| /* |
| * Copyright 2014 Advanced Micro Devices, Inc. |
| * Copyright 2008 Red Hat Inc. |
| * Copyright 2009 Jerome Glisse. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/firmware.h> |
| #include <linux/pm_runtime.h> |
| |
| #include "amdgpu.h" |
| #include "amdgpu_gfx.h" |
| #include "amdgpu_rlc.h" |
| #include "amdgpu_ras.h" |
| #include "amdgpu_reset.h" |
| #include "amdgpu_xcp.h" |
| #include "amdgpu_xgmi.h" |
| #include "nvd.h" |
| |
| /* delay 0.1 second to enable gfx off feature */ |
| #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) |
| |
| #define GFX_OFF_NO_DELAY 0 |
| |
| /* |
| * GPU GFX IP block helpers function. |
| */ |
| |
| int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, |
| int pipe, int queue) |
| { |
| int bit = 0; |
| |
| bit += mec * adev->gfx.mec.num_pipe_per_mec |
| * adev->gfx.mec.num_queue_per_pipe; |
| bit += pipe * adev->gfx.mec.num_queue_per_pipe; |
| bit += queue; |
| |
| return bit; |
| } |
| |
| void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, |
| int *mec, int *pipe, int *queue) |
| { |
| *queue = bit % adev->gfx.mec.num_queue_per_pipe; |
| *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) |
| % adev->gfx.mec.num_pipe_per_mec; |
| *mec = (bit / adev->gfx.mec.num_queue_per_pipe) |
| / adev->gfx.mec.num_pipe_per_mec; |
| |
| } |
| |
| bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, |
| int xcc_id, int mec, int pipe, int queue) |
| { |
| return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), |
| adev->gfx.mec_bitmap[xcc_id].queue_bitmap); |
| } |
| |
| static int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, |
| int me, int pipe, int queue) |
| { |
| int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */ |
| int bit = 0; |
| |
| bit += me * adev->gfx.me.num_pipe_per_me |
| * num_queue_per_pipe; |
| bit += pipe * num_queue_per_pipe; |
| bit += queue; |
| |
| return bit; |
| } |
| |
| bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, |
| int me, int pipe, int queue) |
| { |
| return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), |
| adev->gfx.me.queue_bitmap); |
| } |
| |
| /** |
| * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter |
| * |
| * @mask: array in which the per-shader array disable masks will be stored |
| * @max_se: number of SEs |
| * @max_sh: number of SHs |
| * |
| * The bitmask of CUs to be disabled in the shader array determined by se and |
| * sh is stored in mask[se * max_sh + sh]. |
| */ |
| void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) |
| { |
| unsigned int se, sh, cu; |
| const char *p; |
| |
| memset(mask, 0, sizeof(*mask) * max_se * max_sh); |
| |
| if (!amdgpu_disable_cu || !*amdgpu_disable_cu) |
| return; |
| |
| p = amdgpu_disable_cu; |
| for (;;) { |
| char *next; |
| int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); |
| |
| if (ret < 3) { |
| DRM_ERROR("amdgpu: could not parse disable_cu\n"); |
| return; |
| } |
| |
| if (se < max_se && sh < max_sh && cu < 16) { |
| DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); |
| mask[se * max_sh + sh] |= 1u << cu; |
| } else { |
| DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", |
| se, sh, cu); |
| } |
| |
| next = strchr(p, ','); |
| if (!next) |
| break; |
| p = next + 1; |
| } |
| } |
| |
| static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) |
| { |
| return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; |
| } |
| |
| static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) |
| { |
| if (amdgpu_compute_multipipe != -1) { |
| dev_info(adev->dev, "amdgpu: forcing compute pipe policy %d\n", |
| amdgpu_compute_multipipe); |
| return amdgpu_compute_multipipe == 1; |
| } |
| |
| if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) |
| return true; |
| |
| /* FIXME: spreading the queues across pipes causes perf regressions |
| * on POLARIS11 compute workloads */ |
| if (adev->asic_type == CHIP_POLARIS11) |
| return false; |
| |
| return adev->gfx.mec.num_mec > 1; |
| } |
| |
| bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, |
| struct amdgpu_ring *ring) |
| { |
| int queue = ring->queue; |
| int pipe = ring->pipe; |
| |
| /* Policy: use pipe1 queue0 as high priority graphics queue if we |
| * have more than one gfx pipe. |
| */ |
| if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && |
| adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { |
| int me = ring->me; |
| int bit; |
| |
| bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); |
| if (ring == &adev->gfx.gfx_ring[bit]) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, |
| struct amdgpu_ring *ring) |
| { |
| /* Policy: use 1st queue as high priority compute queue if we |
| * have more than one compute queue. |
| */ |
| if (adev->gfx.num_compute_rings > 1 && |
| ring == &adev->gfx.compute_ring[0]) |
| return true; |
| |
| return false; |
| } |
| |
| void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) |
| { |
| int i, j, queue, pipe; |
| bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); |
| int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * |
| adev->gfx.mec.num_queue_per_pipe, |
| adev->gfx.num_compute_rings); |
| int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; |
| |
| if (multipipe_policy) { |
| /* policy: make queues evenly cross all pipes on MEC1 only |
| * for multiple xcc, just use the original policy for simplicity */ |
| for (j = 0; j < num_xcc; j++) { |
| for (i = 0; i < max_queues_per_mec; i++) { |
| pipe = i % adev->gfx.mec.num_pipe_per_mec; |
| queue = (i / adev->gfx.mec.num_pipe_per_mec) % |
| adev->gfx.mec.num_queue_per_pipe; |
| |
| set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, |
| adev->gfx.mec_bitmap[j].queue_bitmap); |
| } |
| } |
| } else { |
| /* policy: amdgpu owns all queues in the given pipe */ |
| for (j = 0; j < num_xcc; j++) { |
| for (i = 0; i < max_queues_per_mec; ++i) |
| set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); |
| } |
| } |
| |
| for (j = 0; j < num_xcc; j++) { |
| dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", |
| bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); |
| } |
| } |
| |
| void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) |
| { |
| int i, queue, pipe; |
| bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); |
| int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */ |
| int max_queues_per_me = adev->gfx.me.num_pipe_per_me * num_queue_per_pipe; |
| |
| if (multipipe_policy) { |
| /* policy: amdgpu owns the first queue per pipe at this stage |
| * will extend to mulitple queues per pipe later */ |
| for (i = 0; i < max_queues_per_me; i++) { |
| pipe = i % adev->gfx.me.num_pipe_per_me; |
| queue = (i / adev->gfx.me.num_pipe_per_me) % |
| num_queue_per_pipe; |
| |
| set_bit(pipe * num_queue_per_pipe + queue, |
| adev->gfx.me.queue_bitmap); |
| } |
| } else { |
| for (i = 0; i < max_queues_per_me; ++i) |
| set_bit(i, adev->gfx.me.queue_bitmap); |
| } |
| |
| /* update the number of active graphics rings */ |
| if (adev->gfx.num_gfx_rings) |
| adev->gfx.num_gfx_rings = |
| bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); |
| } |
| |
| static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, |
| struct amdgpu_ring *ring, int xcc_id) |
| { |
| int queue_bit; |
| int mec, pipe, queue; |
| |
| queue_bit = adev->gfx.mec.num_mec |
| * adev->gfx.mec.num_pipe_per_mec |
| * adev->gfx.mec.num_queue_per_pipe; |
| |
| while (--queue_bit >= 0) { |
| if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) |
| continue; |
| |
| amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); |
| |
| /* |
| * 1. Using pipes 2/3 from MEC 2 seems cause problems. |
| * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN |
| * only can be issued on queue 0. |
| */ |
| if ((mec == 1 && pipe > 1) || queue != 0) |
| continue; |
| |
| ring->me = mec + 1; |
| ring->pipe = pipe; |
| ring->queue = queue; |
| |
| return 0; |
| } |
| |
| dev_err(adev->dev, "Failed to find a queue for KIQ\n"); |
| return -EINVAL; |
| } |
| |
| int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id) |
| { |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| struct amdgpu_irq_src *irq = &kiq->irq; |
| struct amdgpu_ring *ring = &kiq->ring; |
| int r = 0; |
| |
| spin_lock_init(&kiq->ring_lock); |
| |
| ring->adev = NULL; |
| ring->ring_obj = NULL; |
| ring->use_doorbell = true; |
| ring->xcc_id = xcc_id; |
| ring->vm_hub = AMDGPU_GFXHUB(xcc_id); |
| ring->doorbell_index = |
| (adev->doorbell_index.kiq + |
| xcc_id * adev->doorbell_index.xcc_doorbell_range) |
| << 1; |
| |
| r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); |
| if (r) |
| return r; |
| |
| ring->eop_gpu_addr = kiq->eop_gpu_addr; |
| ring->no_scheduler = true; |
| snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu", |
| (unsigned char)xcc_id, (unsigned char)ring->me, |
| (unsigned char)ring->pipe, (unsigned char)ring->queue); |
| r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, |
| AMDGPU_RING_PRIO_DEFAULT, NULL); |
| if (r) |
| dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); |
| |
| return r; |
| } |
| |
| void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) |
| { |
| amdgpu_ring_fini(ring); |
| } |
| |
| void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) |
| { |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| |
| amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); |
| } |
| |
| int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, |
| unsigned int hpd_size, int xcc_id) |
| { |
| int r; |
| u32 *hpd; |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| |
| r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, |
| AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, |
| &kiq->eop_gpu_addr, (void **)&hpd); |
| if (r) { |
| dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); |
| return r; |
| } |
| |
| memset(hpd, 0, hpd_size); |
| |
| r = amdgpu_bo_reserve(kiq->eop_obj, true); |
| if (unlikely(r != 0)) |
| dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); |
| amdgpu_bo_kunmap(kiq->eop_obj); |
| amdgpu_bo_unreserve(kiq->eop_obj); |
| |
| return 0; |
| } |
| |
| /* create MQD for each compute/gfx queue */ |
| int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, |
| unsigned int mqd_size, int xcc_id) |
| { |
| int r, i, j; |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| struct amdgpu_ring *ring = &kiq->ring; |
| u32 domain = AMDGPU_GEM_DOMAIN_GTT; |
| |
| #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) |
| /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ |
| if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) |
| domain |= AMDGPU_GEM_DOMAIN_VRAM; |
| #endif |
| |
| /* create MQD for KIQ */ |
| if (!adev->enable_mes_kiq && !ring->mqd_obj) { |
| /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must |
| * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD |
| * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for |
| * KIQ MQD no matter SRIOV or Bare-metal |
| */ |
| r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, |
| AMDGPU_GEM_DOMAIN_VRAM | |
| AMDGPU_GEM_DOMAIN_GTT, |
| &ring->mqd_obj, |
| &ring->mqd_gpu_addr, |
| &ring->mqd_ptr); |
| if (r) { |
| dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); |
| return r; |
| } |
| |
| /* prepare MQD backup */ |
| kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL); |
| if (!kiq->mqd_backup) { |
| dev_warn(adev->dev, |
| "no memory to create MQD backup for ring %s\n", ring->name); |
| return -ENOMEM; |
| } |
| } |
| |
| if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { |
| /* create MQD for each KGQ */ |
| for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| ring = &adev->gfx.gfx_ring[i]; |
| if (!ring->mqd_obj) { |
| r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, |
| domain, &ring->mqd_obj, |
| &ring->mqd_gpu_addr, &ring->mqd_ptr); |
| if (r) { |
| dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); |
| return r; |
| } |
| |
| ring->mqd_size = mqd_size; |
| /* prepare MQD backup */ |
| adev->gfx.me.mqd_backup[i] = kzalloc(mqd_size, GFP_KERNEL); |
| if (!adev->gfx.me.mqd_backup[i]) { |
| dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); |
| return -ENOMEM; |
| } |
| } |
| } |
| } |
| |
| /* create MQD for each KCQ */ |
| for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| j = i + xcc_id * adev->gfx.num_compute_rings; |
| ring = &adev->gfx.compute_ring[j]; |
| if (!ring->mqd_obj) { |
| r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, |
| domain, &ring->mqd_obj, |
| &ring->mqd_gpu_addr, &ring->mqd_ptr); |
| if (r) { |
| dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); |
| return r; |
| } |
| |
| ring->mqd_size = mqd_size; |
| /* prepare MQD backup */ |
| adev->gfx.mec.mqd_backup[j] = kzalloc(mqd_size, GFP_KERNEL); |
| if (!adev->gfx.mec.mqd_backup[j]) { |
| dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); |
| return -ENOMEM; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) |
| { |
| struct amdgpu_ring *ring = NULL; |
| int i, j; |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| |
| if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { |
| for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| ring = &adev->gfx.gfx_ring[i]; |
| kfree(adev->gfx.me.mqd_backup[i]); |
| amdgpu_bo_free_kernel(&ring->mqd_obj, |
| &ring->mqd_gpu_addr, |
| &ring->mqd_ptr); |
| } |
| } |
| |
| for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| j = i + xcc_id * adev->gfx.num_compute_rings; |
| ring = &adev->gfx.compute_ring[j]; |
| kfree(adev->gfx.mec.mqd_backup[j]); |
| amdgpu_bo_free_kernel(&ring->mqd_obj, |
| &ring->mqd_gpu_addr, |
| &ring->mqd_ptr); |
| } |
| |
| ring = &kiq->ring; |
| kfree(kiq->mqd_backup); |
| amdgpu_bo_free_kernel(&ring->mqd_obj, |
| &ring->mqd_gpu_addr, |
| &ring->mqd_ptr); |
| } |
| |
| int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) |
| { |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| struct amdgpu_ring *kiq_ring = &kiq->ring; |
| int i, r = 0; |
| int j; |
| |
| if (adev->enable_mes) { |
| for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| j = i + xcc_id * adev->gfx.num_compute_rings; |
| amdgpu_mes_unmap_legacy_queue(adev, |
| &adev->gfx.compute_ring[j], |
| RESET_QUEUES, 0, 0); |
| } |
| return 0; |
| } |
| |
| if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) |
| return -EINVAL; |
| |
| if (!kiq_ring->sched.ready || amdgpu_in_reset(adev)) |
| return 0; |
| |
| spin_lock(&kiq->ring_lock); |
| if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * |
| adev->gfx.num_compute_rings)) { |
| spin_unlock(&kiq->ring_lock); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| j = i + xcc_id * adev->gfx.num_compute_rings; |
| kiq->pmf->kiq_unmap_queues(kiq_ring, |
| &adev->gfx.compute_ring[j], |
| RESET_QUEUES, 0, 0); |
| } |
| /* Submit unmap queue packet */ |
| amdgpu_ring_commit(kiq_ring); |
| /* |
| * Ring test will do a basic scratch register change check. Just run |
| * this to ensure that unmap queues that is submitted before got |
| * processed successfully before returning. |
| */ |
| r = amdgpu_ring_test_helper(kiq_ring); |
| |
| spin_unlock(&kiq->ring_lock); |
| |
| return r; |
| } |
| |
| int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) |
| { |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| struct amdgpu_ring *kiq_ring = &kiq->ring; |
| int i, r = 0; |
| int j; |
| |
| if (adev->enable_mes) { |
| if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { |
| for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| j = i + xcc_id * adev->gfx.num_gfx_rings; |
| amdgpu_mes_unmap_legacy_queue(adev, |
| &adev->gfx.gfx_ring[j], |
| PREEMPT_QUEUES, 0, 0); |
| } |
| } |
| return 0; |
| } |
| |
| if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) |
| return -EINVAL; |
| |
| if (!adev->gfx.kiq[0].ring.sched.ready || amdgpu_in_reset(adev)) |
| return 0; |
| |
| if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { |
| spin_lock(&kiq->ring_lock); |
| if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * |
| adev->gfx.num_gfx_rings)) { |
| spin_unlock(&kiq->ring_lock); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| j = i + xcc_id * adev->gfx.num_gfx_rings; |
| kiq->pmf->kiq_unmap_queues(kiq_ring, |
| &adev->gfx.gfx_ring[j], |
| PREEMPT_QUEUES, 0, 0); |
| } |
| /* Submit unmap queue packet */ |
| amdgpu_ring_commit(kiq_ring); |
| |
| /* |
| * Ring test will do a basic scratch register change check. |
| * Just run this to ensure that unmap queues that is submitted |
| * before got processed successfully before returning. |
| */ |
| r = amdgpu_ring_test_helper(kiq_ring); |
| spin_unlock(&kiq->ring_lock); |
| } |
| |
| return r; |
| } |
| |
| int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, |
| int queue_bit) |
| { |
| int mec, pipe, queue; |
| int set_resource_bit = 0; |
| |
| amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); |
| |
| set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; |
| |
| return set_resource_bit; |
| } |
| |
| static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id) |
| { |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| struct amdgpu_ring *kiq_ring = &kiq->ring; |
| uint64_t queue_mask = ~0ULL; |
| int r, i, j; |
| |
| amdgpu_device_flush_hdp(adev, NULL); |
| |
| if (!adev->enable_uni_mes) { |
| spin_lock(&kiq->ring_lock); |
| r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size); |
| if (r) { |
| dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); |
| spin_unlock(&kiq->ring_lock); |
| return r; |
| } |
| |
| kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); |
| r = amdgpu_ring_test_helper(kiq_ring); |
| spin_unlock(&kiq->ring_lock); |
| if (r) |
| dev_err(adev->dev, "KIQ failed to set resources\n"); |
| } |
| |
| for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| j = i + xcc_id * adev->gfx.num_compute_rings; |
| r = amdgpu_mes_map_legacy_queue(adev, |
| &adev->gfx.compute_ring[j]); |
| if (r) { |
| dev_err(adev->dev, "failed to map compute queue\n"); |
| return r; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) |
| { |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| struct amdgpu_ring *kiq_ring = &kiq->ring; |
| uint64_t queue_mask = 0; |
| int r, i, j; |
| |
| if (adev->mes.enable_legacy_queue_map) |
| return amdgpu_gfx_mes_enable_kcq(adev, xcc_id); |
| |
| if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) |
| return -EINVAL; |
| |
| for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { |
| if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) |
| continue; |
| |
| /* This situation may be hit in the future if a new HW |
| * generation exposes more than 64 queues. If so, the |
| * definition of queue_mask needs updating */ |
| if (WARN_ON(i > (sizeof(queue_mask)*8))) { |
| dev_err(adev->dev, "Invalid KCQ enabled: %d\n", i); |
| break; |
| } |
| |
| queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); |
| } |
| |
| amdgpu_device_flush_hdp(adev, NULL); |
| |
| dev_info(adev->dev, "kiq ring mec %d pipe %d q %d\n", kiq_ring->me, |
| kiq_ring->pipe, kiq_ring->queue); |
| |
| spin_lock(&kiq->ring_lock); |
| r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * |
| adev->gfx.num_compute_rings + |
| kiq->pmf->set_resources_size); |
| if (r) { |
| dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); |
| spin_unlock(&kiq->ring_lock); |
| return r; |
| } |
| |
| kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); |
| for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| j = i + xcc_id * adev->gfx.num_compute_rings; |
| kiq->pmf->kiq_map_queues(kiq_ring, |
| &adev->gfx.compute_ring[j]); |
| } |
| /* Submit map queue packet */ |
| amdgpu_ring_commit(kiq_ring); |
| /* |
| * Ring test will do a basic scratch register change check. Just run |
| * this to ensure that map queues that is submitted before got |
| * processed successfully before returning. |
| */ |
| r = amdgpu_ring_test_helper(kiq_ring); |
| spin_unlock(&kiq->ring_lock); |
| if (r) |
| dev_err(adev->dev, "KCQ enable failed\n"); |
| |
| return r; |
| } |
| |
| int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) |
| { |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| struct amdgpu_ring *kiq_ring = &kiq->ring; |
| int r, i, j; |
| |
| if (!kiq->pmf || !kiq->pmf->kiq_map_queues) |
| return -EINVAL; |
| |
| amdgpu_device_flush_hdp(adev, NULL); |
| |
| if (adev->mes.enable_legacy_queue_map) { |
| for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| j = i + xcc_id * adev->gfx.num_gfx_rings; |
| r = amdgpu_mes_map_legacy_queue(adev, |
| &adev->gfx.gfx_ring[j]); |
| if (r) { |
| dev_err(adev->dev, "failed to map gfx queue\n"); |
| return r; |
| } |
| } |
| |
| return 0; |
| } |
| |
| spin_lock(&kiq->ring_lock); |
| /* No need to map kcq on the slave */ |
| if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { |
| r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * |
| adev->gfx.num_gfx_rings); |
| if (r) { |
| dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); |
| spin_unlock(&kiq->ring_lock); |
| return r; |
| } |
| |
| for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| j = i + xcc_id * adev->gfx.num_gfx_rings; |
| kiq->pmf->kiq_map_queues(kiq_ring, |
| &adev->gfx.gfx_ring[j]); |
| } |
| } |
| /* Submit map queue packet */ |
| amdgpu_ring_commit(kiq_ring); |
| /* |
| * Ring test will do a basic scratch register change check. Just run |
| * this to ensure that map queues that is submitted before got |
| * processed successfully before returning. |
| */ |
| r = amdgpu_ring_test_helper(kiq_ring); |
| spin_unlock(&kiq->ring_lock); |
| if (r) |
| dev_err(adev->dev, "KGQ enable failed\n"); |
| |
| return r; |
| } |
| |
| static void amdgpu_gfx_do_off_ctrl(struct amdgpu_device *adev, bool enable, |
| bool no_delay) |
| { |
| unsigned long delay = GFX_OFF_DELAY_ENABLE; |
| |
| if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) |
| return; |
| |
| mutex_lock(&adev->gfx.gfx_off_mutex); |
| |
| if (enable) { |
| /* If the count is already 0, it means there's an imbalance bug somewhere. |
| * Note that the bug may be in a different caller than the one which triggers the |
| * WARN_ON_ONCE. |
| */ |
| if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) |
| goto unlock; |
| |
| adev->gfx.gfx_off_req_count--; |
| |
| if (adev->gfx.gfx_off_req_count == 0 && |
| !adev->gfx.gfx_off_state) { |
| /* If going to s2idle, no need to wait */ |
| if (no_delay) { |
| if (!amdgpu_dpm_set_powergating_by_smu(adev, |
| AMD_IP_BLOCK_TYPE_GFX, true, 0)) |
| adev->gfx.gfx_off_state = true; |
| } else { |
| schedule_delayed_work(&adev->gfx.gfx_off_delay_work, |
| delay); |
| } |
| } |
| } else { |
| if (adev->gfx.gfx_off_req_count == 0) { |
| cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); |
| |
| if (adev->gfx.gfx_off_state && |
| !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false, 0)) { |
| adev->gfx.gfx_off_state = false; |
| |
| if (adev->gfx.funcs->init_spm_golden) { |
| dev_dbg(adev->dev, |
| "GFXOFF is disabled, re-init SPM golden settings\n"); |
| amdgpu_gfx_init_spm_golden(adev); |
| } |
| } |
| } |
| |
| adev->gfx.gfx_off_req_count++; |
| } |
| |
| unlock: |
| mutex_unlock(&adev->gfx.gfx_off_mutex); |
| } |
| |
| /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable |
| * |
| * @adev: amdgpu_device pointer |
| * @bool enable true: enable gfx off feature, false: disable gfx off feature |
| * |
| * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled. |
| * 2. other client can send request to disable gfx off feature, the request should be honored. |
| * 3. other client can cancel their request of disable gfx off feature |
| * 4. other client should not send request to enable gfx off feature before disable gfx off feature. |
| * |
| * gfx off allow will be delayed by GFX_OFF_DELAY_ENABLE ms. |
| */ |
| void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) |
| { |
| /* If going to s2idle, no need to wait */ |
| bool no_delay = adev->in_s0ix ? true : false; |
| |
| amdgpu_gfx_do_off_ctrl(adev, enable, no_delay); |
| } |
| |
| /* amdgpu_gfx_off_ctrl_immediate - Handle gfx off feature enable/disable |
| * |
| * @adev: amdgpu_device pointer |
| * @bool enable true: enable gfx off feature, false: disable gfx off feature |
| * |
| * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled. |
| * 2. other client can send request to disable gfx off feature, the request should be honored. |
| * 3. other client can cancel their request of disable gfx off feature |
| * 4. other client should not send request to enable gfx off feature before disable gfx off feature. |
| * |
| * gfx off allow will be issued immediately. |
| */ |
| void amdgpu_gfx_off_ctrl_immediate(struct amdgpu_device *adev, bool enable) |
| { |
| amdgpu_gfx_do_off_ctrl(adev, enable, true); |
| } |
| |
| int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) |
| { |
| int r = 0; |
| |
| mutex_lock(&adev->gfx.gfx_off_mutex); |
| |
| r = amdgpu_dpm_set_residency_gfxoff(adev, value); |
| |
| mutex_unlock(&adev->gfx.gfx_off_mutex); |
| |
| return r; |
| } |
| |
| int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) |
| { |
| int r = 0; |
| |
| mutex_lock(&adev->gfx.gfx_off_mutex); |
| |
| r = amdgpu_dpm_get_residency_gfxoff(adev, value); |
| |
| mutex_unlock(&adev->gfx.gfx_off_mutex); |
| |
| return r; |
| } |
| |
| int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) |
| { |
| int r = 0; |
| |
| mutex_lock(&adev->gfx.gfx_off_mutex); |
| |
| r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); |
| |
| mutex_unlock(&adev->gfx.gfx_off_mutex); |
| |
| return r; |
| } |
| |
| int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) |
| { |
| |
| int r = 0; |
| |
| mutex_lock(&adev->gfx.gfx_off_mutex); |
| |
| r = amdgpu_dpm_get_status_gfxoff(adev, value); |
| |
| mutex_unlock(&adev->gfx.gfx_off_mutex); |
| |
| return r; |
| } |
| |
| int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) |
| { |
| int r; |
| |
| if (amdgpu_ras_is_supported(adev, ras_block->block)) { |
| if (!amdgpu_persistent_edc_harvesting_supported(adev)) { |
| r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); |
| if (r) |
| return r; |
| } |
| |
| r = amdgpu_ras_block_late_init(adev, ras_block); |
| if (r) |
| return r; |
| |
| if (amdgpu_sriov_vf(adev)) |
| return r; |
| |
| if (adev->gfx.cp_ecc_error_irq.funcs) { |
| r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); |
| if (r) |
| goto late_fini; |
| } |
| } else { |
| amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); |
| } |
| |
| return 0; |
| late_fini: |
| amdgpu_ras_block_late_fini(adev, ras_block); |
| return r; |
| } |
| |
| int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) |
| { |
| int err = 0; |
| struct amdgpu_gfx_ras *ras = NULL; |
| |
| /* adev->gfx.ras is NULL, which means gfx does not |
| * support ras function, then do nothing here. |
| */ |
| if (!adev->gfx.ras) |
| return 0; |
| |
| ras = adev->gfx.ras; |
| |
| err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); |
| if (err) { |
| dev_err(adev->dev, "Failed to register gfx ras block!\n"); |
| return err; |
| } |
| |
| strcpy(ras->ras_block.ras_comm.name, "gfx"); |
| ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; |
| ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; |
| adev->gfx.ras_if = &ras->ras_block.ras_comm; |
| |
| /* If not define special ras_late_init function, use gfx default ras_late_init */ |
| if (!ras->ras_block.ras_late_init) |
| ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; |
| |
| /* If not defined special ras_cb function, use default ras_cb */ |
| if (!ras->ras_block.ras_cb) |
| ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; |
| |
| return 0; |
| } |
| |
| int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, |
| struct amdgpu_iv_entry *entry) |
| { |
| if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) |
| return adev->gfx.ras->poison_consumption_handler(adev, entry); |
| |
| return 0; |
| } |
| |
| int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, |
| void *err_data, |
| struct amdgpu_iv_entry *entry) |
| { |
| /* TODO ue will trigger an interrupt. |
| * |
| * When “Full RAS” is enabled, the per-IP interrupt sources should |
| * be disabled and the driver should only look for the aggregated |
| * interrupt via sync flood |
| */ |
| if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { |
| kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); |
| if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && |
| adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) |
| adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); |
| amdgpu_ras_reset_gpu(adev); |
| } |
| return AMDGPU_RAS_SUCCESS; |
| } |
| |
| int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, |
| struct amdgpu_irq_src *source, |
| struct amdgpu_iv_entry *entry) |
| { |
| struct ras_common_if *ras_if = adev->gfx.ras_if; |
| struct ras_dispatch_if ih_data = { |
| .entry = entry, |
| }; |
| |
| if (!ras_if) |
| return 0; |
| |
| ih_data.head = *ras_if; |
| |
| dev_err(adev->dev, "CP ECC ERROR IRQ\n"); |
| amdgpu_ras_interrupt_dispatch(adev, &ih_data); |
| return 0; |
| } |
| |
| void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, |
| void *ras_error_status, |
| void (*func)(struct amdgpu_device *adev, void *ras_error_status, |
| int xcc_id)) |
| { |
| int i; |
| int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; |
| uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); |
| struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; |
| |
| if (err_data) { |
| err_data->ue_count = 0; |
| err_data->ce_count = 0; |
| } |
| |
| for_each_inst(i, xcc_mask) |
| func(adev, ras_error_status, i); |
| } |
| |
| uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) |
| { |
| signed long r, cnt = 0; |
| unsigned long flags; |
| uint32_t seq, reg_val_offs = 0, value = 0; |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| struct amdgpu_ring *ring = &kiq->ring; |
| |
| if (amdgpu_device_skip_hw_access(adev)) |
| return 0; |
| |
| if (adev->mes.ring[0].sched.ready) |
| return amdgpu_mes_rreg(adev, reg); |
| |
| BUG_ON(!ring->funcs->emit_rreg); |
| |
| spin_lock_irqsave(&kiq->ring_lock, flags); |
| if (amdgpu_device_wb_get(adev, ®_val_offs)) { |
| pr_err("critical bug! too many kiq readers\n"); |
| goto failed_unlock; |
| } |
| r = amdgpu_ring_alloc(ring, 32); |
| if (r) |
| goto failed_unlock; |
| |
| amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); |
| r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); |
| if (r) |
| goto failed_undo; |
| |
| amdgpu_ring_commit(ring); |
| spin_unlock_irqrestore(&kiq->ring_lock, flags); |
| |
| r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); |
| |
| /* don't wait anymore for gpu reset case because this way may |
| * block gpu_recover() routine forever, e.g. this virt_kiq_rreg |
| * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will |
| * never return if we keep waiting in virt_kiq_rreg, which cause |
| * gpu_recover() hang there. |
| * |
| * also don't wait anymore for IRQ context |
| * */ |
| if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) |
| goto failed_kiq_read; |
| |
| might_sleep(); |
| while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { |
| msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); |
| r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); |
| } |
| |
| if (cnt > MAX_KIQ_REG_TRY) |
| goto failed_kiq_read; |
| |
| mb(); |
| value = adev->wb.wb[reg_val_offs]; |
| amdgpu_device_wb_free(adev, reg_val_offs); |
| return value; |
| |
| failed_undo: |
| amdgpu_ring_undo(ring); |
| failed_unlock: |
| spin_unlock_irqrestore(&kiq->ring_lock, flags); |
| failed_kiq_read: |
| if (reg_val_offs) |
| amdgpu_device_wb_free(adev, reg_val_offs); |
| dev_err(adev->dev, "failed to read reg:%x\n", reg); |
| return ~0; |
| } |
| |
| void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) |
| { |
| signed long r, cnt = 0; |
| unsigned long flags; |
| uint32_t seq; |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| struct amdgpu_ring *ring = &kiq->ring; |
| |
| BUG_ON(!ring->funcs->emit_wreg); |
| |
| if (amdgpu_device_skip_hw_access(adev)) |
| return; |
| |
| if (adev->mes.ring[0].sched.ready) { |
| amdgpu_mes_wreg(adev, reg, v); |
| return; |
| } |
| |
| spin_lock_irqsave(&kiq->ring_lock, flags); |
| r = amdgpu_ring_alloc(ring, 32); |
| if (r) |
| goto failed_unlock; |
| |
| amdgpu_ring_emit_wreg(ring, reg, v); |
| r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); |
| if (r) |
| goto failed_undo; |
| |
| amdgpu_ring_commit(ring); |
| spin_unlock_irqrestore(&kiq->ring_lock, flags); |
| |
| r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); |
| |
| /* don't wait anymore for gpu reset case because this way may |
| * block gpu_recover() routine forever, e.g. this virt_kiq_rreg |
| * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will |
| * never return if we keep waiting in virt_kiq_rreg, which cause |
| * gpu_recover() hang there. |
| * |
| * also don't wait anymore for IRQ context |
| * */ |
| if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) |
| goto failed_kiq_write; |
| |
| might_sleep(); |
| while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { |
| |
| msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); |
| r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); |
| } |
| |
| if (cnt > MAX_KIQ_REG_TRY) |
| goto failed_kiq_write; |
| |
| return; |
| |
| failed_undo: |
| amdgpu_ring_undo(ring); |
| failed_unlock: |
| spin_unlock_irqrestore(&kiq->ring_lock, flags); |
| failed_kiq_write: |
| dev_err(adev->dev, "failed to write reg:%x\n", reg); |
| } |
| |
| int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) |
| { |
| if (amdgpu_num_kcq == -1) { |
| return 8; |
| } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { |
| dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); |
| return 8; |
| } |
| return amdgpu_num_kcq; |
| } |
| |
| void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, |
| uint32_t ucode_id) |
| { |
| const struct gfx_firmware_header_v1_0 *cp_hdr; |
| const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; |
| struct amdgpu_firmware_info *info = NULL; |
| const struct firmware *ucode_fw; |
| unsigned int fw_size; |
| |
| switch (ucode_id) { |
| case AMDGPU_UCODE_ID_CP_PFP: |
| cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| adev->gfx.pfp_fw->data; |
| adev->gfx.pfp_fw_version = |
| le32_to_cpu(cp_hdr->header.ucode_version); |
| adev->gfx.pfp_feature_version = |
| le32_to_cpu(cp_hdr->ucode_feature_version); |
| ucode_fw = adev->gfx.pfp_fw; |
| fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); |
| break; |
| case AMDGPU_UCODE_ID_CP_RS64_PFP: |
| cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| adev->gfx.pfp_fw->data; |
| adev->gfx.pfp_fw_version = |
| le32_to_cpu(cp_hdr_v2_0->header.ucode_version); |
| adev->gfx.pfp_feature_version = |
| le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); |
| ucode_fw = adev->gfx.pfp_fw; |
| fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); |
| break; |
| case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: |
| case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: |
| cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| adev->gfx.pfp_fw->data; |
| ucode_fw = adev->gfx.pfp_fw; |
| fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); |
| break; |
| case AMDGPU_UCODE_ID_CP_ME: |
| cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| adev->gfx.me_fw->data; |
| adev->gfx.me_fw_version = |
| le32_to_cpu(cp_hdr->header.ucode_version); |
| adev->gfx.me_feature_version = |
| le32_to_cpu(cp_hdr->ucode_feature_version); |
| ucode_fw = adev->gfx.me_fw; |
| fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); |
| break; |
| case AMDGPU_UCODE_ID_CP_RS64_ME: |
| cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| adev->gfx.me_fw->data; |
| adev->gfx.me_fw_version = |
| le32_to_cpu(cp_hdr_v2_0->header.ucode_version); |
| adev->gfx.me_feature_version = |
| le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); |
| ucode_fw = adev->gfx.me_fw; |
| fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); |
| break; |
| case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: |
| case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: |
| cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| adev->gfx.me_fw->data; |
| ucode_fw = adev->gfx.me_fw; |
| fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); |
| break; |
| case AMDGPU_UCODE_ID_CP_CE: |
| cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| adev->gfx.ce_fw->data; |
| adev->gfx.ce_fw_version = |
| le32_to_cpu(cp_hdr->header.ucode_version); |
| adev->gfx.ce_feature_version = |
| le32_to_cpu(cp_hdr->ucode_feature_version); |
| ucode_fw = adev->gfx.ce_fw; |
| fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); |
| break; |
| case AMDGPU_UCODE_ID_CP_MEC1: |
| cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| adev->gfx.mec_fw->data; |
| adev->gfx.mec_fw_version = |
| le32_to_cpu(cp_hdr->header.ucode_version); |
| adev->gfx.mec_feature_version = |
| le32_to_cpu(cp_hdr->ucode_feature_version); |
| ucode_fw = adev->gfx.mec_fw; |
| fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - |
| le32_to_cpu(cp_hdr->jt_size) * 4; |
| break; |
| case AMDGPU_UCODE_ID_CP_MEC1_JT: |
| cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| adev->gfx.mec_fw->data; |
| ucode_fw = adev->gfx.mec_fw; |
| fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; |
| break; |
| case AMDGPU_UCODE_ID_CP_MEC2: |
| cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| adev->gfx.mec2_fw->data; |
| adev->gfx.mec2_fw_version = |
| le32_to_cpu(cp_hdr->header.ucode_version); |
| adev->gfx.mec2_feature_version = |
| le32_to_cpu(cp_hdr->ucode_feature_version); |
| ucode_fw = adev->gfx.mec2_fw; |
| fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - |
| le32_to_cpu(cp_hdr->jt_size) * 4; |
| break; |
| case AMDGPU_UCODE_ID_CP_MEC2_JT: |
| cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| adev->gfx.mec2_fw->data; |
| ucode_fw = adev->gfx.mec2_fw; |
| fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; |
| break; |
| case AMDGPU_UCODE_ID_CP_RS64_MEC: |
| cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| adev->gfx.mec_fw->data; |
| adev->gfx.mec_fw_version = |
| le32_to_cpu(cp_hdr_v2_0->header.ucode_version); |
| adev->gfx.mec_feature_version = |
| le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); |
| ucode_fw = adev->gfx.mec_fw; |
| fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); |
| break; |
| case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: |
| case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: |
| case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: |
| case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: |
| cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| adev->gfx.mec_fw->data; |
| ucode_fw = adev->gfx.mec_fw; |
| fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); |
| break; |
| default: |
| dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id); |
| return; |
| } |
| |
| if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { |
| info = &adev->firmware.ucode[ucode_id]; |
| info->ucode_id = ucode_id; |
| info->fw = ucode_fw; |
| adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); |
| } |
| } |
| |
| bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) |
| { |
| return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? |
| adev->gfx.num_xcc_per_xcp : 1)); |
| } |
| |
| static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, |
| struct device_attribute *addr, |
| char *buf) |
| { |
| struct drm_device *ddev = dev_get_drvdata(dev); |
| struct amdgpu_device *adev = drm_to_adev(ddev); |
| int mode; |
| |
| /* Only minimal precaution taken to reject requests while in reset.*/ |
| if (amdgpu_in_reset(adev)) |
| return -EPERM; |
| |
| mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, |
| AMDGPU_XCP_FL_NONE); |
| |
| return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); |
| } |
| |
| static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, |
| struct device_attribute *addr, |
| const char *buf, size_t count) |
| { |
| struct drm_device *ddev = dev_get_drvdata(dev); |
| struct amdgpu_device *adev = drm_to_adev(ddev); |
| enum amdgpu_gfx_partition mode; |
| int ret = 0, num_xcc; |
| |
| num_xcc = NUM_XCC(adev->gfx.xcc_mask); |
| if (num_xcc % 2 != 0) |
| return -EINVAL; |
| |
| if (!strncasecmp("SPX", buf, strlen("SPX"))) { |
| mode = AMDGPU_SPX_PARTITION_MODE; |
| } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { |
| /* |
| * DPX mode needs AIDs to be in multiple of 2. |
| * Each AID connects 2 XCCs. |
| */ |
| if (num_xcc%4) |
| return -EINVAL; |
| mode = AMDGPU_DPX_PARTITION_MODE; |
| } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { |
| if (num_xcc != 6) |
| return -EINVAL; |
| mode = AMDGPU_TPX_PARTITION_MODE; |
| } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { |
| if (num_xcc != 8) |
| return -EINVAL; |
| mode = AMDGPU_QPX_PARTITION_MODE; |
| } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { |
| mode = AMDGPU_CPX_PARTITION_MODE; |
| } else { |
| return -EINVAL; |
| } |
| |
| /* Don't allow a switch while under reset */ |
| if (!down_read_trylock(&adev->reset_domain->sem)) |
| return -EPERM; |
| |
| ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); |
| |
| up_read(&adev->reset_domain->sem); |
| |
| if (ret) |
| return ret; |
| |
| return count; |
| } |
| |
| static const char *xcp_desc[] = { |
| [AMDGPU_SPX_PARTITION_MODE] = "SPX", |
| [AMDGPU_DPX_PARTITION_MODE] = "DPX", |
| [AMDGPU_TPX_PARTITION_MODE] = "TPX", |
| [AMDGPU_QPX_PARTITION_MODE] = "QPX", |
| [AMDGPU_CPX_PARTITION_MODE] = "CPX", |
| }; |
| |
| static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, |
| struct device_attribute *addr, |
| char *buf) |
| { |
| struct drm_device *ddev = dev_get_drvdata(dev); |
| struct amdgpu_device *adev = drm_to_adev(ddev); |
| struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; |
| int size = 0, mode; |
| char *sep = ""; |
| |
| if (!xcp_mgr || !xcp_mgr->avail_xcp_modes) |
| return sysfs_emit(buf, "Not supported\n"); |
| |
| for_each_inst(mode, xcp_mgr->avail_xcp_modes) { |
| size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]); |
| sep = ", "; |
| } |
| |
| size += sysfs_emit_at(buf, size, "\n"); |
| |
| return size; |
| } |
| |
| static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| struct drm_gpu_scheduler *sched = &ring->sched; |
| struct drm_sched_entity entity; |
| static atomic_t counter; |
| struct dma_fence *f; |
| struct amdgpu_job *job; |
| struct amdgpu_ib *ib; |
| void *owner; |
| int i, r; |
| |
| /* Initialize the scheduler entity */ |
| r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL, |
| &sched, 1, NULL); |
| if (r) { |
| dev_err(adev->dev, "Failed setting up GFX kernel entity.\n"); |
| goto err; |
| } |
| |
| /* |
| * Use some unique dummy value as the owner to make sure we execute |
| * the cleaner shader on each submission. The value just need to change |
| * for each submission and is otherwise meaningless. |
| */ |
| owner = (void *)(unsigned long)atomic_inc_return(&counter); |
| |
| r = amdgpu_job_alloc_with_ib(ring->adev, &entity, owner, |
| 64, 0, &job); |
| if (r) |
| goto err; |
| |
| job->enforce_isolation = true; |
| /* always run the cleaner shader */ |
| job->run_cleaner_shader = true; |
| |
| ib = &job->ibs[0]; |
| for (i = 0; i <= ring->funcs->align_mask; ++i) |
| ib->ptr[i] = ring->funcs->nop; |
| ib->length_dw = ring->funcs->align_mask + 1; |
| |
| f = amdgpu_job_submit(job); |
| |
| r = dma_fence_wait(f, false); |
| if (r) |
| goto err; |
| |
| dma_fence_put(f); |
| |
| /* Clean up the scheduler entity */ |
| drm_sched_entity_destroy(&entity); |
| return 0; |
| |
| err: |
| return r; |
| } |
| |
| static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id) |
| { |
| int num_xcc = NUM_XCC(adev->gfx.xcc_mask); |
| struct amdgpu_ring *ring; |
| int num_xcc_to_clear; |
| int i, r, xcc_id; |
| |
| if (adev->gfx.num_xcc_per_xcp) |
| num_xcc_to_clear = adev->gfx.num_xcc_per_xcp; |
| else |
| num_xcc_to_clear = 1; |
| |
| for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) { |
| for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; |
| if ((ring->xcp_id == xcp_id) && ring->sched.ready) { |
| r = amdgpu_gfx_run_cleaner_shader_job(ring); |
| if (r) |
| return r; |
| num_xcc_to_clear--; |
| break; |
| } |
| } |
| } |
| |
| if (num_xcc_to_clear) |
| return -ENOENT; |
| |
| return 0; |
| } |
| |
| /** |
| * amdgpu_gfx_set_run_cleaner_shader - Execute the AMDGPU GFX Cleaner Shader |
| * @dev: The device structure |
| * @attr: The device attribute structure |
| * @buf: The buffer containing the input data |
| * @count: The size of the input data |
| * |
| * Provides the sysfs interface to manually run a cleaner shader, which is |
| * used to clear the GPU state between different tasks. Writing a value to the |
| * 'run_cleaner_shader' sysfs file triggers the cleaner shader execution. |
| * The value written corresponds to the partition index on multi-partition |
| * devices. On single-partition devices, the value should be '0'. |
| * |
| * The cleaner shader clears the Local Data Store (LDS) and General Purpose |
| * Registers (GPRs) to ensure data isolation between GPU workloads. |
| * |
| * Return: The number of bytes written to the sysfs file. |
| */ |
| static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, |
| size_t count) |
| { |
| struct drm_device *ddev = dev_get_drvdata(dev); |
| struct amdgpu_device *adev = drm_to_adev(ddev); |
| int ret; |
| long value; |
| |
| if (amdgpu_in_reset(adev)) |
| return -EPERM; |
| if (adev->in_suspend && !adev->in_runpm) |
| return -EPERM; |
| |
| if (adev->gfx.disable_kq) |
| return -EPERM; |
| |
| ret = kstrtol(buf, 0, &value); |
| |
| if (ret) |
| return -EINVAL; |
| |
| if (value < 0) |
| return -EINVAL; |
| |
| if (adev->xcp_mgr) { |
| if (value >= adev->xcp_mgr->num_xcps) |
| return -EINVAL; |
| } else { |
| if (value > 1) |
| return -EINVAL; |
| } |
| |
| ret = pm_runtime_get_sync(ddev->dev); |
| if (ret < 0) { |
| pm_runtime_put_autosuspend(ddev->dev); |
| return ret; |
| } |
| |
| ret = amdgpu_gfx_run_cleaner_shader(adev, value); |
| |
| pm_runtime_mark_last_busy(ddev->dev); |
| pm_runtime_put_autosuspend(ddev->dev); |
| |
| if (ret) |
| return ret; |
| |
| return count; |
| } |
| |
| /** |
| * amdgpu_gfx_get_enforce_isolation - Query AMDGPU GFX Enforce Isolation Settings |
| * @dev: The device structure |
| * @attr: The device attribute structure |
| * @buf: The buffer to store the output data |
| * |
| * Provides the sysfs read interface to get the current settings of the 'enforce_isolation' |
| * feature for each GPU partition. Reading from the 'enforce_isolation' |
| * sysfs file returns the isolation settings for all partitions, where '0' |
| * indicates disabled, '1' indicates enabled, and '2' indicates enabled in legacy mode, |
| * and '3' indicates enabled without cleaner shader. |
| * |
| * Return: The number of bytes read from the sysfs file. |
| */ |
| static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct drm_device *ddev = dev_get_drvdata(dev); |
| struct amdgpu_device *adev = drm_to_adev(ddev); |
| int i; |
| ssize_t size = 0; |
| |
| if (adev->xcp_mgr) { |
| for (i = 0; i < adev->xcp_mgr->num_xcps; i++) { |
| size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]); |
| if (i < (adev->xcp_mgr->num_xcps - 1)) |
| size += sysfs_emit_at(buf, size, " "); |
| } |
| buf[size++] = '\n'; |
| } else { |
| size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]); |
| } |
| |
| return size; |
| } |
| |
| /** |
| * amdgpu_gfx_set_enforce_isolation - Control AMDGPU GFX Enforce Isolation |
| * @dev: The device structure |
| * @attr: The device attribute structure |
| * @buf: The buffer containing the input data |
| * @count: The size of the input data |
| * |
| * This function allows control over the 'enforce_isolation' feature, which |
| * serializes access to the graphics engine. Writing '0' to disable, '1' to |
| * enable isolation with cleaner shader, '2' to enable legacy isolation without |
| * cleaner shader, or '3' to enable process isolation without submitting the |
| * cleaner shader to the 'enforce_isolation' sysfs file sets the isolation mode |
| * for each partition. The input should specify the setting for all |
| * partitions. |
| * |
| * Return: The number of bytes written to the sysfs file. |
| */ |
| static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct drm_device *ddev = dev_get_drvdata(dev); |
| struct amdgpu_device *adev = drm_to_adev(ddev); |
| long partition_values[MAX_XCP] = {0}; |
| int ret, i, num_partitions; |
| const char *input_buf = buf; |
| |
| for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) { |
| ret = sscanf(input_buf, "%ld", &partition_values[i]); |
| if (ret <= 0) |
| break; |
| |
| /* Move the pointer to the next value in the string */ |
| input_buf = strchr(input_buf, ' '); |
| if (input_buf) { |
| input_buf++; |
| } else { |
| i++; |
| break; |
| } |
| } |
| num_partitions = i; |
| |
| if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps) |
| return -EINVAL; |
| |
| if (!adev->xcp_mgr && num_partitions != 1) |
| return -EINVAL; |
| |
| for (i = 0; i < num_partitions; i++) { |
| if (partition_values[i] != 0 && |
| partition_values[i] != 1 && |
| partition_values[i] != 2 && |
| partition_values[i] != 3) |
| return -EINVAL; |
| } |
| |
| mutex_lock(&adev->enforce_isolation_mutex); |
| for (i = 0; i < num_partitions; i++) { |
| switch (partition_values[i]) { |
| case 0: |
| default: |
| adev->enforce_isolation[i] = AMDGPU_ENFORCE_ISOLATION_DISABLE; |
| break; |
| case 1: |
| adev->enforce_isolation[i] = |
| AMDGPU_ENFORCE_ISOLATION_ENABLE; |
| break; |
| case 2: |
| adev->enforce_isolation[i] = |
| AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY; |
| break; |
| case 3: |
| adev->enforce_isolation[i] = |
| AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER; |
| break; |
| } |
| } |
| mutex_unlock(&adev->enforce_isolation_mutex); |
| |
| amdgpu_mes_update_enforce_isolation(adev); |
| |
| return count; |
| } |
| |
| static ssize_t amdgpu_gfx_get_gfx_reset_mask(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct drm_device *ddev = dev_get_drvdata(dev); |
| struct amdgpu_device *adev = drm_to_adev(ddev); |
| |
| if (!adev) |
| return -ENODEV; |
| |
| return amdgpu_show_reset_mask(buf, adev->gfx.gfx_supported_reset); |
| } |
| |
| static ssize_t amdgpu_gfx_get_compute_reset_mask(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct drm_device *ddev = dev_get_drvdata(dev); |
| struct amdgpu_device *adev = drm_to_adev(ddev); |
| |
| if (!adev) |
| return -ENODEV; |
| |
| return amdgpu_show_reset_mask(buf, adev->gfx.compute_supported_reset); |
| } |
| |
| static DEVICE_ATTR(run_cleaner_shader, 0200, |
| NULL, amdgpu_gfx_set_run_cleaner_shader); |
| |
| static DEVICE_ATTR(enforce_isolation, 0644, |
| amdgpu_gfx_get_enforce_isolation, |
| amdgpu_gfx_set_enforce_isolation); |
| |
| static DEVICE_ATTR(current_compute_partition, 0644, |
| amdgpu_gfx_get_current_compute_partition, |
| amdgpu_gfx_set_compute_partition); |
| |
| static DEVICE_ATTR(available_compute_partition, 0444, |
| amdgpu_gfx_get_available_compute_partition, NULL); |
| static DEVICE_ATTR(gfx_reset_mask, 0444, |
| amdgpu_gfx_get_gfx_reset_mask, NULL); |
| |
| static DEVICE_ATTR(compute_reset_mask, 0444, |
| amdgpu_gfx_get_compute_reset_mask, NULL); |
| |
| static int amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device *adev) |
| { |
| struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; |
| bool xcp_switch_supported; |
| int r; |
| |
| if (!xcp_mgr) |
| return 0; |
| |
| xcp_switch_supported = |
| (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); |
| |
| if (!xcp_switch_supported) |
| dev_attr_current_compute_partition.attr.mode &= |
| ~(S_IWUSR | S_IWGRP | S_IWOTH); |
| |
| r = device_create_file(adev->dev, &dev_attr_current_compute_partition); |
| if (r) |
| return r; |
| |
| if (xcp_switch_supported) |
| r = device_create_file(adev->dev, |
| &dev_attr_available_compute_partition); |
| |
| return r; |
| } |
| |
| static void amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device *adev) |
| { |
| struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; |
| bool xcp_switch_supported; |
| |
| if (!xcp_mgr) |
| return; |
| |
| xcp_switch_supported = |
| (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); |
| device_remove_file(adev->dev, &dev_attr_current_compute_partition); |
| |
| if (xcp_switch_supported) |
| device_remove_file(adev->dev, |
| &dev_attr_available_compute_partition); |
| } |
| |
| static int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev) |
| { |
| int r; |
| |
| r = device_create_file(adev->dev, &dev_attr_enforce_isolation); |
| if (r) |
| return r; |
| if (adev->gfx.enable_cleaner_shader) |
| r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader); |
| |
| return r; |
| } |
| |
| static void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev) |
| { |
| device_remove_file(adev->dev, &dev_attr_enforce_isolation); |
| if (adev->gfx.enable_cleaner_shader) |
| device_remove_file(adev->dev, &dev_attr_run_cleaner_shader); |
| } |
| |
| static int amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device *adev) |
| { |
| int r = 0; |
| |
| if (!amdgpu_gpu_recovery) |
| return r; |
| |
| if (adev->gfx.num_gfx_rings) { |
| r = device_create_file(adev->dev, &dev_attr_gfx_reset_mask); |
| if (r) |
| return r; |
| } |
| |
| if (adev->gfx.num_compute_rings) { |
| r = device_create_file(adev->dev, &dev_attr_compute_reset_mask); |
| if (r) |
| return r; |
| } |
| |
| return r; |
| } |
| |
| static void amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device *adev) |
| { |
| if (!amdgpu_gpu_recovery) |
| return; |
| |
| if (adev->gfx.num_gfx_rings) |
| device_remove_file(adev->dev, &dev_attr_gfx_reset_mask); |
| |
| if (adev->gfx.num_compute_rings) |
| device_remove_file(adev->dev, &dev_attr_compute_reset_mask); |
| } |
| |
| int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) |
| { |
| int r; |
| |
| r = amdgpu_gfx_sysfs_xcp_init(adev); |
| if (r) { |
| dev_err(adev->dev, "failed to create xcp sysfs files"); |
| return r; |
| } |
| |
| r = amdgpu_gfx_sysfs_isolation_shader_init(adev); |
| if (r) |
| dev_err(adev->dev, "failed to create isolation sysfs files"); |
| |
| r = amdgpu_gfx_sysfs_reset_mask_init(adev); |
| if (r) |
| dev_err(adev->dev, "failed to create reset mask sysfs files"); |
| |
| return r; |
| } |
| |
| void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) |
| { |
| if (adev->dev->kobj.sd) { |
| amdgpu_gfx_sysfs_xcp_fini(adev); |
| amdgpu_gfx_sysfs_isolation_shader_fini(adev); |
| amdgpu_gfx_sysfs_reset_mask_fini(adev); |
| } |
| } |
| |
| int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev, |
| unsigned int cleaner_shader_size) |
| { |
| if (!adev->gfx.enable_cleaner_shader) |
| return -EOPNOTSUPP; |
| |
| return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE, |
| AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, |
| &adev->gfx.cleaner_shader_obj, |
| &adev->gfx.cleaner_shader_gpu_addr, |
| (void **)&adev->gfx.cleaner_shader_cpu_ptr); |
| } |
| |
| void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev) |
| { |
| if (!adev->gfx.enable_cleaner_shader) |
| return; |
| |
| amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj, |
| &adev->gfx.cleaner_shader_gpu_addr, |
| (void **)&adev->gfx.cleaner_shader_cpu_ptr); |
| } |
| |
| void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev, |
| unsigned int cleaner_shader_size, |
| const void *cleaner_shader_ptr) |
| { |
| if (!adev->gfx.enable_cleaner_shader) |
| return; |
| |
| if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr) |
| memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr, |
| cleaner_shader_size); |
| } |
| |
| /** |
| * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver) |
| * @adev: amdgpu_device pointer |
| * @idx: Index of the scheduler to control |
| * @enable: Whether to enable or disable the KFD scheduler |
| * |
| * This function is used to control the KFD (Kernel Fusion Driver) scheduler |
| * from the KGD. It is part of the cleaner shader feature. This function plays |
| * a key role in enforcing process isolation on the GPU. |
| * |
| * The function uses a reference count mechanism (kfd_sch_req_count) to keep |
| * track of the number of requests to enable the KFD scheduler. When a request |
| * to enable the KFD scheduler is made, the reference count is decremented. |
| * When the reference count reaches zero, a delayed work is scheduled to |
| * enforce isolation after a delay of GFX_SLICE_PERIOD. |
| * |
| * When a request to disable the KFD scheduler is made, the function first |
| * checks if the reference count is zero. If it is, it cancels the delayed work |
| * for enforcing isolation and checks if the KFD scheduler is active. If the |
| * KFD scheduler is active, it sends a request to stop the KFD scheduler and |
| * sets the KFD scheduler state to inactive. Then, it increments the reference |
| * count. |
| * |
| * The function is synchronized using the kfd_sch_mutex to ensure that the KFD |
| * scheduler state and reference count are updated atomically. |
| * |
| * Note: If the reference count is already zero when a request to enable the |
| * KFD scheduler is made, it means there's an imbalance bug somewhere. The |
| * function triggers a warning in this case. |
| */ |
| static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx, |
| bool enable) |
| { |
| mutex_lock(&adev->gfx.userq_sch_mutex); |
| |
| if (enable) { |
| /* If the count is already 0, it means there's an imbalance bug somewhere. |
| * Note that the bug may be in a different caller than the one which triggers the |
| * WARN_ON_ONCE. |
| */ |
| if (WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx] == 0)) { |
| dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n"); |
| goto unlock; |
| } |
| |
| adev->gfx.userq_sch_req_count[idx]--; |
| |
| if (adev->gfx.userq_sch_req_count[idx] == 0 && |
| adev->gfx.userq_sch_inactive[idx]) { |
| schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, |
| msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx])); |
| } |
| } else { |
| if (adev->gfx.userq_sch_req_count[idx] == 0) { |
| cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work); |
| if (!adev->gfx.userq_sch_inactive[idx]) { |
| amdgpu_userq_stop_sched_for_enforce_isolation(adev, idx); |
| if (adev->kfd.init_complete) |
| amdgpu_amdkfd_stop_sched(adev, idx); |
| adev->gfx.userq_sch_inactive[idx] = true; |
| } |
| } |
| |
| adev->gfx.userq_sch_req_count[idx]++; |
| } |
| |
| unlock: |
| mutex_unlock(&adev->gfx.userq_sch_mutex); |
| } |
| |
| /** |
| * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation |
| * |
| * @work: work_struct. |
| * |
| * This function is the work handler for enforcing shader isolation on AMD GPUs. |
| * It counts the number of emitted fences for each GFX and compute ring. If there |
| * are any fences, it schedules the `enforce_isolation_work` to be run after a |
| * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion |
| * Driver (KFD) to resume the runqueue. The function is synchronized using the |
| * `enforce_isolation_mutex`. |
| */ |
| void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work) |
| { |
| struct amdgpu_isolation_work *isolation_work = |
| container_of(work, struct amdgpu_isolation_work, work.work); |
| struct amdgpu_device *adev = isolation_work->adev; |
| u32 i, idx, fences = 0; |
| |
| if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION) |
| idx = 0; |
| else |
| idx = isolation_work->xcp_id; |
| |
| if (idx >= MAX_XCP) |
| return; |
| |
| mutex_lock(&adev->enforce_isolation_mutex); |
| for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) { |
| if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id) |
| fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); |
| } |
| for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) { |
| if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id) |
| fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); |
| } |
| if (fences) { |
| /* we've already had our timeslice, so let's wrap this up */ |
| schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, |
| msecs_to_jiffies(1)); |
| } else { |
| /* Tell KFD to resume the runqueue */ |
| WARN_ON_ONCE(!adev->gfx.userq_sch_inactive[idx]); |
| WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx]); |
| |
| amdgpu_userq_start_sched_for_enforce_isolation(adev, idx); |
| if (adev->kfd.init_complete) |
| amdgpu_amdkfd_start_sched(adev, idx); |
| adev->gfx.userq_sch_inactive[idx] = false; |
| } |
| mutex_unlock(&adev->enforce_isolation_mutex); |
| } |
| |
| /** |
| * amdgpu_gfx_enforce_isolation_wait_for_kfd - Manage KFD wait period for process isolation |
| * @adev: amdgpu_device pointer |
| * @idx: Index of the GPU partition |
| * |
| * When kernel submissions come in, the jobs are given a time slice and once |
| * that time slice is up, if there are KFD user queues active, kernel |
| * submissions are blocked until KFD has had its time slice. Once the KFD time |
| * slice is up, KFD user queues are preempted and kernel submissions are |
| * unblocked and allowed to run again. |
| */ |
| static void |
| amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev, |
| u32 idx) |
| { |
| unsigned long cjiffies; |
| bool wait = false; |
| |
| mutex_lock(&adev->enforce_isolation_mutex); |
| if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { |
| /* set the initial values if nothing is set */ |
| if (!adev->gfx.enforce_isolation_jiffies[idx]) { |
| adev->gfx.enforce_isolation_jiffies[idx] = jiffies; |
| adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; |
| } |
| /* Make sure KFD gets a chance to run */ |
| if (amdgpu_amdkfd_compute_active(adev, idx)) { |
| cjiffies = jiffies; |
| if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) { |
| cjiffies -= adev->gfx.enforce_isolation_jiffies[idx]; |
| if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) { |
| /* if our time is up, let KGD work drain before scheduling more */ |
| wait = true; |
| /* reset the timer period */ |
| adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; |
| } else { |
| /* set the timer period to what's left in our time slice */ |
| adev->gfx.enforce_isolation_time[idx] = |
| GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies); |
| } |
| } else { |
| /* if jiffies wrap around we will just wait a little longer */ |
| adev->gfx.enforce_isolation_jiffies[idx] = jiffies; |
| } |
| } else { |
| /* if there is no KFD work, then set the full slice period */ |
| adev->gfx.enforce_isolation_jiffies[idx] = jiffies; |
| adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; |
| } |
| } |
| mutex_unlock(&adev->enforce_isolation_mutex); |
| |
| if (wait) |
| msleep(GFX_SLICE_PERIOD_MS); |
| } |
| |
| /** |
| * amdgpu_gfx_enforce_isolation_ring_begin_use - Begin use of a ring with enforced isolation |
| * @ring: Pointer to the amdgpu_ring structure |
| * |
| * Ring begin_use helper implementation for gfx which serializes access to the |
| * gfx IP between kernel submission IOCTLs and KFD user queues when isolation |
| * enforcement is enabled. The kernel submission IOCTLs and KFD user queues |
| * each get a time slice when both are active. |
| */ |
| void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| u32 idx; |
| bool sched_work = false; |
| |
| if (!adev->gfx.enable_cleaner_shader) |
| return; |
| |
| if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) |
| idx = 0; |
| else |
| idx = ring->xcp_id; |
| |
| if (idx >= MAX_XCP) |
| return; |
| |
| /* Don't submit more work until KFD has had some time */ |
| amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx); |
| |
| mutex_lock(&adev->enforce_isolation_mutex); |
| if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { |
| if (adev->kfd.init_complete) |
| sched_work = true; |
| } |
| mutex_unlock(&adev->enforce_isolation_mutex); |
| |
| if (sched_work) |
| amdgpu_gfx_kfd_sch_ctrl(adev, idx, false); |
| } |
| |
| /** |
| * amdgpu_gfx_enforce_isolation_ring_end_use - End use of a ring with enforced isolation |
| * @ring: Pointer to the amdgpu_ring structure |
| * |
| * Ring end_use helper implementation for gfx which serializes access to the |
| * gfx IP between kernel submission IOCTLs and KFD user queues when isolation |
| * enforcement is enabled. The kernel submission IOCTLs and KFD user queues |
| * each get a time slice when both are active. |
| */ |
| void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| u32 idx; |
| bool sched_work = false; |
| |
| if (!adev->gfx.enable_cleaner_shader) |
| return; |
| |
| if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) |
| idx = 0; |
| else |
| idx = ring->xcp_id; |
| |
| if (idx >= MAX_XCP) |
| return; |
| |
| mutex_lock(&adev->enforce_isolation_mutex); |
| if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { |
| if (adev->kfd.init_complete) |
| sched_work = true; |
| } |
| mutex_unlock(&adev->enforce_isolation_mutex); |
| |
| if (sched_work) |
| amdgpu_gfx_kfd_sch_ctrl(adev, idx, true); |
| } |
| |
| void amdgpu_gfx_profile_idle_work_handler(struct work_struct *work) |
| { |
| struct amdgpu_device *adev = |
| container_of(work, struct amdgpu_device, gfx.idle_work.work); |
| enum PP_SMC_POWER_PROFILE profile; |
| u32 i, fences = 0; |
| int r; |
| |
| if (adev->gfx.num_gfx_rings) |
| profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D; |
| else |
| profile = PP_SMC_POWER_PROFILE_COMPUTE; |
| |
| for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) |
| fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); |
| for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) |
| fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); |
| if (!fences && !atomic_read(&adev->gfx.total_submission_cnt)) { |
| mutex_lock(&adev->gfx.workload_profile_mutex); |
| if (adev->gfx.workload_profile_active) { |
| r = amdgpu_dpm_switch_power_profile(adev, profile, false); |
| if (r) |
| dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r, |
| profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ? |
| "fullscreen 3D" : "compute"); |
| adev->gfx.workload_profile_active = false; |
| } |
| mutex_unlock(&adev->gfx.workload_profile_mutex); |
| } else { |
| schedule_delayed_work(&adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT); |
| } |
| } |
| |
| void amdgpu_gfx_profile_ring_begin_use(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| enum PP_SMC_POWER_PROFILE profile; |
| int r; |
| |
| if (amdgpu_dpm_is_overdrive_enabled(adev)) |
| return; |
| |
| if (adev->gfx.num_gfx_rings) |
| profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D; |
| else |
| profile = PP_SMC_POWER_PROFILE_COMPUTE; |
| |
| atomic_inc(&adev->gfx.total_submission_cnt); |
| |
| cancel_delayed_work_sync(&adev->gfx.idle_work); |
| |
| /* We can safely return early here because we've cancelled the |
| * the delayed work so there is no one else to set it to false |
| * and we don't care if someone else sets it to true. |
| */ |
| if (adev->gfx.workload_profile_active) |
| return; |
| |
| mutex_lock(&adev->gfx.workload_profile_mutex); |
| if (!adev->gfx.workload_profile_active) { |
| r = amdgpu_dpm_switch_power_profile(adev, profile, true); |
| if (r) |
| dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r, |
| profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ? |
| "fullscreen 3D" : "compute"); |
| adev->gfx.workload_profile_active = true; |
| } |
| mutex_unlock(&adev->gfx.workload_profile_mutex); |
| } |
| |
| void amdgpu_gfx_profile_ring_end_use(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| |
| if (amdgpu_dpm_is_overdrive_enabled(adev)) |
| return; |
| |
| atomic_dec(&ring->adev->gfx.total_submission_cnt); |
| |
| schedule_delayed_work(&ring->adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT); |
| } |
| |
| /** |
| * amdgpu_gfx_csb_preamble_start - Set CSB preamble start |
| * |
| * @buffer: This is an output variable that gets the PACKET3 preamble setup. |
| * |
| * Return: |
| * return the latest index. |
| */ |
| u32 amdgpu_gfx_csb_preamble_start(volatile u32 *buffer) |
| { |
| u32 count = 0; |
| |
| buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); |
| buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); |
| |
| buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1)); |
| buffer[count++] = cpu_to_le32(0x80000000); |
| buffer[count++] = cpu_to_le32(0x80000000); |
| |
| return count; |
| } |
| |
| /** |
| * amdgpu_gfx_csb_data_parser - Parser CS data |
| * |
| * @adev: amdgpu_device pointer used to get the CS data and other gfx info. |
| * @buffer: This is an output variable that gets the PACKET3 preamble end. |
| * @count: Index to start set the preemble end. |
| * |
| * Return: |
| * return the latest index. |
| */ |
| u32 amdgpu_gfx_csb_data_parser(struct amdgpu_device *adev, volatile u32 *buffer, u32 count) |
| { |
| const struct cs_section_def *sect = NULL; |
| const struct cs_extent_def *ext = NULL; |
| u32 i; |
| |
| for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { |
| for (ext = sect->section; ext->extent != NULL; ++ext) { |
| if (sect->id == SECT_CONTEXT) { |
| buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); |
| buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START); |
| |
| for (i = 0; i < ext->reg_count; i++) |
| buffer[count++] = cpu_to_le32(ext->extent[i]); |
| } |
| } |
| } |
| |
| return count; |
| } |
| |
| /** |
| * amdgpu_gfx_csb_preamble_end - Set CSB preamble end |
| * |
| * @buffer: This is an output variable that gets the PACKET3 preamble end. |
| * @count: Index to start set the preemble end. |
| */ |
| void amdgpu_gfx_csb_preamble_end(volatile u32 *buffer, u32 count) |
| { |
| buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); |
| buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE); |
| |
| buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0)); |
| buffer[count++] = cpu_to_le32(0); |
| } |
| |
| /* |
| * debugfs for to enable/disable gfx job submission to specific core. |
| */ |
| #if defined(CONFIG_DEBUG_FS) |
| static int amdgpu_debugfs_gfx_sched_mask_set(void *data, u64 val) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)data; |
| u32 i; |
| u64 mask = 0; |
| struct amdgpu_ring *ring; |
| |
| if (!adev) |
| return -ENODEV; |
| |
| mask = (1ULL << adev->gfx.num_gfx_rings) - 1; |
| if ((val & mask) == 0) |
| return -EINVAL; |
| |
| for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { |
| ring = &adev->gfx.gfx_ring[i]; |
| if (val & (1 << i)) |
| ring->sched.ready = true; |
| else |
| ring->sched.ready = false; |
| } |
| /* publish sched.ready flag update effective immediately across smp */ |
| smp_rmb(); |
| return 0; |
| } |
| |
| static int amdgpu_debugfs_gfx_sched_mask_get(void *data, u64 *val) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)data; |
| u32 i; |
| u64 mask = 0; |
| struct amdgpu_ring *ring; |
| |
| if (!adev) |
| return -ENODEV; |
| for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { |
| ring = &adev->gfx.gfx_ring[i]; |
| if (ring->sched.ready) |
| mask |= 1ULL << i; |
| } |
| |
| *val = mask; |
| return 0; |
| } |
| |
| DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gfx_sched_mask_fops, |
| amdgpu_debugfs_gfx_sched_mask_get, |
| amdgpu_debugfs_gfx_sched_mask_set, "%llx\n"); |
| |
| #endif |
| |
| void amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device *adev) |
| { |
| #if defined(CONFIG_DEBUG_FS) |
| struct drm_minor *minor = adev_to_drm(adev)->primary; |
| struct dentry *root = minor->debugfs_root; |
| char name[32]; |
| |
| if (!(adev->gfx.num_gfx_rings > 1)) |
| return; |
| sprintf(name, "amdgpu_gfx_sched_mask"); |
| debugfs_create_file(name, 0600, root, adev, |
| &amdgpu_debugfs_gfx_sched_mask_fops); |
| #endif |
| } |
| |
| /* |
| * debugfs for to enable/disable compute job submission to specific core. |
| */ |
| #if defined(CONFIG_DEBUG_FS) |
| static int amdgpu_debugfs_compute_sched_mask_set(void *data, u64 val) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)data; |
| u32 i; |
| u64 mask = 0; |
| struct amdgpu_ring *ring; |
| |
| if (!adev) |
| return -ENODEV; |
| |
| mask = (1ULL << adev->gfx.num_compute_rings) - 1; |
| if ((val & mask) == 0) |
| return -EINVAL; |
| |
| for (i = 0; i < adev->gfx.num_compute_rings; ++i) { |
| ring = &adev->gfx.compute_ring[i]; |
| if (val & (1 << i)) |
| ring->sched.ready = true; |
| else |
| ring->sched.ready = false; |
| } |
| |
| /* publish sched.ready flag update effective immediately across smp */ |
| smp_rmb(); |
| return 0; |
| } |
| |
| static int amdgpu_debugfs_compute_sched_mask_get(void *data, u64 *val) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)data; |
| u32 i; |
| u64 mask = 0; |
| struct amdgpu_ring *ring; |
| |
| if (!adev) |
| return -ENODEV; |
| for (i = 0; i < adev->gfx.num_compute_rings; ++i) { |
| ring = &adev->gfx.compute_ring[i]; |
| if (ring->sched.ready) |
| mask |= 1ULL << i; |
| } |
| |
| *val = mask; |
| return 0; |
| } |
| |
| DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_compute_sched_mask_fops, |
| amdgpu_debugfs_compute_sched_mask_get, |
| amdgpu_debugfs_compute_sched_mask_set, "%llx\n"); |
| |
| #endif |
| |
| void amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device *adev) |
| { |
| #if defined(CONFIG_DEBUG_FS) |
| struct drm_minor *minor = adev_to_drm(adev)->primary; |
| struct dentry *root = minor->debugfs_root; |
| char name[32]; |
| |
| if (!(adev->gfx.num_compute_rings > 1)) |
| return; |
| sprintf(name, "amdgpu_compute_sched_mask"); |
| debugfs_create_file(name, 0600, root, adev, |
| &amdgpu_debugfs_compute_sched_mask_fops); |
| #endif |
| } |