blob: f08fc4377d25e239f3ebdddf379320910bbecdcb [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon.h>
#include <linux/jiffies.h>
#include <linux/types.h>
#include <linux/units.h>
#include <drm/drm_managed.h>
#include "regs/xe_gt_regs.h"
#include "regs/xe_mchbar_regs.h"
#include "regs/xe_pcode_regs.h"
#include "xe_device.h"
#include "xe_hwmon.h"
#include "xe_mmio.h"
#include "xe_pcode.h"
#include "xe_pcode_api.h"
#include "xe_sriov.h"
#include "xe_pm.h"
#include "xe_vsec.h"
#include "regs/xe_pmt.h"
enum xe_hwmon_reg {
REG_TEMP,
REG_PKG_RAPL_LIMIT,
REG_PKG_POWER_SKU,
REG_PKG_POWER_SKU_UNIT,
REG_GT_PERF_STATUS,
REG_PKG_ENERGY_STATUS,
REG_FAN_SPEED,
};
enum xe_hwmon_reg_operation {
REG_READ32,
REG_RMW32,
REG_READ64,
};
enum xe_hwmon_channel {
CHANNEL_CARD,
CHANNEL_PKG,
CHANNEL_VRAM,
CHANNEL_MAX,
};
enum xe_fan_channel {
FAN_1,
FAN_2,
FAN_3,
FAN_MAX,
};
/* Attribute index for powerX_xxx_interval sysfs entries */
enum sensor_attr_power {
SENSOR_INDEX_PSYS_PL1,
SENSOR_INDEX_PKG_PL1,
SENSOR_INDEX_PSYS_PL2,
SENSOR_INDEX_PKG_PL2,
};
/*
* For platforms that support mailbox commands for power limits, REG_PKG_POWER_SKU_UNIT is
* not supported and below are SKU units to be used.
*/
#define PWR_UNIT 0x3
#define ENERGY_UNIT 0xe
#define TIME_UNIT 0xa
/*
* SF_* - scale factors for particular quantities according to hwmon spec.
*/
#define SF_POWER 1000000 /* microwatts */
#define SF_CURR 1000 /* milliamperes */
#define SF_VOLTAGE 1000 /* millivolts */
#define SF_ENERGY 1000000 /* microjoules */
#define SF_TIME 1000 /* milliseconds */
/*
* PL*_HWMON_ATTR - mapping of hardware power limits to corresponding hwmon power attribute.
*/
#define PL1_HWMON_ATTR hwmon_power_max
#define PL2_HWMON_ATTR hwmon_power_cap
#define PWR_ATTR_TO_STR(attr) (((attr) == hwmon_power_max) ? "PL1" : "PL2")
/*
* Timeout for power limit write mailbox command.
*/
#define PL_WRITE_MBX_TIMEOUT_MS (1)
/**
* struct xe_hwmon_energy_info - to accumulate energy
*/
struct xe_hwmon_energy_info {
/** @reg_val_prev: previous energy reg val */
u32 reg_val_prev;
/** @accum_energy: accumulated energy */
long accum_energy;
};
/**
* struct xe_hwmon_fan_info - to cache previous fan reading
*/
struct xe_hwmon_fan_info {
/** @reg_val_prev: previous fan reg val */
u32 reg_val_prev;
/** @time_prev: previous timestamp */
u64 time_prev;
};
/**
* struct xe_hwmon - xe hwmon data structure
*/
struct xe_hwmon {
/** @hwmon_dev: hwmon device for xe */
struct device *hwmon_dev;
/** @xe: Xe device */
struct xe_device *xe;
/** @hwmon_lock: lock for rw attributes*/
struct mutex hwmon_lock;
/** @scl_shift_power: pkg power unit */
int scl_shift_power;
/** @scl_shift_energy: pkg energy unit */
int scl_shift_energy;
/** @scl_shift_time: pkg time unit */
int scl_shift_time;
/** @ei: Energy info for energyN_input */
struct xe_hwmon_energy_info ei[CHANNEL_MAX];
/** @fi: Fan info for fanN_input */
struct xe_hwmon_fan_info fi[FAN_MAX];
/** @boot_power_limit_read: is boot power limits read */
bool boot_power_limit_read;
/** @pl1_on_boot: power limit PL1 on boot */
u32 pl1_on_boot[CHANNEL_MAX];
/** @pl2_on_boot: power limit PL2 on boot */
u32 pl2_on_boot[CHANNEL_MAX];
};
static int xe_hwmon_pcode_read_power_limit(const struct xe_hwmon *hwmon, u32 attr, int channel,
u32 *uval)
{
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
u32 val0 = 0, val1 = 0;
int ret = 0;
ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
(channel == CHANNEL_CARD) ?
READ_PSYSGPU_POWER_LIMIT :
READ_PACKAGE_POWER_LIMIT,
hwmon->boot_power_limit_read ?
READ_PL_FROM_PCODE : READ_PL_FROM_FW),
&val0, &val1);
if (ret) {
drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
channel, val0, val1, ret);
*uval = 0;
return ret;
}
/* return the value only if limit is enabled */
if (attr == PL1_HWMON_ATTR)
*uval = (val0 & PWR_LIM_EN) ? val0 : 0;
else if (attr == PL2_HWMON_ATTR)
*uval = (val1 & PWR_LIM_EN) ? val1 : 0;
else if (attr == hwmon_power_label)
*uval = (val0 & PWR_LIM_EN) ? 1 : (val1 & PWR_LIM_EN) ? 1 : 0;
else
*uval = 0;
return ret;
}
static int xe_hwmon_pcode_rmw_power_limit(const struct xe_hwmon *hwmon, u32 attr, u8 channel,
u32 clr, u32 set)
{
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
u32 val0, val1;
int ret = 0;
ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
(channel == CHANNEL_CARD) ?
READ_PSYSGPU_POWER_LIMIT :
READ_PACKAGE_POWER_LIMIT,
hwmon->boot_power_limit_read ?
READ_PL_FROM_PCODE : READ_PL_FROM_FW),
&val0, &val1);
if (ret)
drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
channel, val0, val1, ret);
if (attr == PL1_HWMON_ATTR)
val0 = (val0 & ~clr) | set;
else if (attr == PL2_HWMON_ATTR)
val1 = (val1 & ~clr) | set;
else
return -EIO;
ret = xe_pcode_write64_timeout(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
(channel == CHANNEL_CARD) ?
WRITE_PSYSGPU_POWER_LIMIT :
WRITE_PACKAGE_POWER_LIMIT, 0),
val0, val1, PL_WRITE_MBX_TIMEOUT_MS);
if (ret)
drm_dbg(&hwmon->xe->drm, "write failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
channel, val0, val1, ret);
return ret;
}
static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
int channel)
{
struct xe_device *xe = hwmon->xe;
switch (hwmon_reg) {
case REG_TEMP:
if (xe->info.platform == XE_BATTLEMAGE) {
if (channel == CHANNEL_PKG)
return BMG_PACKAGE_TEMPERATURE;
else if (channel == CHANNEL_VRAM)
return BMG_VRAM_TEMPERATURE;
} else if (xe->info.platform == XE_DG2) {
if (channel == CHANNEL_PKG)
return PCU_CR_PACKAGE_TEMPERATURE;
else if (channel == CHANNEL_VRAM)
return BMG_VRAM_TEMPERATURE;
}
break;
case REG_PKG_RAPL_LIMIT:
if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
return PVC_GT0_PACKAGE_RAPL_LIMIT;
else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
return PCU_CR_PACKAGE_RAPL_LIMIT;
break;
case REG_PKG_POWER_SKU:
if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
return PVC_GT0_PACKAGE_POWER_SKU;
else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
return PCU_CR_PACKAGE_POWER_SKU;
break;
case REG_PKG_POWER_SKU_UNIT:
if (xe->info.platform == XE_PVC)
return PVC_GT0_PACKAGE_POWER_SKU_UNIT;
else if (xe->info.platform == XE_DG2)
return PCU_CR_PACKAGE_POWER_SKU_UNIT;
break;
case REG_GT_PERF_STATUS:
if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG)
return GT_PERF_STATUS;
break;
case REG_PKG_ENERGY_STATUS:
if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
return PVC_GT0_PLATFORM_ENERGY_STATUS;
} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
return PCU_CR_PACKAGE_ENERGY_STATUS;
}
break;
case REG_FAN_SPEED:
if (channel == FAN_1)
return BMG_FAN_1_SPEED;
else if (channel == FAN_2)
return BMG_FAN_2_SPEED;
else if (channel == FAN_3)
return BMG_FAN_3_SPEED;
break;
default:
drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
break;
}
return XE_REG(0);
}
#define PL_DISABLE 0
/*
* HW allows arbitrary PL1 limits to be set but silently clamps these values to
* "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
* same pattern for sysfs, allow arbitrary PL1 limits to be set but display
* clamped values when read.
*/
static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *value)
{
u64 reg_val = 0, min, max;
struct xe_device *xe = hwmon->xe;
struct xe_reg rapl_limit, pkg_power_sku;
struct xe_mmio *mmio = xe_root_tile_mmio(xe);
mutex_lock(&hwmon->hwmon_lock);
if (hwmon->xe->info.has_mbx_power_limits) {
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, (u32 *)&reg_val);
} else {
rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
pkg_power_sku = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
reg_val = xe_mmio_read32(mmio, rapl_limit);
}
/* Check if PL limits are disabled. */
if (!(reg_val & PWR_LIM_EN)) {
*value = PL_DISABLE;
drm_info(&hwmon->xe->drm, "%s disabled for channel %d, val 0x%016llx\n",
PWR_ATTR_TO_STR(attr), channel, reg_val);
goto unlock;
}
reg_val = REG_FIELD_GET(PWR_LIM_VAL, reg_val);
*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
/* For platforms with mailbox power limit support clamping would be done by pcode. */
if (!hwmon->xe->info.has_mbx_power_limits) {
reg_val = xe_mmio_read64_2x32(mmio, pkg_power_sku);
min = REG_FIELD_GET(PKG_MIN_PWR, reg_val);
max = REG_FIELD_GET(PKG_MAX_PWR, reg_val);
min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
if (min && max)
*value = clamp_t(u64, *value, min, max);
}
unlock:
mutex_unlock(&hwmon->hwmon_lock);
}
static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, u32 attr, int channel, long value)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
int ret = 0;
u32 reg_val, max;
struct xe_reg rapl_limit;
mutex_lock(&hwmon->hwmon_lock);
rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
/* Disable Power Limit and verify, as limit cannot be disabled on all platforms. */
if (value == PL_DISABLE) {
if (hwmon->xe->info.has_mbx_power_limits) {
drm_dbg(&hwmon->xe->drm, "disabling %s on channel %d\n",
PWR_ATTR_TO_STR(attr), channel);
xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM_EN, 0);
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &reg_val);
} else {
reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM_EN, 0);
reg_val = xe_mmio_read32(mmio, rapl_limit);
}
if (reg_val & PWR_LIM_EN) {
drm_warn(&hwmon->xe->drm, "Power limit disable is not supported!\n");
ret = -EOPNOTSUPP;
}
goto unlock;
}
/* Computation in 64-bits to avoid overflow. Round to nearest. */
reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
/*
* Clamp power limit to GPU firmware default as maximum, as an additional protection to
* pcode clamp.
*/
if (hwmon->xe->info.has_mbx_power_limits) {
max = (attr == PL1_HWMON_ATTR) ?
hwmon->pl1_on_boot[channel] : hwmon->pl2_on_boot[channel];
max = REG_FIELD_PREP(PWR_LIM_VAL, max);
if (reg_val > max) {
reg_val = max;
drm_dbg(&hwmon->xe->drm,
"Clamping power limit to GPU firmware default 0x%x\n",
reg_val);
}
}
reg_val = PWR_LIM_EN | REG_FIELD_PREP(PWR_LIM_VAL, reg_val);
if (hwmon->xe->info.has_mbx_power_limits)
ret = xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM, reg_val);
else
reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM, reg_val);
unlock:
mutex_unlock(&hwmon->hwmon_lock);
return ret;
}
static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, u32 attr, int channel,
long *value)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
u32 reg_val;
if (hwmon->xe->info.has_mbx_power_limits) {
/* PL1 is rated max if supported. */
xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, channel, &reg_val);
} else {
/*
* This sysfs file won't be visible if REG_PKG_POWER_SKU is invalid, so valid check
* for this register can be skipped.
* See xe_hwmon_power_is_visible.
*/
struct xe_reg reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
reg_val = xe_mmio_read32(mmio, reg);
}
reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
}
/*
* xe_hwmon_energy_get - Obtain energy value
*
* The underlying energy hardware register is 32-bits and is subject to
* overflow. How long before overflow? For example, with an example
* scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
* a power draw of 1000 watts, the 32-bit counter will overflow in
* approximately 4.36 minutes.
*
* Examples:
* 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
* 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
*
* The function significantly increases overflow duration (from 4.36
* minutes) by accumulating the energy register into a 'long' as allowed by
* the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
* a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
* hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
* energyN_input overflows. This at 1000 W is an overflow duration of 278 years.
*/
static void
xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
struct xe_hwmon_energy_info *ei = &hwmon->ei[channel];
u32 reg_val;
int ret = 0;
/* Energy is supported only for card and pkg */
if (channel > CHANNEL_PKG) {
*energy = 0;
return;
}
if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
u64 pmt_val;
ret = xe_pmt_telem_read(to_pci_dev(hwmon->xe->drm.dev),
xe_mmio_read32(mmio, PUNIT_TELEMETRY_GUID),
&pmt_val, BMG_ENERGY_STATUS_PMT_OFFSET, sizeof(pmt_val));
if (ret != sizeof(pmt_val)) {
drm_warn(&hwmon->xe->drm, "energy read from pmt failed, ret %d\n", ret);
*energy = 0;
return;
}
if (channel == CHANNEL_PKG)
reg_val = REG_FIELD_GET64(ENERGY_PKG, pmt_val);
else
reg_val = REG_FIELD_GET64(ENERGY_CARD, pmt_val);
} else {
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
channel));
}
ei->accum_energy += reg_val - ei->reg_val_prev;
ei->reg_val_prev = reg_val;
*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
hwmon->scl_shift_energy);
}
static ssize_t
xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
u32 x, y, x_w = 2; /* 2 bits */
u64 r, tau4, out;
int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
int ret = 0;
xe_pm_runtime_get(hwmon->xe);
mutex_lock(&hwmon->hwmon_lock);
if (hwmon->xe->info.has_mbx_power_limits) {
ret = xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, (u32 *)&r);
if (ret) {
drm_err(&hwmon->xe->drm,
"power interval read fail, ch %d, attr %d, r 0%llx, ret %d\n",
channel, power_attr, r, ret);
r = 0;
}
} else {
r = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel));
}
mutex_unlock(&hwmon->hwmon_lock);
xe_pm_runtime_put(hwmon->xe);
x = REG_FIELD_GET(PWR_LIM_TIME_X, r);
y = REG_FIELD_GET(PWR_LIM_TIME_Y, r);
/*
* tau = (1 + (x / 4)) * power(2,y), x = bits(23:22), y = bits(21:17)
* = (4 | x) << (y - 2)
*
* Here (y - 2) ensures a 1.x fixed point representation of 1.x
* As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
*
* As y can be < 2, we compute tau4 = (4 | x) << y
* and then add 2 when doing the final right shift to account for units
*/
tau4 = (u64)((1 << x_w) | x) << y;
/* val in hwmon interface units (millisec) */
out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
return sysfs_emit(buf, "%llu\n", out);
}
static ssize_t
xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
u32 x, y, rxy, x_w = 2; /* 2 bits */
u64 tau4, r, max_win;
unsigned long val;
int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret)
return ret;
/*
* Max HW supported tau in '(1 + (x / 4)) * power(2,y)' format, x = 0, y = 0x12.
* The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
*
* The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
* However, it is observed that existing discrete GPUs does not provide correct
* PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
* this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
*/
#define PKG_MAX_WIN_DEFAULT 0x12ull
/*
* val must be < max in hwmon interface units. The steps below are
* explained in xe_hwmon_power_max_interval_show()
*/
r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
tau4 = (u64)((1 << x_w) | x) << y;
max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
if (val > max_win)
return -EINVAL;
/* val in hw units */
val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME) + 1;
/*
* Convert val to 1.x * power(2,y)
* y = ilog2(val)
* x = (val - (1 << y)) >> (y - 2)
*/
if (!val) {
y = 0;
x = 0;
} else {
y = ilog2(val);
x = (val - (1ul << y)) << x_w >> y;
}
rxy = REG_FIELD_PREP(PWR_LIM_TIME_X, x) |
REG_FIELD_PREP(PWR_LIM_TIME_Y, y);
xe_pm_runtime_get(hwmon->xe);
mutex_lock(&hwmon->hwmon_lock);
if (hwmon->xe->info.has_mbx_power_limits)
xe_hwmon_pcode_rmw_power_limit(hwmon, power_attr, channel, PWR_LIM_TIME, rxy);
else
r = xe_mmio_rmw32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel),
PWR_LIM_TIME, rxy);
mutex_unlock(&hwmon->hwmon_lock);
xe_pm_runtime_put(hwmon->xe);
return count;
}
/* PSYS PL1 */
static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
xe_hwmon_power_max_interval_show,
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL1);
/* PKG PL1 */
static SENSOR_DEVICE_ATTR(power2_max_interval, 0664,
xe_hwmon_power_max_interval_show,
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL1);
/* PSYS PL2 */
static SENSOR_DEVICE_ATTR(power1_cap_interval, 0664,
xe_hwmon_power_max_interval_show,
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL2);
/* PKG PL2 */
static SENSOR_DEVICE_ATTR(power2_cap_interval, 0664,
xe_hwmon_power_max_interval_show,
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL2);
static struct attribute *hwmon_attributes[] = {
&sensor_dev_attr_power1_max_interval.dev_attr.attr,
&sensor_dev_attr_power2_max_interval.dev_attr.attr,
&sensor_dev_attr_power1_cap_interval.dev_attr.attr,
&sensor_dev_attr_power2_cap_interval.dev_attr.attr,
NULL
};
static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
int ret = 0;
int channel = (index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
u32 power_attr = (index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
u32 uval = 0;
struct xe_reg rapl_limit;
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
xe_pm_runtime_get(hwmon->xe);
if (hwmon->xe->info.has_mbx_power_limits) {
xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, &uval);
} else if (power_attr != PL2_HWMON_ATTR) {
rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
if (xe_reg_is_valid(rapl_limit))
uval = xe_mmio_read32(mmio, rapl_limit);
}
ret = (uval & PWR_LIM_EN) ? attr->mode : 0;
xe_pm_runtime_put(hwmon->xe);
return ret;
}
static const struct attribute_group hwmon_attrgroup = {
.attrs = hwmon_attributes,
.is_visible = xe_hwmon_attributes_visible,
};
static const struct attribute_group *hwmon_groups[] = {
&hwmon_attrgroup,
NULL
};
static const struct hwmon_channel_info * const hwmon_info[] = {
HWMON_CHANNEL_INFO(temp, HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL),
HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CRIT |
HWMON_P_CAP,
HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CAP),
HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL),
HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL),
HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL),
HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT, HWMON_F_INPUT, HWMON_F_INPUT),
NULL
};
/* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
static int xe_hwmon_pcode_read_i1(const struct xe_hwmon *hwmon, u32 *uval)
{
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
/* Avoid Illegal Subcommand error */
if (hwmon->xe->info.platform == XE_DG2)
return -ENXIO;
return xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
POWER_SETUP_SUBCOMMAND_READ_I1, 0),
uval, NULL);
}
static int xe_hwmon_pcode_write_i1(const struct xe_hwmon *hwmon, u32 uval)
{
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
return xe_pcode_write(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
(uval & POWER_SETUP_I1_DATA_MASK));
}
static int xe_hwmon_pcode_read_fan_control(const struct xe_hwmon *hwmon, u32 subcmd, u32 *uval)
{
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
/* Platforms that don't return correct value */
if (hwmon->xe->info.platform == XE_DG2 && subcmd == FSC_READ_NUM_FANS) {
*uval = 2;
return 0;
}
return xe_pcode_read(root_tile, PCODE_MBOX(FAN_SPEED_CONTROL, subcmd, 0), uval, NULL);
}
static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel,
long *value, u32 scale_factor)
{
int ret;
u32 uval;
mutex_lock(&hwmon->hwmon_lock);
ret = xe_hwmon_pcode_read_i1(hwmon, &uval);
if (ret)
goto unlock;
*value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
scale_factor, POWER_SETUP_I1_SHIFT);
unlock:
mutex_unlock(&hwmon->hwmon_lock);
return ret;
}
static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel,
long value, u32 scale_factor)
{
int ret;
u32 uval;
mutex_lock(&hwmon->hwmon_lock);
uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
ret = xe_hwmon_pcode_write_i1(hwmon, uval);
mutex_unlock(&hwmon->hwmon_lock);
return ret;
}
static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
u64 reg_val;
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, channel));
/* HW register value in units of 2.5 millivolt */
*value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
}
static umode_t
xe_hwmon_temp_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_label:
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_TEMP, channel)) ? 0444 : 0;
default:
return 0;
}
}
static int
xe_hwmon_temp_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
u64 reg_val;
switch (attr) {
case hwmon_temp_input:
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_TEMP, channel));
/* HW register value is in degrees Celsius, convert to millidegrees. */
*val = REG_FIELD_GET(TEMP_MASK, reg_val) * MILLIDEGREE_PER_DEGREE;
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
u32 uval = 0;
struct xe_reg reg;
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
switch (attr) {
case hwmon_power_max:
case hwmon_power_cap:
if (hwmon->xe->info.has_mbx_power_limits) {
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
} else if (attr != PL2_HWMON_ATTR) {
reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
if (xe_reg_is_valid(reg))
uval = xe_mmio_read32(mmio, reg);
}
if (uval & PWR_LIM_EN) {
drm_info(&hwmon->xe->drm, "%s is supported on channel %d\n",
PWR_ATTR_TO_STR(attr), channel);
return 0664;
}
drm_dbg(&hwmon->xe->drm, "%s is unsupported on channel %d\n",
PWR_ATTR_TO_STR(attr), channel);
return 0;
case hwmon_power_rated_max:
if (hwmon->xe->info.has_mbx_power_limits) {
return 0;
} else {
reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
if (xe_reg_is_valid(reg))
uval = xe_mmio_read32(mmio, reg);
return uval ? 0444 : 0;
}
case hwmon_power_crit:
if (channel == CHANNEL_CARD) {
xe_hwmon_pcode_read_i1(hwmon, &uval);
return (uval & POWER_SETUP_I1_WATTS) ? 0644 : 0;
}
break;
case hwmon_power_label:
if (hwmon->xe->info.has_mbx_power_limits) {
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
} else {
reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
if (xe_reg_is_valid(reg))
uval = xe_mmio_read32(mmio, reg);
if (!uval) {
reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
if (xe_reg_is_valid(reg))
uval = xe_mmio_read32(mmio, reg);
}
}
if ((!(uval & PWR_LIM_EN)) && channel == CHANNEL_CARD) {
xe_hwmon_pcode_read_i1(hwmon, &uval);
return (uval & POWER_SETUP_I1_WATTS) ? 0444 : 0;
}
return (uval) ? 0444 : 0;
default:
return 0;
}
return 0;
}
static int
xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_power_max:
case hwmon_power_cap:
xe_hwmon_power_max_read(hwmon, attr, channel, val);
return 0;
case hwmon_power_rated_max:
xe_hwmon_power_rated_max_read(hwmon, attr, channel, val);
return 0;
case hwmon_power_crit:
return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER);
default:
return -EOPNOTSUPP;
}
}
static int
xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
{
switch (attr) {
case hwmon_power_cap:
case hwmon_power_max:
return xe_hwmon_power_max_write(hwmon, attr, channel, val);
case hwmon_power_crit:
return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER);
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel)
{
u32 uval;
/* hwmon sysfs attribute of current available only for package */
if (channel != CHANNEL_PKG)
return 0;
switch (attr) {
case hwmon_curr_crit:
return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
case hwmon_curr_label:
return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444;
break;
default:
return 0;
}
return 0;
}
static int
xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_curr_crit:
return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR);
default:
return -EOPNOTSUPP;
}
}
static int
xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
{
switch (attr) {
case hwmon_curr_crit:
return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR);
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
switch (attr) {
case hwmon_in_input:
case hwmon_in_label:
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS,
channel)) ? 0444 : 0;
default:
return 0;
}
}
static int
xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_in_input:
xe_hwmon_get_voltage(hwmon, channel, val);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
long energy = 0;
switch (attr) {
case hwmon_energy_input:
case hwmon_energy_label:
if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
xe_hwmon_energy_get(hwmon, channel, &energy);
return energy ? 0444 : 0;
} else {
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
channel)) ? 0444 : 0;
}
default:
return 0;
}
}
static int
xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_energy_input:
xe_hwmon_energy_get(hwmon, channel, val);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_fan_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
u32 uval;
if (!hwmon->xe->info.has_fan_control)
return 0;
switch (attr) {
case hwmon_fan_input:
if (xe_hwmon_pcode_read_fan_control(hwmon, FSC_READ_NUM_FANS, &uval))
return 0;
return channel < uval ? 0444 : 0;
default:
return 0;
}
}
static int
xe_hwmon_fan_input_read(struct xe_hwmon *hwmon, int channel, long *val)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
struct xe_hwmon_fan_info *fi = &hwmon->fi[channel];
u64 rotations, time_now, time;
u32 reg_val;
int ret = 0;
mutex_lock(&hwmon->hwmon_lock);
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_FAN_SPEED, channel));
time_now = get_jiffies_64();
/*
* HW register value is accumulated count of pulses from PWM fan with the scale
* of 2 pulses per rotation.
*/
rotations = (reg_val - fi->reg_val_prev) / 2;
time = jiffies_delta_to_msecs(time_now - fi->time_prev);
if (unlikely(!time)) {
ret = -EAGAIN;
goto unlock;
}
/*
* Calculate fan speed in RPM by time averaging two subsequent readings in minutes.
* RPM = number of rotations * msecs per minute / time in msecs
*/
*val = DIV_ROUND_UP_ULL(rotations * (MSEC_PER_SEC * 60), time);
fi->reg_val_prev = reg_val;
fi->time_prev = time_now;
unlock:
mutex_unlock(&hwmon->hwmon_lock);
return ret;
}
static int
xe_hwmon_fan_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_fan_input:
return xe_hwmon_fan_input_read(hwmon, channel, val);
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
u32 attr, int channel)
{
struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
int ret;
xe_pm_runtime_get(hwmon->xe);
switch (type) {
case hwmon_temp:
ret = xe_hwmon_temp_is_visible(hwmon, attr, channel);
break;
case hwmon_power:
ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
break;
case hwmon_curr:
ret = xe_hwmon_curr_is_visible(hwmon, attr, channel);
break;
case hwmon_in:
ret = xe_hwmon_in_is_visible(hwmon, attr, channel);
break;
case hwmon_energy:
ret = xe_hwmon_energy_is_visible(hwmon, attr, channel);
break;
case hwmon_fan:
ret = xe_hwmon_fan_is_visible(hwmon, attr, channel);
break;
default:
ret = 0;
break;
}
xe_pm_runtime_put(hwmon->xe);
return ret;
}
static int
xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long *val)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
int ret;
xe_pm_runtime_get(hwmon->xe);
switch (type) {
case hwmon_temp:
ret = xe_hwmon_temp_read(hwmon, attr, channel, val);
break;
case hwmon_power:
ret = xe_hwmon_power_read(hwmon, attr, channel, val);
break;
case hwmon_curr:
ret = xe_hwmon_curr_read(hwmon, attr, channel, val);
break;
case hwmon_in:
ret = xe_hwmon_in_read(hwmon, attr, channel, val);
break;
case hwmon_energy:
ret = xe_hwmon_energy_read(hwmon, attr, channel, val);
break;
case hwmon_fan:
ret = xe_hwmon_fan_read(hwmon, attr, channel, val);
break;
default:
ret = -EOPNOTSUPP;
break;
}
xe_pm_runtime_put(hwmon->xe);
return ret;
}
static int
xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long val)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
int ret;
xe_pm_runtime_get(hwmon->xe);
switch (type) {
case hwmon_power:
ret = xe_hwmon_power_write(hwmon, attr, channel, val);
break;
case hwmon_curr:
ret = xe_hwmon_curr_write(hwmon, attr, channel, val);
break;
default:
ret = -EOPNOTSUPP;
break;
}
xe_pm_runtime_put(hwmon->xe);
return ret;
}
static int xe_hwmon_read_label(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
switch (type) {
case hwmon_temp:
if (channel == CHANNEL_PKG)
*str = "pkg";
else if (channel == CHANNEL_VRAM)
*str = "vram";
return 0;
case hwmon_power:
case hwmon_energy:
case hwmon_curr:
case hwmon_in:
if (channel == CHANNEL_CARD)
*str = "card";
else if (channel == CHANNEL_PKG)
*str = "pkg";
return 0;
default:
return -EOPNOTSUPP;
}
}
static const struct hwmon_ops hwmon_ops = {
.is_visible = xe_hwmon_is_visible,
.read = xe_hwmon_read,
.write = xe_hwmon_write,
.read_string = xe_hwmon_read_label,
};
static const struct hwmon_chip_info hwmon_chip_info = {
.ops = &hwmon_ops,
.info = hwmon_info,
};
static void
xe_hwmon_get_preregistration_info(struct xe_hwmon *hwmon)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
long energy, fan_speed;
u64 val_sku_unit = 0;
int channel;
struct xe_reg pkg_power_sku_unit;
if (hwmon->xe->info.has_mbx_power_limits) {
/* Check if GPU firmware support mailbox power limits commands. */
if (xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_CARD,
&hwmon->pl1_on_boot[CHANNEL_CARD]) |
xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_PKG,
&hwmon->pl1_on_boot[CHANNEL_PKG]) |
xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_CARD,
&hwmon->pl2_on_boot[CHANNEL_CARD]) |
xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_PKG,
&hwmon->pl2_on_boot[CHANNEL_PKG])) {
drm_warn(&hwmon->xe->drm,
"Failed to read power limits, check GPU firmware !\n");
} else {
drm_info(&hwmon->xe->drm, "Using mailbox commands for power limits\n");
/* Write default limits to read from pcode from now on. */
xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
hwmon->pl1_on_boot[CHANNEL_CARD]);
xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
hwmon->pl1_on_boot[CHANNEL_PKG]);
xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
hwmon->pl2_on_boot[CHANNEL_CARD]);
xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
hwmon->pl2_on_boot[CHANNEL_PKG]);
hwmon->scl_shift_power = PWR_UNIT;
hwmon->scl_shift_energy = ENERGY_UNIT;
hwmon->scl_shift_time = TIME_UNIT;
hwmon->boot_power_limit_read = true;
}
} else {
drm_info(&hwmon->xe->drm, "Using register for power limits\n");
/*
* The contents of register PKG_POWER_SKU_UNIT do not change,
* so read it once and store the shift values.
*/
pkg_power_sku_unit = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0);
if (xe_reg_is_valid(pkg_power_sku_unit)) {
val_sku_unit = xe_mmio_read32(mmio, pkg_power_sku_unit);
hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
}
}
/*
* Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
* first value of the energy register read
*/
for (channel = 0; channel < CHANNEL_MAX; channel++)
if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel))
xe_hwmon_energy_get(hwmon, channel, &energy);
/* Initialize 'struct xe_hwmon_fan_info' with initial fan register reading. */
for (channel = 0; channel < FAN_MAX; channel++)
if (xe_hwmon_is_visible(hwmon, hwmon_fan, hwmon_fan_input, channel))
xe_hwmon_fan_input_read(hwmon, channel, &fan_speed);
}
static void xe_hwmon_mutex_destroy(void *arg)
{
struct xe_hwmon *hwmon = arg;
mutex_destroy(&hwmon->hwmon_lock);
}
int xe_hwmon_register(struct xe_device *xe)
{
struct device *dev = xe->drm.dev;
struct xe_hwmon *hwmon;
int ret;
/* hwmon is available only for dGfx */
if (!IS_DGFX(xe))
return 0;
/* hwmon is not available on VFs */
if (IS_SRIOV_VF(xe))
return 0;
hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
if (!hwmon)
return -ENOMEM;
mutex_init(&hwmon->hwmon_lock);
ret = devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon);
if (ret)
return ret;
/* There's only one instance of hwmon per device */
hwmon->xe = xe;
xe->hwmon = hwmon;
xe_hwmon_get_preregistration_info(hwmon);
drm_dbg(&xe->drm, "Register xe hwmon interface\n");
/* hwmon_dev points to device hwmon<i> */
hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
&hwmon_chip_info,
hwmon_groups);
if (IS_ERR(hwmon->hwmon_dev)) {
drm_err(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
xe->hwmon = NULL;
return PTR_ERR(hwmon->hwmon_dev);
}
return 0;
}
MODULE_IMPORT_NS("INTEL_PMT_TELEMETRY");