| // SPDX-License-Identifier: GPL-2.0 |
| /* Microchip LAN937X switch driver main logic |
| * Copyright (C) 2019-2024 Microchip Technology Inc. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/iopoll.h> |
| #include <linux/phy.h> |
| #include <linux/of_net.h> |
| #include <linux/if_bridge.h> |
| #include <linux/if_vlan.h> |
| #include <linux/math.h> |
| #include <net/dsa.h> |
| #include <net/switchdev.h> |
| |
| #include "lan937x_reg.h" |
| #include "ksz_common.h" |
| #include "ksz9477.h" |
| #include "lan937x.h" |
| |
| /* marker for ports without built-in PHY */ |
| #define LAN937X_NO_PHY U8_MAX |
| |
| /* |
| * lan9370_phy_addr - Mapping of LAN9370 switch ports to PHY addresses. |
| * |
| * Each entry corresponds to a specific port on the LAN9370 switch, |
| * where ports 1-4 are connected to integrated 100BASE-T1 PHYs, and |
| * Port 5 is connected to an RGMII interface without a PHY. The values |
| * are based on the documentation (DS00003108E, section 3.3). |
| */ |
| static const u8 lan9370_phy_addr[] = { |
| [0] = 2, /* Port 1, T1 AFE0 */ |
| [1] = 3, /* Port 2, T1 AFE1 */ |
| [2] = 5, /* Port 3, T1 AFE3 */ |
| [3] = 6, /* Port 4, T1 AFE4 */ |
| [4] = LAN937X_NO_PHY, /* Port 5, RGMII 2 */ |
| }; |
| |
| /* |
| * lan9371_phy_addr - Mapping of LAN9371 switch ports to PHY addresses. |
| * |
| * The values are based on the documentation (DS00003109E, section 3.3). |
| */ |
| static const u8 lan9371_phy_addr[] = { |
| [0] = 2, /* Port 1, T1 AFE0 */ |
| [1] = 3, /* Port 2, T1 AFE1 */ |
| [2] = 5, /* Port 3, T1 AFE3 */ |
| [3] = 8, /* Port 4, TX PHY */ |
| [4] = LAN937X_NO_PHY, /* Port 5, RGMII 2 */ |
| [5] = LAN937X_NO_PHY, /* Port 6, RGMII 1 */ |
| }; |
| |
| /* |
| * lan9372_phy_addr - Mapping of LAN9372 switch ports to PHY addresses. |
| * |
| * The values are based on the documentation (DS00003110F, section 3.3). |
| */ |
| static const u8 lan9372_phy_addr[] = { |
| [0] = 2, /* Port 1, T1 AFE0 */ |
| [1] = 3, /* Port 2, T1 AFE1 */ |
| [2] = 5, /* Port 3, T1 AFE3 */ |
| [3] = 8, /* Port 4, TX PHY */ |
| [4] = LAN937X_NO_PHY, /* Port 5, RGMII 2 */ |
| [5] = LAN937X_NO_PHY, /* Port 6, RGMII 1 */ |
| [6] = 6, /* Port 7, T1 AFE4 */ |
| [7] = 4, /* Port 8, T1 AFE2 */ |
| }; |
| |
| /* |
| * lan9373_phy_addr - Mapping of LAN9373 switch ports to PHY addresses. |
| * |
| * The values are based on the documentation (DS00003110F, section 3.3). |
| */ |
| static const u8 lan9373_phy_addr[] = { |
| [0] = 2, /* Port 1, T1 AFE0 */ |
| [1] = 3, /* Port 2, T1 AFE1 */ |
| [2] = 5, /* Port 3, T1 AFE3 */ |
| [3] = LAN937X_NO_PHY, /* Port 4, SGMII */ |
| [4] = LAN937X_NO_PHY, /* Port 5, RGMII 2 */ |
| [5] = LAN937X_NO_PHY, /* Port 6, RGMII 1 */ |
| [6] = 6, /* Port 7, T1 AFE4 */ |
| [7] = 4, /* Port 8, T1 AFE2 */ |
| }; |
| |
| /* |
| * lan9374_phy_addr - Mapping of LAN9374 switch ports to PHY addresses. |
| * |
| * The values are based on the documentation (DS00003110F, section 3.3). |
| */ |
| static const u8 lan9374_phy_addr[] = { |
| [0] = 2, /* Port 1, T1 AFE0 */ |
| [1] = 3, /* Port 2, T1 AFE1 */ |
| [2] = 5, /* Port 3, T1 AFE3 */ |
| [3] = 7, /* Port 4, T1 AFE5 */ |
| [4] = LAN937X_NO_PHY, /* Port 5, RGMII 2 */ |
| [5] = LAN937X_NO_PHY, /* Port 6, RGMII 1 */ |
| [6] = 6, /* Port 7, T1 AFE4 */ |
| [7] = 4, /* Port 8, T1 AFE2 */ |
| }; |
| |
| static int lan937x_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set) |
| { |
| return regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0); |
| } |
| |
| static int lan937x_port_cfg(struct ksz_device *dev, int port, int offset, |
| u8 bits, bool set) |
| { |
| return regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset), |
| bits, set ? bits : 0); |
| } |
| |
| /** |
| * lan937x_create_phy_addr_map - Create port-to-PHY address map for MDIO bus. |
| * @dev: Pointer to device structure. |
| * @side_mdio: Boolean indicating if the PHYs are accessed over a side MDIO bus. |
| * |
| * This function sets up the PHY address mapping for the LAN937x switches, |
| * which support two access modes for internal PHYs: |
| * 1. **SPI Access**: A straightforward one-to-one port-to-PHY address |
| * mapping is applied. |
| * 2. **MDIO Access**: The PHY address mapping varies based on chip variant |
| * and strap configuration. An offset is calculated based on strap settings |
| * to ensure correct PHY addresses are assigned. The offset calculation logic |
| * is based on Microchip's Article Number 000015828, available at: |
| * https://microchip.my.site.com/s/article/LAN9374-Virtual-PHY-PHY-Address-Mapping |
| * |
| * The function first checks if side MDIO access is disabled, in which case a |
| * simple direct mapping (port number = PHY address) is applied. If side MDIO |
| * access is enabled, it reads the strap configuration to determine the correct |
| * offset for PHY addresses. |
| * |
| * The appropriate mapping table is selected based on the chip ID, and the |
| * `phy_addr_map` is populated with the correct addresses for each port. Any |
| * port with no PHY is assigned a `LAN937X_NO_PHY` marker. |
| * |
| * Return: 0 on success, error code on failure. |
| */ |
| int lan937x_create_phy_addr_map(struct ksz_device *dev, bool side_mdio) |
| { |
| static const u8 *phy_addr_map; |
| u32 strap_val; |
| u8 offset = 0; |
| size_t size; |
| int ret, i; |
| |
| if (!side_mdio) { |
| /* simple direct mapping */ |
| for (i = 0; i < dev->info->port_cnt; i++) |
| dev->phy_addr_map[i] = i; |
| |
| return 0; |
| } |
| |
| ret = ksz_read32(dev, REG_SW_CFG_STRAP_VAL, &strap_val); |
| if (ret < 0) |
| return ret; |
| |
| if (!(strap_val & SW_CASCADE_ID_CFG) && !(strap_val & SW_VPHY_ADD_CFG)) |
| offset = 0; |
| else if (!(strap_val & SW_CASCADE_ID_CFG) && (strap_val & SW_VPHY_ADD_CFG)) |
| offset = 7; |
| else if ((strap_val & SW_CASCADE_ID_CFG) && !(strap_val & SW_VPHY_ADD_CFG)) |
| offset = 15; |
| else |
| offset = 22; |
| |
| switch (dev->info->chip_id) { |
| case LAN9370_CHIP_ID: |
| phy_addr_map = lan9370_phy_addr; |
| size = ARRAY_SIZE(lan9370_phy_addr); |
| break; |
| case LAN9371_CHIP_ID: |
| phy_addr_map = lan9371_phy_addr; |
| size = ARRAY_SIZE(lan9371_phy_addr); |
| break; |
| case LAN9372_CHIP_ID: |
| phy_addr_map = lan9372_phy_addr; |
| size = ARRAY_SIZE(lan9372_phy_addr); |
| break; |
| case LAN9373_CHIP_ID: |
| phy_addr_map = lan9373_phy_addr; |
| size = ARRAY_SIZE(lan9373_phy_addr); |
| break; |
| case LAN9374_CHIP_ID: |
| phy_addr_map = lan9374_phy_addr; |
| size = ARRAY_SIZE(lan9374_phy_addr); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (size < dev->info->port_cnt) |
| return -EINVAL; |
| |
| for (i = 0; i < dev->info->port_cnt; i++) { |
| if (phy_addr_map[i] == LAN937X_NO_PHY) |
| dev->phy_addr_map[i] = phy_addr_map[i]; |
| else |
| dev->phy_addr_map[i] = phy_addr_map[i] + offset; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * lan937x_mdio_bus_preinit - Pre-initialize MDIO bus for accessing PHYs. |
| * @dev: Pointer to device structure. |
| * @side_mdio: Boolean indicating if the PHYs are accessed over a side MDIO bus. |
| * |
| * This function configures the LAN937x switch for PHY access either through |
| * SPI or the side MDIO bus, unlocking the necessary registers for each access |
| * mode. |
| * |
| * Operation Modes: |
| * 1. **SPI Access**: Enables SPI indirect access to address clock domain |
| * crossing issues when SPI is used for PHY access. |
| * 2. **MDIO Access**: Grants access to internal PHYs over the side MDIO bus, |
| * required when using the MDIO bus for PHY management. |
| * |
| * Return: 0 on success, error code on failure. |
| */ |
| int lan937x_mdio_bus_preinit(struct ksz_device *dev, bool side_mdio) |
| { |
| u16 data16; |
| int ret; |
| |
| /* Unlock access to the PHYs, needed for SPI and side MDIO access */ |
| ret = lan937x_cfg(dev, REG_GLOBAL_CTRL_0, SW_PHY_REG_BLOCK, false); |
| if (ret < 0) |
| goto print_error; |
| |
| if (side_mdio) |
| /* Allow access to internal PHYs over MDIO bus */ |
| data16 = VPHY_MDIO_INTERNAL_ENABLE; |
| else |
| /* Enable SPI indirect access to address clock domain crossing |
| * issue |
| */ |
| data16 = VPHY_SPI_INDIRECT_ENABLE; |
| |
| ret = ksz_rmw16(dev, REG_VPHY_SPECIAL_CTRL__2, |
| VPHY_SPI_INDIRECT_ENABLE | VPHY_MDIO_INTERNAL_ENABLE, |
| data16); |
| |
| print_error: |
| if (ret < 0) |
| dev_err(dev->dev, "failed to preinit the MDIO bus\n"); |
| |
| return ret; |
| } |
| |
| static int lan937x_vphy_ind_addr_wr(struct ksz_device *dev, int addr, int reg) |
| { |
| u16 addr_base = REG_PORT_T1_PHY_CTRL_BASE; |
| u16 temp; |
| |
| if (is_lan937x_tx_phy(dev, addr)) |
| addr_base = REG_PORT_TX_PHY_CTRL_BASE; |
| |
| /* get register address based on the logical port */ |
| temp = PORT_CTRL_ADDR(addr, (addr_base + (reg << 2))); |
| |
| return ksz_write16(dev, REG_VPHY_IND_ADDR__2, temp); |
| } |
| |
| static int lan937x_internal_phy_write(struct ksz_device *dev, int addr, int reg, |
| u16 val) |
| { |
| unsigned int value; |
| int ret; |
| |
| /* Check for internal phy port */ |
| if (!dev->info->internal_phy[addr]) |
| return -EOPNOTSUPP; |
| |
| ret = lan937x_vphy_ind_addr_wr(dev, addr, reg); |
| if (ret < 0) |
| return ret; |
| |
| /* Write the data to be written to the VPHY reg */ |
| ret = ksz_write16(dev, REG_VPHY_IND_DATA__2, val); |
| if (ret < 0) |
| return ret; |
| |
| /* Write the Write En and Busy bit */ |
| ret = ksz_write16(dev, REG_VPHY_IND_CTRL__2, |
| (VPHY_IND_WRITE | VPHY_IND_BUSY)); |
| if (ret < 0) |
| return ret; |
| |
| ret = regmap_read_poll_timeout(ksz_regmap_16(dev), REG_VPHY_IND_CTRL__2, |
| value, !(value & VPHY_IND_BUSY), 10, |
| 1000); |
| if (ret < 0) { |
| dev_err(dev->dev, "Failed to write phy register\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int lan937x_internal_phy_read(struct ksz_device *dev, int addr, int reg, |
| u16 *val) |
| { |
| unsigned int value; |
| int ret; |
| |
| /* Check for internal phy port, return 0xffff for non-existent phy */ |
| if (!dev->info->internal_phy[addr]) |
| return 0xffff; |
| |
| ret = lan937x_vphy_ind_addr_wr(dev, addr, reg); |
| if (ret < 0) |
| return ret; |
| |
| /* Write Read and Busy bit to start the transaction */ |
| ret = ksz_write16(dev, REG_VPHY_IND_CTRL__2, VPHY_IND_BUSY); |
| if (ret < 0) |
| return ret; |
| |
| ret = regmap_read_poll_timeout(ksz_regmap_16(dev), REG_VPHY_IND_CTRL__2, |
| value, !(value & VPHY_IND_BUSY), 10, |
| 1000); |
| if (ret < 0) { |
| dev_err(dev->dev, "Failed to read phy register\n"); |
| return ret; |
| } |
| |
| /* Read the VPHY register which has the PHY data */ |
| return ksz_read16(dev, REG_VPHY_IND_DATA__2, val); |
| } |
| |
| int lan937x_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data) |
| { |
| return lan937x_internal_phy_read(dev, addr, reg, data); |
| } |
| |
| int lan937x_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val) |
| { |
| return lan937x_internal_phy_write(dev, addr, reg, val); |
| } |
| |
| int lan937x_reset_switch(struct ksz_device *dev) |
| { |
| u32 data32; |
| int ret; |
| |
| /* reset switch */ |
| ret = lan937x_cfg(dev, REG_SW_OPERATION, SW_RESET, true); |
| if (ret < 0) |
| return ret; |
| |
| /* Enable Auto Aging */ |
| ret = lan937x_cfg(dev, REG_SW_LUE_CTRL_1, SW_LINK_AUTO_AGING, true); |
| if (ret < 0) |
| return ret; |
| |
| /* disable interrupts */ |
| ret = ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK); |
| if (ret < 0) |
| return ret; |
| |
| ret = ksz_write32(dev, REG_SW_INT_STATUS__4, POR_READY_INT); |
| if (ret < 0) |
| return ret; |
| |
| ret = ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0xFF); |
| if (ret < 0) |
| return ret; |
| |
| return ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32); |
| } |
| |
| void lan937x_port_setup(struct ksz_device *dev, int port, bool cpu_port) |
| { |
| const u32 *masks = dev->info->masks; |
| const u16 *regs = dev->info->regs; |
| struct dsa_switch *ds = dev->ds; |
| u8 member; |
| |
| /* enable tag tail for host port */ |
| if (cpu_port) |
| lan937x_port_cfg(dev, port, REG_PORT_CTRL_0, |
| PORT_TAIL_TAG_ENABLE, true); |
| |
| /* Enable the Port Queue split */ |
| ksz9477_port_queue_split(dev, port); |
| |
| /* set back pressure for half duplex */ |
| lan937x_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, |
| true); |
| |
| /* enable 802.1p priority */ |
| lan937x_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true); |
| |
| if (!dev->info->internal_phy[port]) |
| lan937x_port_cfg(dev, port, regs[P_XMII_CTRL_0], |
| masks[P_MII_TX_FLOW_CTRL] | |
| masks[P_MII_RX_FLOW_CTRL], |
| true); |
| |
| if (cpu_port) |
| member = dsa_user_ports(ds); |
| else |
| member = BIT(dsa_upstream_port(ds, port)); |
| |
| dev->dev_ops->cfg_port_member(dev, port, member); |
| } |
| |
| void lan937x_config_cpu_port(struct dsa_switch *ds) |
| { |
| struct ksz_device *dev = ds->priv; |
| struct dsa_port *dp; |
| |
| dsa_switch_for_each_cpu_port(dp, ds) { |
| if (dev->info->cpu_ports & (1 << dp->index)) { |
| dev->cpu_port = dp->index; |
| |
| /* enable cpu port */ |
| lan937x_port_setup(dev, dp->index, true); |
| } |
| } |
| |
| dsa_switch_for_each_user_port(dp, ds) { |
| ksz_port_stp_state_set(ds, dp->index, BR_STATE_DISABLED); |
| } |
| } |
| |
| int lan937x_change_mtu(struct ksz_device *dev, int port, int new_mtu) |
| { |
| struct dsa_switch *ds = dev->ds; |
| int ret; |
| |
| new_mtu += VLAN_ETH_HLEN + ETH_FCS_LEN; |
| |
| if (dsa_is_cpu_port(ds, port)) |
| new_mtu += LAN937X_TAG_LEN; |
| |
| if (new_mtu >= FR_MIN_SIZE) |
| ret = lan937x_port_cfg(dev, port, REG_PORT_MAC_CTRL_0, |
| PORT_JUMBO_PACKET, true); |
| else |
| ret = lan937x_port_cfg(dev, port, REG_PORT_MAC_CTRL_0, |
| PORT_JUMBO_PACKET, false); |
| if (ret < 0) { |
| dev_err(ds->dev, "failed to enable jumbo\n"); |
| return ret; |
| } |
| |
| /* Write the frame size in PORT_MAX_FR_SIZE register */ |
| ret = ksz_pwrite16(dev, port, PORT_MAX_FR_SIZE, new_mtu); |
| if (ret) { |
| dev_err(ds->dev, "failed to update mtu for port %d\n", port); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int lan937x_set_ageing_time(struct ksz_device *dev, unsigned int msecs) |
| { |
| u8 data, mult, value8; |
| bool in_msec = false; |
| u32 max_val, value; |
| u32 secs = msecs; |
| int ret; |
| |
| #define MAX_TIMER_VAL ((1 << 20) - 1) |
| |
| /* The aging timer comprises a 3-bit multiplier and a 20-bit second |
| * value. Either of them cannot be zero. The maximum timer is then |
| * 7 * 1048575 = 7340025 seconds. As this value is too large for |
| * practical use it can be interpreted as microseconds, making the |
| * maximum timer 7340 seconds with finer control. This allows for |
| * maximum 122 minutes compared to 29 minutes in KSZ9477 switch. |
| */ |
| if (msecs % 1000) |
| in_msec = true; |
| else |
| secs /= 1000; |
| if (!secs) |
| secs = 1; |
| |
| /* Return error if too large. */ |
| else if (secs > 7 * MAX_TIMER_VAL) |
| return -EINVAL; |
| |
| /* Configure how to interpret the number value. */ |
| ret = ksz_rmw8(dev, REG_SW_LUE_CTRL_2, SW_AGE_CNT_IN_MICROSEC, |
| in_msec ? SW_AGE_CNT_IN_MICROSEC : 0); |
| if (ret < 0) |
| return ret; |
| |
| ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value8); |
| if (ret < 0) |
| return ret; |
| |
| /* Check whether there is need to update the multiplier. */ |
| mult = FIELD_GET(SW_AGE_CNT_M, value8); |
| max_val = MAX_TIMER_VAL; |
| if (mult > 0) { |
| /* Try to use the same multiplier already in the register as |
| * the hardware default uses multiplier 4 and 75 seconds for |
| * 300 seconds. |
| */ |
| max_val = DIV_ROUND_UP(secs, mult); |
| if (max_val > MAX_TIMER_VAL || max_val * mult != secs) |
| max_val = MAX_TIMER_VAL; |
| } |
| |
| data = DIV_ROUND_UP(secs, max_val); |
| if (mult != data) { |
| value8 &= ~SW_AGE_CNT_M; |
| value8 |= FIELD_PREP(SW_AGE_CNT_M, data); |
| ret = ksz_write8(dev, REG_SW_LUE_CTRL_0, value8); |
| if (ret < 0) |
| return ret; |
| } |
| |
| secs = DIV_ROUND_UP(secs, data); |
| |
| value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs); |
| |
| ret = ksz_write8(dev, REG_SW_AGE_PERIOD__1, value); |
| if (ret < 0) |
| return ret; |
| |
| value = FIELD_GET(SW_AGE_PERIOD_19_8_M, secs); |
| |
| return ksz_write16(dev, REG_SW_AGE_PERIOD__2, value); |
| } |
| |
| static void lan937x_set_tune_adj(struct ksz_device *dev, int port, |
| u16 reg, u8 val) |
| { |
| u16 data16; |
| |
| ksz_pread16(dev, port, reg, &data16); |
| |
| /* Update tune Adjust */ |
| data16 |= FIELD_PREP(PORT_TUNE_ADJ, val); |
| ksz_pwrite16(dev, port, reg, data16); |
| |
| /* write DLL reset to take effect */ |
| data16 |= PORT_DLL_RESET; |
| ksz_pwrite16(dev, port, reg, data16); |
| } |
| |
| static void lan937x_set_rgmii_tx_delay(struct ksz_device *dev, int port) |
| { |
| u8 val; |
| |
| /* Apply different codes based on the ports as per characterization |
| * results |
| */ |
| val = (port == LAN937X_RGMII_1_PORT) ? RGMII_1_TX_DELAY_2NS : |
| RGMII_2_TX_DELAY_2NS; |
| |
| lan937x_set_tune_adj(dev, port, REG_PORT_XMII_CTRL_5, val); |
| } |
| |
| static void lan937x_set_rgmii_rx_delay(struct ksz_device *dev, int port) |
| { |
| u8 val; |
| |
| val = (port == LAN937X_RGMII_1_PORT) ? RGMII_1_RX_DELAY_2NS : |
| RGMII_2_RX_DELAY_2NS; |
| |
| lan937x_set_tune_adj(dev, port, REG_PORT_XMII_CTRL_4, val); |
| } |
| |
| void lan937x_phylink_get_caps(struct ksz_device *dev, int port, |
| struct phylink_config *config) |
| { |
| config->mac_capabilities = MAC_100FD; |
| |
| if (dev->info->supports_rgmii[port]) { |
| /* MII/RMII/RGMII ports */ |
| config->mac_capabilities |= MAC_ASYM_PAUSE | MAC_SYM_PAUSE | |
| MAC_100HD | MAC_10 | MAC_1000FD; |
| } else if (is_lan937x_tx_phy(dev, port)) { |
| config->mac_capabilities |= MAC_ASYM_PAUSE | MAC_SYM_PAUSE | |
| MAC_100HD | MAC_10; |
| } |
| } |
| |
| void lan937x_setup_rgmii_delay(struct ksz_device *dev, int port) |
| { |
| struct ksz_port *p = &dev->ports[port]; |
| |
| if (p->rgmii_tx_val) { |
| lan937x_set_rgmii_tx_delay(dev, port); |
| dev_info(dev->dev, "Applied rgmii tx delay for the port %d\n", |
| port); |
| } |
| |
| if (p->rgmii_rx_val) { |
| lan937x_set_rgmii_rx_delay(dev, port); |
| dev_info(dev->dev, "Applied rgmii rx delay for the port %d\n", |
| port); |
| } |
| } |
| |
| int lan937x_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val) |
| { |
| return ksz_pwrite32(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val); |
| } |
| |
| int lan937x_switch_init(struct ksz_device *dev) |
| { |
| dev->port_mask = (1 << dev->info->port_cnt) - 1; |
| |
| return 0; |
| } |
| |
| int lan937x_setup(struct dsa_switch *ds) |
| { |
| struct ksz_device *dev = ds->priv; |
| int ret; |
| |
| /* The VLAN aware is a global setting. Mixed vlan |
| * filterings are not supported. |
| */ |
| ds->vlan_filtering_is_global = true; |
| |
| /* Enable aggressive back off for half duplex & UNH mode */ |
| ret = lan937x_cfg(dev, REG_SW_MAC_CTRL_0, (SW_PAUSE_UNH_MODE | |
| SW_NEW_BACKOFF | |
| SW_AGGR_BACKOFF), true); |
| if (ret < 0) |
| return ret; |
| |
| /* If NO_EXC_COLLISION_DROP bit is set, the switch will not drop |
| * packets when 16 or more collisions occur |
| */ |
| ret = lan937x_cfg(dev, REG_SW_MAC_CTRL_1, NO_EXC_COLLISION_DROP, true); |
| if (ret < 0) |
| return ret; |
| |
| /* enable global MIB counter freeze function */ |
| ret = lan937x_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true); |
| if (ret < 0) |
| return ret; |
| |
| /* disable CLK125 & CLK25, 1: disable, 0: enable */ |
| ret = lan937x_cfg(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, |
| (SW_CLK125_ENB | SW_CLK25_ENB), true); |
| if (ret < 0) |
| return ret; |
| |
| /* Disable global VPHY support. Related to CPU interface only? */ |
| return ksz_rmw32(dev, REG_SW_CFG_STRAP_OVR, SW_VPHY_DISABLE, |
| SW_VPHY_DISABLE); |
| } |
| |
| void lan937x_teardown(struct dsa_switch *ds) |
| { |
| |
| } |
| |
| void lan937x_switch_exit(struct ksz_device *dev) |
| { |
| lan937x_reset_switch(dev); |
| } |
| |
| MODULE_AUTHOR("Arun Ramadoss <arun.ramadoss@microchip.com>"); |
| MODULE_DESCRIPTION("Microchip LAN937x Series Switch DSA Driver"); |
| MODULE_LICENSE("GPL"); |