| // SPDX-License-Identifier: GPL-2.0+ |
| |
| #include <linux/crc32.h> |
| |
| #include <drm/drm_atomic.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_blend.h> |
| #include <drm/drm_fourcc.h> |
| #include <drm/drm_fixed.h> |
| #include <drm/drm_gem_framebuffer_helper.h> |
| #include <drm/drm_vblank.h> |
| #include <linux/minmax.h> |
| |
| #include "vkms_drv.h" |
| |
| static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha) |
| { |
| u32 new_color; |
| |
| new_color = (src * 0xffff + dst * (0xffff - alpha)); |
| |
| return DIV_ROUND_CLOSEST(new_color, 0xffff); |
| } |
| |
| /** |
| * pre_mul_alpha_blend - alpha blending equation |
| * @stage_buffer: The line with the pixels from src_plane |
| * @output_buffer: A line buffer that receives all the blends output |
| * @x_start: The start offset |
| * @pixel_count: The number of pixels to blend |
| * |
| * The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at |
| * [@x_start;@x_start+@pixel_count) in output_buffer. |
| * |
| * The current DRM assumption is that pixel color values have been already |
| * pre-multiplied with the alpha channel values. See more |
| * drm_plane_create_blend_mode_property(). Also, this formula assumes a |
| * completely opaque background. |
| */ |
| static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer, |
| struct line_buffer *output_buffer, int x_start, int pixel_count) |
| { |
| struct pixel_argb_u16 *out = &output_buffer->pixels[x_start]; |
| const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start]; |
| |
| for (int i = 0; i < pixel_count; i++) { |
| out[i].a = (u16)0xffff; |
| out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a); |
| out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a); |
| out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a); |
| } |
| } |
| |
| |
| static void fill_background(const struct pixel_argb_u16 *background_color, |
| struct line_buffer *output_buffer) |
| { |
| for (size_t i = 0; i < output_buffer->n_pixels; i++) |
| output_buffer->pixels[i] = *background_color; |
| } |
| |
| // lerp(a, b, t) = a + (b - a) * t |
| static u16 lerp_u16(u16 a, u16 b, s64 t) |
| { |
| s64 a_fp = drm_int2fixp(a); |
| s64 b_fp = drm_int2fixp(b); |
| |
| s64 delta = drm_fixp_mul(b_fp - a_fp, t); |
| |
| return drm_fixp2int_round(a_fp + delta); |
| } |
| |
| static s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value) |
| { |
| s64 color_channel_fp = drm_int2fixp(channel_value); |
| |
| return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio); |
| } |
| |
| /* |
| * This enum is related to the positions of the variables inside |
| * `struct drm_color_lut`, so the order of both needs to be the same. |
| */ |
| enum lut_channel { |
| LUT_RED = 0, |
| LUT_GREEN, |
| LUT_BLUE, |
| LUT_RESERVED |
| }; |
| |
| static u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value, |
| enum lut_channel channel) |
| { |
| s64 lut_index = get_lut_index(lut, channel_value); |
| u16 *floor_lut_value, *ceil_lut_value; |
| u16 floor_channel_value, ceil_channel_value; |
| |
| /* |
| * This checks if `struct drm_color_lut` has any gap added by the compiler |
| * between the struct fields. |
| */ |
| static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4); |
| |
| floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)]; |
| if (drm_fixp2int(lut_index) == (lut->lut_length - 1)) |
| /* We're at the end of the LUT array, use same value for ceil and floor */ |
| ceil_lut_value = floor_lut_value; |
| else |
| ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)]; |
| |
| floor_channel_value = floor_lut_value[channel]; |
| ceil_channel_value = ceil_lut_value[channel]; |
| |
| return lerp_u16(floor_channel_value, ceil_channel_value, |
| lut_index & DRM_FIXED_DECIMAL_MASK); |
| } |
| |
| static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer) |
| { |
| if (!crtc_state->gamma_lut.base) |
| return; |
| |
| if (!crtc_state->gamma_lut.lut_length) |
| return; |
| |
| for (size_t x = 0; x < output_buffer->n_pixels; x++) { |
| struct pixel_argb_u16 *pixel = &output_buffer->pixels[x]; |
| |
| pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED); |
| pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN); |
| pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE); |
| } |
| } |
| |
| /** |
| * direction_for_rotation() - Get the correct reading direction for a given rotation |
| * |
| * @rotation: Rotation to analyze. It correspond the field @frame_info.rotation. |
| * |
| * This function will use the @rotation setting of a source plane to compute the reading |
| * direction in this plane which correspond to a "left to right writing" in the CRTC. |
| * For example, if the buffer is reflected on X axis, the pixel must be read from right to left |
| * to be written from left to right on the CRTC. |
| */ |
| static enum pixel_read_direction direction_for_rotation(unsigned int rotation) |
| { |
| struct drm_rect tmp_a, tmp_b; |
| int x, y; |
| |
| /* |
| * Points A and B are depicted as zero-size rectangles on the CRTC. |
| * The CRTC writing direction is from A to B. The plane reading direction |
| * is discovered by inverse-transforming A and B. |
| * The reading direction is computed by rotating the vector AB (top-left to top-right) in a |
| * 1x1 square. |
| */ |
| |
| tmp_a = DRM_RECT_INIT(0, 0, 0, 0); |
| tmp_b = DRM_RECT_INIT(1, 0, 0, 0); |
| drm_rect_rotate_inv(&tmp_a, 1, 1, rotation); |
| drm_rect_rotate_inv(&tmp_b, 1, 1, rotation); |
| |
| x = tmp_b.x1 - tmp_a.x1; |
| y = tmp_b.y1 - tmp_a.y1; |
| |
| if (x == 1 && y == 0) |
| return READ_LEFT_TO_RIGHT; |
| else if (x == -1 && y == 0) |
| return READ_RIGHT_TO_LEFT; |
| else if (y == 1 && x == 0) |
| return READ_TOP_TO_BOTTOM; |
| else if (y == -1 && x == 0) |
| return READ_BOTTOM_TO_TOP; |
| |
| WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction."); |
| return READ_LEFT_TO_RIGHT; |
| } |
| |
| /** |
| * clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend |
| * process. |
| * |
| * @direction: direction of the reading |
| * @current_plane: current plane blended |
| * @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle |
| * must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of |
| * pixel_count*1 if @direction is horizontal. |
| * @src_x_start: x start coordinate for the line reading |
| * @src_y_start: y start coordinate for the line reading |
| * @dst_x_start: x coordinate to blend the read line |
| * @pixel_count: number of pixels to blend |
| * |
| * This function is mainly a safety net to avoid reading outside the source buffer. As the |
| * userspace should never ask to read outside the source plane, all the cases covered here should |
| * be dead code. |
| */ |
| static void clamp_line_coordinates(enum pixel_read_direction direction, |
| const struct vkms_plane_state *current_plane, |
| const struct drm_rect *src_line, int *src_x_start, |
| int *src_y_start, int *dst_x_start, int *pixel_count) |
| { |
| /* By default the start points are correct */ |
| *src_x_start = src_line->x1; |
| *src_y_start = src_line->y1; |
| *dst_x_start = current_plane->frame_info->dst.x1; |
| |
| /* Get the correct number of pixel to blend, it depends of the direction */ |
| switch (direction) { |
| case READ_LEFT_TO_RIGHT: |
| case READ_RIGHT_TO_LEFT: |
| *pixel_count = drm_rect_width(src_line); |
| break; |
| case READ_BOTTOM_TO_TOP: |
| case READ_TOP_TO_BOTTOM: |
| *pixel_count = drm_rect_height(src_line); |
| break; |
| } |
| |
| /* |
| * Clamp the coordinates to avoid reading outside the buffer |
| * |
| * This is mainly a security check to avoid reading outside the buffer, the userspace |
| * should never request to read outside the source buffer. |
| */ |
| switch (direction) { |
| case READ_LEFT_TO_RIGHT: |
| case READ_RIGHT_TO_LEFT: |
| if (*src_x_start < 0) { |
| *pixel_count += *src_x_start; |
| *dst_x_start -= *src_x_start; |
| *src_x_start = 0; |
| } |
| if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width) |
| *pixel_count = max(0, (int)current_plane->frame_info->fb->width - |
| *src_x_start); |
| break; |
| case READ_BOTTOM_TO_TOP: |
| case READ_TOP_TO_BOTTOM: |
| if (*src_y_start < 0) { |
| *pixel_count += *src_y_start; |
| *dst_x_start -= *src_y_start; |
| *src_y_start = 0; |
| } |
| if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height) |
| *pixel_count = max(0, (int)current_plane->frame_info->fb->height - |
| *src_y_start); |
| break; |
| } |
| } |
| |
| /** |
| * blend_line() - Blend a line from a plane to the output buffer |
| * |
| * @current_plane: current plane to work on |
| * @y: line to write in the output buffer |
| * @crtc_x_limit: width of the output buffer |
| * @stage_buffer: temporary buffer to convert the pixel line from the source buffer |
| * @output_buffer: buffer to blend the read line into. |
| */ |
| static void blend_line(struct vkms_plane_state *current_plane, int y, |
| int crtc_x_limit, struct line_buffer *stage_buffer, |
| struct line_buffer *output_buffer) |
| { |
| int src_x_start, src_y_start, dst_x_start, pixel_count; |
| struct drm_rect dst_line, tmp_src, src_line; |
| |
| /* Avoid rendering useless lines */ |
| if (y < current_plane->frame_info->dst.y1 || |
| y >= current_plane->frame_info->dst.y2) |
| return; |
| |
| /* |
| * dst_line is the line to copy. The initial coordinates are inside the |
| * destination framebuffer, and then drm_rect_* helpers are used to |
| * compute the correct position into the source framebuffer. |
| */ |
| dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y, |
| drm_rect_width(¤t_plane->frame_info->dst), |
| 1); |
| |
| drm_rect_fp_to_int(&tmp_src, ¤t_plane->frame_info->src); |
| |
| /* |
| * [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of |
| * the destination buffer |
| */ |
| dst_line.x1 = max_t(int, dst_line.x1, 0); |
| dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit); |
| /* The destination is completely outside of the crtc. */ |
| if (dst_line.x2 <= dst_line.x1) |
| return; |
| |
| src_line = dst_line; |
| |
| /* |
| * Transform the coordinate x/y from the crtc to coordinates into |
| * coordinates for the src buffer. |
| * |
| * - Cancel the offset of the dst buffer. |
| * - Invert the rotation. This assumes that |
| * dst = drm_rect_rotate(src, rotation) (dst and src have the |
| * same size, but can be rotated). |
| * - Apply the offset of the source rectangle to the coordinate. |
| */ |
| drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1, |
| -current_plane->frame_info->dst.y1); |
| drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src), |
| drm_rect_height(&tmp_src), |
| current_plane->frame_info->rotation); |
| drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1); |
| |
| /* Get the correct reading direction in the source buffer. */ |
| |
| enum pixel_read_direction direction = |
| direction_for_rotation(current_plane->frame_info->rotation); |
| |
| /* [2]: Compute and clamp the number of pixel to read */ |
| clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start, |
| &dst_x_start, &pixel_count); |
| |
| if (pixel_count <= 0) { |
| /* Nothing to read, so avoid multiple function calls */ |
| return; |
| } |
| |
| /* |
| * Modify the starting point to take in account the rotation |
| * |
| * src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or |
| * READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left |
| * corner. |
| */ |
| if (direction == READ_RIGHT_TO_LEFT) { |
| // src_x_start is now the right point |
| src_x_start += pixel_count - 1; |
| } else if (direction == READ_BOTTOM_TO_TOP) { |
| // src_y_start is now the bottom point |
| src_y_start += pixel_count - 1; |
| } |
| |
| /* |
| * Perform the conversion and the blending |
| * |
| * Here we know that the read line (x_start, y_start, pixel_count) is |
| * inside the source buffer [2] and we don't write outside the stage |
| * buffer [1]. |
| */ |
| current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction, |
| pixel_count, &stage_buffer->pixels[dst_x_start]); |
| |
| pre_mul_alpha_blend(stage_buffer, output_buffer, |
| dst_x_start, pixel_count); |
| } |
| |
| /** |
| * blend - blend the pixels from all planes and compute crc |
| * @wb: The writeback frame buffer metadata |
| * @crtc_state: The crtc state |
| * @crc32: The crc output of the final frame |
| * @output_buffer: A buffer of a row that will receive the result of the blend(s) |
| * @stage_buffer: The line with the pixels from plane being blend to the output |
| * @row_size: The size, in bytes, of a single row |
| * |
| * This function blends the pixels (Using the `pre_mul_alpha_blend`) |
| * from all planes, calculates the crc32 of the output from the former step, |
| * and, if necessary, convert and store the output to the writeback buffer. |
| */ |
| static void blend(struct vkms_writeback_job *wb, |
| struct vkms_crtc_state *crtc_state, |
| u32 *crc32, struct line_buffer *stage_buffer, |
| struct line_buffer *output_buffer, size_t row_size) |
| { |
| struct vkms_plane_state **plane = crtc_state->active_planes; |
| u32 n_active_planes = crtc_state->num_active_planes; |
| |
| const struct pixel_argb_u16 background_color = { .a = 0xffff }; |
| |
| int crtc_y_limit = crtc_state->base.mode.vdisplay; |
| int crtc_x_limit = crtc_state->base.mode.hdisplay; |
| |
| /* |
| * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary |
| * complexity to avoid poor blending performance. |
| * |
| * The function pixel_read_line callback is used to read a line, using an efficient |
| * algorithm for a specific format, into the staging buffer. |
| */ |
| for (int y = 0; y < crtc_y_limit; y++) { |
| fill_background(&background_color, output_buffer); |
| |
| /* The active planes are composed associatively in z-order. */ |
| for (size_t i = 0; i < n_active_planes; i++) { |
| blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer); |
| } |
| |
| apply_lut(crtc_state, output_buffer); |
| |
| *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size); |
| |
| if (wb) |
| vkms_writeback_row(wb, output_buffer, y); |
| } |
| } |
| |
| static int check_format_funcs(struct vkms_crtc_state *crtc_state, |
| struct vkms_writeback_job *active_wb) |
| { |
| struct vkms_plane_state **planes = crtc_state->active_planes; |
| u32 n_active_planes = crtc_state->num_active_planes; |
| |
| for (size_t i = 0; i < n_active_planes; i++) |
| if (!planes[i]->pixel_read_line) |
| return -1; |
| |
| if (active_wb && !active_wb->pixel_write) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int check_iosys_map(struct vkms_crtc_state *crtc_state) |
| { |
| struct vkms_plane_state **plane_state = crtc_state->active_planes; |
| u32 n_active_planes = crtc_state->num_active_planes; |
| |
| for (size_t i = 0; i < n_active_planes; i++) |
| if (iosys_map_is_null(&plane_state[i]->frame_info->map[0])) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int compose_active_planes(struct vkms_writeback_job *active_wb, |
| struct vkms_crtc_state *crtc_state, |
| u32 *crc32) |
| { |
| size_t line_width, pixel_size = sizeof(struct pixel_argb_u16); |
| struct line_buffer output_buffer, stage_buffer; |
| int ret = 0; |
| |
| /* |
| * This check exists so we can call `crc32_le` for the entire line |
| * instead doing it for each channel of each pixel in case |
| * `struct `pixel_argb_u16` had any gap added by the compiler |
| * between the struct fields. |
| */ |
| static_assert(sizeof(struct pixel_argb_u16) == 8); |
| |
| if (WARN_ON(check_iosys_map(crtc_state))) |
| return -EINVAL; |
| |
| if (WARN_ON(check_format_funcs(crtc_state, active_wb))) |
| return -EINVAL; |
| |
| line_width = crtc_state->base.mode.hdisplay; |
| stage_buffer.n_pixels = line_width; |
| output_buffer.n_pixels = line_width; |
| |
| stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); |
| if (!stage_buffer.pixels) { |
| DRM_ERROR("Cannot allocate memory for the output line buffer"); |
| return -ENOMEM; |
| } |
| |
| output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); |
| if (!output_buffer.pixels) { |
| DRM_ERROR("Cannot allocate memory for intermediate line buffer"); |
| ret = -ENOMEM; |
| goto free_stage_buffer; |
| } |
| |
| blend(active_wb, crtc_state, crc32, &stage_buffer, |
| &output_buffer, line_width * pixel_size); |
| |
| kvfree(output_buffer.pixels); |
| free_stage_buffer: |
| kvfree(stage_buffer.pixels); |
| |
| return ret; |
| } |
| |
| /** |
| * vkms_composer_worker - ordered work_struct to compute CRC |
| * |
| * @work: work_struct |
| * |
| * Work handler for composing and computing CRCs. work_struct scheduled in |
| * an ordered workqueue that's periodically scheduled to run by |
| * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail(). |
| */ |
| void vkms_composer_worker(struct work_struct *work) |
| { |
| struct vkms_crtc_state *crtc_state = container_of(work, |
| struct vkms_crtc_state, |
| composer_work); |
| struct drm_crtc *crtc = crtc_state->base.crtc; |
| struct vkms_writeback_job *active_wb = crtc_state->active_writeback; |
| struct vkms_output *out = drm_crtc_to_vkms_output(crtc); |
| bool crc_pending, wb_pending; |
| u64 frame_start, frame_end; |
| u32 crc32 = 0; |
| int ret; |
| |
| spin_lock_irq(&out->composer_lock); |
| frame_start = crtc_state->frame_start; |
| frame_end = crtc_state->frame_end; |
| crc_pending = crtc_state->crc_pending; |
| wb_pending = crtc_state->wb_pending; |
| crtc_state->frame_start = 0; |
| crtc_state->frame_end = 0; |
| crtc_state->crc_pending = false; |
| |
| if (crtc->state->gamma_lut) { |
| s64 max_lut_index_fp; |
| s64 u16_max_fp = drm_int2fixp(0xffff); |
| |
| crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data; |
| crtc_state->gamma_lut.lut_length = |
| crtc->state->gamma_lut->length / sizeof(struct drm_color_lut); |
| max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1); |
| crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp, |
| u16_max_fp); |
| |
| } else { |
| crtc_state->gamma_lut.base = NULL; |
| } |
| |
| spin_unlock_irq(&out->composer_lock); |
| |
| /* |
| * We raced with the vblank hrtimer and previous work already computed |
| * the crc, nothing to do. |
| */ |
| if (!crc_pending) |
| return; |
| |
| if (wb_pending) |
| ret = compose_active_planes(active_wb, crtc_state, &crc32); |
| else |
| ret = compose_active_planes(NULL, crtc_state, &crc32); |
| |
| if (ret) |
| return; |
| |
| if (wb_pending) { |
| drm_writeback_signal_completion(&out->wb_connector, 0); |
| spin_lock_irq(&out->composer_lock); |
| crtc_state->wb_pending = false; |
| spin_unlock_irq(&out->composer_lock); |
| } |
| |
| /* |
| * The worker can fall behind the vblank hrtimer, make sure we catch up. |
| */ |
| while (frame_start <= frame_end) |
| drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32); |
| } |
| |
| static const char *const pipe_crc_sources[] = { "auto" }; |
| |
| const char *const *vkms_get_crc_sources(struct drm_crtc *crtc, |
| size_t *count) |
| { |
| *count = ARRAY_SIZE(pipe_crc_sources); |
| return pipe_crc_sources; |
| } |
| |
| static int vkms_crc_parse_source(const char *src_name, bool *enabled) |
| { |
| int ret = 0; |
| |
| if (!src_name) { |
| *enabled = false; |
| } else if (strcmp(src_name, "auto") == 0) { |
| *enabled = true; |
| } else { |
| *enabled = false; |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name, |
| size_t *values_cnt) |
| { |
| bool enabled; |
| |
| if (vkms_crc_parse_source(src_name, &enabled) < 0) { |
| DRM_DEBUG_DRIVER("unknown source %s\n", src_name); |
| return -EINVAL; |
| } |
| |
| *values_cnt = 1; |
| |
| return 0; |
| } |
| |
| void vkms_set_composer(struct vkms_output *out, bool enabled) |
| { |
| bool old_enabled; |
| |
| if (enabled) |
| drm_crtc_vblank_get(&out->crtc); |
| |
| spin_lock_irq(&out->lock); |
| old_enabled = out->composer_enabled; |
| out->composer_enabled = enabled; |
| spin_unlock_irq(&out->lock); |
| |
| if (old_enabled) |
| drm_crtc_vblank_put(&out->crtc); |
| } |
| |
| int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name) |
| { |
| struct vkms_output *out = drm_crtc_to_vkms_output(crtc); |
| bool enabled = false; |
| int ret = 0; |
| |
| ret = vkms_crc_parse_source(src_name, &enabled); |
| |
| vkms_set_composer(out, enabled); |
| |
| return ret; |
| } |