| // SPDX-License-Identifier: GPL-2.0 |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <pthread.h> |
| #include <semaphore.h> |
| #include <sys/types.h> |
| #include <signal.h> |
| #include <errno.h> |
| #include <linux/bitmap.h> |
| #include <linux/bitops.h> |
| #include <linux/atomic.h> |
| #include <linux/sizes.h> |
| |
| #include "kvm_util.h" |
| #include "test_util.h" |
| #include "guest_modes.h" |
| #include "processor.h" |
| #include "ucall_common.h" |
| |
| static bool mprotect_ro_done; |
| static bool all_vcpus_hit_ro_fault; |
| |
| static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride) |
| { |
| uint64_t gpa; |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| for (gpa = start_gpa; gpa < end_gpa; gpa += stride) |
| vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa); |
| GUEST_SYNC(i); |
| } |
| |
| for (gpa = start_gpa; gpa < end_gpa; gpa += stride) |
| *((volatile uint64_t *)gpa); |
| GUEST_SYNC(2); |
| |
| /* |
| * Write to the region while mprotect(PROT_READ) is underway. Keep |
| * looping until the memory is guaranteed to be read-only and a fault |
| * has occurred, otherwise vCPUs may complete their writes and advance |
| * to the next stage prematurely. |
| * |
| * For architectures that support skipping the faulting instruction, |
| * generate the store via inline assembly to ensure the exact length |
| * of the instruction is known and stable (vcpu_arch_put_guest() on |
| * fixed-length architectures should work, but the cost of paranoia |
| * is low in this case). For x86, hand-code the exact opcode so that |
| * there is no room for variability in the generated instruction. |
| */ |
| do { |
| for (gpa = start_gpa; gpa < end_gpa; gpa += stride) |
| #ifdef __x86_64__ |
| asm volatile(".byte 0x48,0x89,0x00" :: "a"(gpa) : "memory"); /* mov %rax, (%rax) */ |
| #elif defined(__aarch64__) |
| asm volatile("str %0, [%0]" :: "r" (gpa) : "memory"); |
| #else |
| vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa); |
| #endif |
| } while (!READ_ONCE(mprotect_ro_done) || !READ_ONCE(all_vcpus_hit_ro_fault)); |
| |
| /* |
| * Only architectures that write the entire range can explicitly sync, |
| * as other architectures will be stuck on the write fault. |
| */ |
| #if defined(__x86_64__) || defined(__aarch64__) |
| GUEST_SYNC(3); |
| #endif |
| |
| for (gpa = start_gpa; gpa < end_gpa; gpa += stride) |
| vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa); |
| GUEST_SYNC(4); |
| |
| GUEST_ASSERT(0); |
| } |
| |
| struct vcpu_info { |
| struct kvm_vcpu *vcpu; |
| uint64_t start_gpa; |
| uint64_t end_gpa; |
| }; |
| |
| static int nr_vcpus; |
| static atomic_t rendezvous; |
| static atomic_t nr_ro_faults; |
| |
| static void rendezvous_with_boss(void) |
| { |
| int orig = atomic_read(&rendezvous); |
| |
| if (orig > 0) { |
| atomic_dec_and_test(&rendezvous); |
| while (atomic_read(&rendezvous) > 0) |
| cpu_relax(); |
| } else { |
| atomic_inc(&rendezvous); |
| while (atomic_read(&rendezvous) < 0) |
| cpu_relax(); |
| } |
| } |
| |
| static void assert_sync_stage(struct kvm_vcpu *vcpu, int stage) |
| { |
| struct ucall uc; |
| |
| TEST_ASSERT_EQ(get_ucall(vcpu, &uc), UCALL_SYNC); |
| TEST_ASSERT_EQ(uc.args[1], stage); |
| } |
| |
| static void run_vcpu(struct kvm_vcpu *vcpu, int stage) |
| { |
| vcpu_run(vcpu); |
| assert_sync_stage(vcpu, stage); |
| } |
| |
| static void *vcpu_worker(void *data) |
| { |
| struct kvm_sregs __maybe_unused sregs; |
| struct vcpu_info *info = data; |
| struct kvm_vcpu *vcpu = info->vcpu; |
| struct kvm_vm *vm = vcpu->vm; |
| int r; |
| |
| vcpu_args_set(vcpu, 3, info->start_gpa, info->end_gpa, vm->page_size); |
| |
| rendezvous_with_boss(); |
| |
| /* Stage 0, write all of guest memory. */ |
| run_vcpu(vcpu, 0); |
| rendezvous_with_boss(); |
| #ifdef __x86_64__ |
| vcpu_sregs_get(vcpu, &sregs); |
| /* Toggle CR0.WP to trigger a MMU context reset. */ |
| sregs.cr0 ^= X86_CR0_WP; |
| vcpu_sregs_set(vcpu, &sregs); |
| #endif |
| rendezvous_with_boss(); |
| |
| /* Stage 1, re-write all of guest memory. */ |
| run_vcpu(vcpu, 1); |
| rendezvous_with_boss(); |
| |
| /* Stage 2, read all of guest memory, which is now read-only. */ |
| run_vcpu(vcpu, 2); |
| |
| /* |
| * Stage 3, write guest memory and verify KVM returns -EFAULT for once |
| * the mprotect(PROT_READ) lands. Only architectures that support |
| * validating *all* of guest memory sync for this stage, as vCPUs will |
| * be stuck on the faulting instruction for other architectures. Go to |
| * stage 3 without a rendezvous |
| */ |
| r = _vcpu_run(vcpu); |
| TEST_ASSERT(r == -1 && errno == EFAULT, |
| "Expected EFAULT on write to RO memory, got r = %d, errno = %d", r, errno); |
| |
| atomic_inc(&nr_ro_faults); |
| if (atomic_read(&nr_ro_faults) == nr_vcpus) { |
| WRITE_ONCE(all_vcpus_hit_ro_fault, true); |
| sync_global_to_guest(vm, all_vcpus_hit_ro_fault); |
| } |
| |
| #if defined(__x86_64__) || defined(__aarch64__) |
| /* |
| * Verify *all* writes from the guest hit EFAULT due to the VMA now |
| * being read-only. x86 and arm64 only at this time as skipping the |
| * instruction that hits the EFAULT requires advancing the program |
| * counter, which is arch specific and relies on inline assembly. |
| */ |
| #ifdef __x86_64__ |
| vcpu->run->kvm_valid_regs = KVM_SYNC_X86_REGS; |
| #endif |
| for (;;) { |
| r = _vcpu_run(vcpu); |
| if (!r) |
| break; |
| TEST_ASSERT_EQ(errno, EFAULT); |
| #if defined(__x86_64__) |
| WRITE_ONCE(vcpu->run->kvm_dirty_regs, KVM_SYNC_X86_REGS); |
| vcpu->run->s.regs.regs.rip += 3; |
| #elif defined(__aarch64__) |
| vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), |
| vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc)) + 4); |
| #endif |
| |
| } |
| assert_sync_stage(vcpu, 3); |
| #endif /* __x86_64__ || __aarch64__ */ |
| rendezvous_with_boss(); |
| |
| /* |
| * Stage 4. Run to completion, waiting for mprotect(PROT_WRITE) to |
| * make the memory writable again. |
| */ |
| do { |
| r = _vcpu_run(vcpu); |
| } while (r && errno == EFAULT); |
| TEST_ASSERT_EQ(r, 0); |
| assert_sync_stage(vcpu, 4); |
| rendezvous_with_boss(); |
| |
| return NULL; |
| } |
| |
| static pthread_t *spawn_workers(struct kvm_vm *vm, struct kvm_vcpu **vcpus, |
| uint64_t start_gpa, uint64_t end_gpa) |
| { |
| struct vcpu_info *info; |
| uint64_t gpa, nr_bytes; |
| pthread_t *threads; |
| int i; |
| |
| threads = malloc(nr_vcpus * sizeof(*threads)); |
| TEST_ASSERT(threads, "Failed to allocate vCPU threads"); |
| |
| info = malloc(nr_vcpus * sizeof(*info)); |
| TEST_ASSERT(info, "Failed to allocate vCPU gpa ranges"); |
| |
| nr_bytes = ((end_gpa - start_gpa) / nr_vcpus) & |
| ~((uint64_t)vm->page_size - 1); |
| TEST_ASSERT(nr_bytes, "C'mon, no way you have %d CPUs", nr_vcpus); |
| |
| for (i = 0, gpa = start_gpa; i < nr_vcpus; i++, gpa += nr_bytes) { |
| info[i].vcpu = vcpus[i]; |
| info[i].start_gpa = gpa; |
| info[i].end_gpa = gpa + nr_bytes; |
| pthread_create(&threads[i], NULL, vcpu_worker, &info[i]); |
| } |
| return threads; |
| } |
| |
| static void rendezvous_with_vcpus(struct timespec *time, const char *name) |
| { |
| int i, rendezvoused; |
| |
| pr_info("Waiting for vCPUs to finish %s...\n", name); |
| |
| rendezvoused = atomic_read(&rendezvous); |
| for (i = 0; abs(rendezvoused) != 1; i++) { |
| usleep(100); |
| if (!(i & 0x3f)) |
| pr_info("\r%d vCPUs haven't rendezvoused...", |
| abs(rendezvoused) - 1); |
| rendezvoused = atomic_read(&rendezvous); |
| } |
| |
| clock_gettime(CLOCK_MONOTONIC, time); |
| |
| /* Release the vCPUs after getting the time of the previous action. */ |
| pr_info("\rAll vCPUs finished %s, releasing...\n", name); |
| if (rendezvoused > 0) |
| atomic_set(&rendezvous, -nr_vcpus - 1); |
| else |
| atomic_set(&rendezvous, nr_vcpus + 1); |
| } |
| |
| static void calc_default_nr_vcpus(void) |
| { |
| cpu_set_t possible_mask; |
| int r; |
| |
| r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask); |
| TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)", |
| errno, strerror(errno)); |
| |
| nr_vcpus = CPU_COUNT(&possible_mask) * 3/4; |
| TEST_ASSERT(nr_vcpus > 0, "Uh, no CPUs?"); |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| /* |
| * Skip the first 4gb and slot0. slot0 maps <1gb and is used to back |
| * the guest's code, stack, and page tables. Because selftests creates |
| * an IRQCHIP, a.k.a. a local APIC, KVM creates an internal memslot |
| * just below the 4gb boundary. This test could create memory at |
| * 1gb-3gb,but it's simpler to skip straight to 4gb. |
| */ |
| const uint64_t start_gpa = SZ_4G; |
| const int first_slot = 1; |
| |
| struct timespec time_start, time_run1, time_reset, time_run2, time_ro, time_rw; |
| uint64_t max_gpa, gpa, slot_size, max_mem, i; |
| int max_slots, slot, opt, fd; |
| bool hugepages = false; |
| struct kvm_vcpu **vcpus; |
| pthread_t *threads; |
| struct kvm_vm *vm; |
| void *mem; |
| |
| /* |
| * Default to 2gb so that maxing out systems with MAXPHADDR=46, which |
| * are quite common for x86, requires changing only max_mem (KVM allows |
| * 32k memslots, 32k * 2gb == ~64tb of guest memory). |
| */ |
| slot_size = SZ_2G; |
| |
| max_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); |
| TEST_ASSERT(max_slots > first_slot, "KVM is broken"); |
| |
| /* All KVM MMUs should be able to survive a 128gb guest. */ |
| max_mem = 128ull * SZ_1G; |
| |
| calc_default_nr_vcpus(); |
| |
| while ((opt = getopt(argc, argv, "c:h:m:s:H")) != -1) { |
| switch (opt) { |
| case 'c': |
| nr_vcpus = atoi_positive("Number of vCPUs", optarg); |
| break; |
| case 'm': |
| max_mem = 1ull * atoi_positive("Memory size", optarg) * SZ_1G; |
| break; |
| case 's': |
| slot_size = 1ull * atoi_positive("Slot size", optarg) * SZ_1G; |
| break; |
| case 'H': |
| hugepages = true; |
| break; |
| case 'h': |
| default: |
| printf("usage: %s [-c nr_vcpus] [-m max_mem_in_gb] [-s slot_size_in_gb] [-H]\n", argv[0]); |
| exit(1); |
| } |
| } |
| |
| vcpus = malloc(nr_vcpus * sizeof(*vcpus)); |
| TEST_ASSERT(vcpus, "Failed to allocate vCPU array"); |
| |
| vm = __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, |
| #ifdef __x86_64__ |
| max_mem / SZ_1G, |
| #else |
| max_mem / vm_guest_mode_params[VM_MODE_DEFAULT].page_size, |
| #endif |
| guest_code, vcpus); |
| |
| max_gpa = vm->max_gfn << vm->page_shift; |
| TEST_ASSERT(max_gpa > (4 * slot_size), "MAXPHYADDR <4gb "); |
| |
| fd = kvm_memfd_alloc(slot_size, hugepages); |
| mem = mmap(NULL, slot_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); |
| TEST_ASSERT(mem != MAP_FAILED, "mmap() failed"); |
| |
| TEST_ASSERT(!madvise(mem, slot_size, MADV_NOHUGEPAGE), "madvise() failed"); |
| |
| /* Pre-fault the memory to avoid taking mmap_sem on guest page faults. */ |
| for (i = 0; i < slot_size; i += vm->page_size) |
| ((uint8_t *)mem)[i] = 0xaa; |
| |
| gpa = 0; |
| for (slot = first_slot; slot < max_slots; slot++) { |
| gpa = start_gpa + ((slot - first_slot) * slot_size); |
| if (gpa + slot_size > max_gpa) |
| break; |
| |
| if ((gpa - start_gpa) >= max_mem) |
| break; |
| |
| vm_set_user_memory_region(vm, slot, 0, gpa, slot_size, mem); |
| |
| #ifdef __x86_64__ |
| /* Identity map memory in the guest using 1gb pages. */ |
| for (i = 0; i < slot_size; i += SZ_1G) |
| __virt_pg_map(vm, gpa + i, gpa + i, PG_LEVEL_1G); |
| #else |
| for (i = 0; i < slot_size; i += vm->page_size) |
| virt_pg_map(vm, gpa + i, gpa + i); |
| #endif |
| } |
| |
| atomic_set(&rendezvous, nr_vcpus + 1); |
| threads = spawn_workers(vm, vcpus, start_gpa, gpa); |
| |
| free(vcpus); |
| vcpus = NULL; |
| |
| pr_info("Running with %lugb of guest memory and %u vCPUs\n", |
| (gpa - start_gpa) / SZ_1G, nr_vcpus); |
| |
| rendezvous_with_vcpus(&time_start, "spawning"); |
| rendezvous_with_vcpus(&time_run1, "run 1"); |
| rendezvous_with_vcpus(&time_reset, "reset"); |
| rendezvous_with_vcpus(&time_run2, "run 2"); |
| |
| mprotect(mem, slot_size, PROT_READ); |
| mprotect_ro_done = true; |
| sync_global_to_guest(vm, mprotect_ro_done); |
| |
| rendezvous_with_vcpus(&time_ro, "mprotect RO"); |
| mprotect(mem, slot_size, PROT_READ | PROT_WRITE); |
| rendezvous_with_vcpus(&time_rw, "mprotect RW"); |
| |
| time_rw = timespec_sub(time_rw, time_ro); |
| time_ro = timespec_sub(time_ro, time_run2); |
| time_run2 = timespec_sub(time_run2, time_reset); |
| time_reset = timespec_sub(time_reset, time_run1); |
| time_run1 = timespec_sub(time_run1, time_start); |
| |
| pr_info("run1 = %ld.%.9lds, reset = %ld.%.9lds, run2 = %ld.%.9lds, " |
| "ro = %ld.%.9lds, rw = %ld.%.9lds\n", |
| time_run1.tv_sec, time_run1.tv_nsec, |
| time_reset.tv_sec, time_reset.tv_nsec, |
| time_run2.tv_sec, time_run2.tv_nsec, |
| time_ro.tv_sec, time_ro.tv_nsec, |
| time_rw.tv_sec, time_rw.tv_nsec); |
| |
| /* |
| * Delete even numbered slots (arbitrary) and unmap the first half of |
| * the backing (also arbitrary) to verify KVM correctly drops all |
| * references to the removed regions. |
| */ |
| for (slot = (slot - 1) & ~1ull; slot >= first_slot; slot -= 2) |
| vm_set_user_memory_region(vm, slot, 0, 0, 0, NULL); |
| |
| munmap(mem, slot_size / 2); |
| |
| /* Sanity check that the vCPUs actually ran. */ |
| for (i = 0; i < nr_vcpus; i++) |
| pthread_join(threads[i], NULL); |
| |
| /* |
| * Deliberately exit without deleting the remaining memslots or closing |
| * kvm_fd to test cleanup via mmu_notifier.release. |
| */ |
| } |