| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * x86 TSC related functions |
| */ |
| #ifndef _ASM_X86_TSC_H |
| #define _ASM_X86_TSC_H |
| |
| #include <asm/asm.h> |
| #include <asm/cpufeature.h> |
| #include <asm/processor.h> |
| #include <asm/msr.h> |
| |
| /** |
| * rdtsc() - returns the current TSC without ordering constraints |
| * |
| * rdtsc() returns the result of RDTSC as a 64-bit integer. The |
| * only ordering constraint it supplies is the ordering implied by |
| * "asm volatile": it will put the RDTSC in the place you expect. The |
| * CPU can and will speculatively execute that RDTSC, though, so the |
| * results can be non-monotonic if compared on different CPUs. |
| */ |
| static __always_inline u64 rdtsc(void) |
| { |
| EAX_EDX_DECLARE_ARGS(val, low, high); |
| |
| asm volatile("rdtsc" : EAX_EDX_RET(val, low, high)); |
| |
| return EAX_EDX_VAL(val, low, high); |
| } |
| |
| /** |
| * rdtsc_ordered() - read the current TSC in program order |
| * |
| * rdtsc_ordered() returns the result of RDTSC as a 64-bit integer. |
| * It is ordered like a load to a global in-memory counter. It should |
| * be impossible to observe non-monotonic rdtsc_unordered() behavior |
| * across multiple CPUs as long as the TSC is synced. |
| */ |
| static __always_inline u64 rdtsc_ordered(void) |
| { |
| EAX_EDX_DECLARE_ARGS(val, low, high); |
| |
| /* |
| * The RDTSC instruction is not ordered relative to memory |
| * access. The Intel SDM and the AMD APM are both vague on this |
| * point, but empirically an RDTSC instruction can be |
| * speculatively executed before prior loads. An RDTSC |
| * immediately after an appropriate barrier appears to be |
| * ordered as a normal load, that is, it provides the same |
| * ordering guarantees as reading from a global memory location |
| * that some other imaginary CPU is updating continuously with a |
| * time stamp. |
| * |
| * Thus, use the preferred barrier on the respective CPU, aiming for |
| * RDTSCP as the default. |
| */ |
| asm volatile(ALTERNATIVE_2("rdtsc", |
| "lfence; rdtsc", X86_FEATURE_LFENCE_RDTSC, |
| "rdtscp", X86_FEATURE_RDTSCP) |
| : EAX_EDX_RET(val, low, high) |
| /* RDTSCP clobbers ECX with MSR_TSC_AUX. */ |
| :: "ecx"); |
| |
| return EAX_EDX_VAL(val, low, high); |
| } |
| |
| /* |
| * Standard way to access the cycle counter. |
| */ |
| typedef unsigned long long cycles_t; |
| |
| extern unsigned int cpu_khz; |
| extern unsigned int tsc_khz; |
| |
| extern void disable_TSC(void); |
| |
| static inline cycles_t get_cycles(void) |
| { |
| if (!IS_ENABLED(CONFIG_X86_TSC) && |
| !cpu_feature_enabled(X86_FEATURE_TSC)) |
| return 0; |
| return rdtsc(); |
| } |
| #define get_cycles get_cycles |
| |
| extern void tsc_early_init(void); |
| extern void tsc_init(void); |
| extern void mark_tsc_unstable(char *reason); |
| extern int unsynchronized_tsc(void); |
| extern int check_tsc_unstable(void); |
| extern void mark_tsc_async_resets(char *reason); |
| extern unsigned long native_calibrate_cpu_early(void); |
| extern unsigned long native_calibrate_tsc(void); |
| extern unsigned long long native_sched_clock_from_tsc(u64 tsc); |
| |
| extern int tsc_clocksource_reliable; |
| #ifdef CONFIG_X86_TSC |
| extern bool tsc_async_resets; |
| #else |
| # define tsc_async_resets false |
| #endif |
| |
| /* |
| * Boot-time check whether the TSCs are synchronized across |
| * all CPUs/cores: |
| */ |
| #ifdef CONFIG_X86_TSC |
| extern bool tsc_store_and_check_tsc_adjust(bool bootcpu); |
| extern void tsc_verify_tsc_adjust(bool resume); |
| extern void check_tsc_sync_target(void); |
| #else |
| static inline bool tsc_store_and_check_tsc_adjust(bool bootcpu) { return false; } |
| static inline void tsc_verify_tsc_adjust(bool resume) { } |
| static inline void check_tsc_sync_target(void) { } |
| #endif |
| |
| extern int notsc_setup(char *); |
| extern void tsc_save_sched_clock_state(void); |
| extern void tsc_restore_sched_clock_state(void); |
| |
| unsigned long cpu_khz_from_msr(void); |
| |
| #endif /* _ASM_X86_TSC_H */ |