| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * access_tracking_perf_test |
| * |
| * Copyright (C) 2021, Google, Inc. |
| * |
| * This test measures the performance effects of KVM's access tracking. |
| * Access tracking is driven by the MMU notifiers test_young, clear_young, and |
| * clear_flush_young. These notifiers do not have a direct userspace API, |
| * however the clear_young notifier can be triggered either by |
| * 1. marking a pages as idle in /sys/kernel/mm/page_idle/bitmap OR |
| * 2. adding a new MGLRU generation using the lru_gen debugfs file. |
| * This test leverages page_idle to enable access tracking on guest memory |
| * unless MGLRU is enabled, in which case MGLRU is used. |
| * |
| * To measure performance this test runs a VM with a configurable number of |
| * vCPUs that each touch every page in disjoint regions of memory. Performance |
| * is measured in the time it takes all vCPUs to finish touching their |
| * predefined region. |
| * |
| * Note that a deterministic correctness test of access tracking is not possible |
| * by using page_idle or MGLRU aging as it exists today. This is for a few |
| * reasons: |
| * |
| * 1. page_idle and MGLRU only issue clear_young notifiers, which lack a TLB flush. |
| * This means subsequent guest accesses are not guaranteed to see page table |
| * updates made by KVM until some time in the future. |
| * |
| * 2. page_idle only operates on LRU pages. Newly allocated pages are not |
| * immediately allocated to LRU lists. Instead they are held in a "pagevec", |
| * which is drained to LRU lists some time in the future. There is no |
| * userspace API to force this drain to occur. |
| * |
| * These limitations are worked around in this test by using a large enough |
| * region of memory for each vCPU such that the number of translations cached in |
| * the TLB and the number of pages held in pagevecs are a small fraction of the |
| * overall workload. And if either of those conditions are not true (for example |
| * in nesting, where TLB size is unlimited) this test will print a warning |
| * rather than silently passing. |
| */ |
| #include <inttypes.h> |
| #include <limits.h> |
| #include <pthread.h> |
| #include <sys/mman.h> |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| |
| #include "kvm_util.h" |
| #include "test_util.h" |
| #include "memstress.h" |
| #include "guest_modes.h" |
| #include "processor.h" |
| |
| #include "cgroup_util.h" |
| #include "lru_gen_util.h" |
| |
| static const char *TEST_MEMCG_NAME = "access_tracking_perf_test"; |
| |
| /* Global variable used to synchronize all of the vCPU threads. */ |
| static int iteration; |
| |
| /* The cgroup memory controller root. Needed for lru_gen-based aging. */ |
| char cgroup_root[PATH_MAX]; |
| |
| /* Defines what vCPU threads should do during a given iteration. */ |
| static enum { |
| /* Run the vCPU to access all its memory. */ |
| ITERATION_ACCESS_MEMORY, |
| /* Mark the vCPU's memory idle in page_idle. */ |
| ITERATION_MARK_IDLE, |
| } iteration_work; |
| |
| /* The iteration that was last completed by each vCPU. */ |
| static int vcpu_last_completed_iteration[KVM_MAX_VCPUS]; |
| |
| /* Whether to overlap the regions of memory vCPUs access. */ |
| static bool overlap_memory_access; |
| |
| /* |
| * If the test should only warn if there are too many idle pages (i.e., it is |
| * expected). |
| * -1: Not yet set. |
| * 0: We do not expect too many idle pages, so FAIL if too many idle pages. |
| * 1: Having too many idle pages is expected, so merely print a warning if |
| * too many idle pages are found. |
| */ |
| static int idle_pages_warn_only = -1; |
| |
| /* Whether or not to use MGLRU instead of page_idle for access tracking */ |
| static bool use_lru_gen; |
| |
| /* Total number of pages to expect in the memcg after touching everything */ |
| static long test_pages; |
| |
| /* Last generation we found the pages in */ |
| static int lru_gen_last_gen = -1; |
| |
| struct test_params { |
| /* The backing source for the region of memory. */ |
| enum vm_mem_backing_src_type backing_src; |
| |
| /* The amount of memory to allocate for each vCPU. */ |
| uint64_t vcpu_memory_bytes; |
| |
| /* The number of vCPUs to create in the VM. */ |
| int nr_vcpus; |
| }; |
| |
| static uint64_t pread_uint64(int fd, const char *filename, uint64_t index) |
| { |
| uint64_t value; |
| off_t offset = index * sizeof(value); |
| |
| TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value), |
| "pread from %s offset 0x%" PRIx64 " failed!", |
| filename, offset); |
| |
| return value; |
| |
| } |
| |
| #define PAGEMAP_PRESENT (1ULL << 63) |
| #define PAGEMAP_PFN_MASK ((1ULL << 55) - 1) |
| |
| static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva) |
| { |
| uint64_t hva = (uint64_t) addr_gva2hva(vm, gva); |
| uint64_t entry; |
| uint64_t pfn; |
| |
| entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize()); |
| if (!(entry & PAGEMAP_PRESENT)) |
| return 0; |
| |
| pfn = entry & PAGEMAP_PFN_MASK; |
| __TEST_REQUIRE(pfn, "Looking up PFNs requires CAP_SYS_ADMIN"); |
| |
| return pfn; |
| } |
| |
| static bool is_page_idle(int page_idle_fd, uint64_t pfn) |
| { |
| uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64); |
| |
| return !!((bits >> (pfn % 64)) & 1); |
| } |
| |
| static void mark_page_idle(int page_idle_fd, uint64_t pfn) |
| { |
| uint64_t bits = 1ULL << (pfn % 64); |
| |
| TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8, |
| "Set page_idle bits for PFN 0x%" PRIx64, pfn); |
| } |
| |
| static void too_many_idle_pages(long idle_pages, long total_pages, int vcpu_idx) |
| { |
| char prefix[18] = {}; |
| |
| if (vcpu_idx >= 0) |
| snprintf(prefix, 18, "vCPU%d: ", vcpu_idx); |
| |
| TEST_ASSERT(idle_pages_warn_only, |
| "%sToo many pages still idle (%lu out of %lu)", |
| prefix, idle_pages, total_pages); |
| |
| printf("WARNING: %sToo many pages still idle (%lu out of %lu), " |
| "this will affect performance results.\n", |
| prefix, idle_pages, total_pages); |
| } |
| |
| static void pageidle_mark_vcpu_memory_idle(struct kvm_vm *vm, |
| struct memstress_vcpu_args *vcpu_args) |
| { |
| int vcpu_idx = vcpu_args->vcpu_idx; |
| uint64_t base_gva = vcpu_args->gva; |
| uint64_t pages = vcpu_args->pages; |
| uint64_t page; |
| uint64_t still_idle = 0; |
| uint64_t no_pfn = 0; |
| int page_idle_fd; |
| int pagemap_fd; |
| |
| /* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */ |
| if (overlap_memory_access && vcpu_idx) |
| return; |
| |
| page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR); |
| TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle."); |
| |
| pagemap_fd = open("/proc/self/pagemap", O_RDONLY); |
| TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap."); |
| |
| for (page = 0; page < pages; page++) { |
| uint64_t gva = base_gva + page * memstress_args.guest_page_size; |
| uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva); |
| |
| if (!pfn) { |
| no_pfn++; |
| continue; |
| } |
| |
| if (is_page_idle(page_idle_fd, pfn)) { |
| still_idle++; |
| continue; |
| } |
| |
| mark_page_idle(page_idle_fd, pfn); |
| } |
| |
| /* |
| * Assumption: Less than 1% of pages are going to be swapped out from |
| * under us during this test. |
| */ |
| TEST_ASSERT(no_pfn < pages / 100, |
| "vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.", |
| vcpu_idx, no_pfn, pages); |
| |
| /* |
| * Check that at least 90% of memory has been marked idle (the rest |
| * might not be marked idle because the pages have not yet made it to an |
| * LRU list or the translations are still cached in the TLB). 90% is |
| * arbitrary; high enough that we ensure most memory access went through |
| * access tracking but low enough as to not make the test too brittle |
| * over time and across architectures. |
| */ |
| if (still_idle >= pages / 10) |
| too_many_idle_pages(still_idle, pages, |
| overlap_memory_access ? -1 : vcpu_idx); |
| |
| close(page_idle_fd); |
| close(pagemap_fd); |
| } |
| |
| int find_generation(struct memcg_stats *stats, long total_pages) |
| { |
| /* |
| * For finding the generation that contains our pages, use the same |
| * 90% threshold that page_idle uses. |
| */ |
| int gen = lru_gen_find_generation(stats, total_pages * 9 / 10); |
| |
| if (gen >= 0) |
| return gen; |
| |
| if (!idle_pages_warn_only) { |
| TEST_FAIL("Could not find a generation with 90%% of guest memory (%ld pages).", |
| total_pages * 9 / 10); |
| return gen; |
| } |
| |
| /* |
| * We couldn't find a generation with 90% of guest memory, which can |
| * happen if access tracking is unreliable. Simply look for a majority |
| * of pages. |
| */ |
| puts("WARNING: Couldn't find a generation with 90% of guest memory. " |
| "Performance results may not be accurate."); |
| gen = lru_gen_find_generation(stats, total_pages / 2); |
| TEST_ASSERT(gen >= 0, |
| "Could not find a generation with 50%% of guest memory (%ld pages).", |
| total_pages / 2); |
| return gen; |
| } |
| |
| static void lru_gen_mark_memory_idle(struct kvm_vm *vm) |
| { |
| struct timespec ts_start; |
| struct timespec ts_elapsed; |
| struct memcg_stats stats; |
| int new_gen; |
| |
| /* Make a new generation */ |
| clock_gettime(CLOCK_MONOTONIC, &ts_start); |
| lru_gen_do_aging(&stats, TEST_MEMCG_NAME); |
| ts_elapsed = timespec_elapsed(ts_start); |
| |
| /* Check the generation again */ |
| new_gen = find_generation(&stats, test_pages); |
| |
| /* |
| * This function should only be invoked with newly-accessed pages, |
| * so pages should always move to a newer generation. |
| */ |
| if (new_gen <= lru_gen_last_gen) { |
| /* We did not move to a newer generation. */ |
| long idle_pages = lru_gen_sum_memcg_stats_for_gen(lru_gen_last_gen, |
| &stats); |
| |
| too_many_idle_pages(min_t(long, idle_pages, test_pages), |
| test_pages, -1); |
| } |
| pr_info("%-30s: %ld.%09lds\n", |
| "Mark memory idle (lru_gen)", ts_elapsed.tv_sec, |
| ts_elapsed.tv_nsec); |
| lru_gen_last_gen = new_gen; |
| } |
| |
| static void assert_ucall(struct kvm_vcpu *vcpu, uint64_t expected_ucall) |
| { |
| struct ucall uc; |
| uint64_t actual_ucall = get_ucall(vcpu, &uc); |
| |
| TEST_ASSERT(expected_ucall == actual_ucall, |
| "Guest exited unexpectedly (expected ucall %" PRIu64 |
| ", got %" PRIu64 ")", |
| expected_ucall, actual_ucall); |
| } |
| |
| static bool spin_wait_for_next_iteration(int *current_iteration) |
| { |
| int last_iteration = *current_iteration; |
| |
| do { |
| if (READ_ONCE(memstress_args.stop_vcpus)) |
| return false; |
| |
| *current_iteration = READ_ONCE(iteration); |
| } while (last_iteration == *current_iteration); |
| |
| return true; |
| } |
| |
| static void vcpu_thread_main(struct memstress_vcpu_args *vcpu_args) |
| { |
| struct kvm_vcpu *vcpu = vcpu_args->vcpu; |
| struct kvm_vm *vm = memstress_args.vm; |
| int vcpu_idx = vcpu_args->vcpu_idx; |
| int current_iteration = 0; |
| |
| while (spin_wait_for_next_iteration(¤t_iteration)) { |
| switch (READ_ONCE(iteration_work)) { |
| case ITERATION_ACCESS_MEMORY: |
| vcpu_run(vcpu); |
| assert_ucall(vcpu, UCALL_SYNC); |
| break; |
| case ITERATION_MARK_IDLE: |
| pageidle_mark_vcpu_memory_idle(vm, vcpu_args); |
| break; |
| } |
| |
| vcpu_last_completed_iteration[vcpu_idx] = current_iteration; |
| } |
| } |
| |
| static void spin_wait_for_vcpu(int vcpu_idx, int target_iteration) |
| { |
| while (READ_ONCE(vcpu_last_completed_iteration[vcpu_idx]) != |
| target_iteration) { |
| continue; |
| } |
| } |
| |
| /* The type of memory accesses to perform in the VM. */ |
| enum access_type { |
| ACCESS_READ, |
| ACCESS_WRITE, |
| }; |
| |
| static void run_iteration(struct kvm_vm *vm, int nr_vcpus, const char *description) |
| { |
| struct timespec ts_start; |
| struct timespec ts_elapsed; |
| int next_iteration, i; |
| |
| /* Kick off the vCPUs by incrementing iteration. */ |
| next_iteration = ++iteration; |
| |
| clock_gettime(CLOCK_MONOTONIC, &ts_start); |
| |
| /* Wait for all vCPUs to finish the iteration. */ |
| for (i = 0; i < nr_vcpus; i++) |
| spin_wait_for_vcpu(i, next_iteration); |
| |
| ts_elapsed = timespec_elapsed(ts_start); |
| pr_info("%-30s: %ld.%09lds\n", |
| description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec); |
| } |
| |
| static void access_memory(struct kvm_vm *vm, int nr_vcpus, |
| enum access_type access, const char *description) |
| { |
| memstress_set_write_percent(vm, (access == ACCESS_READ) ? 0 : 100); |
| iteration_work = ITERATION_ACCESS_MEMORY; |
| run_iteration(vm, nr_vcpus, description); |
| } |
| |
| static void mark_memory_idle(struct kvm_vm *vm, int nr_vcpus) |
| { |
| if (use_lru_gen) |
| return lru_gen_mark_memory_idle(vm); |
| |
| /* |
| * Even though this parallelizes the work across vCPUs, this is still a |
| * very slow operation because page_idle forces the test to mark one pfn |
| * at a time and the clear_young notifier may serialize on the KVM MMU |
| * lock. |
| */ |
| pr_debug("Marking VM memory idle (slow)...\n"); |
| iteration_work = ITERATION_MARK_IDLE; |
| run_iteration(vm, nr_vcpus, "Mark memory idle (page_idle)"); |
| } |
| |
| static void run_test(enum vm_guest_mode mode, void *arg) |
| { |
| struct test_params *params = arg; |
| struct kvm_vm *vm; |
| int nr_vcpus = params->nr_vcpus; |
| |
| vm = memstress_create_vm(mode, nr_vcpus, params->vcpu_memory_bytes, 1, |
| params->backing_src, !overlap_memory_access); |
| |
| /* |
| * If guest_page_size is larger than the host's page size, the |
| * guest (memstress) will only fault in a subset of the host's pages. |
| */ |
| test_pages = params->nr_vcpus * params->vcpu_memory_bytes / |
| max(memstress_args.guest_page_size, |
| (uint64_t)getpagesize()); |
| |
| memstress_start_vcpu_threads(nr_vcpus, vcpu_thread_main); |
| |
| pr_info("\n"); |
| access_memory(vm, nr_vcpus, ACCESS_WRITE, "Populating memory"); |
| |
| if (use_lru_gen) { |
| struct memcg_stats stats; |
| |
| /* |
| * Do a page table scan now. Following initial population, aging |
| * may not cause the pages to move to a newer generation. Do |
| * an aging pass now so that future aging passes always move |
| * pages to a newer generation. |
| */ |
| printf("Initial aging pass (lru_gen)\n"); |
| lru_gen_do_aging(&stats, TEST_MEMCG_NAME); |
| TEST_ASSERT(lru_gen_sum_memcg_stats(&stats) >= test_pages, |
| "Not all pages accounted for (looking for %ld). " |
| "Was the memcg set up correctly?", test_pages); |
| access_memory(vm, nr_vcpus, ACCESS_WRITE, "Re-populating memory"); |
| lru_gen_read_memcg_stats(&stats, TEST_MEMCG_NAME); |
| lru_gen_last_gen = find_generation(&stats, test_pages); |
| } |
| |
| /* As a control, read and write to the populated memory first. */ |
| access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to populated memory"); |
| access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from populated memory"); |
| |
| /* Repeat on memory that has been marked as idle. */ |
| mark_memory_idle(vm, nr_vcpus); |
| access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to idle memory"); |
| mark_memory_idle(vm, nr_vcpus); |
| access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from idle memory"); |
| |
| memstress_join_vcpu_threads(nr_vcpus); |
| memstress_destroy_vm(vm); |
| } |
| |
| static int access_tracking_unreliable(void) |
| { |
| #ifdef __x86_64__ |
| /* |
| * When running nested, the TLB size may be effectively unlimited (for |
| * example, this is the case when running on KVM L0), and KVM doesn't |
| * explicitly flush the TLB when aging SPTEs. As a result, more pages |
| * are cached and the guest won't see the "idle" bit cleared. |
| */ |
| if (this_cpu_has(X86_FEATURE_HYPERVISOR)) { |
| puts("Skipping idle page count sanity check, because the test is run nested"); |
| return 1; |
| } |
| #endif |
| /* |
| * When NUMA balancing is enabled, guest memory will be unmapped to get |
| * NUMA faults, dropping the Accessed bits. |
| */ |
| if (is_numa_balancing_enabled()) { |
| puts("Skipping idle page count sanity check, because NUMA balancing is enabled"); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int run_test_for_each_guest_mode(const char *cgroup, void *arg) |
| { |
| for_each_guest_mode(run_test, arg); |
| return 0; |
| } |
| |
| static void help(char *name) |
| { |
| puts(""); |
| printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o] [-s mem_type]\n", |
| name); |
| puts(""); |
| printf(" -h: Display this help message."); |
| guest_modes_help(); |
| printf(" -b: specify the size of the memory region which should be\n" |
| " dirtied by each vCPU. e.g. 10M or 3G.\n" |
| " (default: 1G)\n"); |
| printf(" -v: specify the number of vCPUs to run.\n"); |
| printf(" -o: Overlap guest memory accesses instead of partitioning\n" |
| " them into a separate region of memory for each vCPU.\n"); |
| printf(" -w: Control whether the test warns or fails if more than 10%%\n" |
| " of pages are still seen as idle/old after accessing guest\n" |
| " memory. >0 == warn only, 0 == fail, <0 == auto. For auto\n" |
| " mode, the test fails by default, but switches to warn only\n" |
| " if NUMA balancing is enabled or the test detects it's running\n" |
| " in a VM.\n"); |
| backing_src_help("-s"); |
| puts(""); |
| exit(0); |
| } |
| |
| void destroy_cgroup(char *cg) |
| { |
| printf("Destroying cgroup: %s\n", cg); |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| struct test_params params = { |
| .backing_src = DEFAULT_VM_MEM_SRC, |
| .vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE, |
| .nr_vcpus = 1, |
| }; |
| char *new_cg = NULL; |
| int page_idle_fd; |
| int opt; |
| |
| guest_modes_append_default(); |
| |
| while ((opt = getopt(argc, argv, "hm:b:v:os:w:")) != -1) { |
| switch (opt) { |
| case 'm': |
| guest_modes_cmdline(optarg); |
| break; |
| case 'b': |
| params.vcpu_memory_bytes = parse_size(optarg); |
| break; |
| case 'v': |
| params.nr_vcpus = atoi_positive("Number of vCPUs", optarg); |
| break; |
| case 'o': |
| overlap_memory_access = true; |
| break; |
| case 's': |
| params.backing_src = parse_backing_src_type(optarg); |
| break; |
| case 'w': |
| idle_pages_warn_only = |
| atoi_non_negative("Idle pages warning", |
| optarg); |
| break; |
| case 'h': |
| default: |
| help(argv[0]); |
| break; |
| } |
| } |
| |
| if (idle_pages_warn_only == -1) |
| idle_pages_warn_only = access_tracking_unreliable(); |
| |
| if (lru_gen_usable()) { |
| bool cg_created = true; |
| int ret; |
| |
| puts("Using lru_gen for aging"); |
| use_lru_gen = true; |
| |
| if (cg_find_controller_root(cgroup_root, sizeof(cgroup_root), "memory")) |
| ksft_exit_skip("Cannot find memory cgroup controller\n"); |
| |
| new_cg = cg_name(cgroup_root, TEST_MEMCG_NAME); |
| printf("Creating cgroup: %s\n", new_cg); |
| if (cg_create(new_cg)) { |
| if (errno == EEXIST) { |
| printf("Found existing cgroup"); |
| cg_created = false; |
| } else { |
| ksft_exit_skip("could not create new cgroup: %s\n", new_cg); |
| } |
| } |
| |
| /* |
| * This will fork off a new process to run the test within |
| * a new memcg, so we need to properly propagate the return |
| * value up. |
| */ |
| ret = cg_run(new_cg, &run_test_for_each_guest_mode, ¶ms); |
| if (cg_created) |
| cg_destroy(new_cg); |
| if (ret < 0) |
| TEST_FAIL("child did not spawn or was abnormally killed"); |
| if (ret) |
| return ret; |
| } else { |
| page_idle_fd = __open_path_or_exit("/sys/kernel/mm/page_idle/bitmap", O_RDWR, |
| "Is CONFIG_IDLE_PAGE_TRACKING enabled?"); |
| close(page_idle_fd); |
| |
| puts("Using page_idle for aging"); |
| run_test_for_each_guest_mode(NULL, ¶ms); |
| } |
| |
| return 0; |
| } |