blob: 53d8ae3a70e90d73a7613c8ad1f4712cfea92bcd [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*
*/
#include <drm/drm_print.h>
#include <drm/drm_vblank.h>
#include "i915_utils.h"
#include "intel_crtc.h"
#include "intel_de.h"
#include "intel_display_regs.h"
#include "intel_display_rpm.h"
#include "intel_display_types.h"
#include "intel_dsb.h"
#include "intel_dsb_buffer.h"
#include "intel_dsb_regs.h"
#include "intel_vblank.h"
#include "intel_vrr.h"
#include "skl_watermark.h"
#define CACHELINE_BYTES 64
struct intel_dsb {
enum intel_dsb_id id;
struct intel_dsb_buffer dsb_buf;
struct intel_crtc *crtc;
/*
* maximum number of dwords the buffer will hold.
*/
unsigned int size;
/*
* free_pos will point the first free dword and
* help in calculating tail of command buffer.
*/
unsigned int free_pos;
/*
* Previously emitted DSB instruction. Used to
* identify/adjust the instruction for indexed
* register writes.
*/
u32 ins[2];
/*
* Start of the previously emitted DSB instruction.
* Used to adjust the instruction for indexed
* register writes.
*/
unsigned int ins_start_offset;
u32 chicken;
int hw_dewake_scanline;
};
/**
* DOC: DSB
*
* A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
* which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
* engine that can be programmed to download the DSB from memory.
* It allows driver to batch submit display HW programming. This helps to
* reduce loading time and CPU activity, thereby making the context switch
* faster. DSB Support added from Gen12 Intel graphics based platform.
*
* DSB's can access only the pipe, plane, and transcoder Data Island Packet
* registers.
*
* DSB HW can support only register writes (both indexed and direct MMIO
* writes). There are no registers reads possible with DSB HW engine.
*/
/* DSB opcodes. */
#define DSB_OPCODE_SHIFT 24
#define DSB_OPCODE_NOOP 0x0
#define DSB_OPCODE_MMIO_WRITE 0x1
#define DSB_BYTE_EN 0xf
#define DSB_BYTE_EN_SHIFT 20
#define DSB_REG_VALUE_MASK 0xfffff
#define DSB_OPCODE_WAIT_USEC 0x2
#define DSB_OPCODE_WAIT_SCANLINE 0x3
#define DSB_OPCODE_WAIT_VBLANKS 0x4
#define DSB_OPCODE_WAIT_DSL_IN 0x5
#define DSB_OPCODE_WAIT_DSL_OUT 0x6
#define DSB_SCANLINE_UPPER_SHIFT 20
#define DSB_SCANLINE_LOWER_SHIFT 0
#define DSB_OPCODE_INTERRUPT 0x7
#define DSB_OPCODE_INDEXED_WRITE 0x9
/* see DSB_REG_VALUE_MASK */
#define DSB_OPCODE_POLL 0xA
/* see DSB_REG_VALUE_MASK */
#define DSB_OPCODE_GOSUB 0xC /* ptl+ */
#define DSB_GOSUB_HEAD_SHIFT 26
#define DSB_GOSUB_TAIL_SHIFT 0
#define DSB_GOSUB_CONVERT_ADDR(x) ((x) >> 6)
static bool pre_commit_is_vrr_active(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
/* VRR will be enabled afterwards, if necessary */
if (intel_crtc_needs_modeset(new_crtc_state))
return false;
/* VRR will have been disabled during intel_pre_plane_update() */
return old_crtc_state->vrr.enable && !intel_crtc_vrr_disabling(state, crtc);
}
static int dsb_vblank_delay(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_pre_commit_crtc_state(state, crtc);
if (pre_commit_is_vrr_active(state, crtc))
/*
* When the push is sent during vblank it will trigger
* on the next scanline, hence we have up to one extra
* scanline until the delayed vblank occurs after
* TRANS_PUSH has been written.
*/
return intel_vrr_vblank_delay(crtc_state) + 1;
else
return intel_mode_vblank_delay(&crtc_state->hw.adjusted_mode);
}
static int dsb_vtotal(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_pre_commit_crtc_state(state, crtc);
if (pre_commit_is_vrr_active(state, crtc))
return intel_vrr_vmax_vtotal(crtc_state);
else
return intel_mode_vtotal(&crtc_state->hw.adjusted_mode);
}
static int dsb_dewake_scanline_start(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *crtc_state =
intel_pre_commit_crtc_state(state, crtc);
unsigned int latency = skl_watermark_max_latency(display, 0);
return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode) -
intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, latency);
}
static int dsb_dewake_scanline_end(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_pre_commit_crtc_state(state, crtc);
return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode);
}
static int dsb_scanline_to_hw(struct intel_atomic_state *state,
struct intel_crtc *crtc, int scanline)
{
const struct intel_crtc_state *crtc_state =
intel_pre_commit_crtc_state(state, crtc);
int vtotal = dsb_vtotal(state, crtc);
return (scanline + vtotal - intel_crtc_scanline_offset(crtc_state)) % vtotal;
}
/*
* Bspec suggests that we should always set DSB_SKIP_WAITS_EN. We have approach
* different from what is explained in Bspec on how flip is considered being
* complete. We are waiting for vblank in DSB and generate interrupt when it
* happens and this interrupt is considered as indication of completion -> we
* definitely do not want to skip vblank wait. We also have concern what comes
* to skipping vblank evasion. I.e. arming registers are latched before we have
* managed writing them. Due to these reasons we are not setting
* DSB_SKIP_WAITS_EN.
*/
static u32 dsb_chicken(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
if (pre_commit_is_vrr_active(state, crtc))
return DSB_CTRL_WAIT_SAFE_WINDOW |
DSB_CTRL_NO_WAIT_VBLANK |
DSB_INST_WAIT_SAFE_WINDOW |
DSB_INST_NO_WAIT_VBLANK;
else
return 0;
}
static bool assert_dsb_has_room(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct intel_display *display = to_intel_display(crtc->base.dev);
/* each instruction is 2 dwords */
return !drm_WARN(display->drm, dsb->free_pos > dsb->size - 2,
"[CRTC:%d:%s] DSB %d buffer overflow\n",
crtc->base.base.id, crtc->base.name, dsb->id);
}
static bool assert_dsb_tail_is_aligned(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct intel_display *display = to_intel_display(crtc->base.dev);
return !drm_WARN_ON(display->drm,
!IS_ALIGNED(dsb->free_pos * 4, CACHELINE_BYTES));
}
static void intel_dsb_dump(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct intel_display *display = to_intel_display(crtc->base.dev);
int i;
drm_dbg_kms(display->drm, "[CRTC:%d:%s] DSB %d commands {\n",
crtc->base.base.id, crtc->base.name, dsb->id);
for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4)
drm_dbg_kms(display->drm,
" 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4,
intel_dsb_buffer_read(&dsb->dsb_buf, i),
intel_dsb_buffer_read(&dsb->dsb_buf, i + 1),
intel_dsb_buffer_read(&dsb->dsb_buf, i + 2),
intel_dsb_buffer_read(&dsb->dsb_buf, i + 3));
drm_dbg_kms(display->drm, "}\n");
}
static bool is_dsb_busy(struct intel_display *display, enum pipe pipe,
enum intel_dsb_id dsb_id)
{
return intel_de_read_fw(display, DSB_CTRL(pipe, dsb_id)) & DSB_STATUS_BUSY;
}
unsigned int intel_dsb_size(struct intel_dsb *dsb)
{
return dsb->free_pos * 4;
}
unsigned int intel_dsb_head(struct intel_dsb *dsb)
{
return intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf);
}
static unsigned int intel_dsb_tail(struct intel_dsb *dsb)
{
return intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + intel_dsb_size(dsb);
}
static void intel_dsb_ins_align(struct intel_dsb *dsb)
{
/*
* Every instruction should be 8 byte aligned.
*
* The only way to get unaligned free_pos is via
* intel_dsb_reg_write_indexed() which already
* makes sure the next dword is zeroed, so no need
* to clear it here.
*/
dsb->free_pos = ALIGN(dsb->free_pos, 2);
}
static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw)
{
if (!assert_dsb_has_room(dsb))
return;
intel_dsb_ins_align(dsb);
dsb->ins_start_offset = dsb->free_pos;
dsb->ins[0] = ldw;
dsb->ins[1] = udw;
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[0]);
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[1]);
}
static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb,
u32 opcode, i915_reg_t reg)
{
u32 prev_opcode, prev_reg;
/*
* Nothing emitted yet? Must check before looking
* at the actual data since i915_gem_object_create_internal()
* does *not* give you zeroed memory!
*/
if (dsb->free_pos == 0)
return false;
prev_opcode = dsb->ins[1] & ~DSB_REG_VALUE_MASK;
prev_reg = dsb->ins[1] & DSB_REG_VALUE_MASK;
return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg);
}
static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg)
{
return intel_dsb_prev_ins_is_write(dsb,
DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT,
reg);
}
/**
* intel_dsb_reg_write_indexed() - Emit indexed register write to the DSB context
* @dsb: DSB context
* @reg: register address.
* @val: value.
*
* This function is used for writing register-value pair in command
* buffer of DSB.
*
* Note that indexed writes are slower than normal MMIO writes
* for a small number (less than 5 or so) of writes to the same
* register.
*/
void intel_dsb_reg_write_indexed(struct intel_dsb *dsb,
i915_reg_t reg, u32 val)
{
/*
* For example the buffer will look like below for 3 dwords for auto
* increment register:
* +--------------------------------------------------------+
* | size = 3 | offset &| value1 | value2 | value3 | zero |
* | | opcode | | | | |
* +--------------------------------------------------------+
* + + + + + + +
* 0 4 8 12 16 20 24
* Byte
*
* As every instruction is 8 byte aligned the index of dsb instruction
* will start always from even number while dealing with u32 array. If
* we are writing odd no of dwords, Zeros will be added in the end for
* padding.
*/
if (!intel_dsb_prev_ins_is_indexed_write(dsb, reg))
intel_dsb_emit(dsb, 0, /* count */
(DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) |
i915_mmio_reg_offset(reg));
if (!assert_dsb_has_room(dsb))
return;
/* Update the count */
dsb->ins[0]++;
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 0,
dsb->ins[0]);
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val);
/* if number of data words is odd, then the last dword should be 0.*/
if (dsb->free_pos & 0x1)
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0);
}
void intel_dsb_reg_write(struct intel_dsb *dsb,
i915_reg_t reg, u32 val)
{
intel_dsb_emit(dsb, val,
(DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
(DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
i915_mmio_reg_offset(reg));
}
static u32 intel_dsb_mask_to_byte_en(u32 mask)
{
return (!!(mask & 0xff000000) << 3 |
!!(mask & 0x00ff0000) << 2 |
!!(mask & 0x0000ff00) << 1 |
!!(mask & 0x000000ff) << 0);
}
/* Note: mask implemented via byte enables! */
void intel_dsb_reg_write_masked(struct intel_dsb *dsb,
i915_reg_t reg, u32 mask, u32 val)
{
intel_dsb_emit(dsb, val,
(DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
(intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) |
i915_mmio_reg_offset(reg));
}
void intel_dsb_noop(struct intel_dsb *dsb, int count)
{
int i;
for (i = 0; i < count; i++)
intel_dsb_emit(dsb, 0,
DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT);
}
void intel_dsb_nonpost_start(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
enum pipe pipe = crtc->pipe;
intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
DSB_NON_POSTED, DSB_NON_POSTED);
intel_dsb_noop(dsb, 4);
}
void intel_dsb_nonpost_end(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
enum pipe pipe = crtc->pipe;
intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
DSB_NON_POSTED, 0);
intel_dsb_noop(dsb, 4);
}
void intel_dsb_interrupt(struct intel_dsb *dsb)
{
intel_dsb_emit(dsb, 0,
DSB_OPCODE_INTERRUPT << DSB_OPCODE_SHIFT);
}
void intel_dsb_wait_usec(struct intel_dsb *dsb, int count)
{
/* +1 to make sure we never wait less time than asked for */
intel_dsb_emit(dsb, count + 1,
DSB_OPCODE_WAIT_USEC << DSB_OPCODE_SHIFT);
}
void intel_dsb_wait_vblanks(struct intel_dsb *dsb, int count)
{
intel_dsb_emit(dsb, count,
DSB_OPCODE_WAIT_VBLANKS << DSB_OPCODE_SHIFT);
}
static void intel_dsb_emit_wait_dsl(struct intel_dsb *dsb,
u32 opcode, int lower, int upper)
{
u64 window = ((u64)upper << DSB_SCANLINE_UPPER_SHIFT) |
((u64)lower << DSB_SCANLINE_LOWER_SHIFT);
intel_dsb_emit(dsb, lower_32_bits(window),
(opcode << DSB_OPCODE_SHIFT) |
upper_32_bits(window));
}
static void intel_dsb_wait_dsl(struct intel_atomic_state *state,
struct intel_dsb *dsb,
int lower_in, int upper_in,
int lower_out, int upper_out)
{
struct intel_crtc *crtc = dsb->crtc;
lower_in = dsb_scanline_to_hw(state, crtc, lower_in);
upper_in = dsb_scanline_to_hw(state, crtc, upper_in);
lower_out = dsb_scanline_to_hw(state, crtc, lower_out);
upper_out = dsb_scanline_to_hw(state, crtc, upper_out);
if (upper_in >= lower_in)
intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_IN,
lower_in, upper_in);
else if (upper_out >= lower_out)
intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_OUT,
lower_out, upper_out);
else
drm_WARN_ON(crtc->base.dev, 1); /* assert_dsl_ok() should have caught it already */
}
static void assert_dsl_ok(struct intel_atomic_state *state,
struct intel_dsb *dsb,
int start, int end)
{
struct intel_crtc *crtc = dsb->crtc;
int vtotal = dsb_vtotal(state, crtc);
/*
* Waiting for the entire frame doesn't make sense,
* (IN==don't wait, OUT=wait forever).
*/
drm_WARN(crtc->base.dev, (end - start + vtotal) % vtotal == vtotal - 1,
"[CRTC:%d:%s] DSB %d bad scanline window wait: %d-%d (vt=%d)\n",
crtc->base.base.id, crtc->base.name, dsb->id,
start, end, vtotal);
}
void intel_dsb_wait_scanline_in(struct intel_atomic_state *state,
struct intel_dsb *dsb,
int start, int end)
{
assert_dsl_ok(state, dsb, start, end);
intel_dsb_wait_dsl(state, dsb,
start, end,
end + 1, start - 1);
}
void intel_dsb_wait_scanline_out(struct intel_atomic_state *state,
struct intel_dsb *dsb,
int start, int end)
{
assert_dsl_ok(state, dsb, start, end);
intel_dsb_wait_dsl(state, dsb,
end + 1, start - 1,
start, end);
}
void intel_dsb_poll(struct intel_dsb *dsb,
i915_reg_t reg, u32 mask, u32 val,
int wait_us, int count)
{
struct intel_crtc *crtc = dsb->crtc;
enum pipe pipe = crtc->pipe;
intel_dsb_reg_write(dsb, DSB_POLLMASK(pipe, dsb->id), mask);
intel_dsb_reg_write(dsb, DSB_POLLFUNC(pipe, dsb->id),
DSB_POLL_ENABLE |
DSB_POLL_WAIT(wait_us) | DSB_POLL_COUNT(count));
intel_dsb_noop(dsb, 5);
intel_dsb_emit(dsb, val,
(DSB_OPCODE_POLL << DSB_OPCODE_SHIFT) |
i915_mmio_reg_offset(reg));
}
static void intel_dsb_align_tail(struct intel_dsb *dsb)
{
u32 aligned_tail, tail;
intel_dsb_ins_align(dsb);
tail = dsb->free_pos * 4;
aligned_tail = ALIGN(tail, CACHELINE_BYTES);
if (aligned_tail > tail)
intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0,
aligned_tail - tail);
dsb->free_pos = aligned_tail / 4;
}
static void intel_dsb_gosub_align(struct intel_dsb *dsb)
{
u32 aligned_tail, tail;
intel_dsb_ins_align(dsb);
tail = dsb->free_pos * 4;
aligned_tail = ALIGN(tail, CACHELINE_BYTES);
/*
* Wa_16024917128
* "Ensure GOSUB is not placed in cacheline QW slot 6 or 7 (numbered 0-7)"
*/
if (aligned_tail - tail <= 2 * 8)
intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0,
aligned_tail - tail);
dsb->free_pos = aligned_tail / 4;
}
void intel_dsb_gosub(struct intel_dsb *dsb,
struct intel_dsb *sub_dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct intel_display *display = to_intel_display(crtc->base.dev);
unsigned int head, tail;
u64 head_tail;
if (drm_WARN_ON(display->drm, dsb->id != sub_dsb->id))
return;
if (!assert_dsb_tail_is_aligned(sub_dsb))
return;
intel_dsb_gosub_align(dsb);
head = intel_dsb_head(sub_dsb);
tail = intel_dsb_tail(sub_dsb);
/*
* The GOSUB instruction has the following memory layout.
*
* +------------------------------------------------------------+
* | Opcode | Rsvd | Head Ptr | Tail Ptr |
* | 0x0c | | | |
* +------------------------------------------------------------+
* |<- 8bits->|<- 4bits ->|<-- 26bits -->|<-- 26bits -->|
*
* We have only 26 bits each to represent the head and tail
* pointers even though the addresses itself are of 32 bit. However, this
* is not a problem because the addresses are 64 bit aligned and therefore
* the last 6 bits are always Zero's. Therefore, we right shift the address
* by 6 before embedding it into the GOSUB instruction.
*/
head_tail = ((u64)(DSB_GOSUB_CONVERT_ADDR(head)) << DSB_GOSUB_HEAD_SHIFT) |
((u64)(DSB_GOSUB_CONVERT_ADDR(tail)) << DSB_GOSUB_TAIL_SHIFT);
intel_dsb_emit(dsb, lower_32_bits(head_tail),
(DSB_OPCODE_GOSUB << DSB_OPCODE_SHIFT) |
upper_32_bits(head_tail));
/*
* "NOTE: the instructions within the cacheline
* FOLLOWING the GOSUB instruction must be NOPs."
*/
intel_dsb_align_tail(dsb);
}
void intel_dsb_gosub_finish(struct intel_dsb *dsb)
{
intel_dsb_align_tail(dsb);
/*
* Wa_16024917128
* "Ensure that all subroutines called by GOSUB end with a cacheline of NOPs"
*/
intel_dsb_noop(dsb, 8);
intel_dsb_buffer_flush_map(&dsb->dsb_buf);
}
void intel_dsb_finish(struct intel_dsb *dsb)
{
intel_dsb_align_tail(dsb);
intel_dsb_buffer_flush_map(&dsb->dsb_buf);
}
static u32 dsb_error_int_status(struct intel_display *display)
{
u32 errors;
errors = DSB_GTT_FAULT_INT_STATUS |
DSB_RSPTIMEOUT_INT_STATUS |
DSB_POLL_ERR_INT_STATUS;
/*
* All the non-existing status bits operate as
* normal r/w bits, so any attempt to clear them
* will just end up setting them. Never do that so
* we won't mistake them for actual error interrupts.
*/
if (DISPLAY_VER(display) >= 14)
errors |= DSB_ATS_FAULT_INT_STATUS;
if (DISPLAY_VER(display) >= 30)
errors |= DSB_GOSUB_INT_STATUS;
return errors;
}
static u32 dsb_error_int_en(struct intel_display *display)
{
u32 errors;
errors = DSB_GTT_FAULT_INT_EN |
DSB_RSPTIMEOUT_INT_EN |
DSB_POLL_ERR_INT_EN;
if (DISPLAY_VER(display) >= 14)
errors |= DSB_ATS_FAULT_INT_EN;
/*
* Wa_16024917128
* "Disable nested GOSUB interrupt (DSB_INTERRUPT bit 21)"
*/
if (0 && DISPLAY_VER(display) >= 30)
errors |= DSB_GOSUB_INT_EN;
return errors;
}
/*
* FIXME calibrate these sensibly, ideally compute based on
* the number of regisetrs to be written. But that requires
* measuring the actual DSB execution speed on each platform
* (and the speed also depends on CDCLK and memory clock)...
*/
static int intel_dsb_noarm_exec_time_us(void)
{
return 80;
}
static int intel_dsb_arm_exec_time_us(void)
{
return 20;
}
int intel_dsb_exec_time_us(void)
{
return intel_dsb_noarm_exec_time_us() +
intel_dsb_arm_exec_time_us();
}
void intel_dsb_vblank_evade(struct intel_atomic_state *state,
struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
const struct intel_crtc_state *crtc_state =
intel_pre_commit_crtc_state(state, crtc);
int latency = intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode,
intel_dsb_arm_exec_time_us());
int start, end;
/*
* PIPEDSL is reading as 0 when in SRDENT(PSR1) or DEEP_SLEEP(PSR2). On
* wake-up scanline counting starts from vblank_start - 1. We don't know
* if wake-up is already ongoing when evasion starts. In worst case
* PIPEDSL could start reading valid value right after checking the
* scanline. In this scenario we wouldn't have enough time to write all
* registers. To tackle this evade scanline 0 as well. As a drawback we
* have 1 frame delay in flip when waking up.
*/
if (crtc_state->has_psr)
intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_OUT, 0, 0);
if (pre_commit_is_vrr_active(state, crtc)) {
int vblank_delay = intel_vrr_vblank_delay(crtc_state);
end = intel_vrr_vmin_vblank_start(crtc_state);
start = end - vblank_delay - latency;
intel_dsb_wait_scanline_out(state, dsb, start, end);
end = intel_vrr_vmax_vblank_start(crtc_state);
start = end - vblank_delay - latency;
intel_dsb_wait_scanline_out(state, dsb, start, end);
} else {
int vblank_delay = intel_mode_vblank_delay(&crtc_state->hw.adjusted_mode);
end = intel_mode_vblank_start(&crtc_state->hw.adjusted_mode);
start = end - vblank_delay - latency;
intel_dsb_wait_scanline_out(state, dsb, start, end);
}
}
static void _intel_dsb_chain(struct intel_atomic_state *state,
struct intel_dsb *dsb,
struct intel_dsb *chained_dsb,
u32 ctrl)
{
struct intel_display *display = to_intel_display(state->base.dev);
struct intel_crtc *crtc = dsb->crtc;
enum pipe pipe = crtc->pipe;
if (drm_WARN_ON(display->drm, dsb->id == chained_dsb->id))
return;
if (!assert_dsb_tail_is_aligned(chained_dsb))
return;
intel_dsb_reg_write(dsb, DSB_CTRL(pipe, chained_dsb->id),
ctrl | DSB_ENABLE);
intel_dsb_reg_write(dsb, DSB_CHICKEN(pipe, chained_dsb->id),
dsb_chicken(state, crtc));
intel_dsb_reg_write(dsb, DSB_INTERRUPT(pipe, chained_dsb->id),
dsb_error_int_status(display) | DSB_PROG_INT_STATUS |
dsb_error_int_en(display) | DSB_PROG_INT_EN);
if (ctrl & DSB_WAIT_FOR_VBLANK) {
int dewake_scanline = dsb_dewake_scanline_start(state, crtc);
int hw_dewake_scanline = dsb_scanline_to_hw(state, crtc, dewake_scanline);
intel_dsb_reg_write(dsb, DSB_PMCTRL(pipe, chained_dsb->id),
DSB_ENABLE_DEWAKE |
DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline));
} else {
intel_dsb_reg_write(dsb, DSB_PMCTRL(pipe, chained_dsb->id), 0);
}
intel_dsb_reg_write(dsb, DSB_HEAD(pipe, chained_dsb->id),
intel_dsb_head(chained_dsb));
intel_dsb_reg_write(dsb, DSB_TAIL(pipe, chained_dsb->id),
intel_dsb_tail(chained_dsb));
if (ctrl & DSB_WAIT_FOR_VBLANK) {
/*
* Keep DEwake alive via the first DSB, in
* case we're already past dewake_scanline,
* and thus DSB_ENABLE_DEWAKE on the second
* DSB won't do its job.
*/
intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(pipe, dsb->id),
DSB_FORCE_DEWAKE, DSB_FORCE_DEWAKE);
intel_dsb_wait_scanline_out(state, dsb,
dsb_dewake_scanline_start(state, crtc),
dsb_dewake_scanline_end(state, crtc));
/*
* DSB_FORCE_DEWAKE remains active even after DSB is
* disabled, so make sure to clear it.
*/
intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id),
DSB_FORCE_DEWAKE, 0);
}
}
void intel_dsb_chain(struct intel_atomic_state *state,
struct intel_dsb *dsb,
struct intel_dsb *chained_dsb,
bool wait_for_vblank)
{
_intel_dsb_chain(state, dsb, chained_dsb,
wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0);
}
void intel_dsb_wait_vblank_delay(struct intel_atomic_state *state,
struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
const struct intel_crtc_state *crtc_state =
intel_pre_commit_crtc_state(state, crtc);
int usecs = intel_scanlines_to_usecs(&crtc_state->hw.adjusted_mode,
dsb_vblank_delay(state, crtc));
intel_dsb_wait_usec(dsb, usecs);
}
/**
* intel_dsb_commit() - Trigger workload execution of DSB.
* @dsb: DSB context
*
* This function is used to do actual write to hardware using DSB.
*/
void intel_dsb_commit(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct intel_display *display = to_intel_display(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (!assert_dsb_tail_is_aligned(dsb))
return;
if (is_dsb_busy(display, pipe, dsb->id)) {
drm_err(display->drm, "[CRTC:%d:%s] DSB %d is busy\n",
crtc->base.base.id, crtc->base.name, dsb->id);
return;
}
intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id),
DSB_ENABLE);
intel_de_write_fw(display, DSB_CHICKEN(pipe, dsb->id),
dsb->chicken);
intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id),
dsb_error_int_status(display) | DSB_PROG_INT_STATUS |
dsb_error_int_en(display) | DSB_PROG_INT_EN);
intel_de_write_fw(display, DSB_PMCTRL(pipe, dsb->id), 0);
intel_de_write_fw(display, DSB_HEAD(pipe, dsb->id),
intel_dsb_head(dsb));
intel_de_write_fw(display, DSB_TAIL(pipe, dsb->id),
intel_dsb_tail(dsb));
}
void intel_dsb_wait(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct intel_display *display = to_intel_display(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (wait_for(!is_dsb_busy(display, pipe, dsb->id), 1)) {
u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf);
intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id),
DSB_ENABLE | DSB_HALT);
drm_err(display->drm,
"[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n",
crtc->base.base.id, crtc->base.name, dsb->id,
intel_de_read_fw(display, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset,
intel_de_read_fw(display, DSB_HEAD(pipe, dsb->id)) - offset,
intel_de_read_fw(display, DSB_TAIL(pipe, dsb->id)) - offset);
intel_dsb_dump(dsb);
}
/* Attempt to reset it */
dsb->free_pos = 0;
dsb->ins_start_offset = 0;
dsb->ins[0] = 0;
dsb->ins[1] = 0;
intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 0);
intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id),
dsb_error_int_status(display) | DSB_PROG_INT_STATUS);
}
/**
* intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
* @state: the atomic state
* @crtc: the CRTC
* @dsb_id: the DSB engine to use
* @max_cmds: number of commands we need to fit into command buffer
*
* This function prepare the command buffer which is used to store dsb
* instructions with data.
*
* Returns:
* DSB context, NULL on failure
*/
struct intel_dsb *intel_dsb_prepare(struct intel_atomic_state *state,
struct intel_crtc *crtc,
enum intel_dsb_id dsb_id,
unsigned int max_cmds)
{
struct intel_display *display = to_intel_display(state);
struct ref_tracker *wakeref;
struct intel_dsb *dsb;
unsigned int size;
if (!HAS_DSB(display))
return NULL;
if (!display->params.enable_dsb)
return NULL;
dsb = kzalloc(sizeof(*dsb), GFP_KERNEL);
if (!dsb)
goto out;
wakeref = intel_display_rpm_get(display);
/* ~1 qword per instruction, full cachelines */
size = ALIGN(max_cmds * 8, CACHELINE_BYTES);
if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size))
goto out_put_rpm;
intel_display_rpm_put(display, wakeref);
dsb->id = dsb_id;
dsb->crtc = crtc;
dsb->size = size / 4; /* in dwords */
dsb->chicken = dsb_chicken(state, crtc);
dsb->hw_dewake_scanline =
dsb_scanline_to_hw(state, crtc, dsb_dewake_scanline_start(state, crtc));
return dsb;
out_put_rpm:
intel_display_rpm_put(display, wakeref);
kfree(dsb);
out:
drm_info_once(display->drm,
"[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n",
crtc->base.base.id, crtc->base.name, dsb_id);
return NULL;
}
/**
* intel_dsb_cleanup() - To cleanup DSB context.
* @dsb: DSB context
*
* This function cleanup the DSB context by unpinning and releasing
* the VMA object associated with it.
*/
void intel_dsb_cleanup(struct intel_dsb *dsb)
{
intel_dsb_buffer_cleanup(&dsb->dsb_buf);
kfree(dsb);
}
void intel_dsb_irq_handler(struct intel_display *display,
enum pipe pipe, enum intel_dsb_id dsb_id)
{
struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe);
u32 tmp, errors;
tmp = intel_de_read_fw(display, DSB_INTERRUPT(pipe, dsb_id));
intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb_id), tmp);
if (tmp & DSB_PROG_INT_STATUS) {
spin_lock(&display->drm->event_lock);
if (crtc->dsb_event) {
/*
* Update vblank counter/timestamp in case it
* hasn't been done yet for this frame.
*/
drm_crtc_accurate_vblank_count(&crtc->base);
drm_crtc_send_vblank_event(&crtc->base, crtc->dsb_event);
crtc->dsb_event = NULL;
}
spin_unlock(&display->drm->event_lock);
}
errors = tmp & dsb_error_int_status(display);
if (errors & DSB_ATS_FAULT_INT_STATUS)
drm_err(display->drm, "[CRTC:%d:%s] DSB %d ATS fault\n",
crtc->base.base.id, crtc->base.name, dsb_id);
if (errors & DSB_GTT_FAULT_INT_STATUS)
drm_err(display->drm, "[CRTC:%d:%s] DSB %d GTT fault\n",
crtc->base.base.id, crtc->base.name, dsb_id);
if (errors & DSB_RSPTIMEOUT_INT_STATUS)
drm_err(display->drm, "[CRTC:%d:%s] DSB %d response timeout\n",
crtc->base.base.id, crtc->base.name, dsb_id);
if (errors & DSB_POLL_ERR_INT_STATUS)
drm_err(display->drm, "[CRTC:%d:%s] DSB %d poll error\n",
crtc->base.base.id, crtc->base.name, dsb_id);
if (errors & DSB_GOSUB_INT_STATUS)
drm_err(display->drm, "[CRTC:%d:%s] DSB %d GOSUB programming error\n",
crtc->base.base.id, crtc->base.name, dsb_id);
}