sc->nr_to_scan -= count; | 
|  | freed += count; | 
|  |  | 
|  | if (sc->nr_to_scan <= 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return freed == 0 ? SHRINK_STOP : freed; | 
|  | } | 
|  |  | 
|  | void __init kfree_rcu_scheduler_running(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | 
|  |  | 
|  | if (need_offload_krc(krcp)) | 
|  | schedule_delayed_monitor_work(krcp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During early boot, any blocking grace-period wait automatically | 
|  | * implies a grace period. | 
|  | * | 
|  | * Later on, this could in theory be the case for kernels built with | 
|  | * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this | 
|  | * is not a common case.  Furthermore, this optimization would cause | 
|  | * the rcu_gp_oldstate structure to expand by 50%, so this potential | 
|  | * grace-period optimization is ignored once the scheduler is running. | 
|  | */ | 
|  | static int rcu_blocking_is_gp(void) | 
|  | { | 
|  | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { | 
|  | might_sleep(); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * synchronize_rcu - wait until a grace period has elapsed. | 
|  | * | 
|  | * Control will return to the caller some time after a full grace | 
|  | * period has elapsed, in other words after all currently executing RCU | 
|  | * read-side critical sections have completed.  Note, however, that | 
|  | * upon return from synchronize_rcu(), the caller might well be executing | 
|  | * concurrently with new RCU read-side critical sections that began while | 
|  | * synchronize_rcu() was waiting. | 
|  | * | 
|  | * RCU read-side critical sections are delimited by rcu_read_lock() | 
|  | * and rcu_read_unlock(), and may be nested.  In addition, but only in | 
|  | * v5.0 and later, regions of code across which interrupts, preemption, | 
|  | * or softirqs have been disabled also serve as RCU read-side critical | 
|  | * sections.  This includes hardware interrupt handlers, softirq handlers, | 
|  | * and NMI handlers. | 
|  | * | 
|  | * Note that this guarantee implies further memory-ordering guarantees. | 
|  | * On systems with more than one CPU, when synchronize_rcu() returns, | 
|  | * each CPU is guaranteed to have executed a full memory barrier since | 
|  | * the end of its last RCU read-side critical section whose beginning | 
|  | * preceded the call to synchronize_rcu().  In addition, each CPU having | 
|  | * an RCU read-side critical section that extends beyond the return from | 
|  | * synchronize_rcu() is guaranteed to have executed a full memory barrier | 
|  | * after the beginning of synchronize_rcu() and before the beginning of | 
|  | * that RCU read-side critical section.  Note that these guarantees include | 
|  | * CPUs that are offline, idle, or executing in user mode, as well as CPUs | 
|  | * that are executing in the kernel. | 
|  | * | 
|  | * Furthermore, if CPU A invoked synchronize_rcu(), which returned | 
|  | * to its caller on CPU B, then both CPU A and CPU B are guaranteed | 
|  | * to have executed a full memory barrier during the execution of | 
|  | * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but | 
|  | * again only if the system has more than one CPU). | 
|  | * | 
|  | * Implementation of these memory-ordering guarantees is described here: | 
|  | * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. | 
|  | */ | 
|  | void synchronize_rcu(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || | 
|  | lock_is_held(&rcu_lock_map) || | 
|  | lock_is_held(&rcu_sched_lock_map), | 
|  | "Illegal synchronize_rcu() in RCU read-side critical section"); | 
|  | if (!rcu_blocking_is_gp()) { | 
|  | if (rcu_gp_is_expedited()) | 
|  | synchronize_rcu_expedited(); | 
|  | else | 
|  | wait_rcu_gp(call_rcu_hurry); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Context allows vacuous grace periods. | 
|  | // Note well that this code runs with !PREEMPT && !SMP. | 
|  | // In addition, all code that advances grace periods runs at | 
|  | // process level.  Therefore, this normal GP overlaps with other | 
|  | // normal GPs only by being fully nested within them, which allows | 
|  | // reuse of ->gp_seq_polled_snap. | 
|  | rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); | 
|  | rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); | 
|  |  | 
|  | // Update the normal grace-period counters to record | 
|  | // this grace period, but only those used by the boot CPU. | 
|  | // The rcu_scheduler_starting() will take care of the rest of | 
|  | // these counters. | 
|  | local_irq_save(flags); | 
|  | WARN_ON_ONCE(num_online_cpus() > 1); | 
|  | rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); | 
|  | for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) | 
|  | rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(synchronize_rcu); | 
|  |  | 
|  | /** | 
|  | * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie | 
|  | * @rgosp: Place to put state cookie | 
|  | * | 
|  | * Stores into @rgosp a value that will always be treated by functions | 
|  | * like poll_state_synchronize_rcu_full() as a cookie whose grace period | 
|  | * has already completed. | 
|  | */ | 
|  | void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) | 
|  | { | 
|  | rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; | 
|  | rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); | 
|  |  | 
|  | /** | 
|  | * get_state_synchronize_rcu - Snapshot current RCU state | 
|  | * | 
|  | * Returns a cookie that is used by a later call to cond_synchronize_rcu() | 
|  | * or poll_state_synchronize_rcu() to determine whether or not a full | 
|  | * grace period has elapsed in the meantime. | 
|  | */ | 
|  | unsigned long get_state_synchronize_rcu(void) | 
|  | { | 
|  | /* | 
|  | * Any prior manipulation of RCU-protected data must happen | 
|  | * before the load from ->gp_seq. | 
|  | */ | 
|  | smp_mb();  /* ^^^ */ | 
|  | return rcu_seq_snap(&rcu_state.gp_seq_polled); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); | 
|  |  | 
|  | /** | 
|  | * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited | 
|  | * @rgosp: location to place combined normal/expedited grace-period state | 
|  | * | 
|  | * Places the normal and expedited grace-period states in @rgosp.  This | 
|  | * state value can be passed to a later call to cond_synchronize_rcu_full() | 
|  | * or poll_state_synchronize_rcu_full() to determine whether or not a | 
|  | * grace period (whether normal or expedited) has elapsed in the meantime. | 
|  | * The rcu_gp_oldstate structure takes up twice the memory of an unsigned | 
|  | * long, but is guaranteed to see all grace periods.  In contrast, the | 
|  | * combined state occupies less memory, but can sometimes fail to take | 
|  | * grace periods into account. | 
|  | * | 
|  | * This does not guarantee that the needed grace period will actually | 
|  | * start. | 
|  | */ | 
|  | void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) | 
|  | { | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  |  | 
|  | /* | 
|  | * Any prior manipulation of RCU-protected data must happen | 
|  | * before the loads from ->gp_seq and ->expedited_sequence. | 
|  | */ | 
|  | smp_mb();  /* ^^^ */ | 
|  | rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); | 
|  | rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); | 
|  |  | 
|  | /* | 
|  | * Helper function for start_poll_synchronize_rcu() and | 
|  | * start_poll_synchronize_rcu_full(). | 
|  | */ | 
|  | static void start_poll_synchronize_rcu_common(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool needwake; | 
|  | struct rcu_data *rdp; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | lockdep_assert_irqs_enabled(); | 
|  | local_irq_save(flags); | 
|  | rdp = this_cpu_ptr(&rcu_data); | 
|  | rnp = rdp->mynode; | 
|  | raw_spin_lock_rcu_node(rnp); // irqs already disabled. | 
|  | // Note it is possible for a grace period to have elapsed between | 
|  | // the above call to get_state_synchronize_rcu() and the below call | 
|  | // to rcu_seq_snap.  This is OK, the worst that happens is that we | 
|  | // get a grace period that no one needed.  These accesses are ordered | 
|  | // by smp_mb(), and we are accessing them in the opposite order | 
|  | // from which they are updated at grace-period start, as required. | 
|  | needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | if (needwake) | 
|  | rcu_gp_kthread_wake(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * start_poll_synchronize_rcu - Snapshot and start RCU grace period | 
|  | * | 
|  | * Returns a cookie that is used by a later call to cond_synchronize_rcu() | 
|  | * or poll_state_synchronize_rcu() to determine whether or not a full | 
|  | * grace period has elapsed in the meantime.  If the needed grace period | 
|  | * is not already slated to start, notifies RCU core of the need for that | 
|  | * grace period. | 
|  | * | 
|  | * Interrupts must be enabled for the case where it is necessary to awaken | 
|  | * the grace-period kthread. | 
|  | */ | 
|  | unsigned long start_poll_synchronize_rcu(void) | 
|  | { | 
|  | unsigned long gp_seq = get_state_synchronize_rcu(); | 
|  |  | 
|  | start_poll_synchronize_rcu_common(); | 
|  | return gp_seq; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); | 
|  |  | 
|  | /** | 
|  | * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period | 
|  | * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() | 
|  | * | 
|  | * Places the normal and expedited grace-period states in *@rgos.  This | 
|  | * state value can be passed to a later call to cond_synchronize_rcu_full() | 
|  | * or poll_state_synchronize_rcu_full() to determine whether or not a | 
|  | * grace period (whether normal or expedited) has elapsed in the meantime. | 
|  | * If the needed grace period is not already slated to start, notifies | 
|  | * RCU core of the need for that grace period. | 
|  | * | 
|  | * Interrupts must be enabled for the case where it is necessary to awaken | 
|  | * the grace-period kthread. | 
|  | */ | 
|  | void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) | 
|  | { | 
|  | get_state_synchronize_rcu_full(rgosp); | 
|  |  | 
|  | start_poll_synchronize_rcu_common(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); | 
|  |  | 
|  | /** | 
|  | * poll_state_synchronize_rcu - Has the specified RCU grace period completed? | 
|  | * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() | 
|  | * | 
|  | * If a full RCU grace period has elapsed since the earlier call from | 
|  | * which @oldstate was obtained, return @true, otherwise return @false. | 
|  | * If @false is returned, it is the caller's responsibility to invoke this | 
|  | * function later on until it does return @true.  Alternatively, the caller | 
|  | * can explicitly wait for a grace period, for example, by passing @oldstate | 
|  | * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() | 
|  | * on the one hand or by directly invoking either synchronize_rcu() or | 
|  | * synchronize_rcu_expedited() on the other. | 
|  | * | 
|  | * Yes, this function does not take counter wrap into account. | 
|  | * But counter wrap is harmless.  If the counter wraps, we have waited for | 
|  | * more than a billion grace periods (and way more on a 64-bit system!). | 
|  | * Those needing to keep old state values for very long time periods | 
|  | * (many hours even on 32-bit systems) should check them occasionally and | 
|  | * either refresh them or set a flag indicating that the grace period has | 
|  | * completed.  Alternatively, they can use get_completed_synchronize_rcu() | 
|  | * to get a guaranteed-completed grace-period state. | 
|  | * | 
|  | * In addition, because oldstate compresses the grace-period state for | 
|  | * both normal and expedited grace periods into a single unsigned long, | 
|  | * it can miss a grace period when synchronize_rcu() runs concurrently | 
|  | * with synchronize_rcu_expedited().  If this is unacceptable, please | 
|  | * instead use the _full() variant of these polling APIs. | 
|  | * | 
|  | * This function provides the same memory-ordering guarantees that | 
|  | * would be provided by a synchronize_rcu() that was invoked at the call | 
|  | * to the function that provided @oldstate, and that returned at the end | 
|  | * of this function. | 
|  | */ | 
|  | bool poll_state_synchronize_rcu(unsigned long oldstate) | 
|  | { | 
|  | if (oldstate == RCU_GET_STATE_COMPLETED || | 
|  | rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { | 
|  | smp_mb(); /* Ensure GP ends before subsequent accesses. */ | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); | 
|  |  | 
|  | /** | 
|  | * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? | 
|  | * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() | 
|  | * | 
|  | * If a full RCU grace period has elapsed since the earlier call from | 
|  | * which *rgosp was obtained, return @true, otherwise return @false. | 
|  | * If @false is returned, it is the caller's responsibility to invoke this | 
|  | * function later on until it does return @true.  Alternatively, the caller | 
|  | * can explicitly wait for a grace period, for example, by passing @rgosp | 
|  | * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). | 
|  | * | 
|  | * Yes, this function does not take counter wrap into account. | 
|  | * But counter wrap is harmless.  If the counter wraps, we have waited | 
|  | * for more than a billion grace periods (and way more on a 64-bit | 
|  | * system!).  Those needing to keep rcu_gp_oldstate values for very | 
|  | * long time periods (many hours even on 32-bit systems) should check | 
|  | * them occasionally and either refresh them or set a flag indicating | 
|  | * that the grace period has completed.  Alternatively, they can use | 
|  | * get_completed_synchronize_rcu_full() to get a guaranteed-completed | 
|  | * grace-period state. | 
|  | * | 
|  | * This function provides the same memory-ordering guarantees that would | 
|  | * be provided by a synchronize_rcu() that was invoked at the call to | 
|  | * the function that provided @rgosp, and that returned at the end of this | 
|  | * function.  And this guarantee requires that the root rcu_node structure's | 
|  | * ->gp_seq field be checked instead of that of the rcu_state structure. | 
|  | * The problem is that the just-ending grace-period's callbacks can be | 
|  | * invoked between the time that the root rcu_node structure's ->gp_seq | 
|  | * field is updated and the time that the rcu_state structure's ->gp_seq | 
|  | * field is updated.  Therefore, if a single synchronize_rcu() is to | 
|  | * cause a subsequent poll_state_synchronize_rcu_full() to return @true, | 
|  | * then the root rcu_node structure is the one that needs to be polled. | 
|  | */ | 
|  | bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) | 
|  | { | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  |  | 
|  | smp_mb(); // Order against root rcu_node structure grace-period cleanup. | 
|  | if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || | 
|  | rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || | 
|  | rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || | 
|  | rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { | 
|  | smp_mb(); /* Ensure GP ends before subsequent accesses. */ | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); | 
|  |  | 
|  | /** | 
|  | * cond_synchronize_rcu - Conditionally wait for an RCU grace period | 
|  | * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() | 
|  | * | 
|  | * If a full RCU grace period has elapsed since the earlier call to | 
|  | * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. | 
|  | * Otherwise, invoke synchronize_rcu() to wait for a full grace period. | 
|  | * | 
|  | * Yes, this function does not take counter wrap into account. | 
|  | * But counter wrap is harmless.  If the counter wraps, we have waited for | 
|  | * more than 2 billion grace periods (and way more on a 64-bit system!), | 
|  | * so waiting for a couple of additional grace periods should be just fine. | 
|  | * | 
|  | * This function provides the same memory-ordering guarantees that | 
|  | * would be provided by a synchronize_rcu() that was invoked at the call | 
|  | * to the function that provided @oldstate and that returned at the end | 
|  | * of this function. | 
|  | */ | 
|  | void cond_synchronize_rcu(unsigned long oldstate) | 
|  | { | 
|  | if (!poll_state_synchronize_rcu(oldstate)) | 
|  | synchronize_rcu(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cond_synchronize_rcu); | 
|  |  | 
|  | /** | 
|  | * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period | 
|  | * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() | 
|  | * | 
|  | * If a full RCU grace period has elapsed since the call to | 
|  | * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), | 
|  | * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was | 
|  | * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait | 
|  | * for a full grace period. | 
|  | * | 
|  | * Yes, this function does not take counter wrap into account. | 
|  | * But counter wrap is harmless.  If the counter wraps, we have waited for | 
|  | * more than 2 billion grace periods (and way more on a 64-bit system!), | 
|  | * so waiting for a couple of additional grace periods should be just fine. | 
|  | * | 
|  | * This function provides the same memory-ordering guarantees that | 
|  | * would be provided by a synchronize_rcu() that was invoked at the call | 
|  | * to the function that provided @rgosp and that returned at the end of | 
|  | * this function. | 
|  | */ | 
|  | void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) | 
|  | { | 
|  | if (!poll_state_synchronize_rcu_full(rgosp)) | 
|  | synchronize_rcu(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); | 
|  |  | 
|  | /* | 
|  | * Check to see if there is any immediate RCU-related work to be done by | 
|  | * the current CPU, returning 1 if so and zero otherwise.  The checks are | 
|  | * in order of increasing expense: checks that can be carried out against | 
|  | * CPU-local state are performed first.  However, we must check for CPU | 
|  | * stalls first, else we might not get a chance. | 
|  | */ | 
|  | static int rcu_pending(int user) | 
|  | { | 
|  | bool gp_in_progress; | 
|  | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|  | struct rcu_node *rnp = rdp->mynode; | 
|  |  | 
|  | lockdep_assert_irqs_disabled(); | 
|  |  | 
|  | /* Check for CPU stalls, if enabled. */ | 
|  | check_cpu_stall(rdp); | 
|  |  | 
|  | /* Does this CPU need a deferred NOCB wakeup? */ | 
|  | if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) | 
|  | return 1; | 
|  |  | 
|  | /* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */ | 
|  | if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) | 
|  | return 0; | 
|  |  | 
|  | /* Is the RCU core waiting for a quiescent state from this CPU? */ | 
|  | gp_in_progress = rcu_gp_in_progress(); | 
|  | if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) | 
|  | return 1; | 
|  |  | 
|  | /* Does this CPU have callbacks ready to invoke? */ | 
|  | if (!rcu_rdp_is_offloaded(rdp) && | 
|  | rcu_segcblist_ready_cbs(&rdp->cblist)) | 
|  | return 1; | 
|  |  | 
|  | /* Has RCU gone idle with this CPU needing another grace period? */ | 
|  | if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && | 
|  | !rcu_rdp_is_offloaded(rdp) && | 
|  | !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) | 
|  | return 1; | 
|  |  | 
|  | /* Have RCU grace period completed or started?  */ | 
|  | if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || | 
|  | unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ | 
|  | return 1; | 
|  |  | 
|  | /* nothing to do */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for rcu_barrier() tracing.  If tracing is disabled, | 
|  | * the compiler is expected to optimize this away. | 
|  | */ | 
|  | static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) | 
|  | { | 
|  | trace_rcu_barrier(rcu_state.name, s, cpu, | 
|  | atomic_read(&rcu_state.barrier_cpu_count), done); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RCU callback function for rcu_barrier().  If we are last, wake | 
|  | * up the task executing rcu_barrier(). | 
|  | * | 
|  | * Note that the value of rcu_state.barrier_sequence must be captured | 
|  | * before the atomic_dec_and_test().  Otherwise, if this CPU is not last, | 
|  | * other CPUs might count the value down to zero before this CPU gets | 
|  | * around to invoking rcu_barrier_trace(), which might result in bogus | 
|  | * data from the next instance of rcu_barrier(). | 
|  | */ | 
|  | static void rcu_barrier_callback(struct rcu_head *rhp) | 
|  | { | 
|  | unsigned long __maybe_unused s = rcu_state.barrier_sequence; | 
|  |  | 
|  | if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { | 
|  | rcu_barrier_trace(TPS("LastCB"), -1, s); | 
|  | complete(&rcu_state.barrier_completion); | 
|  | } else { | 
|  | rcu_barrier_trace(TPS("CB"), -1, s); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If needed, entrain an rcu_barrier() callback on rdp->cblist. | 
|  | */ | 
|  | static void rcu_barrier_entrain(struct rcu_data *rdp) | 
|  | { | 
|  | unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); | 
|  | unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); | 
|  | bool wake_nocb = false; | 
|  | bool was_alldone = false; | 
|  |  | 
|  | lockdep_assert_held(&rcu_state.barrier_lock); | 
|  | if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) | 
|  | return; | 
|  | rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); | 
|  | rdp->barrier_head.func = rcu_barrier_callback; | 
|  | debug_rcu_head_queue(&rdp->barrier_head); | 
|  | rcu_nocb_lock(rdp); | 
|  | /* | 
|  | * Flush bypass and wakeup rcuog if we add callbacks to an empty regular | 
|  | * queue. This way we don't wait for bypass timer that can reach seconds | 
|  | * if it's fully lazy. | 
|  | */ | 
|  | was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); | 
|  | WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); | 
|  | wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); | 
|  | if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { | 
|  | atomic_inc(&rcu_state.barrier_cpu_count); | 
|  | } else { | 
|  | debug_rcu_head_unqueue(&rdp->barrier_head); | 
|  | rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); | 
|  | } | 
|  | rcu_nocb_unlock(rdp); | 
|  | if (wake_nocb) | 
|  | wake_nocb_gp(rdp, false); | 
|  | smp_store_release(&rdp->barrier_seq_snap, gseq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with preemption disabled, and from cross-cpu IRQ context. | 
|  | */ | 
|  | static void rcu_barrier_handler(void *cpu_in) | 
|  | { | 
|  | uintptr_t cpu = (uintptr_t)cpu_in; | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  |  | 
|  | lockdep_assert_irqs_disabled(); | 
|  | WARN_ON_ONCE(cpu != rdp->cpu); | 
|  | WARN_ON_ONCE(cpu != smp_processor_id()); | 
|  | raw_spin_lock(&rcu_state.barrier_lock); | 
|  | rcu_barrier_entrain(rdp); | 
|  | raw_spin_unlock(&rcu_state.barrier_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. | 
|  | * | 
|  | * Note that this primitive does not necessarily wait for an RCU grace period | 
|  | * to complete.  For example, if there are no RCU callbacks queued anywhere | 
|  | * in the system, then rcu_barrier() is within its rights to return | 
|  | * immediately, without waiting for anything, much less an RCU grace period. | 
|  | */ | 
|  | void rcu_barrier(void) | 
|  | { | 
|  | uintptr_t cpu; | 
|  | unsigned long flags; | 
|  | unsigned long gseq; | 
|  | struct rcu_data *rdp; | 
|  | unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); | 
|  |  | 
|  | rcu_barrier_trace(TPS("Begin"), -1, s); | 
|  |  | 
|  | /* Take mutex to serialize concurrent rcu_barrier() requests. */ | 
|  | mutex_lock(&rcu_state.barrier_mutex); | 
|  |  | 
|  | /* Did someone else do our work for us? */ | 
|  | if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { | 
|  | rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); | 
|  | smp_mb(); /* caller's subsequent code after above check. */ | 
|  | mutex_unlock(&rcu_state.barrier_mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Mark the start of the barrier operation. */ | 
|  | raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); | 
|  | rcu_seq_start(&rcu_state.barrier_sequence); | 
|  | gseq = rcu_state.barrier_sequence; | 
|  | rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); | 
|  |  | 
|  | /* | 
|  | * Initialize the count to two rather than to zero in order | 
|  | * to avoid a too-soon return to zero in case of an immediate | 
|  | * invocation of the just-enqueued callback (or preemption of | 
|  | * this task).  Exclude CPU-hotplug operations to ensure that no | 
|  | * offline non-offloaded CPU has callbacks queued. | 
|  | */ | 
|  | init_completion(&rcu_state.barrier_completion); | 
|  | atomic_set(&rcu_state.barrier_cpu_count, 2); | 
|  | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Force each CPU with callbacks to register a new callback. | 
|  | * When that callback is invoked, we will know that all of the | 
|  | * corresponding CPU's preceding callbacks have been invoked. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | retry: | 
|  | if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) | 
|  | continue; | 
|  | raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); | 
|  | if (!rcu_segcblist_n_cbs(&rdp->cblist)) { | 
|  | WRITE_ONCE(rdp->barrier_seq_snap, gseq); | 
|  | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); | 
|  | rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); | 
|  | continue; | 
|  | } | 
|  | if (!rcu_rdp_cpu_online(rdp)) { | 
|  | rcu_barrier_entrain(rdp); | 
|  | WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); | 
|  | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); | 
|  | rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); | 
|  | continue; | 
|  | } | 
|  | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); | 
|  | if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { | 
|  | schedule_timeout_uninterruptible(1); | 
|  | goto retry; | 
|  | } | 
|  | WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); | 
|  | rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that we have an rcu_barrier_callback() callback on each | 
|  | * CPU, and thus each counted, remove the initial count. | 
|  | */ | 
|  | if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) | 
|  | complete(&rcu_state.barrier_completion); | 
|  |  | 
|  | /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ | 
|  | wait_for_completion(&rcu_state.barrier_completion); | 
|  |  | 
|  | /* Mark the end of the barrier operation. */ | 
|  | rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); | 
|  | rcu_seq_end(&rcu_state.barrier_sequence); | 
|  | gseq = rcu_state.barrier_sequence; | 
|  | for_each_possible_cpu(cpu) { | 
|  | rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  |  | 
|  | WRITE_ONCE(rdp->barrier_seq_snap, gseq); | 
|  | } | 
|  |  | 
|  | /* Other rcu_barrier() invocations can now safely proceed. */ | 
|  | mutex_unlock(&rcu_state.barrier_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_barrier); | 
|  |  | 
|  | static unsigned long rcu_barrier_last_throttle; | 
|  |  | 
|  | /** | 
|  | * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second | 
|  | * | 
|  | * This can be thought of as guard rails around rcu_barrier() that | 
|  | * permits unrestricted userspace use, at least assuming the hardware's | 
|  | * try_cmpxchg() is robust.  There will be at most one call per second to | 
|  | * rcu_barrier() system-wide from use of this function, which means that | 
|  | * callers might needlessly wait a second or three. | 
|  | * | 
|  | * This is intended for use by test suites to avoid OOM by flushing RCU | 
|  | * callbacks from the previous test before starting the next.  See the | 
|  | * rcutree.do_rcu_barrier module parameter for more information. | 
|  | * | 
|  | * Why not simply make rcu_barrier() more scalable?  That might be | 
|  | * the eventual endpoint, but let's keep it simple for the time being. | 
|  | * Note that the module parameter infrastructure serializes calls to a | 
|  | * given .set() function, but should concurrent .set() invocation ever be | 
|  | * possible, we are ready! | 
|  | */ | 
|  | static void rcu_barrier_throttled(void) | 
|  | { | 
|  | unsigned long j = jiffies; | 
|  | unsigned long old = READ_ONCE(rcu_barrier_last_throttle); | 
|  | unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); | 
|  |  | 
|  | while (time_in_range(j, old, old + HZ / 16) || | 
|  | !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { | 
|  | schedule_timeout_idle(HZ / 16); | 
|  | if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { | 
|  | smp_mb(); /* caller's subsequent code after above check. */ | 
|  | return; | 
|  | } | 
|  | j = jiffies; | 
|  | old = READ_ONCE(rcu_barrier_last_throttle); | 
|  | } | 
|  | rcu_barrier(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier | 
|  | * request arrives.  We insist on a true value to allow for possible | 
|  | * future expansion. | 
|  | */ | 
|  | static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) | 
|  | { | 
|  | bool b; | 
|  | int ret; | 
|  |  | 
|  | if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) | 
|  | return -EAGAIN; | 
|  | ret = kstrtobool(val, &b); | 
|  | if (!ret && b) { | 
|  | atomic_inc((atomic_t *)kp->arg); | 
|  | rcu_barrier_throttled(); | 
|  | atomic_dec((atomic_t *)kp->arg); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Output the number of outstanding rcutree.do_rcu_barrier requests. | 
|  | */ | 
|  | static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) | 
|  | { | 
|  | return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg)); | 
|  | } | 
|  |  | 
|  | static const struct kernel_param_ops do_rcu_barrier_ops = { | 
|  | .set = param_set_do_rcu_barrier, | 
|  | .get = param_get_do_rcu_barrier, | 
|  | }; | 
|  | static atomic_t do_rcu_barrier; | 
|  | module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); | 
|  |  | 
|  | /* | 
|  | * Compute the mask of online CPUs for the specified rcu_node structure. | 
|  | * This will not be stable unless the rcu_node structure's ->lock is | 
|  | * held, but the bit corresponding to the current CPU will be stable | 
|  | * in most contexts. | 
|  | */ | 
|  | static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) | 
|  | { | 
|  | return READ_ONCE(rnp->qsmaskinitnext); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is the CPU corresponding to the specified rcu_data structure online | 
|  | * from RCU's perspective?  This perspective is given by that structure's | 
|  | * ->qsmaskinitnext field rather than by the global cpu_online_mask. | 
|  | */ | 
|  | static bool rcu_rdp_cpu_online(struct rcu_data *rdp) | 
|  | { | 
|  | return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); | 
|  | } | 
|  |  | 
|  | bool rcu_cpu_online(int cpu) | 
|  | { | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  |  | 
|  | return rcu_rdp_cpu_online(rdp); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) | 
|  |  | 
|  | /* | 
|  | * Is the current CPU online as far as RCU is concerned? | 
|  | * | 
|  | * Disable preemption to avoid false positives that could otherwise | 
|  | * happen due to the current CPU number being sampled, this task being | 
|  | * preempted, its old CPU being taken offline, resuming on some other CPU, | 
|  | * then determining that its old CPU is now offline. | 
|  | * | 
|  | * Disable checking if in an NMI handler because we cannot safely | 
|  | * report errors from NMI handlers anyway.  In addition, it is OK to use | 
|  | * RCU on an offline processor during initial boot, hence the check for | 
|  | * rcu_scheduler_fully_active. | 
|  | */ | 
|  | bool rcu_lockdep_current_cpu_online(void) | 
|  | { | 
|  | struct rcu_data *rdp; | 
|  | bool ret = false; | 
|  |  | 
|  | if (in_nmi() || !rcu_scheduler_fully_active) | 
|  | return true; | 
|  | preempt_disable_notrace(); | 
|  | rdp = this_cpu_ptr(&rcu_data); | 
|  | /* | 
|  | * Strictly, we care here about the case where the current CPU is | 
|  | * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask | 
|  | * not being up to date. So arch_spin_is_locked() might have a | 
|  | * false positive if it's held by some *other* CPU, but that's | 
|  | * OK because that just means a false *negative* on the warning. | 
|  | */ | 
|  | if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) | 
|  | ret = true; | 
|  | preempt_enable_notrace(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); | 
|  |  | 
|  | #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ | 
|  |  | 
|  | // Has rcu_init() been invoked?  This is used (for example) to determine | 
|  | // whether spinlocks may be acquired safely. | 
|  | static bool rcu_init_invoked(void) | 
|  | { | 
|  | return !!rcu_state.n_online_cpus; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All CPUs for the specified rcu_node structure have gone offline, | 
|  | * and all tasks that were preempted within an RCU read-side critical | 
|  | * section while running on one of those CPUs have since exited their RCU | 
|  | * read-side critical section.  Some other CPU is reporting this fact with | 
|  | * the specified rcu_node structure's ->lock held and interrupts disabled. | 
|  | * This function therefore goes up the tree of rcu_node structures, | 
|  | * clearing the corresponding bits in the ->qsmaskinit fields.  Note that | 
|  | * the leaf rcu_node structure's ->qsmaskinit field has already been | 
|  | * updated. | 
|  | * | 
|  | * This function does check that the specified rcu_node structure has | 
|  | * all CPUs offline and no blocked tasks, so it is OK to invoke it | 
|  | * prematurely.  That said, invoking it after the fact will cost you | 
|  | * a needless lock acquisition.  So once it has done its work, don't | 
|  | * invoke it again. | 
|  | */ | 
|  | static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) | 
|  | { | 
|  | long mask; | 
|  | struct rcu_node *rnp = rnp_leaf; | 
|  |  | 
|  | raw_lockdep_assert_held_rcu_node(rnp_leaf); | 
|  | if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || | 
|  | WARN_ON_ONCE(rnp_leaf->qsmaskinit) || | 
|  | WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) | 
|  | return; | 
|  | for (;;) { | 
|  | mask = rnp->grpmask; | 
|  | rnp = rnp->parent; | 
|  | if (!rnp) | 
|  | break; | 
|  | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ | 
|  | rnp->qsmaskinit &= ~mask; | 
|  | /* Between grace periods, so better already be zero! */ | 
|  | WARN_ON_ONCE(rnp->qsmask); | 
|  | if (rnp->qsmaskinit) { | 
|  | raw_spin_unlock_rcu_node(rnp); | 
|  | /* irqs remain disabled. */ | 
|  | return; | 
|  | } | 
|  | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Propagate ->qsinitmask bits up the rcu_node tree to account for the | 
|  | * first CPU in a given leaf rcu_node structure coming online.  The caller | 
|  | * must hold the corresponding leaf rcu_node ->lock with interrupts | 
|  | * disabled. | 
|  | */ | 
|  | static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) | 
|  | { | 
|  | long mask; | 
|  | long oldmask; | 
|  | struct rcu_node *rnp = rnp_leaf; | 
|  |  | 
|  | raw_lockdep_assert_held_rcu_node(rnp_leaf); | 
|  | WARN_ON_ONCE(rnp->wait_blkd_tasks); | 
|  | for (;;) { | 
|  | mask = rnp->grpmask; | 
|  | rnp = rnp->parent; | 
|  | if (rnp == NULL) | 
|  | return; | 
|  | raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ | 
|  | oldmask = rnp->qsmaskinit; | 
|  | rnp->qsmaskinit |= mask; | 
|  | raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ | 
|  | if (oldmask) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do boot-time initialization of a CPU's per-CPU RCU data. | 
|  | */ | 
|  | static void __init | 
|  | rcu_boot_init_percpu_data(int cpu) | 
|  | { | 
|  | struct context_tracking *ct = this_cpu_ptr(&context_tracking); | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  |  | 
|  | /* Set up local state, ensuring consistent view of global state. */ | 
|  | rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); | 
|  | INIT_WORK(&rdp->strict_work, strict_work_handler); | 
|  | WARN_ON_ONCE(ct->dynticks_nesting != 1); | 
|  | WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); | 
|  | rdp->barrier_seq_snap = rcu_state.barrier_sequence; | 
|  | rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; | 
|  | rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; | 
|  | rdp->rcu_onl_gp_seq = rcu_state.gp_seq; | 
|  | rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; | 
|  | rdp->last_sched_clock = jiffies; | 
|  | rdp->cpu = cpu; | 
|  | rcu_boot_init_nocb_percpu_data(rdp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invoked early in the CPU-online process, when pretty much all services | 
|  | * are available.  The incoming CPU is not present. | 
|  | * | 
|  | * Initializes a CPU's per-CPU RCU data.  Note that only one online or | 
|  | * offline event can be happening at a given time.  Note also that we can | 
|  | * accept some slop in the rsp->gp_seq access due to the fact that this | 
|  | * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. | 
|  | * And any offloaded callbacks are being numbered elsewhere. | 
|  | */ | 
|  | int rcutree_prepare_cpu(unsigned int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | struct rcu_node *rnp = rcu_get_root(); | 
|  |  | 
|  | /* Set up local state, ensuring consistent view of global state. */ | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | rdp->qlen_last_fqs_check = 0; | 
|  | rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); | 
|  | rdp->blimit = blimit; | 
|  | ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */ | 
|  | raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */ | 
|  |  | 
|  | /* | 
|  | * Only non-NOCB CPUs that didn't have early-boot callbacks need to be | 
|  | * (re-)initialized. | 
|  | */ | 
|  | if (!rcu_segcblist_is_enabled(&rdp->cblist)) | 
|  | rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */ | 
|  |  | 
|  | /* | 
|  | * Add CPU to leaf rcu_node pending-online bitmask.  Any needed | 
|  | * propagation up the rcu_node tree will happen at the beginning | 
|  | * of the next grace period. | 
|  | */ | 
|  | rnp = rdp->mynode; | 
|  | raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */ | 
|  | rdp->gp_seq = READ_ONCE(rnp->gp_seq); | 
|  | rdp->gp_seq_needed = rdp->gp_seq; | 
|  | rdp->cpu_no_qs.b.norm = true; | 
|  | rdp->core_needs_qs = false; | 
|  | rdp->rcu_iw_pending = false; | 
|  | rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); | 
|  | rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; | 
|  | trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | rcu_spawn_one_boost_kthread(rnp); | 
|  | rcu_spawn_cpu_nocb_kthread(cpu); | 
|  | WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update RCU priority boot kthread affinity for CPU-hotplug changes. | 
|  | */ | 
|  | static void rcutree_affinity_setting(unsigned int cpu, int outgoing) | 
|  | { | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  |  | 
|  | rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Has the specified (known valid) CPU ever been fully online? | 
|  | */ | 
|  | bool rcu_cpu_beenfullyonline(int cpu) | 
|  | { | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  |  | 
|  | return smp_load_acquire(&rdp->beenonline); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Near the end of the CPU-online process.  Pretty much all services | 
|  | * enabled, and the CPU is now very much alive. | 
|  | */ | 
|  | int rcutree_online_cpu(unsigned int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_data *rdp; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | rnp = rdp->mynode; | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | rnp->ffmask |= rdp->grpmask; | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) | 
|  | return 0; /* Too early in boot for scheduler work. */ | 
|  | sync_sched_exp_online_cleanup(cpu); | 
|  | rcutree_affinity_setting(cpu, -1); | 
|  |  | 
|  | // Stop-machine done, so allow nohz_full to disable tick. | 
|  | tick_dep_clear(TICK_DEP_BIT_RCU); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark the specified CPU as being online so that subsequent grace periods | 
|  | * (both expedited and normal) will wait on it.  Note that this means that | 
|  | * incoming CPUs are not allowed to use RCU read-side critical sections | 
|  | * until this function is called.  Failing to observe this restriction | 
|  | * will result in lockdep splats. | 
|  | * | 
|  | * Note that this function is special in that it is invoked directly | 
|  | * from the incoming CPU rather than from the cpuhp_step mechanism. | 
|  | * This is because this function must be invoked at a precise location. | 
|  | * This incoming CPU must not have enabled interrupts yet. | 
|  | * | 
|  | * This mirrors the effects of rcutree_report_cpu_dead(). | 
|  | */ | 
|  | void rcutree_report_cpu_starting(unsigned int cpu) | 
|  | { | 
|  | unsigned long mask; | 
|  | struct rcu_data *rdp; | 
|  | struct rcu_node *rnp; | 
|  | bool newcpu; | 
|  |  | 
|  | lockdep_assert_irqs_disabled(); | 
|  | rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | if (rdp->cpu_started) | 
|  | return; | 
|  | rdp->cpu_started = true; | 
|  |  | 
|  | rnp = rdp->mynode; | 
|  | mask = rdp->grpmask; | 
|  | arch_spin_lock(&rcu_state.ofl_lock); | 
|  | rcu_dynticks_eqs_online(); | 
|  | raw_spin_lock(&rcu_state.barrier_lock); | 
|  | raw_spin_lock_rcu_node(rnp); | 
|  | WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); | 
|  | raw_spin_unlock(&rcu_state.barrier_lock); | 
|  | newcpu = !(rnp->expmaskinitnext & mask); | 
|  | rnp->expmaskinitnext |= mask; | 
|  | /* Allow lockless access for expedited grace periods. */ | 
|  | smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ | 
|  | ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); | 
|  | rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ | 
|  | rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); | 
|  | rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); | 
|  |  | 
|  | /* An incoming CPU should never be blocking a grace period. */ | 
|  | if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ | 
|  | /* rcu_report_qs_rnp() *really* wants some flags to restore */ | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | rcu_disable_urgency_upon_qs(rdp); | 
|  | /* Report QS -after- changing ->qsmaskinitnext! */ | 
|  | rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); | 
|  | } else { | 
|  | raw_spin_unlock_rcu_node(rnp); | 
|  | } | 
|  | arch_spin_unlock(&rcu_state.ofl_lock); | 
|  | smp_store_release(&rdp->beenonline, true); | 
|  | smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The outgoing function has no further need of RCU, so remove it from | 
|  | * the rcu_node tree's ->qsmaskinitnext bit masks. | 
|  | * | 
|  | * Note that this function is special in that it is invoked directly | 
|  | * from the outgoing CPU rather than from the cpuhp_step mechanism. | 
|  | * This is because this function must be invoked at a precise location. | 
|  | * | 
|  | * This mirrors the effect of rcutree_report_cpu_starting(). | 
|  | */ | 
|  | void rcutree_report_cpu_dead(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long mask; | 
|  | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|  | struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */ | 
|  |  | 
|  | /* | 
|  | * IRQS must be disabled from now on and until the CPU dies, or an interrupt | 
|  | * may introduce a new READ-side while it is actually off the QS masks. | 
|  | */ | 
|  | lockdep_assert_irqs_disabled(); | 
|  | // Do any dangling deferred wakeups. | 
|  | do_nocb_deferred_wakeup(rdp); | 
|  |  | 
|  | rcu_preempt_deferred_qs(current); | 
|  |  | 
|  | /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ | 
|  | mask = rdp->grpmask; | 
|  | arch_spin_lock(&rcu_state.ofl_lock); | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ | 
|  | rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); | 
|  | rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); | 
|  | if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ | 
|  | /* Report quiescent state -before- changing ->qsmaskinitnext! */ | 
|  | rcu_disable_urgency_upon_qs(rdp); | 
|  | rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | } | 
|  | WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | arch_spin_unlock(&rcu_state.ofl_lock); | 
|  | rdp->cpu_started = false; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* | 
|  | * The outgoing CPU has just passed through the dying-idle state, and we | 
|  | * are being invoked from the CPU that was IPIed to continue the offline | 
|  | * operation.  Migrate the outgoing CPU's callbacks to the current CPU. | 
|  | */ | 
|  | void rcutree_migrate_callbacks(int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_data *my_rdp; | 
|  | struct rcu_node *my_rnp; | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | bool needwake; | 
|  |  | 
|  | if (rcu_rdp_is_offloaded(rdp) || | 
|  | rcu_segcblist_empty(&rdp->cblist)) | 
|  | return;  /* No callbacks to migrate. */ | 
|  |  | 
|  | raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); | 
|  | WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); | 
|  | rcu_barrier_entrain(rdp); | 
|  | my_rdp = this_cpu_ptr(&rcu_data); | 
|  | my_rnp = my_rdp->mynode; | 
|  | rcu_nocb_lock(my_rdp); /* irqs already disabled. */ | 
|  | WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); | 
|  | raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ | 
|  | /* Leverage recent GPs and set GP for new callbacks. */ | 
|  | needwake = rcu_advance_cbs(my_rnp, rdp) || | 
|  | rcu_advance_cbs(my_rnp, my_rdp); | 
|  | rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); | 
|  | raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ | 
|  | needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); | 
|  | rcu_segcblist_disable(&rdp->cblist); | 
|  | WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); | 
|  | check_cb_ovld_locked(my_rdp, my_rnp); | 
|  | if (rcu_rdp_is_offloaded(my_rdp)) { | 
|  | raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ | 
|  | __call_rcu_nocb_wake(my_rdp, true, flags); | 
|  | } else { | 
|  | rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ | 
|  | raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); | 
|  | } | 
|  | if (needwake) | 
|  | rcu_gp_kthread_wake(); | 
|  | lockdep_assert_irqs_enabled(); | 
|  | WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || | 
|  | !rcu_segcblist_empty(&rdp->cblist), | 
|  | "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", | 
|  | cpu, rcu_segcblist_n_cbs(&rdp->cblist), | 
|  | rcu_segcblist_first_cb(&rdp->cblist)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The CPU has been completely removed, and some other CPU is reporting | 
|  | * this fact from process context.  Do the remainder of the cleanup. | 
|  | * There can only be one CPU hotplug operation at a time, so no need for | 
|  | * explicit locking. | 
|  | */ | 
|  | int rcutree_dead_cpu(unsigned int cpu) | 
|  | { | 
|  | WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); | 
|  | // Stop-machine done, so allow nohz_full to disable tick. | 
|  | tick_dep_clear(TICK_DEP_BIT_RCU); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Near the end of the offline process.  Trace the fact that this CPU | 
|  | * is going offline. | 
|  | */ | 
|  | int rcutree_dying_cpu(unsigned int cpu) | 
|  | { | 
|  | bool blkd; | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | struct rcu_node *rnp = rdp->mynode; | 
|  |  | 
|  | blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); | 
|  | trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), | 
|  | blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Near the beginning of the process.  The CPU is still very much alive | 
|  | * with pretty much all services enabled. | 
|  | */ | 
|  | int rcutree_offline_cpu(unsigned int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_data *rdp; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | rnp = rdp->mynode; | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | rnp->ffmask &= ~rdp->grpmask; | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  |  | 
|  | rcutree_affinity_setting(cpu, cpu); | 
|  |  | 
|  | // nohz_full CPUs need the tick for stop-machine to work quickly | 
|  | tick_dep_set(TICK_DEP_BIT_RCU); | 
|  | return 0; | 
|  | } | 
|  | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* | 
|  | * On non-huge systems, use expedited RCU grace periods to make suspend | 
|  | * and hibernation run faster. | 
|  | */ | 
|  | static int rcu_pm_notify(struct notifier_block *self, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | switch (action) { | 
|  | case PM_HIBERNATION_PREPARE: | 
|  | case PM_SUSPEND_PREPARE: | 
|  | rcu_async_hurry(); | 
|  | rcu_expedite_gp(); | 
|  | break; | 
|  | case PM_POST_HIBERNATION: | 
|  | case PM_POST_SUSPEND: | 
|  | rcu_unexpedite_gp(); | 
|  | rcu_async_relax(); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RCU_EXP_KTHREAD | 
|  | struct kthread_worker *rcu_exp_gp_kworker; | 
|  | struct kthread_worker *rcu_exp_par_gp_kworker; | 
|  |  | 
|  | static void __init rcu_start_exp_gp_kworkers(void) | 
|  | { | 
|  | const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; | 
|  | const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; | 
|  | struct sched_param param = { .sched_priority = kthread_prio }; | 
|  |  | 
|  | rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); | 
|  | if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { | 
|  | pr_err("Failed to create %s!\n", gp_kworker_name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); | 
|  | if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { | 
|  | pr_err("Failed to create %s!\n", par_gp_kworker_name); | 
|  | kthread_destroy_worker(rcu_exp_gp_kworker); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); | 
|  | sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, | 
|  | ¶m); | 
|  | } | 
|  |  | 
|  | static inline void rcu_alloc_par_gp_wq(void) | 
|  | { | 
|  | } | 
|  | #else /* !CONFIG_RCU_EXP_KTHREAD */ | 
|  | struct workqueue_struct *rcu_par_gp_wq; | 
|  |  | 
|  | static void __init rcu_start_exp_gp_kworkers(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void rcu_alloc_par_gp_wq(void) | 
|  | { | 
|  | rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); | 
|  | WARN_ON(!rcu_par_gp_wq); | 
|  | } | 
|  | #endif /* CONFIG_RCU_EXP_KTHREAD */ | 
|  |  | 
|  | /* | 
|  | * Spawn the kthreads that handle RCU's grace periods. | 
|  | */ | 
|  | static int __init rcu_spawn_gp_kthread(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_node *rnp; | 
|  | struct sched_param sp; | 
|  | struct task_struct *t; | 
|  | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|  |  | 
|  | rcu_scheduler_fully_active = 1; | 
|  | t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); | 
|  | if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) | 
|  | return 0; | 
|  | if (kthread_prio) { | 
|  | sp.sched_priority = kthread_prio; | 
|  | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); | 
|  | } | 
|  | rnp = rcu_get_root(); | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | WRITE_ONCE(rcu_state.gp_activity, jiffies); | 
|  | WRITE_ONCE(rcu_state.gp_req_activity, jiffies); | 
|  | // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. | 
|  | smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */ | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | wake_up_process(t); | 
|  | /* This is a pre-SMP initcall, we expect a single CPU */ | 
|  | WARN_ON(num_online_cpus() > 1); | 
|  | /* | 
|  | * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() | 
|  | * due to rcu_scheduler_fully_active. | 
|  | */ | 
|  | rcu_spawn_cpu_nocb_kthread(smp_processor_id()); | 
|  | rcu_spawn_one_boost_kthread(rdp->mynode); | 
|  | rcu_spawn_core_kthreads(); | 
|  | /* Create kthread worker for expedited GPs */ | 
|  | rcu_start_exp_gp_kworkers(); | 
|  | return 0; | 
|  | } | 
|  | early_initcall(rcu_spawn_gp_kthread); | 
|  |  | 
|  | /* | 
|  | * This function is invoked towards the end of the scheduler's | 
|  | * initialization process.  Before this is called, the idle task might | 
|  | * contain synchronous grace-period primitives (during which time, this idle | 
|  | * task is booting the system, and such primitives are no-ops).  After this | 
|  | * function is called, any synchronous grace-period primitives are run as | 
|  | * expedited, with the requesting task driving the grace period forward. | 
|  | * A later core_initcall() rcu_set_runtime_mode() will switch to full | 
|  | * runtime RCU functionality. | 
|  | */ | 
|  | void rcu_scheduler_starting(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | WARN_ON(num_online_cpus() != 1); | 
|  | WARN_ON(nr_context_switches() > 0); | 
|  | rcu_test_sync_prims(); | 
|  |  | 
|  | // Fix up the ->gp_seq counters. | 
|  | local_irq_save(flags); | 
|  | rcu_for_each_node_breadth_first(rnp) | 
|  | rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | // Switch out of early boot mode. | 
|  | rcu_scheduler_active = RCU_SCHEDULER_INIT; | 
|  | rcu_test_sync_prims(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for rcu_init() that initializes the rcu_state structure. | 
|  | */ | 
|  | static void __init rcu_init_one(void) | 
|  | { | 
|  | static const char * const buf[] = RCU_NODE_NAME_INIT; | 
|  | static const char * const fqs[] = RCU_FQS_NAME_INIT; | 
|  | static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; | 
|  | static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; | 
|  |  | 
|  | int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */ | 
|  | int cpustride = 1; | 
|  | int i; | 
|  | int j; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */ | 
|  |  | 
|  | /* Silence gcc 4.8 false positive about array index out of range. */ | 
|  | if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) | 
|  | panic("rcu_init_one: rcu_num_lvls out of range"); | 
|  |  | 
|  | /* Initialize the level-tracking arrays. */ | 
|  |  | 
|  | for (i = 1; i < rcu_num_lvls; i++) | 
|  | rcu_state.level[i] = | 
|  | rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; | 
|  | rcu_init_levelspread(levelspread, num_rcu_lvl); | 
|  |  | 
|  | /* Initialize the elements themselves, starting from the leaves. */ | 
|  |  | 
|  | for (i = rcu_num_lvls - 1; i >= 0; i--) { | 
|  | cpustride *= levelspread[i]; | 
|  | rnp = rcu_state.level[i]; | 
|  | for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { | 
|  | raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); | 
|  | lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), | 
|  | &rcu_node_class[i], buf[i]); | 
|  | raw_spin_lock_init(&rnp->fqslock); | 
|  | lockdep_set_class_and_name(&rnp->fqslock, | 
|  | &rcu_fqs_class[i], fqs[i]); | 
|  | rnp->gp_seq = rcu_state.gp_seq; | 
|  | rnp->gp_seq_needed = rcu_state.gp_seq; | 
|  | rnp->completedqs = rcu_state.gp_seq; | 
|  | rnp->qsmask = 0; | 
|  | rnp->qsmaskinit = 0; | 
|  | rnp->grplo = j * cpustride; | 
|  | rnp->grphi = (j + 1) * cpustride - 1; | 
|  | if (rnp->grphi >= nr_cpu_ids) | 
|  | rnp->grphi = nr_cpu_ids - 1; | 
|  | if (i == 0) { | 
|  | rnp->grpnum = 0; | 
|  | rnp->grpmask = 0; | 
|  | rnp->parent = NULL; | 
|  | } else { | 
|  | rnp->grpnum = j % levelspread[i - 1]; | 
|  | rnp->grpmask = BIT(rnp->grpnum); | 
|  | rnp->parent = rcu_state.level[i - 1] + | 
|  | j / levelspread[i - 1]; | 
|  | } | 
|  | rnp->level = i; | 
|  | INIT_LIST_HEAD(&rnp->blkd_tasks); | 
|  | rcu_init_one_nocb(rnp); | 
|  | init_waitqueue_head(&rnp->exp_wq[0]); | 
|  | init_waitqueue_head(&rnp->exp_wq[1]); | 
|  | init_waitqueue_head(&rnp->exp_wq[2]); | 
|  | init_waitqueue_head(&rnp->exp_wq[3]); | 
|  | spin_lock_init(&rnp->exp_lock); | 
|  | mutex_init(&rnp->boost_kthread_mutex); | 
|  | raw_spin_lock_init(&rnp->exp_poll_lock); | 
|  | rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; | 
|  | INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); | 
|  | } | 
|  | } | 
|  |  | 
|  | init_swait_queue_head(&rcu_state.gp_wq); | 
|  | init_swait_queue_head(&rcu_state.expedited_wq); | 
|  | rnp = rcu_first_leaf_node(); | 
|  | for_each_possible_cpu(i) { | 
|  | while (i > rnp->grphi) | 
|  | rnp++; | 
|  | per_cpu_ptr(&rcu_data, i)->mynode = rnp; | 
|  | rcu_boot_init_percpu_data(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force priority from the kernel command-line into range. | 
|  | */ | 
|  | static void __init sanitize_kthread_prio(void) | 
|  | { | 
|  | int kthread_prio_in = kthread_prio; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 | 
|  | && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) | 
|  | kthread_prio = 2; | 
|  | else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) | 
|  | kthread_prio = 1; | 
|  | else if (kthread_prio < 0) | 
|  | kthread_prio = 0; | 
|  | else if (kthread_prio > 99) | 
|  | kthread_prio = 99; | 
|  |  | 
|  | if (kthread_prio != kthread_prio_in) | 
|  | pr_alert("%s: Limited prio to %d from %d\n", | 
|  | __func__, kthread_prio, kthread_prio_in); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the rcu_node tree geometry from kernel parameters.  This cannot | 
|  | * replace the definitions in tree.h because those are needed to size | 
|  | * the ->node array in the rcu_state structure. | 
|  | */ | 
|  | void rcu_init_geometry(void) | 
|  | { | 
|  | ulong d; | 
|  | int i; | 
|  | static unsigned long old_nr_cpu_ids; | 
|  | int rcu_capacity[RCU_NUM_LVLS]; | 
|  | static bool initialized; | 
|  |  | 
|  | if (initialized) { | 
|  | /* | 
|  | * Warn if setup_nr_cpu_ids() had not yet been invoked, | 
|  | * unless nr_cpus_ids == NR_CPUS, in which case who cares? | 
|  | */ | 
|  | WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); | 
|  | return; | 
|  | } | 
|  |  | 
|  | old_nr_cpu_ids = nr_cpu_ids; | 
|  | initialized = true; | 
|  |  | 
|  | /* | 
|  | * Initialize any unspecified boot parameters. | 
|  | * The default values of jiffies_till_first_fqs and | 
|  | * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS | 
|  | * value, which is a function of HZ, then adding one for each | 
|  | * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. | 
|  | */ | 
|  | d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; | 
|  | if (jiffies_till_first_fqs == ULONG_MAX) | 
|  | jiffies_till_first_fqs = d; | 
|  | if (jiffies_till_next_fqs == ULONG_MAX) | 
|  | jiffies_till_next_fqs = d; | 
|  | adjust_jiffies_till_sched_qs(); | 
|  |  | 
|  | /* If the compile-time values are accurate, just leave. */ | 
|  | if (rcu_fanout_leaf == RCU_FANOUT_LEAF && | 
|  | nr_cpu_ids == NR_CPUS) | 
|  | return; | 
|  | pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", | 
|  | rcu_fanout_leaf, nr_cpu_ids); | 
|  |  | 
|  | /* | 
|  | * The boot-time rcu_fanout_leaf parameter must be at least two | 
|  | * and cannot exceed the number of bits in the rcu_node masks. | 
|  | * Complain and fall back to the compile-time values if this | 
|  | * limit is exceeded. | 
|  | */ | 
|  | if (rcu_fanout_leaf < 2 || | 
|  | rcu_fanout_leaf > sizeof(unsigned long) * 8) { | 
|  | rcu_fanout_leaf = RCU_FANOUT_LEAF; | 
|  | WARN_ON(1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute number of nodes that can be handled an rcu_node tree | 
|  | * with the given number of levels. | 
|  | */ | 
|  | rcu_capacity[0] = rcu_fanout_leaf; | 
|  | for (i = 1; i < RCU_NUM_LVLS; i++) | 
|  | rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; | 
|  |  | 
|  | /* | 
|  | * The tree must be able to accommodate the configured number of CPUs. | 
|  | * If this limit is exceeded, fall back to the compile-time values. | 
|  | */ | 
|  | if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { | 
|  | rcu_fanout_leaf = RCU_FANOUT_LEAF; | 
|  | WARN_ON(1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Calculate the number of levels in the tree. */ | 
|  | for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { | 
|  | } | 
|  | rcu_num_lvls = i + 1; | 
|  |  | 
|  | /* Calculate the number of rcu_nodes at each level of the tree. */ | 
|  | for (i = 0; i < rcu_num_lvls; i++) { | 
|  | int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; | 
|  | num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); | 
|  | } | 
|  |  | 
|  | /* Calculate the total number of rcu_node structures. */ | 
|  | rcu_num_nodes = 0; | 
|  | for (i = 0; i < rcu_num_lvls; i++) | 
|  | rcu_num_nodes += num_rcu_lvl[i]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dump out the structure of the rcu_node combining tree associated | 
|  | * with the rcu_state structure. | 
|  | */ | 
|  | static void __init rcu_dump_rcu_node_tree(void) | 
|  | { | 
|  | int level = 0; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | pr_info("rcu_node tree layout dump\n"); | 
|  | pr_info(" "); | 
|  | rcu_for_each_node_breadth_first(rnp) { | 
|  | if (rnp->level != level) { | 
|  | pr_cont("\n"); | 
|  | pr_info(" "); | 
|  | level = rnp->level; | 
|  | } | 
|  | pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum); | 
|  | } | 
|  | pr_cont("\n"); | 
|  | } | 
|  |  | 
|  | struct workqueue_struct *rcu_gp_wq; | 
|  |  | 
|  | static void __init kfree_rcu_batch_init(void) | 
|  | { | 
|  | int cpu; | 
|  | int i, j; | 
|  | struct shrinker *kfree_rcu_shrinker; | 
|  |  | 
|  | /* Clamp it to [0:100] seconds interval. */ | 
|  | if (rcu_delay_page_cache_fill_msec < 0 || | 
|  | rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { | 
|  |  | 
|  | rcu_delay_page_cache_fill_msec = | 
|  | clamp(rcu_delay_page_cache_fill_msec, 0, | 
|  | (int) (100 * MSEC_PER_SEC)); | 
|  |  | 
|  | pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", | 
|  | rcu_delay_page_cache_fill_msec); | 
|  | } | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | 
|  |  | 
|  | for (i = 0; i < KFREE_N_BATCHES; i++) { | 
|  | INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); | 
|  | krcp->krw_arr[i].krcp = krcp; | 
|  |  | 
|  | for (j = 0; j < FREE_N_CHANNELS; j++) | 
|  | INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) | 
|  | INIT_LIST_HEAD(&krcp->bulk_head[i]); | 
|  |  | 
|  | INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); | 
|  | INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); | 
|  | krcp->initialized = true; | 
|  | } | 
|  |  | 
|  | kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree"); | 
|  | if (!kfree_rcu_shrinker) { | 
|  | pr_err("Failed to allocate kfree_rcu() shrinker!\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; | 
|  | kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; | 
|  |  | 
|  | shrinker_register(kfree_rcu_shrinker); | 
|  | } | 
|  |  | 
|  | void __init rcu_init(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | rcu_early_boot_tests(); | 
|  |  | 
|  | kfree_rcu_batch_init(); | 
|  | rcu_bootup_announce(); | 
|  | sanitize_kthread_prio(); | 
|  | rcu_init_geometry(); | 
|  | rcu_init_one(); | 
|  | if (dump_tree) | 
|  | rcu_dump_rcu_node_tree(); | 
|  | if (use_softirq) | 
|  | open_softirq(RCU_SOFTIRQ, rcu_core_si); | 
|  |  | 
|  | /* | 
|  | * We don't need protection against CPU-hotplug here because | 
|  | * this is called early in boot, before either interrupts | 
|  | * or the scheduler are operational. | 
|  | */ | 
|  | pm_notifier(rcu_pm_notify, 0); | 
|  | WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. | 
|  | rcutree_prepare_cpu(cpu); | 
|  | rcutree_report_cpu_starting(cpu); | 
|  | rcutree_online_cpu(cpu); | 
|  |  | 
|  | /* Create workqueue for Tree SRCU and for expedited GPs. */ | 
|  | rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); | 
|  | WARN_ON(!rcu_gp_wq); | 
|  | rcu_alloc_par_gp_wq(); | 
|  |  | 
|  | /* Fill in default value for rcutree.qovld boot parameter. */ | 
|  | /* -After- the rcu_node ->lock fields are initialized! */ | 
|  | if (qovld < 0) | 
|  | qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; | 
|  | else | 
|  | qovld_calc = qovld; | 
|  |  | 
|  | // Kick-start in case any polled grace periods started early. | 
|  | (void)start_poll_synchronize_rcu_expedited(); | 
|  |  | 
|  | rcu_test_sync_prims(); | 
|  | } | 
|  |  | 
|  | #include "tree_stall.h" | 
|  | #include "tree_exp.h" | 
|  | #include "tree_nocb.h" | 
|  | #include "tree_plugin.h" |