|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2011 Red Hat, Inc. | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include "dm-btree.h" | 
|  | #include "dm-btree-internal.h" | 
|  | #include "dm-transaction-manager.h" | 
|  |  | 
|  | #include <linux/export.h> | 
|  | #include <linux/device-mapper.h> | 
|  |  | 
|  | #define DM_MSG_PREFIX "btree" | 
|  |  | 
|  | /* | 
|  | * Removing an entry from a btree | 
|  | * ============================== | 
|  | * | 
|  | * A very important constraint for our btree is that no node, except the | 
|  | * root, may have fewer than a certain number of entries. | 
|  | * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES). | 
|  | * | 
|  | * Ensuring this is complicated by the way we want to only ever hold the | 
|  | * locks on 2 nodes concurrently, and only change nodes in a top to bottom | 
|  | * fashion. | 
|  | * | 
|  | * Each node may have a left or right sibling.  When decending the spine, | 
|  | * if a node contains only MIN_ENTRIES then we try and increase this to at | 
|  | * least MIN_ENTRIES + 1.  We do this in the following ways: | 
|  | * | 
|  | * [A] No siblings => this can only happen if the node is the root, in which | 
|  | *     case we copy the childs contents over the root. | 
|  | * | 
|  | * [B] No left sibling | 
|  | *     ==> rebalance(node, right sibling) | 
|  | * | 
|  | * [C] No right sibling | 
|  | *     ==> rebalance(left sibling, node) | 
|  | * | 
|  | * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD | 
|  | *     ==> delete node adding it's contents to left and right | 
|  | * | 
|  | * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD | 
|  | *     ==> rebalance(left, node, right) | 
|  | * | 
|  | * After these operations it's possible that the our original node no | 
|  | * longer contains the desired sub tree.  For this reason this rebalancing | 
|  | * is performed on the children of the current node.  This also avoids | 
|  | * having a special case for the root. | 
|  | * | 
|  | * Once this rebalancing has occurred we can then step into the child node | 
|  | * for internal nodes.  Or delete the entry for leaf nodes. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Some little utilities for moving node data around. | 
|  | */ | 
|  | static void node_shift(struct btree_node *n, int shift) | 
|  | { | 
|  | uint32_t nr_entries = le32_to_cpu(n->header.nr_entries); | 
|  | uint32_t value_size = le32_to_cpu(n->header.value_size); | 
|  |  | 
|  | if (shift < 0) { | 
|  | shift = -shift; | 
|  | BUG_ON(shift > nr_entries); | 
|  | BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift)); | 
|  | memmove(key_ptr(n, 0), | 
|  | key_ptr(n, shift), | 
|  | (nr_entries - shift) * sizeof(__le64)); | 
|  | memmove(value_ptr(n, 0), | 
|  | value_ptr(n, shift), | 
|  | (nr_entries - shift) * value_size); | 
|  | } else { | 
|  | BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries)); | 
|  | memmove(key_ptr(n, shift), | 
|  | key_ptr(n, 0), | 
|  | nr_entries * sizeof(__le64)); | 
|  | memmove(value_ptr(n, shift), | 
|  | value_ptr(n, 0), | 
|  | nr_entries * value_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int node_copy(struct btree_node *left, struct btree_node *right, int shift) | 
|  | { | 
|  | uint32_t nr_left = le32_to_cpu(left->header.nr_entries); | 
|  | uint32_t value_size = le32_to_cpu(left->header.value_size); | 
|  |  | 
|  | if (value_size != le32_to_cpu(right->header.value_size)) { | 
|  | DMERR("mismatched value size"); | 
|  | return -EILSEQ; | 
|  | } | 
|  |  | 
|  | if (shift < 0) { | 
|  | shift = -shift; | 
|  |  | 
|  | if (nr_left + shift > le32_to_cpu(left->header.max_entries)) { | 
|  | DMERR("bad shift"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | memcpy(key_ptr(left, nr_left), | 
|  | key_ptr(right, 0), | 
|  | shift * sizeof(__le64)); | 
|  | memcpy(value_ptr(left, nr_left), | 
|  | value_ptr(right, 0), | 
|  | shift * value_size); | 
|  | } else { | 
|  | if (shift > le32_to_cpu(right->header.max_entries)) { | 
|  | DMERR("bad shift"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | memcpy(key_ptr(right, 0), | 
|  | key_ptr(left, nr_left - shift), | 
|  | shift * sizeof(__le64)); | 
|  | memcpy(value_ptr(right, 0), | 
|  | value_ptr(left, nr_left - shift), | 
|  | shift * value_size); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete a specific entry from a leaf node. | 
|  | */ | 
|  | static void delete_at(struct btree_node *n, unsigned int index) | 
|  | { | 
|  | unsigned int nr_entries = le32_to_cpu(n->header.nr_entries); | 
|  | unsigned int nr_to_copy = nr_entries - (index + 1); | 
|  | uint32_t value_size = le32_to_cpu(n->header.value_size); | 
|  |  | 
|  | BUG_ON(index >= nr_entries); | 
|  |  | 
|  | if (nr_to_copy) { | 
|  | memmove(key_ptr(n, index), | 
|  | key_ptr(n, index + 1), | 
|  | nr_to_copy * sizeof(__le64)); | 
|  |  | 
|  | memmove(value_ptr(n, index), | 
|  | value_ptr(n, index + 1), | 
|  | nr_to_copy * value_size); | 
|  | } | 
|  |  | 
|  | n->header.nr_entries = cpu_to_le32(nr_entries - 1); | 
|  | } | 
|  |  | 
|  | static unsigned int merge_threshold(struct btree_node *n) | 
|  | { | 
|  | return le32_to_cpu(n->header.max_entries) / 3; | 
|  | } | 
|  |  | 
|  | struct child { | 
|  | unsigned int index; | 
|  | struct dm_block *block; | 
|  | struct btree_node *n; | 
|  | }; | 
|  |  | 
|  | static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt, | 
|  | struct btree_node *parent, | 
|  | unsigned int index, struct child *result) | 
|  | { | 
|  | int r, inc; | 
|  | dm_block_t root; | 
|  |  | 
|  | result->index = index; | 
|  | root = value64(parent, index); | 
|  |  | 
|  | r = dm_tm_shadow_block(info->tm, root, &btree_node_validator, | 
|  | &result->block, &inc); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | result->n = dm_block_data(result->block); | 
|  |  | 
|  | if (inc) | 
|  | inc_children(info->tm, result->n, vt); | 
|  |  | 
|  | *((__le64 *) value_ptr(parent, index)) = | 
|  | cpu_to_le64(dm_block_location(result->block)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void exit_child(struct dm_btree_info *info, struct child *c) | 
|  | { | 
|  | dm_tm_unlock(info->tm, c->block); | 
|  | } | 
|  |  | 
|  | static int shift(struct btree_node *left, struct btree_node *right, int count) | 
|  | { | 
|  | int r; | 
|  | uint32_t nr_left = le32_to_cpu(left->header.nr_entries); | 
|  | uint32_t nr_right = le32_to_cpu(right->header.nr_entries); | 
|  | uint32_t max_entries = le32_to_cpu(left->header.max_entries); | 
|  | uint32_t r_max_entries = le32_to_cpu(right->header.max_entries); | 
|  |  | 
|  | if (max_entries != r_max_entries) { | 
|  | DMERR("node max_entries mismatch"); | 
|  | return -EILSEQ; | 
|  | } | 
|  |  | 
|  | if (nr_left - count > max_entries) { | 
|  | DMERR("node shift out of bounds"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (nr_right + count > max_entries) { | 
|  | DMERR("node shift out of bounds"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!count) | 
|  | return 0; | 
|  |  | 
|  | if (count > 0) { | 
|  | node_shift(right, count); | 
|  | r = node_copy(left, right, count); | 
|  | if (r) | 
|  | return r; | 
|  | } else { | 
|  | r = node_copy(left, right, count); | 
|  | if (r) | 
|  | return r; | 
|  | node_shift(right, count); | 
|  | } | 
|  |  | 
|  | left->header.nr_entries = cpu_to_le32(nr_left - count); | 
|  | right->header.nr_entries = cpu_to_le32(nr_right + count); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __rebalance2(struct dm_btree_info *info, struct btree_node *parent, | 
|  | struct child *l, struct child *r) | 
|  | { | 
|  | int ret; | 
|  | struct btree_node *left = l->n; | 
|  | struct btree_node *right = r->n; | 
|  | uint32_t nr_left = le32_to_cpu(left->header.nr_entries); | 
|  | uint32_t nr_right = le32_to_cpu(right->header.nr_entries); | 
|  | /* | 
|  | * Ensure the number of entries in each child will be greater | 
|  | * than or equal to (max_entries / 3 + 1), so no matter which | 
|  | * child is used for removal, the number will still be not | 
|  | * less than (max_entries / 3). | 
|  | */ | 
|  | unsigned int threshold = 2 * (merge_threshold(left) + 1); | 
|  |  | 
|  | if (nr_left + nr_right < threshold) { | 
|  | /* | 
|  | * Merge | 
|  | */ | 
|  | node_copy(left, right, -nr_right); | 
|  | left->header.nr_entries = cpu_to_le32(nr_left + nr_right); | 
|  | delete_at(parent, r->index); | 
|  |  | 
|  | /* | 
|  | * We need to decrement the right block, but not it's | 
|  | * children, since they're still referenced by left. | 
|  | */ | 
|  | dm_tm_dec(info->tm, dm_block_location(r->block)); | 
|  | } else { | 
|  | /* | 
|  | * Rebalance. | 
|  | */ | 
|  | unsigned int target_left = (nr_left + nr_right) / 2; | 
|  |  | 
|  | ret = shift(left, right, nr_left - target_left); | 
|  | if (ret) | 
|  | return ret; | 
|  | *key_ptr(parent, r->index) = right->keys[0]; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info, | 
|  | struct dm_btree_value_type *vt, unsigned int left_index) | 
|  | { | 
|  | int r; | 
|  | struct btree_node *parent; | 
|  | struct child left, right; | 
|  |  | 
|  | parent = dm_block_data(shadow_current(s)); | 
|  |  | 
|  | r = init_child(info, vt, parent, left_index, &left); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = init_child(info, vt, parent, left_index + 1, &right); | 
|  | if (r) { | 
|  | exit_child(info, &left); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = __rebalance2(info, parent, &left, &right); | 
|  |  | 
|  | exit_child(info, &left); | 
|  | exit_child(info, &right); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We dump as many entries from center as possible into left, then the rest | 
|  | * in right, then rebalance2.  This wastes some cpu, but I want something | 
|  | * simple atm. | 
|  | */ | 
|  | static int delete_center_node(struct dm_btree_info *info, struct btree_node *parent, | 
|  | struct child *l, struct child *c, struct child *r, | 
|  | struct btree_node *left, struct btree_node *center, struct btree_node *right, | 
|  | uint32_t nr_left, uint32_t nr_center, uint32_t nr_right) | 
|  | { | 
|  | uint32_t max_entries = le32_to_cpu(left->header.max_entries); | 
|  | unsigned int shift = min(max_entries - nr_left, nr_center); | 
|  |  | 
|  | if (nr_left + shift > max_entries) { | 
|  | DMERR("node shift out of bounds"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | node_copy(left, center, -shift); | 
|  | left->header.nr_entries = cpu_to_le32(nr_left + shift); | 
|  |  | 
|  | if (shift != nr_center) { | 
|  | shift = nr_center - shift; | 
|  |  | 
|  | if ((nr_right + shift) > max_entries) { | 
|  | DMERR("node shift out of bounds"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | node_shift(right, shift); | 
|  | node_copy(center, right, shift); | 
|  | right->header.nr_entries = cpu_to_le32(nr_right + shift); | 
|  | } | 
|  | *key_ptr(parent, r->index) = right->keys[0]; | 
|  |  | 
|  | delete_at(parent, c->index); | 
|  | r->index--; | 
|  |  | 
|  | dm_tm_dec(info->tm, dm_block_location(c->block)); | 
|  | return __rebalance2(info, parent, l, r); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Redistributes entries among 3 sibling nodes. | 
|  | */ | 
|  | static int redistribute3(struct dm_btree_info *info, struct btree_node *parent, | 
|  | struct child *l, struct child *c, struct child *r, | 
|  | struct btree_node *left, struct btree_node *center, struct btree_node *right, | 
|  | uint32_t nr_left, uint32_t nr_center, uint32_t nr_right) | 
|  | { | 
|  | int s, ret; | 
|  | uint32_t max_entries = le32_to_cpu(left->header.max_entries); | 
|  | unsigned int total = nr_left + nr_center + nr_right; | 
|  | unsigned int target_right = total / 3; | 
|  | unsigned int remainder = (target_right * 3) != total; | 
|  | unsigned int target_left = target_right + remainder; | 
|  |  | 
|  | BUG_ON(target_left > max_entries); | 
|  | BUG_ON(target_right > max_entries); | 
|  |  | 
|  | if (nr_left < nr_right) { | 
|  | s = nr_left - target_left; | 
|  |  | 
|  | if (s < 0 && nr_center < -s) { | 
|  | /* not enough in central node */ | 
|  | ret = shift(left, center, -nr_center); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | s += nr_center; | 
|  | ret = shift(left, right, s); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | nr_right += s; | 
|  | } else { | 
|  | ret = shift(left, center, s); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = shift(center, right, target_right - nr_right); | 
|  | if (ret) | 
|  | return ret; | 
|  | } else { | 
|  | s = target_right - nr_right; | 
|  | if (s > 0 && nr_center < s) { | 
|  | /* not enough in central node */ | 
|  | ret = shift(center, right, nr_center); | 
|  | if (ret) | 
|  | return ret; | 
|  | s -= nr_center; | 
|  | ret = shift(left, right, s); | 
|  | if (ret) | 
|  | return ret; | 
|  | nr_left -= s; | 
|  | } else { | 
|  | ret = shift(center, right, s); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = shift(left, center, nr_left - target_left); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | *key_ptr(parent, c->index) = center->keys[0]; | 
|  | *key_ptr(parent, r->index) = right->keys[0]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __rebalance3(struct dm_btree_info *info, struct btree_node *parent, | 
|  | struct child *l, struct child *c, struct child *r) | 
|  | { | 
|  | struct btree_node *left = l->n; | 
|  | struct btree_node *center = c->n; | 
|  | struct btree_node *right = r->n; | 
|  |  | 
|  | uint32_t nr_left = le32_to_cpu(left->header.nr_entries); | 
|  | uint32_t nr_center = le32_to_cpu(center->header.nr_entries); | 
|  | uint32_t nr_right = le32_to_cpu(right->header.nr_entries); | 
|  |  | 
|  | unsigned int threshold = merge_threshold(left) * 4 + 1; | 
|  |  | 
|  | if ((left->header.max_entries != center->header.max_entries) || | 
|  | (center->header.max_entries != right->header.max_entries)) { | 
|  | DMERR("bad btree metadata, max_entries differ"); | 
|  | return -EILSEQ; | 
|  | } | 
|  |  | 
|  | if ((nr_left + nr_center + nr_right) < threshold) { | 
|  | return delete_center_node(info, parent, l, c, r, left, center, right, | 
|  | nr_left, nr_center, nr_right); | 
|  | } | 
|  |  | 
|  | return redistribute3(info, parent, l, c, r, left, center, right, | 
|  | nr_left, nr_center, nr_right); | 
|  | } | 
|  |  | 
|  | static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info, | 
|  | struct dm_btree_value_type *vt, unsigned int left_index) | 
|  | { | 
|  | int r; | 
|  | struct btree_node *parent = dm_block_data(shadow_current(s)); | 
|  | struct child left, center, right; | 
|  |  | 
|  | /* | 
|  | * FIXME: fill out an array? | 
|  | */ | 
|  | r = init_child(info, vt, parent, left_index, &left); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = init_child(info, vt, parent, left_index + 1, ¢er); | 
|  | if (r) { | 
|  | exit_child(info, &left); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = init_child(info, vt, parent, left_index + 2, &right); | 
|  | if (r) { | 
|  | exit_child(info, &left); | 
|  | exit_child(info, ¢er); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = __rebalance3(info, parent, &left, ¢er, &right); | 
|  |  | 
|  | exit_child(info, &left); | 
|  | exit_child(info, ¢er); | 
|  | exit_child(info, &right); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int rebalance_children(struct shadow_spine *s, | 
|  | struct dm_btree_info *info, | 
|  | struct dm_btree_value_type *vt, uint64_t key) | 
|  | { | 
|  | int i, r, has_left_sibling, has_right_sibling; | 
|  | struct btree_node *n; | 
|  |  | 
|  | n = dm_block_data(shadow_current(s)); | 
|  |  | 
|  | if (le32_to_cpu(n->header.nr_entries) == 1) { | 
|  | struct dm_block *child; | 
|  | dm_block_t b = value64(n, 0); | 
|  |  | 
|  | r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | memcpy(n, dm_block_data(child), | 
|  | dm_bm_block_size(dm_tm_get_bm(info->tm))); | 
|  |  | 
|  | dm_tm_dec(info->tm, dm_block_location(child)); | 
|  | dm_tm_unlock(info->tm, child); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | i = lower_bound(n, key); | 
|  | if (i < 0) | 
|  | return -ENODATA; | 
|  |  | 
|  | has_left_sibling = i > 0; | 
|  | has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1); | 
|  |  | 
|  | if (!has_left_sibling) | 
|  | r = rebalance2(s, info, vt, i); | 
|  |  | 
|  | else if (!has_right_sibling) | 
|  | r = rebalance2(s, info, vt, i - 1); | 
|  |  | 
|  | else | 
|  | r = rebalance3(s, info, vt, i - 1); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int do_leaf(struct btree_node *n, uint64_t key, unsigned int *index) | 
|  | { | 
|  | int i = lower_bound(n, key); | 
|  |  | 
|  | if ((i < 0) || | 
|  | (i >= le32_to_cpu(n->header.nr_entries)) || | 
|  | (le64_to_cpu(n->keys[i]) != key)) | 
|  | return -ENODATA; | 
|  |  | 
|  | *index = i; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepares for removal from one level of the hierarchy.  The caller must | 
|  | * call delete_at() to remove the entry at index. | 
|  | */ | 
|  | static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info, | 
|  | struct dm_btree_value_type *vt, dm_block_t root, | 
|  | uint64_t key, unsigned int *index) | 
|  | { | 
|  | int i = *index, r; | 
|  | struct btree_node *n; | 
|  |  | 
|  | for (;;) { | 
|  | r = shadow_step(s, root, vt); | 
|  | if (r < 0) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We have to patch up the parent node, ugly, but I don't | 
|  | * see a way to do this automatically as part of the spine | 
|  | * op. | 
|  | */ | 
|  | if (shadow_has_parent(s)) { | 
|  | __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); | 
|  |  | 
|  | memcpy(value_ptr(dm_block_data(shadow_parent(s)), i), | 
|  | &location, sizeof(__le64)); | 
|  | } | 
|  |  | 
|  | n = dm_block_data(shadow_current(s)); | 
|  |  | 
|  | if (le32_to_cpu(n->header.flags) & LEAF_NODE) | 
|  | return do_leaf(n, key, index); | 
|  |  | 
|  | r = rebalance_children(s, info, vt, key); | 
|  | if (r) | 
|  | break; | 
|  |  | 
|  | n = dm_block_data(shadow_current(s)); | 
|  | if (le32_to_cpu(n->header.flags) & LEAF_NODE) | 
|  | return do_leaf(n, key, index); | 
|  |  | 
|  | i = lower_bound(n, key); | 
|  |  | 
|  | /* | 
|  | * We know the key is present, or else | 
|  | * rebalance_children would have returned | 
|  | * -ENODATA | 
|  | */ | 
|  | root = value64(n, i); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int dm_btree_remove(struct dm_btree_info *info, dm_block_t root, | 
|  | uint64_t *keys, dm_block_t *new_root) | 
|  | { | 
|  | unsigned int level, last_level = info->levels - 1; | 
|  | int index = 0, r = 0; | 
|  | struct shadow_spine spine; | 
|  | struct btree_node *n; | 
|  | struct dm_btree_value_type le64_vt; | 
|  |  | 
|  | init_le64_type(info->tm, &le64_vt); | 
|  | init_shadow_spine(&spine, info); | 
|  | for (level = 0; level < info->levels; level++) { | 
|  | r = remove_raw(&spine, info, | 
|  | (level == last_level ? | 
|  | &info->value_type : &le64_vt), | 
|  | root, keys[level], (unsigned int *)&index); | 
|  | if (r < 0) | 
|  | break; | 
|  |  | 
|  | n = dm_block_data(shadow_current(&spine)); | 
|  | if (level != last_level) { | 
|  | root = value64(n, index); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries)); | 
|  |  | 
|  | if (info->value_type.dec) | 
|  | info->value_type.dec(info->value_type.context, | 
|  | value_ptr(n, index), 1); | 
|  |  | 
|  | delete_at(n, index); | 
|  | } | 
|  |  | 
|  | if (!r) | 
|  | *new_root = shadow_root(&spine); | 
|  | exit_shadow_spine(&spine); | 
|  |  | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_remove); | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info, | 
|  | struct dm_btree_value_type *vt, dm_block_t root, | 
|  | uint64_t key, int *index) | 
|  | { | 
|  | int i = *index, r; | 
|  | struct btree_node *n; | 
|  |  | 
|  | for (;;) { | 
|  | r = shadow_step(s, root, vt); | 
|  | if (r < 0) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We have to patch up the parent node, ugly, but I don't | 
|  | * see a way to do this automatically as part of the spine | 
|  | * op. | 
|  | */ | 
|  | if (shadow_has_parent(s)) { | 
|  | __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); | 
|  |  | 
|  | memcpy(value_ptr(dm_block_data(shadow_parent(s)), i), | 
|  | &location, sizeof(__le64)); | 
|  | } | 
|  |  | 
|  | n = dm_block_data(shadow_current(s)); | 
|  |  | 
|  | if (le32_to_cpu(n->header.flags) & LEAF_NODE) { | 
|  | *index = lower_bound(n, key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | r = rebalance_children(s, info, vt, key); | 
|  | if (r) | 
|  | break; | 
|  |  | 
|  | n = dm_block_data(shadow_current(s)); | 
|  | if (le32_to_cpu(n->header.flags) & LEAF_NODE) { | 
|  | *index = lower_bound(n, key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | i = lower_bound(n, key); | 
|  |  | 
|  | /* | 
|  | * We know the key is present, or else | 
|  | * rebalance_children would have returned | 
|  | * -ENODATA | 
|  | */ | 
|  | root = value64(n, i); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int remove_one(struct dm_btree_info *info, dm_block_t root, | 
|  | uint64_t *keys, uint64_t end_key, | 
|  | dm_block_t *new_root, unsigned int *nr_removed) | 
|  | { | 
|  | unsigned int level, last_level = info->levels - 1; | 
|  | int index = 0, r = 0; | 
|  | struct shadow_spine spine; | 
|  | struct btree_node *n; | 
|  | struct dm_btree_value_type le64_vt; | 
|  | uint64_t k; | 
|  |  | 
|  | init_le64_type(info->tm, &le64_vt); | 
|  | init_shadow_spine(&spine, info); | 
|  | for (level = 0; level < last_level; level++) { | 
|  | r = remove_raw(&spine, info, &le64_vt, | 
|  | root, keys[level], (unsigned int *) &index); | 
|  | if (r < 0) | 
|  | goto out; | 
|  |  | 
|  | n = dm_block_data(shadow_current(&spine)); | 
|  | root = value64(n, index); | 
|  | } | 
|  |  | 
|  | r = remove_nearest(&spine, info, &info->value_type, | 
|  | root, keys[last_level], &index); | 
|  | if (r < 0) | 
|  | goto out; | 
|  |  | 
|  | n = dm_block_data(shadow_current(&spine)); | 
|  |  | 
|  | if (index < 0) | 
|  | index = 0; | 
|  |  | 
|  | if (index >= le32_to_cpu(n->header.nr_entries)) { | 
|  | r = -ENODATA; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | k = le64_to_cpu(n->keys[index]); | 
|  | if (k >= keys[last_level] && k < end_key) { | 
|  | if (info->value_type.dec) | 
|  | info->value_type.dec(info->value_type.context, | 
|  | value_ptr(n, index), 1); | 
|  |  | 
|  | delete_at(n, index); | 
|  | keys[last_level] = k + 1ull; | 
|  |  | 
|  | } else | 
|  | r = -ENODATA; | 
|  |  | 
|  | out: | 
|  | *new_root = shadow_root(&spine); | 
|  | exit_shadow_spine(&spine); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root, | 
|  | uint64_t *first_key, uint64_t end_key, | 
|  | dm_block_t *new_root, unsigned int *nr_removed) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | *nr_removed = 0; | 
|  | do { | 
|  | r = remove_one(info, root, first_key, end_key, &root, nr_removed); | 
|  | if (!r) | 
|  | (*nr_removed)++; | 
|  | } while (!r); | 
|  |  | 
|  | *new_root = root; | 
|  | return r == -ENODATA ? 0 : r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_remove_leaves); |