| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #ifndef __ARM64_KVM_ARM_H__ |
| #define __ARM64_KVM_ARM_H__ |
| |
| #include <asm/esr.h> |
| #include <asm/memory.h> |
| #include <asm/sysreg.h> |
| #include <asm/types.h> |
| |
| /* |
| * Because I'm terribly lazy and that repainting the whole of the KVM |
| * code with the proper names is a pain, use a helper to map the names |
| * inherited from AArch32 with the new fancy nomenclature. One day... |
| */ |
| #define __HCR(x) HCR_EL2_##x |
| |
| #define HCR_TID5 __HCR(TID5) |
| #define HCR_DCT __HCR(DCT) |
| #define HCR_ATA_SHIFT __HCR(ATA_SHIFT) |
| #define HCR_ATA __HCR(ATA) |
| #define HCR_TTLBOS __HCR(TTLBOS) |
| #define HCR_TTLBIS __HCR(TTLBIS) |
| #define HCR_ENSCXT __HCR(EnSCXT) |
| #define HCR_TOCU __HCR(TOCU) |
| #define HCR_AMVOFFEN __HCR(AMVOFFEN) |
| #define HCR_TICAB __HCR(TICAB) |
| #define HCR_TID4 __HCR(TID4) |
| #define HCR_FIEN __HCR(FIEN) |
| #define HCR_FWB __HCR(FWB) |
| #define HCR_NV2 __HCR(NV2) |
| #define HCR_AT __HCR(AT) |
| #define HCR_NV1 __HCR(NV1) |
| #define HCR_NV __HCR(NV) |
| #define HCR_API __HCR(API) |
| #define HCR_APK __HCR(APK) |
| #define HCR_TEA __HCR(TEA) |
| #define HCR_TERR __HCR(TERR) |
| #define HCR_TLOR __HCR(TLOR) |
| #define HCR_E2H __HCR(E2H) |
| #define HCR_ID __HCR(ID) |
| #define HCR_CD __HCR(CD) |
| #define HCR_RW __HCR(RW) |
| #define HCR_TRVM __HCR(TRVM) |
| #define HCR_HCD __HCR(HCD) |
| #define HCR_TDZ __HCR(TDZ) |
| #define HCR_TGE __HCR(TGE) |
| #define HCR_TVM __HCR(TVM) |
| #define HCR_TTLB __HCR(TTLB) |
| #define HCR_TPU __HCR(TPU) |
| #define HCR_TPC __HCR(TPCP) |
| #define HCR_TSW __HCR(TSW) |
| #define HCR_TACR __HCR(TACR) |
| #define HCR_TIDCP __HCR(TIDCP) |
| #define HCR_TSC __HCR(TSC) |
| #define HCR_TID3 __HCR(TID3) |
| #define HCR_TID2 __HCR(TID2) |
| #define HCR_TID1 __HCR(TID1) |
| #define HCR_TID0 __HCR(TID0) |
| #define HCR_TWE __HCR(TWE) |
| #define HCR_TWI __HCR(TWI) |
| #define HCR_DC __HCR(DC) |
| #define HCR_BSU __HCR(BSU) |
| #define HCR_BSU_IS __HCR(BSU_IS) |
| #define HCR_FB __HCR(FB) |
| #define HCR_VSE __HCR(VSE) |
| #define HCR_VI __HCR(VI) |
| #define HCR_VF __HCR(VF) |
| #define HCR_AMO __HCR(AMO) |
| #define HCR_IMO __HCR(IMO) |
| #define HCR_FMO __HCR(FMO) |
| #define HCR_PTW __HCR(PTW) |
| #define HCR_SWIO __HCR(SWIO) |
| #define HCR_VM __HCR(VM) |
| |
| /* |
| * The bits we set in HCR: |
| * TLOR: Trap LORegion register accesses |
| * RW: 64bit by default, can be overridden for 32bit VMs |
| * TACR: Trap ACTLR |
| * TSC: Trap SMC |
| * TSW: Trap cache operations by set/way |
| * TWE: Trap WFE |
| * TWI: Trap WFI |
| * TIDCP: Trap L2CTLR/L2ECTLR |
| * BSU_IS: Upgrade barriers to the inner shareable domain |
| * FB: Force broadcast of all maintenance operations |
| * AMO: Override CPSR.A and enable signaling with VA |
| * IMO: Override CPSR.I and enable signaling with VI |
| * FMO: Override CPSR.F and enable signaling with VF |
| * SWIO: Turn set/way invalidates into set/way clean+invalidate |
| * PTW: Take a stage2 fault if a stage1 walk steps in device memory |
| * TID3: Trap EL1 reads of group 3 ID registers |
| * TID1: Trap REVIDR_EL1, AIDR_EL1, and SMIDR_EL1 |
| */ |
| #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \ |
| HCR_BSU_IS | HCR_FB | HCR_TACR | \ |
| HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \ |
| HCR_FMO | HCR_IMO | HCR_PTW | HCR_TID3 | HCR_TID1) |
| #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA) |
| #define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC) |
| #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H | HCR_AMO | HCR_IMO | HCR_FMO) |
| |
| #define MPAMHCR_HOST_FLAGS 0 |
| |
| /* TCR_EL2 Registers bits */ |
| #define TCR_EL2_DS (1UL << 32) |
| #define TCR_EL2_RES1 ((1U << 31) | (1 << 23)) |
| #define TCR_EL2_HPD (1 << 24) |
| #define TCR_EL2_TBI (1 << 20) |
| #define TCR_EL2_PS_SHIFT 16 |
| #define TCR_EL2_PS_MASK (7 << TCR_EL2_PS_SHIFT) |
| #define TCR_EL2_PS_40B (2 << TCR_EL2_PS_SHIFT) |
| #define TCR_EL2_TG0_MASK TCR_TG0_MASK |
| #define TCR_EL2_SH0_MASK TCR_SH0_MASK |
| #define TCR_EL2_ORGN0_MASK TCR_ORGN0_MASK |
| #define TCR_EL2_IRGN0_MASK TCR_IRGN0_MASK |
| #define TCR_EL2_T0SZ_MASK 0x3f |
| #define TCR_EL2_MASK (TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \ |
| TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK) |
| |
| /* VTCR_EL2 Registers bits */ |
| #define VTCR_EL2_DS TCR_EL2_DS |
| #define VTCR_EL2_RES1 (1U << 31) |
| #define VTCR_EL2_HD (1 << 22) |
| #define VTCR_EL2_HA (1 << 21) |
| #define VTCR_EL2_PS_SHIFT TCR_EL2_PS_SHIFT |
| #define VTCR_EL2_PS_MASK TCR_EL2_PS_MASK |
| #define VTCR_EL2_TG0_MASK TCR_TG0_MASK |
| #define VTCR_EL2_TG0_4K TCR_TG0_4K |
| #define VTCR_EL2_TG0_16K TCR_TG0_16K |
| #define VTCR_EL2_TG0_64K TCR_TG0_64K |
| #define VTCR_EL2_SH0_MASK TCR_SH0_MASK |
| #define VTCR_EL2_SH0_INNER TCR_SH0_INNER |
| #define VTCR_EL2_ORGN0_MASK TCR_ORGN0_MASK |
| #define VTCR_EL2_ORGN0_WBWA TCR_ORGN0_WBWA |
| #define VTCR_EL2_IRGN0_MASK TCR_IRGN0_MASK |
| #define VTCR_EL2_IRGN0_WBWA TCR_IRGN0_WBWA |
| #define VTCR_EL2_SL0_SHIFT 6 |
| #define VTCR_EL2_SL0_MASK (3 << VTCR_EL2_SL0_SHIFT) |
| #define VTCR_EL2_T0SZ_MASK 0x3f |
| #define VTCR_EL2_VS_SHIFT 19 |
| #define VTCR_EL2_VS_8BIT (0 << VTCR_EL2_VS_SHIFT) |
| #define VTCR_EL2_VS_16BIT (1 << VTCR_EL2_VS_SHIFT) |
| |
| #define VTCR_EL2_T0SZ(x) TCR_T0SZ(x) |
| |
| /* |
| * We configure the Stage-2 page tables to always restrict the IPA space to be |
| * 40 bits wide (T0SZ = 24). Systems with a PARange smaller than 40 bits are |
| * not known to exist and will break with this configuration. |
| * |
| * The VTCR_EL2 is configured per VM and is initialised in kvm_init_stage2_mmu. |
| * |
| * Note that when using 4K pages, we concatenate two first level page tables |
| * together. With 16K pages, we concatenate 16 first level page tables. |
| * |
| */ |
| |
| #define VTCR_EL2_COMMON_BITS (VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \ |
| VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1) |
| |
| /* |
| * VTCR_EL2:SL0 indicates the entry level for Stage2 translation. |
| * Interestingly, it depends on the page size. |
| * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a |
| * |
| * ----------------------------------------- |
| * | Entry level | 4K | 16K/64K | |
| * ------------------------------------------ |
| * | Level: 0 | 2 | - | |
| * ------------------------------------------ |
| * | Level: 1 | 1 | 2 | |
| * ------------------------------------------ |
| * | Level: 2 | 0 | 1 | |
| * ------------------------------------------ |
| * | Level: 3 | - | 0 | |
| * ------------------------------------------ |
| * |
| * The table roughly translates to : |
| * |
| * SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level |
| * |
| * Where TGRAN_SL0_BASE is a magic number depending on the page size: |
| * TGRAN_SL0_BASE(4K) = 2 |
| * TGRAN_SL0_BASE(16K) = 3 |
| * TGRAN_SL0_BASE(64K) = 3 |
| * provided we take care of ruling out the unsupported cases and |
| * Entry_Level = 4 - Number_of_levels. |
| * |
| */ |
| #ifdef CONFIG_ARM64_64K_PAGES |
| |
| #define VTCR_EL2_TGRAN VTCR_EL2_TG0_64K |
| #define VTCR_EL2_TGRAN_SL0_BASE 3UL |
| |
| #elif defined(CONFIG_ARM64_16K_PAGES) |
| |
| #define VTCR_EL2_TGRAN VTCR_EL2_TG0_16K |
| #define VTCR_EL2_TGRAN_SL0_BASE 3UL |
| |
| #else /* 4K */ |
| |
| #define VTCR_EL2_TGRAN VTCR_EL2_TG0_4K |
| #define VTCR_EL2_TGRAN_SL0_BASE 2UL |
| |
| #endif |
| |
| #define VTCR_EL2_LVLS_TO_SL0(levels) \ |
| ((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT) |
| #define VTCR_EL2_SL0_TO_LVLS(sl0) \ |
| ((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE) |
| #define VTCR_EL2_LVLS(vtcr) \ |
| VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT) |
| |
| #define VTCR_EL2_FLAGS (VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN) |
| #define VTCR_EL2_IPA(vtcr) (64 - ((vtcr) & VTCR_EL2_T0SZ_MASK)) |
| |
| /* |
| * ARM VMSAv8-64 defines an algorithm for finding the translation table |
| * descriptors in section D4.2.8 in ARM DDI 0487C.a. |
| * |
| * The algorithm defines the expectations on the translation table |
| * addresses for each level, based on PAGE_SIZE, entry level |
| * and the translation table size (T0SZ). The variable "x" in the |
| * algorithm determines the alignment of a table base address at a given |
| * level and thus determines the alignment of VTTBR:BADDR for stage2 |
| * page table entry level. |
| * Since the number of bits resolved at the entry level could vary |
| * depending on the T0SZ, the value of "x" is defined based on a |
| * Magic constant for a given PAGE_SIZE and Entry Level. The |
| * intermediate levels must be always aligned to the PAGE_SIZE (i.e, |
| * x = PAGE_SHIFT). |
| * |
| * The value of "x" for entry level is calculated as : |
| * x = Magic_N - T0SZ |
| * |
| * where Magic_N is an integer depending on the page size and the entry |
| * level of the page table as below: |
| * |
| * -------------------------------------------- |
| * | Entry level | 4K 16K 64K | |
| * -------------------------------------------- |
| * | Level: 0 (4 levels) | 28 | - | - | |
| * -------------------------------------------- |
| * | Level: 1 (3 levels) | 37 | 31 | 25 | |
| * -------------------------------------------- |
| * | Level: 2 (2 levels) | 46 | 42 | 38 | |
| * -------------------------------------------- |
| * | Level: 3 (1 level) | - | 53 | 51 | |
| * -------------------------------------------- |
| * |
| * We have a magic formula for the Magic_N below: |
| * |
| * Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels) |
| * |
| * where Number_of_levels = (4 - Level). We are only interested in the |
| * value for Entry_Level for the stage2 page table. |
| * |
| * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows: |
| * |
| * x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT) |
| * = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels) |
| * |
| * Here is one way to explain the Magic Formula: |
| * |
| * x = log2(Size_of_Entry_Level_Table) |
| * |
| * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another |
| * PAGE_SHIFT bits in the PTE, we have : |
| * |
| * Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT) |
| * = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3 |
| * where n = number of levels, and since each pointer is 8bytes, we have: |
| * |
| * x = Bits_Entry_Level + 3 |
| * = IPA_SHIFT - (PAGE_SHIFT - 3) * n |
| * |
| * The only constraint here is that, we have to find the number of page table |
| * levels for a given IPA size (which we do, see stage2_pt_levels()) |
| */ |
| #define ARM64_VTTBR_X(ipa, levels) ((ipa) - ((levels) * (PAGE_SHIFT - 3))) |
| |
| #define VTTBR_CNP_BIT (UL(1)) |
| #define VTTBR_VMID_SHIFT (UL(48)) |
| #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT) |
| |
| /* Hyp System Trap Register */ |
| #define HSTR_EL2_T(x) (1 << x) |
| |
| /* Hyp Coprocessor Trap Register Shifts */ |
| #define CPTR_EL2_TFP_SHIFT 10 |
| |
| /* Hyp Coprocessor Trap Register */ |
| #define CPTR_EL2_TCPAC (1U << 31) |
| #define CPTR_EL2_TAM (1 << 30) |
| #define CPTR_EL2_TTA (1 << 20) |
| #define CPTR_EL2_TSM (1 << 12) |
| #define CPTR_EL2_TFP (1 << CPTR_EL2_TFP_SHIFT) |
| #define CPTR_EL2_TZ (1 << 8) |
| #define CPTR_NVHE_EL2_RES1 (BIT(13) | BIT(9) | GENMASK(7, 0)) |
| #define CPTR_NVHE_EL2_RES0 (GENMASK(63, 32) | \ |
| GENMASK(29, 21) | \ |
| GENMASK(19, 14) | \ |
| BIT(11)) |
| |
| #define CPTR_VHE_EL2_RES0 (GENMASK(63, 32) | \ |
| GENMASK(27, 26) | \ |
| GENMASK(23, 22) | \ |
| GENMASK(19, 18) | \ |
| GENMASK(15, 0)) |
| |
| /* |
| * Polarity masks for HCRX_EL2, limited to the bits that we know about |
| * at this point in time. It doesn't mean that we actually *handle* |
| * them, but that at least those that are not advertised to a guest |
| * will be RES0 for that guest. |
| */ |
| #define __HCRX_EL2_MASK (BIT_ULL(6)) |
| #define __HCRX_EL2_nMASK (GENMASK_ULL(24, 14) | \ |
| GENMASK_ULL(11, 7) | \ |
| GENMASK_ULL(5, 0)) |
| #define __HCRX_EL2_RES0 ~(__HCRX_EL2_nMASK | __HCRX_EL2_MASK) |
| #define __HCRX_EL2_RES1 ~(__HCRX_EL2_nMASK | \ |
| __HCRX_EL2_MASK | \ |
| __HCRX_EL2_RES0) |
| |
| /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */ |
| #define HPFAR_MASK (~UL(0xf)) |
| /* |
| * We have |
| * PAR [PA_Shift - 1 : 12] = PA [PA_Shift - 1 : 12] |
| * HPFAR [PA_Shift - 9 : 4] = FIPA [PA_Shift - 1 : 12] |
| * |
| * Always assume 52 bit PA since at this point, we don't know how many PA bits |
| * the page table has been set up for. This should be safe since unused address |
| * bits in PAR are res0. |
| */ |
| #define PAR_TO_HPFAR(par) \ |
| (((par) & GENMASK_ULL(52 - 1, 12)) >> 8) |
| |
| #define ECN(x) { ESR_ELx_EC_##x, #x } |
| |
| #define kvm_arm_exception_class \ |
| ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \ |
| ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \ |
| ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \ |
| ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \ |
| ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \ |
| ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \ |
| ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \ |
| ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \ |
| ECN(BKPT32), ECN(VECTOR32), ECN(BRK64), ECN(ERET) |
| |
| #define kvm_mode_names \ |
| { PSR_MODE_EL0t, "EL0t" }, \ |
| { PSR_MODE_EL1t, "EL1t" }, \ |
| { PSR_MODE_EL1h, "EL1h" }, \ |
| { PSR_MODE_EL2t, "EL2t" }, \ |
| { PSR_MODE_EL2h, "EL2h" }, \ |
| { PSR_MODE_EL3t, "EL3t" }, \ |
| { PSR_MODE_EL3h, "EL3h" }, \ |
| { PSR_AA32_MODE_USR, "32-bit USR" }, \ |
| { PSR_AA32_MODE_FIQ, "32-bit FIQ" }, \ |
| { PSR_AA32_MODE_IRQ, "32-bit IRQ" }, \ |
| { PSR_AA32_MODE_SVC, "32-bit SVC" }, \ |
| { PSR_AA32_MODE_ABT, "32-bit ABT" }, \ |
| { PSR_AA32_MODE_HYP, "32-bit HYP" }, \ |
| { PSR_AA32_MODE_UND, "32-bit UND" }, \ |
| { PSR_AA32_MODE_SYS, "32-bit SYS" } |
| |
| #endif /* __ARM64_KVM_ARM_H__ */ |