| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  *  kernel/sched/syscalls.c | 
 |  * | 
 |  *  Core kernel scheduler syscalls related code | 
 |  * | 
 |  *  Copyright (C) 1991-2002  Linus Torvalds | 
 |  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat | 
 |  */ | 
 | #include <linux/sched.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/sched/debug.h> | 
 |  | 
 | #include <uapi/linux/sched/types.h> | 
 |  | 
 | #include "sched.h" | 
 | #include "autogroup.h" | 
 |  | 
 | static inline int __normal_prio(int policy, int rt_prio, int nice) | 
 | { | 
 | 	int prio; | 
 |  | 
 | 	if (dl_policy(policy)) | 
 | 		prio = MAX_DL_PRIO - 1; | 
 | 	else if (rt_policy(policy)) | 
 | 		prio = MAX_RT_PRIO - 1 - rt_prio; | 
 | 	else | 
 | 		prio = NICE_TO_PRIO(nice); | 
 |  | 
 | 	return prio; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the expected normal priority: i.e. priority | 
 |  * without taking RT-inheritance into account. Might be | 
 |  * boosted by interactivity modifiers. Changes upon fork, | 
 |  * setprio syscalls, and whenever the interactivity | 
 |  * estimator recalculates. | 
 |  */ | 
 | static inline int normal_prio(struct task_struct *p) | 
 | { | 
 | 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the current priority, i.e. the priority | 
 |  * taken into account by the scheduler. This value might | 
 |  * be boosted by RT tasks, or might be boosted by | 
 |  * interactivity modifiers. Will be RT if the task got | 
 |  * RT-boosted. If not then it returns p->normal_prio. | 
 |  */ | 
 | static int effective_prio(struct task_struct *p) | 
 | { | 
 | 	p->normal_prio = normal_prio(p); | 
 | 	/* | 
 | 	 * If we are RT tasks or we were boosted to RT priority, | 
 | 	 * keep the priority unchanged. Otherwise, update priority | 
 | 	 * to the normal priority: | 
 | 	 */ | 
 | 	if (!rt_or_dl_prio(p->prio)) | 
 | 		return p->normal_prio; | 
 | 	return p->prio; | 
 | } | 
 |  | 
 | void set_user_nice(struct task_struct *p, long nice) | 
 | { | 
 | 	bool queued, running; | 
 | 	struct rq *rq; | 
 | 	int old_prio; | 
 |  | 
 | 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) | 
 | 		return; | 
 | 	/* | 
 | 	 * We have to be careful, if called from sys_setpriority(), | 
 | 	 * the task might be in the middle of scheduling on another CPU. | 
 | 	 */ | 
 | 	CLASS(task_rq_lock, rq_guard)(p); | 
 | 	rq = rq_guard.rq; | 
 |  | 
 | 	update_rq_clock(rq); | 
 |  | 
 | 	/* | 
 | 	 * The RT priorities are set via sched_setscheduler(), but we still | 
 | 	 * allow the 'normal' nice value to be set - but as expected | 
 | 	 * it won't have any effect on scheduling until the task is | 
 | 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: | 
 | 	 */ | 
 | 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) { | 
 | 		p->static_prio = NICE_TO_PRIO(nice); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	queued = task_on_rq_queued(p); | 
 | 	running = task_current_donor(rq, p); | 
 | 	if (queued) | 
 | 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); | 
 | 	if (running) | 
 | 		put_prev_task(rq, p); | 
 |  | 
 | 	p->static_prio = NICE_TO_PRIO(nice); | 
 | 	set_load_weight(p, true); | 
 | 	old_prio = p->prio; | 
 | 	p->prio = effective_prio(p); | 
 |  | 
 | 	if (queued) | 
 | 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); | 
 | 	if (running) | 
 | 		set_next_task(rq, p); | 
 |  | 
 | 	/* | 
 | 	 * If the task increased its priority or is running and | 
 | 	 * lowered its priority, then reschedule its CPU: | 
 | 	 */ | 
 | 	p->sched_class->prio_changed(rq, p, old_prio); | 
 | } | 
 | EXPORT_SYMBOL(set_user_nice); | 
 |  | 
 | /* | 
 |  * is_nice_reduction - check if nice value is an actual reduction | 
 |  * | 
 |  * Similar to can_nice() but does not perform a capability check. | 
 |  * | 
 |  * @p: task | 
 |  * @nice: nice value | 
 |  */ | 
 | static bool is_nice_reduction(const struct task_struct *p, const int nice) | 
 | { | 
 | 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */ | 
 | 	int nice_rlim = nice_to_rlimit(nice); | 
 |  | 
 | 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); | 
 | } | 
 |  | 
 | /* | 
 |  * can_nice - check if a task can reduce its nice value | 
 |  * @p: task | 
 |  * @nice: nice value | 
 |  */ | 
 | int can_nice(const struct task_struct *p, const int nice) | 
 | { | 
 | 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_NICE | 
 |  | 
 | /* | 
 |  * sys_nice - change the priority of the current process. | 
 |  * @increment: priority increment | 
 |  * | 
 |  * sys_setpriority is a more generic, but much slower function that | 
 |  * does similar things. | 
 |  */ | 
 | SYSCALL_DEFINE1(nice, int, increment) | 
 | { | 
 | 	long nice, retval; | 
 |  | 
 | 	/* | 
 | 	 * Setpriority might change our priority at the same moment. | 
 | 	 * We don't have to worry. Conceptually one call occurs first | 
 | 	 * and we have a single winner. | 
 | 	 */ | 
 | 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); | 
 | 	nice = task_nice(current) + increment; | 
 |  | 
 | 	nice = clamp_val(nice, MIN_NICE, MAX_NICE); | 
 | 	if (increment < 0 && !can_nice(current, nice)) | 
 | 		return -EPERM; | 
 |  | 
 | 	retval = security_task_setnice(current, nice); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	set_user_nice(current, nice); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif /* __ARCH_WANT_SYS_NICE */ | 
 |  | 
 | /** | 
 |  * task_prio - return the priority value of a given task. | 
 |  * @p: the task in question. | 
 |  * | 
 |  * Return: The priority value as seen by users in /proc. | 
 |  * | 
 |  * sched policy         return value   kernel prio    user prio/nice | 
 |  * | 
 |  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19] | 
 |  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99] | 
 |  * deadline                     -101             -1           0 | 
 |  */ | 
 | int task_prio(const struct task_struct *p) | 
 | { | 
 | 	return p->prio - MAX_RT_PRIO; | 
 | } | 
 |  | 
 | /** | 
 |  * idle_cpu - is a given CPU idle currently? | 
 |  * @cpu: the processor in question. | 
 |  * | 
 |  * Return: 1 if the CPU is currently idle. 0 otherwise. | 
 |  */ | 
 | int idle_cpu(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	if (rq->curr != rq->idle) | 
 | 		return 0; | 
 |  | 
 | 	if (rq->nr_running) | 
 | 		return 0; | 
 |  | 
 | 	if (rq->ttwu_pending) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * available_idle_cpu - is a given CPU idle for enqueuing work. | 
 |  * @cpu: the CPU in question. | 
 |  * | 
 |  * Return: 1 if the CPU is currently idle. 0 otherwise. | 
 |  */ | 
 | int available_idle_cpu(int cpu) | 
 | { | 
 | 	if (!idle_cpu(cpu)) | 
 | 		return 0; | 
 |  | 
 | 	if (vcpu_is_preempted(cpu)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * idle_task - return the idle task for a given CPU. | 
 |  * @cpu: the processor in question. | 
 |  * | 
 |  * Return: The idle task for the CPU @cpu. | 
 |  */ | 
 | struct task_struct *idle_task(int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->idle; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHED_CORE | 
 | int sched_core_idle_cpu(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	if (sched_core_enabled(rq) && rq->curr == rq->idle) | 
 | 		return 1; | 
 |  | 
 | 	return idle_cpu(cpu); | 
 | } | 
 | #endif /* CONFIG_SCHED_CORE */ | 
 |  | 
 | /** | 
 |  * find_process_by_pid - find a process with a matching PID value. | 
 |  * @pid: the pid in question. | 
 |  * | 
 |  * The task of @pid, if found. %NULL otherwise. | 
 |  */ | 
 | static struct task_struct *find_process_by_pid(pid_t pid) | 
 | { | 
 | 	return pid ? find_task_by_vpid(pid) : current; | 
 | } | 
 |  | 
 | static struct task_struct *find_get_task(pid_t pid) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	guard(rcu)(); | 
 |  | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (likely(p)) | 
 | 		get_task_struct(p); | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), | 
 | 	     find_get_task(pid), pid_t pid) | 
 |  | 
 | /* | 
 |  * sched_setparam() passes in -1 for its policy, to let the functions | 
 |  * it calls know not to change it. | 
 |  */ | 
 | #define SETPARAM_POLICY	-1 | 
 |  | 
 | static void __setscheduler_params(struct task_struct *p, | 
 | 		const struct sched_attr *attr) | 
 | { | 
 | 	int policy = attr->sched_policy; | 
 |  | 
 | 	if (policy == SETPARAM_POLICY) | 
 | 		policy = p->policy; | 
 |  | 
 | 	p->policy = policy; | 
 |  | 
 | 	if (dl_policy(policy)) | 
 | 		__setparam_dl(p, attr); | 
 | 	else if (fair_policy(policy)) | 
 | 		__setparam_fair(p, attr); | 
 |  | 
 | 	/* rt-policy tasks do not have a timerslack */ | 
 | 	if (rt_or_dl_task_policy(p)) { | 
 | 		p->timer_slack_ns = 0; | 
 | 	} else if (p->timer_slack_ns == 0) { | 
 | 		/* when switching back to non-rt policy, restore timerslack */ | 
 | 		p->timer_slack_ns = p->default_timer_slack_ns; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when | 
 | 	 * !rt_policy. Always setting this ensures that things like | 
 | 	 * getparam()/getattr() don't report silly values for !rt tasks. | 
 | 	 */ | 
 | 	p->rt_priority = attr->sched_priority; | 
 | 	p->normal_prio = normal_prio(p); | 
 | 	set_load_weight(p, true); | 
 | } | 
 |  | 
 | /* | 
 |  * Check the target process has a UID that matches the current process's: | 
 |  */ | 
 | static bool check_same_owner(struct task_struct *p) | 
 | { | 
 | 	const struct cred *cred = current_cred(), *pcred; | 
 | 	guard(rcu)(); | 
 |  | 
 | 	pcred = __task_cred(p); | 
 | 	return (uid_eq(cred->euid, pcred->euid) || | 
 | 		uid_eq(cred->euid, pcred->uid)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_UCLAMP_TASK | 
 |  | 
 | static int uclamp_validate(struct task_struct *p, | 
 | 			   const struct sched_attr *attr) | 
 | { | 
 | 	int util_min = p->uclamp_req[UCLAMP_MIN].value; | 
 | 	int util_max = p->uclamp_req[UCLAMP_MAX].value; | 
 |  | 
 | 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { | 
 | 		util_min = attr->sched_util_min; | 
 |  | 
 | 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { | 
 | 		util_max = attr->sched_util_max; | 
 |  | 
 | 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (util_min != -1 && util_max != -1 && util_min > util_max) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * We have valid uclamp attributes; make sure uclamp is enabled. | 
 | 	 * | 
 | 	 * We need to do that here, because enabling static branches is a | 
 | 	 * blocking operation which obviously cannot be done while holding | 
 | 	 * scheduler locks. | 
 | 	 */ | 
 | 	sched_uclamp_enable(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool uclamp_reset(const struct sched_attr *attr, | 
 | 			 enum uclamp_id clamp_id, | 
 | 			 struct uclamp_se *uc_se) | 
 | { | 
 | 	/* Reset on sched class change for a non user-defined clamp value. */ | 
 | 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && | 
 | 	    !uc_se->user_defined) | 
 | 		return true; | 
 |  | 
 | 	/* Reset on sched_util_{min,max} == -1. */ | 
 | 	if (clamp_id == UCLAMP_MIN && | 
 | 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && | 
 | 	    attr->sched_util_min == -1) { | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (clamp_id == UCLAMP_MAX && | 
 | 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && | 
 | 	    attr->sched_util_max == -1) { | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void __setscheduler_uclamp(struct task_struct *p, | 
 | 				  const struct sched_attr *attr) | 
 | { | 
 | 	enum uclamp_id clamp_id; | 
 |  | 
 | 	for_each_clamp_id(clamp_id) { | 
 | 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; | 
 | 		unsigned int value; | 
 |  | 
 | 		if (!uclamp_reset(attr, clamp_id, uc_se)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * RT by default have a 100% boost value that could be modified | 
 | 		 * at runtime. | 
 | 		 */ | 
 | 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) | 
 | 			value = sysctl_sched_uclamp_util_min_rt_default; | 
 | 		else | 
 | 			value = uclamp_none(clamp_id); | 
 |  | 
 | 		uclamp_se_set(uc_se, value, false); | 
 |  | 
 | 	} | 
 |  | 
 | 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) | 
 | 		return; | 
 |  | 
 | 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && | 
 | 	    attr->sched_util_min != -1) { | 
 | 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], | 
 | 			      attr->sched_util_min, true); | 
 | 	} | 
 |  | 
 | 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && | 
 | 	    attr->sched_util_max != -1) { | 
 | 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], | 
 | 			      attr->sched_util_max, true); | 
 | 	} | 
 | } | 
 |  | 
 | #else /* !CONFIG_UCLAMP_TASK: */ | 
 |  | 
 | static inline int uclamp_validate(struct task_struct *p, | 
 | 				  const struct sched_attr *attr) | 
 | { | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 | static void __setscheduler_uclamp(struct task_struct *p, | 
 | 				  const struct sched_attr *attr) { } | 
 | #endif /* !CONFIG_UCLAMP_TASK */ | 
 |  | 
 | /* | 
 |  * Allow unprivileged RT tasks to decrease priority. | 
 |  * Only issue a capable test if needed and only once to avoid an audit | 
 |  * event on permitted non-privileged operations: | 
 |  */ | 
 | static int user_check_sched_setscheduler(struct task_struct *p, | 
 | 					 const struct sched_attr *attr, | 
 | 					 int policy, int reset_on_fork) | 
 | { | 
 | 	if (fair_policy(policy)) { | 
 | 		if (attr->sched_nice < task_nice(p) && | 
 | 		    !is_nice_reduction(p, attr->sched_nice)) | 
 | 			goto req_priv; | 
 | 	} | 
 |  | 
 | 	if (rt_policy(policy)) { | 
 | 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); | 
 |  | 
 | 		/* Can't set/change the rt policy: */ | 
 | 		if (policy != p->policy && !rlim_rtprio) | 
 | 			goto req_priv; | 
 |  | 
 | 		/* Can't increase priority: */ | 
 | 		if (attr->sched_priority > p->rt_priority && | 
 | 		    attr->sched_priority > rlim_rtprio) | 
 | 			goto req_priv; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Can't set/change SCHED_DEADLINE policy at all for now | 
 | 	 * (safest behavior); in the future we would like to allow | 
 | 	 * unprivileged DL tasks to increase their relative deadline | 
 | 	 * or reduce their runtime (both ways reducing utilization) | 
 | 	 */ | 
 | 	if (dl_policy(policy)) | 
 | 		goto req_priv; | 
 |  | 
 | 	/* | 
 | 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to | 
 | 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. | 
 | 	 */ | 
 | 	if (task_has_idle_policy(p) && !idle_policy(policy)) { | 
 | 		if (!is_nice_reduction(p, task_nice(p))) | 
 | 			goto req_priv; | 
 | 	} | 
 |  | 
 | 	/* Can't change other user's priorities: */ | 
 | 	if (!check_same_owner(p)) | 
 | 		goto req_priv; | 
 |  | 
 | 	/* Normal users shall not reset the sched_reset_on_fork flag: */ | 
 | 	if (p->sched_reset_on_fork && !reset_on_fork) | 
 | 		goto req_priv; | 
 |  | 
 | 	return 0; | 
 |  | 
 | req_priv: | 
 | 	if (!capable(CAP_SYS_NICE)) | 
 | 		return -EPERM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __sched_setscheduler(struct task_struct *p, | 
 | 			 const struct sched_attr *attr, | 
 | 			 bool user, bool pi) | 
 | { | 
 | 	int oldpolicy = -1, policy = attr->sched_policy; | 
 | 	int retval, oldprio, newprio, queued, running; | 
 | 	const struct sched_class *prev_class, *next_class; | 
 | 	struct balance_callback *head; | 
 | 	struct rq_flags rf; | 
 | 	int reset_on_fork; | 
 | 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; | 
 | 	struct rq *rq; | 
 | 	bool cpuset_locked = false; | 
 |  | 
 | 	/* The pi code expects interrupts enabled */ | 
 | 	BUG_ON(pi && in_interrupt()); | 
 | recheck: | 
 | 	/* Double check policy once rq lock held: */ | 
 | 	if (policy < 0) { | 
 | 		reset_on_fork = p->sched_reset_on_fork; | 
 | 		policy = oldpolicy = p->policy; | 
 | 	} else { | 
 | 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); | 
 |  | 
 | 		if (!valid_policy(policy)) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Valid priorities for SCHED_FIFO and SCHED_RR are | 
 | 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, | 
 | 	 * SCHED_BATCH and SCHED_IDLE is 0. | 
 | 	 */ | 
 | 	if (attr->sched_priority > MAX_RT_PRIO-1) | 
 | 		return -EINVAL; | 
 | 	if ((dl_policy(policy) && !__checkparam_dl(attr)) || | 
 | 	    (rt_policy(policy) != (attr->sched_priority != 0))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (user) { | 
 | 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); | 
 | 		if (retval) | 
 | 			return retval; | 
 |  | 
 | 		if (attr->sched_flags & SCHED_FLAG_SUGOV) | 
 | 			return -EINVAL; | 
 |  | 
 | 		retval = security_task_setscheduler(p); | 
 | 		if (retval) | 
 | 			return retval; | 
 | 	} | 
 |  | 
 | 	/* Update task specific "requested" clamps */ | 
 | 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { | 
 | 		retval = uclamp_validate(p, attr); | 
 | 		if (retval) | 
 | 			return retval; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets | 
 | 	 * information. | 
 | 	 */ | 
 | 	if (dl_policy(policy) || dl_policy(p->policy)) { | 
 | 		cpuset_locked = true; | 
 | 		cpuset_lock(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure no PI-waiters arrive (or leave) while we are | 
 | 	 * changing the priority of the task: | 
 | 	 * | 
 | 	 * To be able to change p->policy safely, the appropriate | 
 | 	 * runqueue lock must be held. | 
 | 	 */ | 
 | 	rq = task_rq_lock(p, &rf); | 
 | 	update_rq_clock(rq); | 
 |  | 
 | 	/* | 
 | 	 * Changing the policy of the stop threads its a very bad idea: | 
 | 	 */ | 
 | 	if (p == rq->stop) { | 
 | 		retval = -EINVAL; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	retval = scx_check_setscheduler(p, policy); | 
 | 	if (retval) | 
 | 		goto unlock; | 
 |  | 
 | 	/* | 
 | 	 * If not changing anything there's no need to proceed further, | 
 | 	 * but store a possible modification of reset_on_fork. | 
 | 	 */ | 
 | 	if (unlikely(policy == p->policy)) { | 
 | 		if (fair_policy(policy) && | 
 | 		    (attr->sched_nice != task_nice(p) || | 
 | 		     (attr->sched_runtime != p->se.slice))) | 
 | 			goto change; | 
 | 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority) | 
 | 			goto change; | 
 | 		if (dl_policy(policy) && dl_param_changed(p, attr)) | 
 | 			goto change; | 
 | 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) | 
 | 			goto change; | 
 |  | 
 | 		p->sched_reset_on_fork = reset_on_fork; | 
 | 		retval = 0; | 
 | 		goto unlock; | 
 | 	} | 
 | change: | 
 |  | 
 | 	if (user) { | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 		/* | 
 | 		 * Do not allow real-time tasks into groups that have no runtime | 
 | 		 * assigned. | 
 | 		 */ | 
 | 		if (rt_group_sched_enabled() && | 
 | 				rt_bandwidth_enabled() && rt_policy(policy) && | 
 | 				task_group(p)->rt_bandwidth.rt_runtime == 0 && | 
 | 				!task_group_is_autogroup(task_group(p))) { | 
 | 			retval = -EPERM; | 
 | 			goto unlock; | 
 | 		} | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 | 		if (dl_bandwidth_enabled() && dl_policy(policy) && | 
 | 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) { | 
 | 			cpumask_t *span = rq->rd->span; | 
 |  | 
 | 			/* | 
 | 			 * Don't allow tasks with an affinity mask smaller than | 
 | 			 * the entire root_domain to become SCHED_DEADLINE. We | 
 | 			 * will also fail if there's no bandwidth available. | 
 | 			 */ | 
 | 			if (!cpumask_subset(span, p->cpus_ptr) || | 
 | 			    rq->rd->dl_bw.bw == 0) { | 
 | 				retval = -EPERM; | 
 | 				goto unlock; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Re-check policy now with rq lock held: */ | 
 | 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
 | 		policy = oldpolicy = -1; | 
 | 		task_rq_unlock(rq, p, &rf); | 
 | 		if (cpuset_locked) | 
 | 			cpuset_unlock(); | 
 | 		goto recheck; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters | 
 | 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth | 
 | 	 * is available. | 
 | 	 */ | 
 | 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { | 
 | 		retval = -EBUSY; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	p->sched_reset_on_fork = reset_on_fork; | 
 | 	oldprio = p->prio; | 
 |  | 
 | 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); | 
 | 	if (pi) { | 
 | 		/* | 
 | 		 * Take priority boosted tasks into account. If the new | 
 | 		 * effective priority is unchanged, we just store the new | 
 | 		 * normal parameters and do not touch the scheduler class and | 
 | 		 * the runqueue. This will be done when the task deboost | 
 | 		 * itself. | 
 | 		 */ | 
 | 		newprio = rt_effective_prio(p, newprio); | 
 | 		if (newprio == oldprio) | 
 | 			queue_flags &= ~DEQUEUE_MOVE; | 
 | 	} | 
 |  | 
 | 	prev_class = p->sched_class; | 
 | 	next_class = __setscheduler_class(policy, newprio); | 
 |  | 
 | 	if (prev_class != next_class && p->se.sched_delayed) | 
 | 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); | 
 |  | 
 | 	queued = task_on_rq_queued(p); | 
 | 	running = task_current_donor(rq, p); | 
 | 	if (queued) | 
 | 		dequeue_task(rq, p, queue_flags); | 
 | 	if (running) | 
 | 		put_prev_task(rq, p); | 
 |  | 
 | 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { | 
 | 		__setscheduler_params(p, attr); | 
 | 		p->sched_class = next_class; | 
 | 		p->prio = newprio; | 
 | 	} | 
 | 	__setscheduler_uclamp(p, attr); | 
 | 	check_class_changing(rq, p, prev_class); | 
 |  | 
 | 	if (queued) { | 
 | 		/* | 
 | 		 * We enqueue to tail when the priority of a task is | 
 | 		 * increased (user space view). | 
 | 		 */ | 
 | 		if (oldprio < p->prio) | 
 | 			queue_flags |= ENQUEUE_HEAD; | 
 |  | 
 | 		enqueue_task(rq, p, queue_flags); | 
 | 	} | 
 | 	if (running) | 
 | 		set_next_task(rq, p); | 
 |  | 
 | 	check_class_changed(rq, p, prev_class, oldprio); | 
 |  | 
 | 	/* Avoid rq from going away on us: */ | 
 | 	preempt_disable(); | 
 | 	head = splice_balance_callbacks(rq); | 
 | 	task_rq_unlock(rq, p, &rf); | 
 |  | 
 | 	if (pi) { | 
 | 		if (cpuset_locked) | 
 | 			cpuset_unlock(); | 
 | 		rt_mutex_adjust_pi(p); | 
 | 	} | 
 |  | 
 | 	/* Run balance callbacks after we've adjusted the PI chain: */ | 
 | 	balance_callbacks(rq, head); | 
 | 	preempt_enable(); | 
 |  | 
 | 	return 0; | 
 |  | 
 | unlock: | 
 | 	task_rq_unlock(rq, p, &rf); | 
 | 	if (cpuset_locked) | 
 | 		cpuset_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int _sched_setscheduler(struct task_struct *p, int policy, | 
 | 			       const struct sched_param *param, bool check) | 
 | { | 
 | 	struct sched_attr attr = { | 
 | 		.sched_policy   = policy, | 
 | 		.sched_priority = param->sched_priority, | 
 | 		.sched_nice	= PRIO_TO_NICE(p->static_prio), | 
 | 	}; | 
 |  | 
 | 	if (p->se.custom_slice) | 
 | 		attr.sched_runtime = p->se.slice; | 
 |  | 
 | 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */ | 
 | 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { | 
 | 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; | 
 | 		policy &= ~SCHED_RESET_ON_FORK; | 
 | 		attr.sched_policy = policy; | 
 | 	} | 
 |  | 
 | 	return __sched_setscheduler(p, &attr, check, true); | 
 | } | 
 | /** | 
 |  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | 
 |  * @p: the task in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  * | 
 |  * Use sched_set_fifo(), read its comment. | 
 |  * | 
 |  * Return: 0 on success. An error code otherwise. | 
 |  * | 
 |  * NOTE that the task may be already dead. | 
 |  */ | 
 | int sched_setscheduler(struct task_struct *p, int policy, | 
 | 		       const struct sched_param *param) | 
 | { | 
 | 	return _sched_setscheduler(p, policy, param, true); | 
 | } | 
 |  | 
 | int sched_setattr(struct task_struct *p, const struct sched_attr *attr) | 
 | { | 
 | 	return __sched_setscheduler(p, attr, true, true); | 
 | } | 
 |  | 
 | int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) | 
 | { | 
 | 	return __sched_setscheduler(p, attr, false, true); | 
 | } | 
 | EXPORT_SYMBOL_GPL(sched_setattr_nocheck); | 
 |  | 
 | /** | 
 |  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space. | 
 |  * @p: the task in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  * | 
 |  * Just like sched_setscheduler, only don't bother checking if the | 
 |  * current context has permission.  For example, this is needed in | 
 |  * stop_machine(): we create temporary high priority worker threads, | 
 |  * but our caller might not have that capability. | 
 |  * | 
 |  * Return: 0 on success. An error code otherwise. | 
 |  */ | 
 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | 
 | 			       const struct sched_param *param) | 
 | { | 
 | 	return _sched_setscheduler(p, policy, param, false); | 
 | } | 
 |  | 
 | /* | 
 |  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally | 
 |  * incapable of resource management, which is the one thing an OS really should | 
 |  * be doing. | 
 |  * | 
 |  * This is of course the reason it is limited to privileged users only. | 
 |  * | 
 |  * Worse still; it is fundamentally impossible to compose static priority | 
 |  * workloads. You cannot take two correctly working static prio workloads | 
 |  * and smash them together and still expect them to work. | 
 |  * | 
 |  * For this reason 'all' FIFO tasks the kernel creates are basically at: | 
 |  * | 
 |  *   MAX_RT_PRIO / 2 | 
 |  * | 
 |  * The administrator _MUST_ configure the system, the kernel simply doesn't | 
 |  * know enough information to make a sensible choice. | 
 |  */ | 
 | void sched_set_fifo(struct task_struct *p) | 
 | { | 
 | 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; | 
 | 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(sched_set_fifo); | 
 |  | 
 | /* | 
 |  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. | 
 |  */ | 
 | void sched_set_fifo_low(struct task_struct *p) | 
 | { | 
 | 	struct sched_param sp = { .sched_priority = 1 }; | 
 | 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(sched_set_fifo_low); | 
 |  | 
 | void sched_set_normal(struct task_struct *p, int nice) | 
 | { | 
 | 	struct sched_attr attr = { | 
 | 		.sched_policy = SCHED_NORMAL, | 
 | 		.sched_nice = nice, | 
 | 	}; | 
 | 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(sched_set_normal); | 
 |  | 
 | static int | 
 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
 | { | 
 | 	struct sched_param lparam; | 
 |  | 
 | 	if (unlikely(!param || pid < 0)) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	CLASS(find_get_task, p)(pid); | 
 | 	if (!p) | 
 | 		return -ESRCH; | 
 |  | 
 | 	return sched_setscheduler(p, policy, &lparam); | 
 | } | 
 |  | 
 | /* | 
 |  * Mimics kernel/events/core.c perf_copy_attr(). | 
 |  */ | 
 | static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) | 
 | { | 
 | 	u32 size; | 
 | 	int ret; | 
 |  | 
 | 	/* Zero the full structure, so that a short copy will be nice: */ | 
 | 	memset(attr, 0, sizeof(*attr)); | 
 |  | 
 | 	ret = get_user(size, &uattr->size); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* ABI compatibility quirk: */ | 
 | 	if (!size) | 
 | 		size = SCHED_ATTR_SIZE_VER0; | 
 | 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) | 
 | 		goto err_size; | 
 |  | 
 | 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); | 
 | 	if (ret) { | 
 | 		if (ret == -E2BIG) | 
 | 			goto err_size; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && | 
 | 	    size < SCHED_ATTR_SIZE_VER1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * XXX: Do we want to be lenient like existing syscalls; or do we want | 
 | 	 * to be strict and return an error on out-of-bounds values? | 
 | 	 */ | 
 | 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_size: | 
 | 	put_user(sizeof(*attr), &uattr->size); | 
 | 	return -E2BIG; | 
 | } | 
 |  | 
 | static void get_params(struct task_struct *p, struct sched_attr *attr) | 
 | { | 
 | 	if (task_has_dl_policy(p)) { | 
 | 		__getparam_dl(p, attr); | 
 | 	} else if (task_has_rt_policy(p)) { | 
 | 		attr->sched_priority = p->rt_priority; | 
 | 	} else { | 
 | 		attr->sched_nice = task_nice(p); | 
 | 		attr->sched_runtime = p->se.slice; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
 |  * @pid: the pid in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  * | 
 |  * Return: 0 on success. An error code otherwise. | 
 |  */ | 
 | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) | 
 | { | 
 | 	if (policy < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return do_sched_setscheduler(pid, policy, param); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setparam - set/change the RT priority of a thread | 
 |  * @pid: the pid in question. | 
 |  * @param: structure containing the new RT priority. | 
 |  * | 
 |  * Return: 0 on success. An error code otherwise. | 
 |  */ | 
 | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) | 
 | { | 
 | 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setattr - same as above, but with extended sched_attr | 
 |  * @pid: the pid in question. | 
 |  * @uattr: structure containing the extended parameters. | 
 |  * @flags: for future extension. | 
 |  */ | 
 | SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, | 
 | 			       unsigned int, flags) | 
 | { | 
 | 	struct sched_attr attr; | 
 | 	int retval; | 
 |  | 
 | 	if (unlikely(!uattr || pid < 0 || flags)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	retval = sched_copy_attr(uattr, &attr); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	if ((int)attr.sched_policy < 0) | 
 | 		return -EINVAL; | 
 | 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) | 
 | 		attr.sched_policy = SETPARAM_POLICY; | 
 |  | 
 | 	CLASS(find_get_task, p)(pid); | 
 | 	if (!p) | 
 | 		return -ESRCH; | 
 |  | 
 | 	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) | 
 | 		get_params(p, &attr); | 
 |  | 
 | 	return sched_setattr(p, &attr); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
 |  * @pid: the pid in question. | 
 |  * | 
 |  * Return: On success, the policy of the thread. Otherwise, a negative error | 
 |  * code. | 
 |  */ | 
 | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (pid < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	guard(rcu)(); | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) | 
 | 		return -ESRCH; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (!retval) { | 
 | 		retval = p->policy; | 
 | 		if (p->sched_reset_on_fork) | 
 | 			retval |= SCHED_RESET_ON_FORK; | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getparam - get the RT priority of a thread | 
 |  * @pid: the pid in question. | 
 |  * @param: structure containing the RT priority. | 
 |  * | 
 |  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error | 
 |  * code. | 
 |  */ | 
 | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | 
 | { | 
 | 	struct sched_param lp = { .sched_priority = 0 }; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (unlikely(!param || pid < 0)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	scoped_guard (rcu) { | 
 | 		p = find_process_by_pid(pid); | 
 | 		if (!p) | 
 | 			return -ESRCH; | 
 |  | 
 | 		retval = security_task_getscheduler(p); | 
 | 		if (retval) | 
 | 			return retval; | 
 |  | 
 | 		if (task_has_rt_policy(p)) | 
 | 			lp.sched_priority = p->rt_priority; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This one might sleep, we cannot do it with a spinlock held ... | 
 | 	 */ | 
 | 	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getattr - similar to sched_getparam, but with sched_attr | 
 |  * @pid: the pid in question. | 
 |  * @uattr: structure containing the extended parameters. | 
 |  * @usize: sizeof(attr) for fwd/bwd comp. | 
 |  * @flags: for future extension. | 
 |  */ | 
 | SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, | 
 | 		unsigned int, usize, unsigned int, flags) | 
 | { | 
 | 	struct sched_attr kattr = { }; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (unlikely(!uattr || pid < 0 || usize > PAGE_SIZE || | 
 | 		      usize < SCHED_ATTR_SIZE_VER0 || flags)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	scoped_guard (rcu) { | 
 | 		p = find_process_by_pid(pid); | 
 | 		if (!p) | 
 | 			return -ESRCH; | 
 |  | 
 | 		retval = security_task_getscheduler(p); | 
 | 		if (retval) | 
 | 			return retval; | 
 |  | 
 | 		kattr.sched_policy = p->policy; | 
 | 		if (p->sched_reset_on_fork) | 
 | 			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; | 
 | 		get_params(p, &kattr); | 
 | 		kattr.sched_flags &= SCHED_FLAG_ALL; | 
 |  | 
 | #ifdef CONFIG_UCLAMP_TASK | 
 | 		/* | 
 | 		 * This could race with another potential updater, but this is fine | 
 | 		 * because it'll correctly read the old or the new value. We don't need | 
 | 		 * to guarantee who wins the race as long as it doesn't return garbage. | 
 | 		 */ | 
 | 		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; | 
 | 		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	kattr.size = min(usize, sizeof(kattr)); | 
 | 	return copy_struct_to_user(uattr, usize, &kattr, sizeof(kattr), NULL); | 
 | } | 
 |  | 
 | int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) | 
 | { | 
 | 	/* | 
 | 	 * If the task isn't a deadline task or admission control is | 
 | 	 * disabled then we don't care about affinity changes. | 
 | 	 */ | 
 | 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The special/sugov task isn't part of regular bandwidth/admission | 
 | 	 * control so let userspace change affinities. | 
 | 	 */ | 
 | 	if (dl_entity_is_special(&p->dl)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Since bandwidth control happens on root_domain basis, | 
 | 	 * if admission test is enabled, we only admit -deadline | 
 | 	 * tasks allowed to run on all the CPUs in the task's | 
 | 	 * root_domain. | 
 | 	 */ | 
 | 	guard(rcu)(); | 
 | 	if (!cpumask_subset(task_rq(p)->rd->span, mask)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) | 
 | { | 
 | 	int retval; | 
 | 	cpumask_var_t cpus_allowed, new_mask; | 
 |  | 
 | 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | 
 | 		retval = -ENOMEM; | 
 | 		goto out_free_cpus_allowed; | 
 | 	} | 
 |  | 
 | 	cpuset_cpus_allowed(p, cpus_allowed); | 
 | 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed); | 
 |  | 
 | 	ctx->new_mask = new_mask; | 
 | 	ctx->flags |= SCA_CHECK; | 
 |  | 
 | 	retval = dl_task_check_affinity(p, new_mask); | 
 | 	if (retval) | 
 | 		goto out_free_new_mask; | 
 |  | 
 | 	retval = __set_cpus_allowed_ptr(p, ctx); | 
 | 	if (retval) | 
 | 		goto out_free_new_mask; | 
 |  | 
 | 	cpuset_cpus_allowed(p, cpus_allowed); | 
 | 	if (!cpumask_subset(new_mask, cpus_allowed)) { | 
 | 		/* | 
 | 		 * We must have raced with a concurrent cpuset update. | 
 | 		 * Just reset the cpumask to the cpuset's cpus_allowed. | 
 | 		 */ | 
 | 		cpumask_copy(new_mask, cpus_allowed); | 
 |  | 
 | 		/* | 
 | 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() | 
 | 		 * will restore the previous user_cpus_ptr value. | 
 | 		 * | 
 | 		 * In the unlikely event a previous user_cpus_ptr exists, | 
 | 		 * we need to further restrict the mask to what is allowed | 
 | 		 * by that old user_cpus_ptr. | 
 | 		 */ | 
 | 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { | 
 | 			bool empty = !cpumask_and(new_mask, new_mask, | 
 | 						  ctx->user_mask); | 
 |  | 
 | 			if (empty) | 
 | 				cpumask_copy(new_mask, cpus_allowed); | 
 | 		} | 
 | 		__set_cpus_allowed_ptr(p, ctx); | 
 | 		retval = -EINVAL; | 
 | 	} | 
 |  | 
 | out_free_new_mask: | 
 | 	free_cpumask_var(new_mask); | 
 | out_free_cpus_allowed: | 
 | 	free_cpumask_var(cpus_allowed); | 
 | 	return retval; | 
 | } | 
 |  | 
 | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | 
 | { | 
 | 	struct affinity_context ac; | 
 | 	struct cpumask *user_mask; | 
 | 	int retval; | 
 |  | 
 | 	CLASS(find_get_task, p)(pid); | 
 | 	if (!p) | 
 | 		return -ESRCH; | 
 |  | 
 | 	if (p->flags & PF_NO_SETAFFINITY) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!check_same_owner(p)) { | 
 | 		guard(rcu)(); | 
 | 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) | 
 | 			return -EPERM; | 
 | 	} | 
 |  | 
 | 	retval = security_task_setscheduler(p); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	/* | 
 | 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and | 
 | 	 * alloc_user_cpus_ptr() returns NULL. | 
 | 	 */ | 
 | 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); | 
 | 	if (user_mask) { | 
 | 		cpumask_copy(user_mask, in_mask); | 
 | 	} else { | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	ac = (struct affinity_context){ | 
 | 		.new_mask  = in_mask, | 
 | 		.user_mask = user_mask, | 
 | 		.flags     = SCA_USER, | 
 | 	}; | 
 |  | 
 | 	retval = __sched_setaffinity(p, &ac); | 
 | 	kfree(ac.user_mask); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
 | 			     struct cpumask *new_mask) | 
 | { | 
 | 	if (len < cpumask_size()) | 
 | 		cpumask_clear(new_mask); | 
 | 	else if (len > cpumask_size()) | 
 | 		len = cpumask_size(); | 
 |  | 
 | 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setaffinity - set the CPU affinity of a process | 
 |  * @pid: pid of the process | 
 |  * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
 |  * @user_mask_ptr: user-space pointer to the new CPU mask | 
 |  * | 
 |  * Return: 0 on success. An error code otherwise. | 
 |  */ | 
 | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, | 
 | 		unsigned long __user *, user_mask_ptr) | 
 | { | 
 | 	cpumask_var_t new_mask; | 
 | 	int retval; | 
 |  | 
 | 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); | 
 | 	if (retval == 0) | 
 | 		retval = sched_setaffinity(pid, new_mask); | 
 | 	free_cpumask_var(new_mask); | 
 | 	return retval; | 
 | } | 
 |  | 
 | long sched_getaffinity(pid_t pid, struct cpumask *mask) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	guard(rcu)(); | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) | 
 | 		return -ESRCH; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	guard(raw_spinlock_irqsave)(&p->pi_lock); | 
 | 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getaffinity - get the CPU affinity of a process | 
 |  * @pid: pid of the process | 
 |  * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
 |  * @user_mask_ptr: user-space pointer to hold the current CPU mask | 
 |  * | 
 |  * Return: size of CPU mask copied to user_mask_ptr on success. An | 
 |  * error code otherwise. | 
 |  */ | 
 | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, | 
 | 		unsigned long __user *, user_mask_ptr) | 
 | { | 
 | 	int ret; | 
 | 	cpumask_var_t mask; | 
 |  | 
 | 	if ((len * BITS_PER_BYTE) < nr_cpu_ids) | 
 | 		return -EINVAL; | 
 | 	if (len & (sizeof(unsigned long)-1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = sched_getaffinity(pid, mask); | 
 | 	if (ret == 0) { | 
 | 		unsigned int retlen = min(len, cpumask_size()); | 
 |  | 
 | 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) | 
 | 			ret = -EFAULT; | 
 | 		else | 
 | 			ret = retlen; | 
 | 	} | 
 | 	free_cpumask_var(mask); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void do_sched_yield(void) | 
 | { | 
 | 	struct rq_flags rf; | 
 | 	struct rq *rq; | 
 |  | 
 | 	rq = this_rq_lock_irq(&rf); | 
 |  | 
 | 	schedstat_inc(rq->yld_count); | 
 | 	current->sched_class->yield_task(rq); | 
 |  | 
 | 	preempt_disable(); | 
 | 	rq_unlock_irq(rq, &rf); | 
 | 	sched_preempt_enable_no_resched(); | 
 |  | 
 | 	schedule(); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_yield - yield the current processor to other threads. | 
 |  * | 
 |  * This function yields the current CPU to other tasks. If there are no | 
 |  * other threads running on this CPU then this function will return. | 
 |  * | 
 |  * Return: 0. | 
 |  */ | 
 | SYSCALL_DEFINE0(sched_yield) | 
 | { | 
 | 	do_sched_yield(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * yield - yield the current processor to other threads. | 
 |  * | 
 |  * Do not ever use this function, there's a 99% chance you're doing it wrong. | 
 |  * | 
 |  * The scheduler is at all times free to pick the calling task as the most | 
 |  * eligible task to run, if removing the yield() call from your code breaks | 
 |  * it, it's already broken. | 
 |  * | 
 |  * Typical broken usage is: | 
 |  * | 
 |  * while (!event) | 
 |  *	yield(); | 
 |  * | 
 |  * where one assumes that yield() will let 'the other' process run that will | 
 |  * make event true. If the current task is a SCHED_FIFO task that will never | 
 |  * happen. Never use yield() as a progress guarantee!! | 
 |  * | 
 |  * If you want to use yield() to wait for something, use wait_event(). | 
 |  * If you want to use yield() to be 'nice' for others, use cond_resched(). | 
 |  * If you still want to use yield(), do not! | 
 |  */ | 
 | void __sched yield(void) | 
 | { | 
 | 	set_current_state(TASK_RUNNING); | 
 | 	do_sched_yield(); | 
 | } | 
 | EXPORT_SYMBOL(yield); | 
 |  | 
 | /** | 
 |  * yield_to - yield the current processor to another thread in | 
 |  * your thread group, or accelerate that thread toward the | 
 |  * processor it's on. | 
 |  * @p: target task | 
 |  * @preempt: whether task preemption is allowed or not | 
 |  * | 
 |  * It's the caller's job to ensure that the target task struct | 
 |  * can't go away on us before we can do any checks. | 
 |  * | 
 |  * Return: | 
 |  *	true (>0) if we indeed boosted the target task. | 
 |  *	false (0) if we failed to boost the target. | 
 |  *	-ESRCH if there's no task to yield to. | 
 |  */ | 
 | int __sched yield_to(struct task_struct *p, bool preempt) | 
 | { | 
 | 	struct task_struct *curr = current; | 
 | 	struct rq *rq, *p_rq; | 
 | 	int yielded = 0; | 
 |  | 
 | 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { | 
 | 		rq = this_rq(); | 
 |  | 
 | again: | 
 | 		p_rq = task_rq(p); | 
 | 		/* | 
 | 		 * If we're the only runnable task on the rq and target rq also | 
 | 		 * has only one task, there's absolutely no point in yielding. | 
 | 		 */ | 
 | 		if (rq->nr_running == 1 && p_rq->nr_running == 1) | 
 | 			return -ESRCH; | 
 |  | 
 | 		guard(double_rq_lock)(rq, p_rq); | 
 | 		if (task_rq(p) != p_rq) | 
 | 			goto again; | 
 |  | 
 | 		if (!curr->sched_class->yield_to_task) | 
 | 			return 0; | 
 |  | 
 | 		if (curr->sched_class != p->sched_class) | 
 | 			return 0; | 
 |  | 
 | 		if (task_on_cpu(p_rq, p) || !task_is_running(p)) | 
 | 			return 0; | 
 |  | 
 | 		yielded = curr->sched_class->yield_to_task(rq, p); | 
 | 		if (yielded) { | 
 | 			schedstat_inc(rq->yld_count); | 
 | 			/* | 
 | 			 * Make p's CPU reschedule; pick_next_entity | 
 | 			 * takes care of fairness. | 
 | 			 */ | 
 | 			if (preempt && rq != p_rq) | 
 | 				resched_curr(p_rq); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (yielded) | 
 | 		schedule(); | 
 |  | 
 | 	return yielded; | 
 | } | 
 | EXPORT_SYMBOL_GPL(yield_to); | 
 |  | 
 | /** | 
 |  * sys_sched_get_priority_max - return maximum RT priority. | 
 |  * @policy: scheduling class. | 
 |  * | 
 |  * Return: On success, this syscall returns the maximum | 
 |  * rt_priority that can be used by a given scheduling class. | 
 |  * On failure, a negative error code is returned. | 
 |  */ | 
 | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	switch (policy) { | 
 | 	case SCHED_FIFO: | 
 | 	case SCHED_RR: | 
 | 		ret = MAX_RT_PRIO-1; | 
 | 		break; | 
 | 	case SCHED_DEADLINE: | 
 | 	case SCHED_NORMAL: | 
 | 	case SCHED_BATCH: | 
 | 	case SCHED_IDLE: | 
 | 	case SCHED_EXT: | 
 | 		ret = 0; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_get_priority_min - return minimum RT priority. | 
 |  * @policy: scheduling class. | 
 |  * | 
 |  * Return: On success, this syscall returns the minimum | 
 |  * rt_priority that can be used by a given scheduling class. | 
 |  * On failure, a negative error code is returned. | 
 |  */ | 
 | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	switch (policy) { | 
 | 	case SCHED_FIFO: | 
 | 	case SCHED_RR: | 
 | 		ret = 1; | 
 | 		break; | 
 | 	case SCHED_DEADLINE: | 
 | 	case SCHED_NORMAL: | 
 | 	case SCHED_BATCH: | 
 | 	case SCHED_IDLE: | 
 | 	case SCHED_EXT: | 
 | 		ret = 0; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) | 
 | { | 
 | 	unsigned int time_slice = 0; | 
 | 	int retval; | 
 |  | 
 | 	if (pid < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	scoped_guard (rcu) { | 
 | 		struct task_struct *p = find_process_by_pid(pid); | 
 | 		if (!p) | 
 | 			return -ESRCH; | 
 |  | 
 | 		retval = security_task_getscheduler(p); | 
 | 		if (retval) | 
 | 			return retval; | 
 |  | 
 | 		scoped_guard (task_rq_lock, p) { | 
 | 			struct rq *rq = scope.rq; | 
 | 			if (p->sched_class->get_rr_interval) | 
 | 				time_slice = p->sched_class->get_rr_interval(rq, p); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	jiffies_to_timespec64(time_slice, t); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_rr_get_interval - return the default time-slice of a process. | 
 |  * @pid: pid of the process. | 
 |  * @interval: userspace pointer to the time-slice value. | 
 |  * | 
 |  * this syscall writes the default time-slice value of a given process | 
 |  * into the user-space timespec buffer. A value of '0' means infinity. | 
 |  * | 
 |  * Return: On success, 0 and the time-slice is in @interval. Otherwise, | 
 |  * an error code. | 
 |  */ | 
 | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | 
 | 		struct __kernel_timespec __user *, interval) | 
 | { | 
 | 	struct timespec64 t; | 
 | 	int retval = sched_rr_get_interval(pid, &t); | 
 |  | 
 | 	if (retval == 0) | 
 | 		retval = put_timespec64(&t, interval); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT_32BIT_TIME | 
 | SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, | 
 | 		struct old_timespec32 __user *, interval) | 
 | { | 
 | 	struct timespec64 t; | 
 | 	int retval = sched_rr_get_interval(pid, &t); | 
 |  | 
 | 	if (retval == 0) | 
 | 		retval = put_old_timespec32(&t, interval); | 
 | 	return retval; | 
 | } | 
 | #endif |