| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2019 Intel Corporation |
| * |
| */ |
| |
| #include <drm/drm_print.h> |
| #include <drm/drm_vblank.h> |
| |
| #include "i915_utils.h" |
| #include "intel_crtc.h" |
| #include "intel_de.h" |
| #include "intel_display_regs.h" |
| #include "intel_display_rpm.h" |
| #include "intel_display_types.h" |
| #include "intel_dsb.h" |
| #include "intel_dsb_buffer.h" |
| #include "intel_dsb_regs.h" |
| #include "intel_vblank.h" |
| #include "intel_vrr.h" |
| #include "skl_watermark.h" |
| |
| #define CACHELINE_BYTES 64 |
| |
| struct intel_dsb { |
| enum intel_dsb_id id; |
| |
| struct intel_dsb_buffer dsb_buf; |
| struct intel_crtc *crtc; |
| |
| /* |
| * maximum number of dwords the buffer will hold. |
| */ |
| unsigned int size; |
| |
| /* |
| * free_pos will point the first free dword and |
| * help in calculating tail of command buffer. |
| */ |
| unsigned int free_pos; |
| |
| /* |
| * Previously emitted DSB instruction. Used to |
| * identify/adjust the instruction for indexed |
| * register writes. |
| */ |
| u32 ins[2]; |
| |
| /* |
| * Start of the previously emitted DSB instruction. |
| * Used to adjust the instruction for indexed |
| * register writes. |
| */ |
| unsigned int ins_start_offset; |
| |
| u32 chicken; |
| int hw_dewake_scanline; |
| }; |
| |
| /** |
| * DOC: DSB |
| * |
| * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory |
| * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA |
| * engine that can be programmed to download the DSB from memory. |
| * It allows driver to batch submit display HW programming. This helps to |
| * reduce loading time and CPU activity, thereby making the context switch |
| * faster. DSB Support added from Gen12 Intel graphics based platform. |
| * |
| * DSB's can access only the pipe, plane, and transcoder Data Island Packet |
| * registers. |
| * |
| * DSB HW can support only register writes (both indexed and direct MMIO |
| * writes). There are no registers reads possible with DSB HW engine. |
| */ |
| |
| /* DSB opcodes. */ |
| #define DSB_OPCODE_SHIFT 24 |
| #define DSB_OPCODE_NOOP 0x0 |
| #define DSB_OPCODE_MMIO_WRITE 0x1 |
| #define DSB_BYTE_EN 0xf |
| #define DSB_BYTE_EN_SHIFT 20 |
| #define DSB_REG_VALUE_MASK 0xfffff |
| #define DSB_OPCODE_WAIT_USEC 0x2 |
| #define DSB_OPCODE_WAIT_SCANLINE 0x3 |
| #define DSB_OPCODE_WAIT_VBLANKS 0x4 |
| #define DSB_OPCODE_WAIT_DSL_IN 0x5 |
| #define DSB_OPCODE_WAIT_DSL_OUT 0x6 |
| #define DSB_SCANLINE_UPPER_SHIFT 20 |
| #define DSB_SCANLINE_LOWER_SHIFT 0 |
| #define DSB_OPCODE_INTERRUPT 0x7 |
| #define DSB_OPCODE_INDEXED_WRITE 0x9 |
| /* see DSB_REG_VALUE_MASK */ |
| #define DSB_OPCODE_POLL 0xA |
| /* see DSB_REG_VALUE_MASK */ |
| #define DSB_OPCODE_GOSUB 0xC /* ptl+ */ |
| #define DSB_GOSUB_HEAD_SHIFT 26 |
| #define DSB_GOSUB_TAIL_SHIFT 0 |
| #define DSB_GOSUB_CONVERT_ADDR(x) ((x) >> 6) |
| |
| static bool pre_commit_is_vrr_active(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| const struct intel_crtc_state *old_crtc_state = |
| intel_atomic_get_old_crtc_state(state, crtc); |
| const struct intel_crtc_state *new_crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| |
| /* VRR will be enabled afterwards, if necessary */ |
| if (intel_crtc_needs_modeset(new_crtc_state)) |
| return false; |
| |
| /* VRR will have been disabled during intel_pre_plane_update() */ |
| return old_crtc_state->vrr.enable && !intel_crtc_vrr_disabling(state, crtc); |
| } |
| |
| static int dsb_vblank_delay(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| const struct intel_crtc_state *crtc_state = |
| intel_pre_commit_crtc_state(state, crtc); |
| |
| if (pre_commit_is_vrr_active(state, crtc)) |
| /* |
| * When the push is sent during vblank it will trigger |
| * on the next scanline, hence we have up to one extra |
| * scanline until the delayed vblank occurs after |
| * TRANS_PUSH has been written. |
| */ |
| return intel_vrr_vblank_delay(crtc_state) + 1; |
| else |
| return intel_mode_vblank_delay(&crtc_state->hw.adjusted_mode); |
| } |
| |
| static int dsb_vtotal(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| const struct intel_crtc_state *crtc_state = |
| intel_pre_commit_crtc_state(state, crtc); |
| |
| if (pre_commit_is_vrr_active(state, crtc)) |
| return intel_vrr_vmax_vtotal(crtc_state); |
| else |
| return intel_mode_vtotal(&crtc_state->hw.adjusted_mode); |
| } |
| |
| static int dsb_dewake_scanline_start(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_display *display = to_intel_display(state); |
| const struct intel_crtc_state *crtc_state = |
| intel_pre_commit_crtc_state(state, crtc); |
| unsigned int latency = skl_watermark_max_latency(display, 0); |
| |
| return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode) - |
| intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, latency); |
| } |
| |
| static int dsb_dewake_scanline_end(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| const struct intel_crtc_state *crtc_state = |
| intel_pre_commit_crtc_state(state, crtc); |
| |
| return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode); |
| } |
| |
| static int dsb_scanline_to_hw(struct intel_atomic_state *state, |
| struct intel_crtc *crtc, int scanline) |
| { |
| const struct intel_crtc_state *crtc_state = |
| intel_pre_commit_crtc_state(state, crtc); |
| int vtotal = dsb_vtotal(state, crtc); |
| |
| return (scanline + vtotal - intel_crtc_scanline_offset(crtc_state)) % vtotal; |
| } |
| |
| /* |
| * Bspec suggests that we should always set DSB_SKIP_WAITS_EN. We have approach |
| * different from what is explained in Bspec on how flip is considered being |
| * complete. We are waiting for vblank in DSB and generate interrupt when it |
| * happens and this interrupt is considered as indication of completion -> we |
| * definitely do not want to skip vblank wait. We also have concern what comes |
| * to skipping vblank evasion. I.e. arming registers are latched before we have |
| * managed writing them. Due to these reasons we are not setting |
| * DSB_SKIP_WAITS_EN. |
| */ |
| static u32 dsb_chicken(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| if (pre_commit_is_vrr_active(state, crtc)) |
| return DSB_CTRL_WAIT_SAFE_WINDOW | |
| DSB_CTRL_NO_WAIT_VBLANK | |
| DSB_INST_WAIT_SAFE_WINDOW | |
| DSB_INST_NO_WAIT_VBLANK; |
| else |
| return 0; |
| } |
| |
| static bool assert_dsb_has_room(struct intel_dsb *dsb) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| struct intel_display *display = to_intel_display(crtc->base.dev); |
| |
| /* each instruction is 2 dwords */ |
| return !drm_WARN(display->drm, dsb->free_pos > dsb->size - 2, |
| "[CRTC:%d:%s] DSB %d buffer overflow\n", |
| crtc->base.base.id, crtc->base.name, dsb->id); |
| } |
| |
| static bool assert_dsb_tail_is_aligned(struct intel_dsb *dsb) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| struct intel_display *display = to_intel_display(crtc->base.dev); |
| |
| return !drm_WARN_ON(display->drm, |
| !IS_ALIGNED(dsb->free_pos * 4, CACHELINE_BYTES)); |
| } |
| |
| static void intel_dsb_dump(struct intel_dsb *dsb) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| struct intel_display *display = to_intel_display(crtc->base.dev); |
| int i; |
| |
| drm_dbg_kms(display->drm, "[CRTC:%d:%s] DSB %d commands {\n", |
| crtc->base.base.id, crtc->base.name, dsb->id); |
| for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4) |
| drm_dbg_kms(display->drm, |
| " 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, |
| intel_dsb_buffer_read(&dsb->dsb_buf, i), |
| intel_dsb_buffer_read(&dsb->dsb_buf, i + 1), |
| intel_dsb_buffer_read(&dsb->dsb_buf, i + 2), |
| intel_dsb_buffer_read(&dsb->dsb_buf, i + 3)); |
| drm_dbg_kms(display->drm, "}\n"); |
| } |
| |
| static bool is_dsb_busy(struct intel_display *display, enum pipe pipe, |
| enum intel_dsb_id dsb_id) |
| { |
| return intel_de_read_fw(display, DSB_CTRL(pipe, dsb_id)) & DSB_STATUS_BUSY; |
| } |
| |
| unsigned int intel_dsb_size(struct intel_dsb *dsb) |
| { |
| return dsb->free_pos * 4; |
| } |
| |
| unsigned int intel_dsb_head(struct intel_dsb *dsb) |
| { |
| return intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf); |
| } |
| |
| static unsigned int intel_dsb_tail(struct intel_dsb *dsb) |
| { |
| return intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + intel_dsb_size(dsb); |
| } |
| |
| static void intel_dsb_ins_align(struct intel_dsb *dsb) |
| { |
| /* |
| * Every instruction should be 8 byte aligned. |
| * |
| * The only way to get unaligned free_pos is via |
| * intel_dsb_reg_write_indexed() which already |
| * makes sure the next dword is zeroed, so no need |
| * to clear it here. |
| */ |
| dsb->free_pos = ALIGN(dsb->free_pos, 2); |
| } |
| |
| static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw) |
| { |
| if (!assert_dsb_has_room(dsb)) |
| return; |
| |
| intel_dsb_ins_align(dsb); |
| |
| dsb->ins_start_offset = dsb->free_pos; |
| dsb->ins[0] = ldw; |
| dsb->ins[1] = udw; |
| |
| intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[0]); |
| intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[1]); |
| } |
| |
| static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb, |
| u32 opcode, i915_reg_t reg) |
| { |
| u32 prev_opcode, prev_reg; |
| |
| /* |
| * Nothing emitted yet? Must check before looking |
| * at the actual data since i915_gem_object_create_internal() |
| * does *not* give you zeroed memory! |
| */ |
| if (dsb->free_pos == 0) |
| return false; |
| |
| prev_opcode = dsb->ins[1] & ~DSB_REG_VALUE_MASK; |
| prev_reg = dsb->ins[1] & DSB_REG_VALUE_MASK; |
| |
| return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg); |
| } |
| |
| static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg) |
| { |
| return intel_dsb_prev_ins_is_write(dsb, |
| DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT, |
| reg); |
| } |
| |
| /** |
| * intel_dsb_reg_write_indexed() - Emit indexed register write to the DSB context |
| * @dsb: DSB context |
| * @reg: register address. |
| * @val: value. |
| * |
| * This function is used for writing register-value pair in command |
| * buffer of DSB. |
| * |
| * Note that indexed writes are slower than normal MMIO writes |
| * for a small number (less than 5 or so) of writes to the same |
| * register. |
| */ |
| void intel_dsb_reg_write_indexed(struct intel_dsb *dsb, |
| i915_reg_t reg, u32 val) |
| { |
| /* |
| * For example the buffer will look like below for 3 dwords for auto |
| * increment register: |
| * +--------------------------------------------------------+ |
| * | size = 3 | offset &| value1 | value2 | value3 | zero | |
| * | | opcode | | | | | |
| * +--------------------------------------------------------+ |
| * + + + + + + + |
| * 0 4 8 12 16 20 24 |
| * Byte |
| * |
| * As every instruction is 8 byte aligned the index of dsb instruction |
| * will start always from even number while dealing with u32 array. If |
| * we are writing odd no of dwords, Zeros will be added in the end for |
| * padding. |
| */ |
| if (!intel_dsb_prev_ins_is_indexed_write(dsb, reg)) |
| intel_dsb_emit(dsb, 0, /* count */ |
| (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) | |
| i915_mmio_reg_offset(reg)); |
| |
| if (!assert_dsb_has_room(dsb)) |
| return; |
| |
| /* Update the count */ |
| dsb->ins[0]++; |
| intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 0, |
| dsb->ins[0]); |
| |
| intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val); |
| /* if number of data words is odd, then the last dword should be 0.*/ |
| if (dsb->free_pos & 0x1) |
| intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0); |
| } |
| |
| void intel_dsb_reg_write(struct intel_dsb *dsb, |
| i915_reg_t reg, u32 val) |
| { |
| intel_dsb_emit(dsb, val, |
| (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | |
| (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) | |
| i915_mmio_reg_offset(reg)); |
| } |
| |
| static u32 intel_dsb_mask_to_byte_en(u32 mask) |
| { |
| return (!!(mask & 0xff000000) << 3 | |
| !!(mask & 0x00ff0000) << 2 | |
| !!(mask & 0x0000ff00) << 1 | |
| !!(mask & 0x000000ff) << 0); |
| } |
| |
| /* Note: mask implemented via byte enables! */ |
| void intel_dsb_reg_write_masked(struct intel_dsb *dsb, |
| i915_reg_t reg, u32 mask, u32 val) |
| { |
| intel_dsb_emit(dsb, val, |
| (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | |
| (intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) | |
| i915_mmio_reg_offset(reg)); |
| } |
| |
| void intel_dsb_noop(struct intel_dsb *dsb, int count) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) |
| intel_dsb_emit(dsb, 0, |
| DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT); |
| } |
| |
| void intel_dsb_nonpost_start(struct intel_dsb *dsb) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| enum pipe pipe = crtc->pipe; |
| |
| intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), |
| DSB_NON_POSTED, DSB_NON_POSTED); |
| intel_dsb_noop(dsb, 4); |
| } |
| |
| void intel_dsb_nonpost_end(struct intel_dsb *dsb) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| enum pipe pipe = crtc->pipe; |
| |
| intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), |
| DSB_NON_POSTED, 0); |
| intel_dsb_noop(dsb, 4); |
| } |
| |
| void intel_dsb_interrupt(struct intel_dsb *dsb) |
| { |
| intel_dsb_emit(dsb, 0, |
| DSB_OPCODE_INTERRUPT << DSB_OPCODE_SHIFT); |
| } |
| |
| void intel_dsb_wait_usec(struct intel_dsb *dsb, int count) |
| { |
| /* +1 to make sure we never wait less time than asked for */ |
| intel_dsb_emit(dsb, count + 1, |
| DSB_OPCODE_WAIT_USEC << DSB_OPCODE_SHIFT); |
| } |
| |
| void intel_dsb_wait_vblanks(struct intel_dsb *dsb, int count) |
| { |
| intel_dsb_emit(dsb, count, |
| DSB_OPCODE_WAIT_VBLANKS << DSB_OPCODE_SHIFT); |
| } |
| |
| static void intel_dsb_emit_wait_dsl(struct intel_dsb *dsb, |
| u32 opcode, int lower, int upper) |
| { |
| u64 window = ((u64)upper << DSB_SCANLINE_UPPER_SHIFT) | |
| ((u64)lower << DSB_SCANLINE_LOWER_SHIFT); |
| |
| intel_dsb_emit(dsb, lower_32_bits(window), |
| (opcode << DSB_OPCODE_SHIFT) | |
| upper_32_bits(window)); |
| } |
| |
| static void intel_dsb_wait_dsl(struct intel_atomic_state *state, |
| struct intel_dsb *dsb, |
| int lower_in, int upper_in, |
| int lower_out, int upper_out) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| |
| lower_in = dsb_scanline_to_hw(state, crtc, lower_in); |
| upper_in = dsb_scanline_to_hw(state, crtc, upper_in); |
| |
| lower_out = dsb_scanline_to_hw(state, crtc, lower_out); |
| upper_out = dsb_scanline_to_hw(state, crtc, upper_out); |
| |
| if (upper_in >= lower_in) |
| intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_IN, |
| lower_in, upper_in); |
| else if (upper_out >= lower_out) |
| intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_OUT, |
| lower_out, upper_out); |
| else |
| drm_WARN_ON(crtc->base.dev, 1); /* assert_dsl_ok() should have caught it already */ |
| } |
| |
| static void assert_dsl_ok(struct intel_atomic_state *state, |
| struct intel_dsb *dsb, |
| int start, int end) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| int vtotal = dsb_vtotal(state, crtc); |
| |
| /* |
| * Waiting for the entire frame doesn't make sense, |
| * (IN==don't wait, OUT=wait forever). |
| */ |
| drm_WARN(crtc->base.dev, (end - start + vtotal) % vtotal == vtotal - 1, |
| "[CRTC:%d:%s] DSB %d bad scanline window wait: %d-%d (vt=%d)\n", |
| crtc->base.base.id, crtc->base.name, dsb->id, |
| start, end, vtotal); |
| } |
| |
| void intel_dsb_wait_scanline_in(struct intel_atomic_state *state, |
| struct intel_dsb *dsb, |
| int start, int end) |
| { |
| assert_dsl_ok(state, dsb, start, end); |
| |
| intel_dsb_wait_dsl(state, dsb, |
| start, end, |
| end + 1, start - 1); |
| } |
| |
| void intel_dsb_wait_scanline_out(struct intel_atomic_state *state, |
| struct intel_dsb *dsb, |
| int start, int end) |
| { |
| assert_dsl_ok(state, dsb, start, end); |
| |
| intel_dsb_wait_dsl(state, dsb, |
| end + 1, start - 1, |
| start, end); |
| } |
| |
| void intel_dsb_poll(struct intel_dsb *dsb, |
| i915_reg_t reg, u32 mask, u32 val, |
| int wait_us, int count) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| enum pipe pipe = crtc->pipe; |
| |
| intel_dsb_reg_write(dsb, DSB_POLLMASK(pipe, dsb->id), mask); |
| intel_dsb_reg_write(dsb, DSB_POLLFUNC(pipe, dsb->id), |
| DSB_POLL_ENABLE | |
| DSB_POLL_WAIT(wait_us) | DSB_POLL_COUNT(count)); |
| |
| intel_dsb_noop(dsb, 5); |
| |
| intel_dsb_emit(dsb, val, |
| (DSB_OPCODE_POLL << DSB_OPCODE_SHIFT) | |
| i915_mmio_reg_offset(reg)); |
| } |
| |
| static void intel_dsb_align_tail(struct intel_dsb *dsb) |
| { |
| u32 aligned_tail, tail; |
| |
| intel_dsb_ins_align(dsb); |
| |
| tail = dsb->free_pos * 4; |
| aligned_tail = ALIGN(tail, CACHELINE_BYTES); |
| |
| if (aligned_tail > tail) |
| intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0, |
| aligned_tail - tail); |
| |
| dsb->free_pos = aligned_tail / 4; |
| } |
| |
| static void intel_dsb_gosub_align(struct intel_dsb *dsb) |
| { |
| u32 aligned_tail, tail; |
| |
| intel_dsb_ins_align(dsb); |
| |
| tail = dsb->free_pos * 4; |
| aligned_tail = ALIGN(tail, CACHELINE_BYTES); |
| |
| /* |
| * Wa_16024917128 |
| * "Ensure GOSUB is not placed in cacheline QW slot 6 or 7 (numbered 0-7)" |
| */ |
| if (aligned_tail - tail <= 2 * 8) |
| intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0, |
| aligned_tail - tail); |
| |
| dsb->free_pos = aligned_tail / 4; |
| } |
| |
| void intel_dsb_gosub(struct intel_dsb *dsb, |
| struct intel_dsb *sub_dsb) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| struct intel_display *display = to_intel_display(crtc->base.dev); |
| unsigned int head, tail; |
| u64 head_tail; |
| |
| if (drm_WARN_ON(display->drm, dsb->id != sub_dsb->id)) |
| return; |
| |
| if (!assert_dsb_tail_is_aligned(sub_dsb)) |
| return; |
| |
| intel_dsb_gosub_align(dsb); |
| |
| head = intel_dsb_head(sub_dsb); |
| tail = intel_dsb_tail(sub_dsb); |
| |
| /* |
| * The GOSUB instruction has the following memory layout. |
| * |
| * +------------------------------------------------------------+ |
| * | Opcode | Rsvd | Head Ptr | Tail Ptr | |
| * | 0x0c | | | | |
| * +------------------------------------------------------------+ |
| * |<- 8bits->|<- 4bits ->|<-- 26bits -->|<-- 26bits -->| |
| * |
| * We have only 26 bits each to represent the head and tail |
| * pointers even though the addresses itself are of 32 bit. However, this |
| * is not a problem because the addresses are 64 bit aligned and therefore |
| * the last 6 bits are always Zero's. Therefore, we right shift the address |
| * by 6 before embedding it into the GOSUB instruction. |
| */ |
| |
| head_tail = ((u64)(DSB_GOSUB_CONVERT_ADDR(head)) << DSB_GOSUB_HEAD_SHIFT) | |
| ((u64)(DSB_GOSUB_CONVERT_ADDR(tail)) << DSB_GOSUB_TAIL_SHIFT); |
| |
| intel_dsb_emit(dsb, lower_32_bits(head_tail), |
| (DSB_OPCODE_GOSUB << DSB_OPCODE_SHIFT) | |
| upper_32_bits(head_tail)); |
| |
| /* |
| * "NOTE: the instructions within the cacheline |
| * FOLLOWING the GOSUB instruction must be NOPs." |
| */ |
| intel_dsb_align_tail(dsb); |
| } |
| |
| void intel_dsb_gosub_finish(struct intel_dsb *dsb) |
| { |
| intel_dsb_align_tail(dsb); |
| |
| /* |
| * Wa_16024917128 |
| * "Ensure that all subroutines called by GOSUB end with a cacheline of NOPs" |
| */ |
| intel_dsb_noop(dsb, 8); |
| |
| intel_dsb_buffer_flush_map(&dsb->dsb_buf); |
| } |
| |
| void intel_dsb_finish(struct intel_dsb *dsb) |
| { |
| intel_dsb_align_tail(dsb); |
| |
| intel_dsb_buffer_flush_map(&dsb->dsb_buf); |
| } |
| |
| static u32 dsb_error_int_status(struct intel_display *display) |
| { |
| u32 errors; |
| |
| errors = DSB_GTT_FAULT_INT_STATUS | |
| DSB_RSPTIMEOUT_INT_STATUS | |
| DSB_POLL_ERR_INT_STATUS; |
| |
| /* |
| * All the non-existing status bits operate as |
| * normal r/w bits, so any attempt to clear them |
| * will just end up setting them. Never do that so |
| * we won't mistake them for actual error interrupts. |
| */ |
| if (DISPLAY_VER(display) >= 14) |
| errors |= DSB_ATS_FAULT_INT_STATUS; |
| |
| if (DISPLAY_VER(display) >= 30) |
| errors |= DSB_GOSUB_INT_STATUS; |
| |
| return errors; |
| } |
| |
| static u32 dsb_error_int_en(struct intel_display *display) |
| { |
| u32 errors; |
| |
| errors = DSB_GTT_FAULT_INT_EN | |
| DSB_RSPTIMEOUT_INT_EN | |
| DSB_POLL_ERR_INT_EN; |
| |
| if (DISPLAY_VER(display) >= 14) |
| errors |= DSB_ATS_FAULT_INT_EN; |
| |
| /* |
| * Wa_16024917128 |
| * "Disable nested GOSUB interrupt (DSB_INTERRUPT bit 21)" |
| */ |
| if (0 && DISPLAY_VER(display) >= 30) |
| errors |= DSB_GOSUB_INT_EN; |
| |
| return errors; |
| } |
| |
| /* |
| * FIXME calibrate these sensibly, ideally compute based on |
| * the number of regisetrs to be written. But that requires |
| * measuring the actual DSB execution speed on each platform |
| * (and the speed also depends on CDCLK and memory clock)... |
| */ |
| static int intel_dsb_noarm_exec_time_us(void) |
| { |
| return 80; |
| } |
| |
| static int intel_dsb_arm_exec_time_us(void) |
| { |
| return 20; |
| } |
| |
| int intel_dsb_exec_time_us(void) |
| { |
| return intel_dsb_noarm_exec_time_us() + |
| intel_dsb_arm_exec_time_us(); |
| } |
| |
| void intel_dsb_vblank_evade(struct intel_atomic_state *state, |
| struct intel_dsb *dsb) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| const struct intel_crtc_state *crtc_state = |
| intel_pre_commit_crtc_state(state, crtc); |
| int latency = intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, |
| intel_dsb_arm_exec_time_us()); |
| int start, end; |
| |
| /* |
| * PIPEDSL is reading as 0 when in SRDENT(PSR1) or DEEP_SLEEP(PSR2). On |
| * wake-up scanline counting starts from vblank_start - 1. We don't know |
| * if wake-up is already ongoing when evasion starts. In worst case |
| * PIPEDSL could start reading valid value right after checking the |
| * scanline. In this scenario we wouldn't have enough time to write all |
| * registers. To tackle this evade scanline 0 as well. As a drawback we |
| * have 1 frame delay in flip when waking up. |
| */ |
| if (crtc_state->has_psr) |
| intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_OUT, 0, 0); |
| |
| if (pre_commit_is_vrr_active(state, crtc)) { |
| int vblank_delay = intel_vrr_vblank_delay(crtc_state); |
| |
| end = intel_vrr_vmin_vblank_start(crtc_state); |
| start = end - vblank_delay - latency; |
| intel_dsb_wait_scanline_out(state, dsb, start, end); |
| |
| end = intel_vrr_vmax_vblank_start(crtc_state); |
| start = end - vblank_delay - latency; |
| intel_dsb_wait_scanline_out(state, dsb, start, end); |
| } else { |
| int vblank_delay = intel_mode_vblank_delay(&crtc_state->hw.adjusted_mode); |
| |
| end = intel_mode_vblank_start(&crtc_state->hw.adjusted_mode); |
| start = end - vblank_delay - latency; |
| intel_dsb_wait_scanline_out(state, dsb, start, end); |
| } |
| } |
| |
| static void _intel_dsb_chain(struct intel_atomic_state *state, |
| struct intel_dsb *dsb, |
| struct intel_dsb *chained_dsb, |
| u32 ctrl) |
| { |
| struct intel_display *display = to_intel_display(state->base.dev); |
| struct intel_crtc *crtc = dsb->crtc; |
| enum pipe pipe = crtc->pipe; |
| |
| if (drm_WARN_ON(display->drm, dsb->id == chained_dsb->id)) |
| return; |
| |
| if (!assert_dsb_tail_is_aligned(chained_dsb)) |
| return; |
| |
| intel_dsb_reg_write(dsb, DSB_CTRL(pipe, chained_dsb->id), |
| ctrl | DSB_ENABLE); |
| |
| intel_dsb_reg_write(dsb, DSB_CHICKEN(pipe, chained_dsb->id), |
| dsb_chicken(state, crtc)); |
| |
| intel_dsb_reg_write(dsb, DSB_INTERRUPT(pipe, chained_dsb->id), |
| dsb_error_int_status(display) | DSB_PROG_INT_STATUS | |
| dsb_error_int_en(display) | DSB_PROG_INT_EN); |
| |
| if (ctrl & DSB_WAIT_FOR_VBLANK) { |
| int dewake_scanline = dsb_dewake_scanline_start(state, crtc); |
| int hw_dewake_scanline = dsb_scanline_to_hw(state, crtc, dewake_scanline); |
| |
| intel_dsb_reg_write(dsb, DSB_PMCTRL(pipe, chained_dsb->id), |
| DSB_ENABLE_DEWAKE | |
| DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline)); |
| } else { |
| intel_dsb_reg_write(dsb, DSB_PMCTRL(pipe, chained_dsb->id), 0); |
| } |
| |
| intel_dsb_reg_write(dsb, DSB_HEAD(pipe, chained_dsb->id), |
| intel_dsb_head(chained_dsb)); |
| |
| intel_dsb_reg_write(dsb, DSB_TAIL(pipe, chained_dsb->id), |
| intel_dsb_tail(chained_dsb)); |
| |
| if (ctrl & DSB_WAIT_FOR_VBLANK) { |
| /* |
| * Keep DEwake alive via the first DSB, in |
| * case we're already past dewake_scanline, |
| * and thus DSB_ENABLE_DEWAKE on the second |
| * DSB won't do its job. |
| */ |
| intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(pipe, dsb->id), |
| DSB_FORCE_DEWAKE, DSB_FORCE_DEWAKE); |
| |
| intel_dsb_wait_scanline_out(state, dsb, |
| dsb_dewake_scanline_start(state, crtc), |
| dsb_dewake_scanline_end(state, crtc)); |
| |
| /* |
| * DSB_FORCE_DEWAKE remains active even after DSB is |
| * disabled, so make sure to clear it. |
| */ |
| intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id), |
| DSB_FORCE_DEWAKE, 0); |
| } |
| } |
| |
| void intel_dsb_chain(struct intel_atomic_state *state, |
| struct intel_dsb *dsb, |
| struct intel_dsb *chained_dsb, |
| bool wait_for_vblank) |
| { |
| _intel_dsb_chain(state, dsb, chained_dsb, |
| wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0); |
| } |
| |
| void intel_dsb_wait_vblank_delay(struct intel_atomic_state *state, |
| struct intel_dsb *dsb) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| const struct intel_crtc_state *crtc_state = |
| intel_pre_commit_crtc_state(state, crtc); |
| int usecs = intel_scanlines_to_usecs(&crtc_state->hw.adjusted_mode, |
| dsb_vblank_delay(state, crtc)); |
| |
| intel_dsb_wait_usec(dsb, usecs); |
| } |
| |
| /** |
| * intel_dsb_commit() - Trigger workload execution of DSB. |
| * @dsb: DSB context |
| * |
| * This function is used to do actual write to hardware using DSB. |
| */ |
| void intel_dsb_commit(struct intel_dsb *dsb) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| struct intel_display *display = to_intel_display(crtc->base.dev); |
| enum pipe pipe = crtc->pipe; |
| |
| if (!assert_dsb_tail_is_aligned(dsb)) |
| return; |
| |
| if (is_dsb_busy(display, pipe, dsb->id)) { |
| drm_err(display->drm, "[CRTC:%d:%s] DSB %d is busy\n", |
| crtc->base.base.id, crtc->base.name, dsb->id); |
| return; |
| } |
| |
| intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), |
| DSB_ENABLE); |
| |
| intel_de_write_fw(display, DSB_CHICKEN(pipe, dsb->id), |
| dsb->chicken); |
| |
| intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id), |
| dsb_error_int_status(display) | DSB_PROG_INT_STATUS | |
| dsb_error_int_en(display) | DSB_PROG_INT_EN); |
| |
| intel_de_write_fw(display, DSB_PMCTRL(pipe, dsb->id), 0); |
| |
| intel_de_write_fw(display, DSB_HEAD(pipe, dsb->id), |
| intel_dsb_head(dsb)); |
| |
| intel_de_write_fw(display, DSB_TAIL(pipe, dsb->id), |
| intel_dsb_tail(dsb)); |
| } |
| |
| void intel_dsb_wait(struct intel_dsb *dsb) |
| { |
| struct intel_crtc *crtc = dsb->crtc; |
| struct intel_display *display = to_intel_display(crtc->base.dev); |
| enum pipe pipe = crtc->pipe; |
| |
| if (wait_for(!is_dsb_busy(display, pipe, dsb->id), 1)) { |
| u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf); |
| |
| intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), |
| DSB_ENABLE | DSB_HALT); |
| |
| drm_err(display->drm, |
| "[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n", |
| crtc->base.base.id, crtc->base.name, dsb->id, |
| intel_de_read_fw(display, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset, |
| intel_de_read_fw(display, DSB_HEAD(pipe, dsb->id)) - offset, |
| intel_de_read_fw(display, DSB_TAIL(pipe, dsb->id)) - offset); |
| |
| intel_dsb_dump(dsb); |
| } |
| |
| /* Attempt to reset it */ |
| dsb->free_pos = 0; |
| dsb->ins_start_offset = 0; |
| dsb->ins[0] = 0; |
| dsb->ins[1] = 0; |
| |
| intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 0); |
| |
| intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id), |
| dsb_error_int_status(display) | DSB_PROG_INT_STATUS); |
| } |
| |
| /** |
| * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer. |
| * @state: the atomic state |
| * @crtc: the CRTC |
| * @dsb_id: the DSB engine to use |
| * @max_cmds: number of commands we need to fit into command buffer |
| * |
| * This function prepare the command buffer which is used to store dsb |
| * instructions with data. |
| * |
| * Returns: |
| * DSB context, NULL on failure |
| */ |
| struct intel_dsb *intel_dsb_prepare(struct intel_atomic_state *state, |
| struct intel_crtc *crtc, |
| enum intel_dsb_id dsb_id, |
| unsigned int max_cmds) |
| { |
| struct intel_display *display = to_intel_display(state); |
| struct ref_tracker *wakeref; |
| struct intel_dsb *dsb; |
| unsigned int size; |
| |
| if (!HAS_DSB(display)) |
| return NULL; |
| |
| if (!display->params.enable_dsb) |
| return NULL; |
| |
| dsb = kzalloc(sizeof(*dsb), GFP_KERNEL); |
| if (!dsb) |
| goto out; |
| |
| wakeref = intel_display_rpm_get(display); |
| |
| /* ~1 qword per instruction, full cachelines */ |
| size = ALIGN(max_cmds * 8, CACHELINE_BYTES); |
| |
| if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size)) |
| goto out_put_rpm; |
| |
| intel_display_rpm_put(display, wakeref); |
| |
| dsb->id = dsb_id; |
| dsb->crtc = crtc; |
| dsb->size = size / 4; /* in dwords */ |
| |
| dsb->chicken = dsb_chicken(state, crtc); |
| dsb->hw_dewake_scanline = |
| dsb_scanline_to_hw(state, crtc, dsb_dewake_scanline_start(state, crtc)); |
| |
| return dsb; |
| |
| out_put_rpm: |
| intel_display_rpm_put(display, wakeref); |
| kfree(dsb); |
| out: |
| drm_info_once(display->drm, |
| "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n", |
| crtc->base.base.id, crtc->base.name, dsb_id); |
| |
| return NULL; |
| } |
| |
| /** |
| * intel_dsb_cleanup() - To cleanup DSB context. |
| * @dsb: DSB context |
| * |
| * This function cleanup the DSB context by unpinning and releasing |
| * the VMA object associated with it. |
| */ |
| void intel_dsb_cleanup(struct intel_dsb *dsb) |
| { |
| intel_dsb_buffer_cleanup(&dsb->dsb_buf); |
| kfree(dsb); |
| } |
| |
| void intel_dsb_irq_handler(struct intel_display *display, |
| enum pipe pipe, enum intel_dsb_id dsb_id) |
| { |
| struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe); |
| u32 tmp, errors; |
| |
| tmp = intel_de_read_fw(display, DSB_INTERRUPT(pipe, dsb_id)); |
| intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb_id), tmp); |
| |
| if (tmp & DSB_PROG_INT_STATUS) { |
| spin_lock(&display->drm->event_lock); |
| |
| if (crtc->dsb_event) { |
| /* |
| * Update vblank counter/timestamp in case it |
| * hasn't been done yet for this frame. |
| */ |
| drm_crtc_accurate_vblank_count(&crtc->base); |
| |
| drm_crtc_send_vblank_event(&crtc->base, crtc->dsb_event); |
| crtc->dsb_event = NULL; |
| } |
| |
| spin_unlock(&display->drm->event_lock); |
| } |
| |
| errors = tmp & dsb_error_int_status(display); |
| if (errors & DSB_ATS_FAULT_INT_STATUS) |
| drm_err(display->drm, "[CRTC:%d:%s] DSB %d ATS fault\n", |
| crtc->base.base.id, crtc->base.name, dsb_id); |
| if (errors & DSB_GTT_FAULT_INT_STATUS) |
| drm_err(display->drm, "[CRTC:%d:%s] DSB %d GTT fault\n", |
| crtc->base.base.id, crtc->base.name, dsb_id); |
| if (errors & DSB_RSPTIMEOUT_INT_STATUS) |
| drm_err(display->drm, "[CRTC:%d:%s] DSB %d response timeout\n", |
| crtc->base.base.id, crtc->base.name, dsb_id); |
| if (errors & DSB_POLL_ERR_INT_STATUS) |
| drm_err(display->drm, "[CRTC:%d:%s] DSB %d poll error\n", |
| crtc->base.base.id, crtc->base.name, dsb_id); |
| if (errors & DSB_GOSUB_INT_STATUS) |
| drm_err(display->drm, "[CRTC:%d:%s] DSB %d GOSUB programming error\n", |
| crtc->base.base.id, crtc->base.name, dsb_id); |
| } |