blob: 8b15a13df9394972ac9811566bc3427bcf1f98cc [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Test for KVM_X86_DISABLE_EXITS_APERFMPERF
*
* Copyright (C) 2025, Google LLC.
*
* Test the ability to disable VM-exits for rdmsr of IA32_APERF and
* IA32_MPERF. When these VM-exits are disabled, reads of these MSRs
* return the host's values.
*
* Note: Requires read access to /dev/cpu/<lpu>/msr to read host MSRs.
*/
#include <fcntl.h>
#include <limits.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <asm/msr-index.h>
#include "kvm_util.h"
#include "processor.h"
#include "svm_util.h"
#include "test_util.h"
#include "vmx.h"
#define NUM_ITERATIONS 10000
static int open_dev_msr(int cpu)
{
char path[PATH_MAX];
snprintf(path, sizeof(path), "/dev/cpu/%d/msr", cpu);
return open_path_or_exit(path, O_RDONLY);
}
static uint64_t read_dev_msr(int msr_fd, uint32_t msr)
{
uint64_t data;
ssize_t rc;
rc = pread(msr_fd, &data, sizeof(data), msr);
TEST_ASSERT(rc == sizeof(data), "Read of MSR 0x%x failed", msr);
return data;
}
static void guest_read_aperf_mperf(void)
{
int i;
for (i = 0; i < NUM_ITERATIONS; i++)
GUEST_SYNC2(rdmsr(MSR_IA32_APERF), rdmsr(MSR_IA32_MPERF));
}
#define L2_GUEST_STACK_SIZE 64
static void l2_guest_code(void)
{
guest_read_aperf_mperf();
GUEST_DONE();
}
static void l1_svm_code(struct svm_test_data *svm)
{
unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
struct vmcb *vmcb = svm->vmcb;
generic_svm_setup(svm, l2_guest_code, &l2_guest_stack[L2_GUEST_STACK_SIZE]);
run_guest(vmcb, svm->vmcb_gpa);
}
static void l1_vmx_code(struct vmx_pages *vmx)
{
unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
GUEST_ASSERT_EQ(prepare_for_vmx_operation(vmx), true);
GUEST_ASSERT_EQ(load_vmcs(vmx), true);
prepare_vmcs(vmx, NULL, &l2_guest_stack[L2_GUEST_STACK_SIZE]);
/*
* Enable MSR bitmaps (the bitmap itself is allocated, zeroed, and set
* in the VMCS by prepare_vmcs()), as MSR exiting mandatory on Intel.
*/
vmwrite(CPU_BASED_VM_EXEC_CONTROL,
vmreadz(CPU_BASED_VM_EXEC_CONTROL) | CPU_BASED_USE_MSR_BITMAPS);
GUEST_ASSERT(!vmwrite(GUEST_RIP, (u64)l2_guest_code));
GUEST_ASSERT(!vmlaunch());
}
static void guest_code(void *nested_test_data)
{
guest_read_aperf_mperf();
if (this_cpu_has(X86_FEATURE_SVM))
l1_svm_code(nested_test_data);
else if (this_cpu_has(X86_FEATURE_VMX))
l1_vmx_code(nested_test_data);
else
GUEST_DONE();
TEST_FAIL("L2 should have signaled 'done'");
}
static void guest_no_aperfmperf(void)
{
uint64_t msr_val;
uint8_t vector;
vector = rdmsr_safe(MSR_IA32_APERF, &msr_val);
GUEST_ASSERT(vector == GP_VECTOR);
vector = rdmsr_safe(MSR_IA32_APERF, &msr_val);
GUEST_ASSERT(vector == GP_VECTOR);
GUEST_DONE();
}
int main(int argc, char *argv[])
{
const bool has_nested = kvm_cpu_has(X86_FEATURE_SVM) || kvm_cpu_has(X86_FEATURE_VMX);
uint64_t host_aperf_before, host_mperf_before;
vm_vaddr_t nested_test_data_gva;
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
int msr_fd, cpu, i;
/* Sanity check that APERF/MPERF are unsupported by default. */
vm = vm_create_with_one_vcpu(&vcpu, guest_no_aperfmperf);
vcpu_run(vcpu);
TEST_ASSERT_EQ(get_ucall(vcpu, NULL), UCALL_DONE);
kvm_vm_free(vm);
cpu = pin_self_to_any_cpu();
msr_fd = open_dev_msr(cpu);
/*
* This test requires a non-standard VM initialization, because
* KVM_ENABLE_CAP cannot be used on a VM file descriptor after
* a VCPU has been created.
*/
vm = vm_create(1);
TEST_REQUIRE(vm_check_cap(vm, KVM_CAP_X86_DISABLE_EXITS) &
KVM_X86_DISABLE_EXITS_APERFMPERF);
vm_enable_cap(vm, KVM_CAP_X86_DISABLE_EXITS,
KVM_X86_DISABLE_EXITS_APERFMPERF);
vcpu = vm_vcpu_add(vm, 0, guest_code);
if (!has_nested)
nested_test_data_gva = NONCANONICAL;
else if (kvm_cpu_has(X86_FEATURE_SVM))
vcpu_alloc_svm(vm, &nested_test_data_gva);
else
vcpu_alloc_vmx(vm, &nested_test_data_gva);
vcpu_args_set(vcpu, 1, nested_test_data_gva);
host_aperf_before = read_dev_msr(msr_fd, MSR_IA32_APERF);
host_mperf_before = read_dev_msr(msr_fd, MSR_IA32_MPERF);
for (i = 0; i <= NUM_ITERATIONS * (1 + has_nested); i++) {
uint64_t host_aperf_after, host_mperf_after;
uint64_t guest_aperf, guest_mperf;
struct ucall uc;
vcpu_run(vcpu);
TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
switch (get_ucall(vcpu, &uc)) {
case UCALL_DONE:
goto done;
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
case UCALL_SYNC:
guest_aperf = uc.args[0];
guest_mperf = uc.args[1];
host_aperf_after = read_dev_msr(msr_fd, MSR_IA32_APERF);
host_mperf_after = read_dev_msr(msr_fd, MSR_IA32_MPERF);
TEST_ASSERT(host_aperf_before < guest_aperf,
"APERF: host_before (0x%" PRIx64 ") >= guest (0x%" PRIx64 ")",
host_aperf_before, guest_aperf);
TEST_ASSERT(guest_aperf < host_aperf_after,
"APERF: guest (0x%" PRIx64 ") >= host_after (0x%" PRIx64 ")",
guest_aperf, host_aperf_after);
TEST_ASSERT(host_mperf_before < guest_mperf,
"MPERF: host_before (0x%" PRIx64 ") >= guest (0x%" PRIx64 ")",
host_mperf_before, guest_mperf);
TEST_ASSERT(guest_mperf < host_mperf_after,
"MPERF: guest (0x%" PRIx64 ") >= host_after (0x%" PRIx64 ")",
guest_mperf, host_mperf_after);
host_aperf_before = host_aperf_after;
host_mperf_before = host_mperf_after;
break;
}
}
TEST_FAIL("Didn't receive UCALL_DONE\n");
done:
kvm_vm_free(vm);
close(msr_fd);
return 0;
}