|  | // SPDX-License-Identifier: GPL-2.0 | 
|  |  | 
|  | // Copyright (C) 2024 Google LLC. | 
|  |  | 
|  | //! A linked list implementation. | 
|  |  | 
|  | use crate::sync::ArcBorrow; | 
|  | use crate::types::Opaque; | 
|  | use core::iter::{DoubleEndedIterator, FusedIterator}; | 
|  | use core::marker::PhantomData; | 
|  | use core::ptr; | 
|  | use pin_init::PinInit; | 
|  |  | 
|  | mod impl_list_item_mod; | 
|  | pub use self::impl_list_item_mod::{ | 
|  | impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr, | 
|  | }; | 
|  |  | 
|  | mod arc; | 
|  | pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc}; | 
|  |  | 
|  | mod arc_field; | 
|  | pub use self::arc_field::{define_list_arc_field_getter, ListArcField}; | 
|  |  | 
|  | /// A linked list. | 
|  | /// | 
|  | /// All elements in this linked list will be [`ListArc`] references to the value. Since a value can | 
|  | /// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same | 
|  | /// prev/next pointers are not used for several linked lists. | 
|  | /// | 
|  | /// # Invariants | 
|  | /// | 
|  | /// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks` | 
|  | ///   field of the first element in the list. | 
|  | /// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle. | 
|  | /// * For every item in the list, the list owns the associated [`ListArc`] reference and has | 
|  | ///   exclusive access to the `ListLinks` field. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use kernel::list::*; | 
|  | /// | 
|  | /// #[pin_data] | 
|  | /// struct BasicItem { | 
|  | ///     value: i32, | 
|  | ///     #[pin] | 
|  | ///     links: ListLinks, | 
|  | /// } | 
|  | /// | 
|  | /// impl BasicItem { | 
|  | ///     fn new(value: i32) -> Result<ListArc<Self>> { | 
|  | ///         ListArc::pin_init(try_pin_init!(Self { | 
|  | ///             value, | 
|  | ///             links <- ListLinks::new(), | 
|  | ///         }), GFP_KERNEL) | 
|  | ///     } | 
|  | /// } | 
|  | /// | 
|  | /// impl_list_arc_safe! { | 
|  | ///     impl ListArcSafe<0> for BasicItem { untracked; } | 
|  | /// } | 
|  | /// impl_list_item! { | 
|  | ///     impl ListItem<0> for BasicItem { using ListLinks { self.links }; } | 
|  | /// } | 
|  | /// | 
|  | /// // Create a new empty list. | 
|  | /// let mut list = List::new(); | 
|  | /// { | 
|  | ///     assert!(list.is_empty()); | 
|  | /// } | 
|  | /// | 
|  | /// // Insert 3 elements using `push_back()`. | 
|  | /// list.push_back(BasicItem::new(15)?); | 
|  | /// list.push_back(BasicItem::new(10)?); | 
|  | /// list.push_back(BasicItem::new(30)?); | 
|  | /// | 
|  | /// // Iterate over the list to verify the nodes were inserted correctly. | 
|  | /// // [15, 10, 30] | 
|  | /// { | 
|  | ///     let mut iter = list.iter(); | 
|  | ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 15); | 
|  | ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 10); | 
|  | ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 30); | 
|  | ///     assert!(iter.next().is_none()); | 
|  | /// | 
|  | ///     // Verify the length of the list. | 
|  | ///     assert_eq!(list.iter().count(), 3); | 
|  | /// } | 
|  | /// | 
|  | /// // Pop the items from the list using `pop_back()` and verify the content. | 
|  | /// { | 
|  | ///     assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 30); | 
|  | ///     assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 10); | 
|  | ///     assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 15); | 
|  | /// } | 
|  | /// | 
|  | /// // Insert 3 elements using `push_front()`. | 
|  | /// list.push_front(BasicItem::new(15)?); | 
|  | /// list.push_front(BasicItem::new(10)?); | 
|  | /// list.push_front(BasicItem::new(30)?); | 
|  | /// | 
|  | /// // Iterate over the list to verify the nodes were inserted correctly. | 
|  | /// // [30, 10, 15] | 
|  | /// { | 
|  | ///     let mut iter = list.iter(); | 
|  | ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 30); | 
|  | ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 10); | 
|  | ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 15); | 
|  | ///     assert!(iter.next().is_none()); | 
|  | /// | 
|  | ///     // Verify the length of the list. | 
|  | ///     assert_eq!(list.iter().count(), 3); | 
|  | /// } | 
|  | /// | 
|  | /// // Pop the items from the list using `pop_front()` and verify the content. | 
|  | /// { | 
|  | ///     assert_eq!(list.pop_front().ok_or(EINVAL)?.value, 30); | 
|  | ///     assert_eq!(list.pop_front().ok_or(EINVAL)?.value, 10); | 
|  | /// } | 
|  | /// | 
|  | /// // Push `list2` to `list` through `push_all_back()`. | 
|  | /// // list: [15] | 
|  | /// // list2: [25, 35] | 
|  | /// { | 
|  | ///     let mut list2 = List::new(); | 
|  | ///     list2.push_back(BasicItem::new(25)?); | 
|  | ///     list2.push_back(BasicItem::new(35)?); | 
|  | /// | 
|  | ///     list.push_all_back(&mut list2); | 
|  | /// | 
|  | ///     // list: [15, 25, 35] | 
|  | ///     // list2: [] | 
|  | ///     let mut iter = list.iter(); | 
|  | ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 15); | 
|  | ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 25); | 
|  | ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 35); | 
|  | ///     assert!(iter.next().is_none()); | 
|  | ///     assert!(list2.is_empty()); | 
|  | /// } | 
|  | /// # Result::<(), Error>::Ok(()) | 
|  | /// ``` | 
|  | pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> { | 
|  | first: *mut ListLinksFields, | 
|  | _ty: PhantomData<ListArc<T, ID>>, | 
|  | } | 
|  |  | 
|  | // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same | 
|  | // type of access to the `ListArc<T, ID>` elements. | 
|  | unsafe impl<T, const ID: u64> Send for List<T, ID> | 
|  | where | 
|  | ListArc<T, ID>: Send, | 
|  | T: ?Sized + ListItem<ID>, | 
|  | { | 
|  | } | 
|  | // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same | 
|  | // type of access to the `ListArc<T, ID>` elements. | 
|  | unsafe impl<T, const ID: u64> Sync for List<T, ID> | 
|  | where | 
|  | ListArc<T, ID>: Sync, | 
|  | T: ?Sized + ListItem<ID>, | 
|  | { | 
|  | } | 
|  |  | 
|  | /// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`]. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// Implementers must ensure that they provide the guarantees documented on methods provided by | 
|  | /// this trait. | 
|  | /// | 
|  | /// [`ListArc<Self>`]: ListArc | 
|  | pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> { | 
|  | /// Views the [`ListLinks`] for this value. | 
|  | /// | 
|  | /// # Guarantees | 
|  | /// | 
|  | /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove` | 
|  | /// since the most recent such call, then this returns the same pointer as the one returned by | 
|  | /// the most recent call to `prepare_to_insert`. | 
|  | /// | 
|  | /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// The provided pointer must point at a valid value. (It need not be in an `Arc`.) | 
|  | unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>; | 
|  |  | 
|  | /// View the full value given its [`ListLinks`] field. | 
|  | /// | 
|  | /// Can only be used when the value is in a list. | 
|  | /// | 
|  | /// # Guarantees | 
|  | /// | 
|  | /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`. | 
|  | /// * The returned pointer is valid until the next call to `post_remove`. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or | 
|  | ///   from a call to `view_links` that happened after the most recent call to | 
|  | ///   `prepare_to_insert`. | 
|  | /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have | 
|  | ///   been called. | 
|  | unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self; | 
|  |  | 
|  | /// This is called when an item is inserted into a [`List`]. | 
|  | /// | 
|  | /// # Guarantees | 
|  | /// | 
|  | /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is | 
|  | /// called. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// * The provided pointer must point at a valid value in an [`Arc`]. | 
|  | /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate. | 
|  | /// * The caller must own the [`ListArc`] for this value. | 
|  | /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been | 
|  | ///   called after this call to `prepare_to_insert`. | 
|  | /// | 
|  | /// [`Arc`]: crate::sync::Arc | 
|  | unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>; | 
|  |  | 
|  | /// This undoes a previous call to `prepare_to_insert`. | 
|  | /// | 
|  | /// # Guarantees | 
|  | /// | 
|  | /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// The provided pointer must be the pointer returned by the most recent call to | 
|  | /// `prepare_to_insert`. | 
|  | unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self; | 
|  | } | 
|  |  | 
|  | #[repr(C)] | 
|  | #[derive(Copy, Clone)] | 
|  | struct ListLinksFields { | 
|  | next: *mut ListLinksFields, | 
|  | prev: *mut ListLinksFields, | 
|  | } | 
|  |  | 
|  | /// The prev/next pointers for an item in a linked list. | 
|  | /// | 
|  | /// # Invariants | 
|  | /// | 
|  | /// The fields are null if and only if this item is not in a list. | 
|  | #[repr(transparent)] | 
|  | pub struct ListLinks<const ID: u64 = 0> { | 
|  | // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked | 
|  | // list. | 
|  | inner: Opaque<ListLinksFields>, | 
|  | } | 
|  |  | 
|  | // SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the | 
|  | // associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to | 
|  | // move this an instance of this type to a different thread if the pointees are `!Send`. | 
|  | unsafe impl<const ID: u64> Send for ListLinks<ID> {} | 
|  | // SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's | 
|  | // okay to have immutable access to a ListLinks from several threads at once. | 
|  | unsafe impl<const ID: u64> Sync for ListLinks<ID> {} | 
|  |  | 
|  | impl<const ID: u64> ListLinks<ID> { | 
|  | /// Creates a new initializer for this type. | 
|  | pub fn new() -> impl PinInit<Self> { | 
|  | // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will | 
|  | // not be constructed in an `Arc` that already has a `ListArc`. | 
|  | ListLinks { | 
|  | inner: Opaque::new(ListLinksFields { | 
|  | prev: ptr::null_mut(), | 
|  | next: ptr::null_mut(), | 
|  | }), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// # Safety | 
|  | /// | 
|  | /// `me` must be dereferenceable. | 
|  | #[inline] | 
|  | unsafe fn fields(me: *mut Self) -> *mut ListLinksFields { | 
|  | // SAFETY: The caller promises that the pointer is valid. | 
|  | unsafe { Opaque::cast_into(ptr::addr_of!((*me).inner)) } | 
|  | } | 
|  |  | 
|  | /// # Safety | 
|  | /// | 
|  | /// `me` must be dereferenceable. | 
|  | #[inline] | 
|  | unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self { | 
|  | me.cast() | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Similar to [`ListLinks`], but also contains a pointer to the full value. | 
|  | /// | 
|  | /// This type can be used instead of [`ListLinks`] to support lists with trait objects. | 
|  | #[repr(C)] | 
|  | pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> { | 
|  | /// The `ListLinks` field inside this value. | 
|  | /// | 
|  | /// This is public so that it can be used with `impl_has_list_links!`. | 
|  | pub inner: ListLinks<ID>, | 
|  | // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and | 
|  | // `ptr::null()` doesn't work for `T: ?Sized`. | 
|  | self_ptr: Opaque<*const T>, | 
|  | } | 
|  |  | 
|  | // SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries. | 
|  | unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {} | 
|  | // SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore, | 
|  | // it's okay to have immutable access to a ListLinks from several threads at once. | 
|  | // | 
|  | // Note that `inner` being a public field does not prevent this type from being opaque, since | 
|  | // `inner` is a opaque type. | 
|  | unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {} | 
|  |  | 
|  | impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> { | 
|  | /// Creates a new initializer for this type. | 
|  | pub fn new() -> impl PinInit<Self> { | 
|  | // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will | 
|  | // not be constructed in an `Arc` that already has a `ListArc`. | 
|  | Self { | 
|  | inner: ListLinks { | 
|  | inner: Opaque::new(ListLinksFields { | 
|  | prev: ptr::null_mut(), | 
|  | next: ptr::null_mut(), | 
|  | }), | 
|  | }, | 
|  | self_ptr: Opaque::uninit(), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns a pointer to the self pointer. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// The provided pointer must point at a valid struct of type `Self`. | 
|  | pub unsafe fn raw_get_self_ptr(me: *const Self) -> *const Opaque<*const T> { | 
|  | // SAFETY: The caller promises that the pointer is valid. | 
|  | unsafe { ptr::addr_of!((*me).self_ptr) } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> { | 
|  | /// Creates a new empty list. | 
|  | pub const fn new() -> Self { | 
|  | Self { | 
|  | first: ptr::null_mut(), | 
|  | _ty: PhantomData, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns whether this list is empty. | 
|  | pub fn is_empty(&self) -> bool { | 
|  | self.first.is_null() | 
|  | } | 
|  |  | 
|  | /// Inserts `item` before `next` in the cycle. | 
|  | /// | 
|  | /// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list | 
|  | /// is empty. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// * `next` must be an element in this list or null. | 
|  | /// * if `next` is null, then the list must be empty. | 
|  | unsafe fn insert_inner( | 
|  | &mut self, | 
|  | item: ListArc<T, ID>, | 
|  | next: *mut ListLinksFields, | 
|  | ) -> *mut ListLinksFields { | 
|  | let raw_item = ListArc::into_raw(item); | 
|  | // SAFETY: | 
|  | // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`. | 
|  | // * Since we have ownership of the `ListArc`, `post_remove` must have been called after | 
|  | //   the most recent call to `prepare_to_insert`, if any. | 
|  | // * We own the `ListArc`. | 
|  | // * Removing items from this list is always done using `remove_internal_inner`, which | 
|  | //   calls `post_remove` before giving up ownership. | 
|  | let list_links = unsafe { T::prepare_to_insert(raw_item) }; | 
|  | // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid. | 
|  | let item = unsafe { ListLinks::fields(list_links) }; | 
|  |  | 
|  | // Check if the list is empty. | 
|  | if next.is_null() { | 
|  | // SAFETY: The caller just gave us ownership of these fields. | 
|  | // INVARIANT: A linked list with one item should be cyclic. | 
|  | unsafe { | 
|  | (*item).next = item; | 
|  | (*item).prev = item; | 
|  | } | 
|  | self.first = item; | 
|  | } else { | 
|  | // SAFETY: By the type invariant, this pointer is valid or null. We just checked that | 
|  | // it's not null, so it must be valid. | 
|  | let prev = unsafe { (*next).prev }; | 
|  | // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us | 
|  | // ownership of the fields on `item`. | 
|  | // INVARIANT: This correctly inserts `item` between `prev` and `next`. | 
|  | unsafe { | 
|  | (*item).next = next; | 
|  | (*item).prev = prev; | 
|  | (*prev).next = item; | 
|  | (*next).prev = item; | 
|  | } | 
|  | } | 
|  |  | 
|  | item | 
|  | } | 
|  |  | 
|  | /// Add the provided item to the back of the list. | 
|  | pub fn push_back(&mut self, item: ListArc<T, ID>) { | 
|  | // SAFETY: | 
|  | // * `self.first` is null or in the list. | 
|  | // * `self.first` is only null if the list is empty. | 
|  | unsafe { self.insert_inner(item, self.first) }; | 
|  | } | 
|  |  | 
|  | /// Add the provided item to the front of the list. | 
|  | pub fn push_front(&mut self, item: ListArc<T, ID>) { | 
|  | // SAFETY: | 
|  | // * `self.first` is null or in the list. | 
|  | // * `self.first` is only null if the list is empty. | 
|  | let new_elem = unsafe { self.insert_inner(item, self.first) }; | 
|  |  | 
|  | // INVARIANT: `new_elem` is in the list because we just inserted it. | 
|  | self.first = new_elem; | 
|  | } | 
|  |  | 
|  | /// Removes the last item from this list. | 
|  | pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> { | 
|  | if self.is_empty() { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | // SAFETY: We just checked that the list is not empty. | 
|  | let last = unsafe { (*self.first).prev }; | 
|  | // SAFETY: The last item of this list is in this list. | 
|  | Some(unsafe { self.remove_internal(last) }) | 
|  | } | 
|  |  | 
|  | /// Removes the first item from this list. | 
|  | pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> { | 
|  | if self.is_empty() { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | // SAFETY: The first item of this list is in this list. | 
|  | Some(unsafe { self.remove_internal(self.first) }) | 
|  | } | 
|  |  | 
|  | /// Removes the provided item from this list and returns it. | 
|  | /// | 
|  | /// This returns `None` if the item is not in the list. (Note that by the safety requirements, | 
|  | /// this means that the item is not in any list.) | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// `item` must not be in a different linked list (with the same id). | 
|  | pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> { | 
|  | // SAFETY: TODO. | 
|  | let mut item = unsafe { ListLinks::fields(T::view_links(item)) }; | 
|  | // SAFETY: The user provided a reference, and reference are never dangling. | 
|  | // | 
|  | // As for why this is not a data race, there are two cases: | 
|  | // | 
|  | //  * If `item` is not in any list, then these fields are read-only and null. | 
|  | //  * If `item` is in this list, then we have exclusive access to these fields since we | 
|  | //    have a mutable reference to the list. | 
|  | // | 
|  | // In either case, there's no race. | 
|  | let ListLinksFields { next, prev } = unsafe { *item }; | 
|  |  | 
|  | debug_assert_eq!(next.is_null(), prev.is_null()); | 
|  | if !next.is_null() { | 
|  | // This is really a no-op, but this ensures that `item` is a raw pointer that was | 
|  | // obtained without going through a pointer->reference->pointer conversion roundtrip. | 
|  | // This ensures that the list is valid under the more restrictive strict provenance | 
|  | // ruleset. | 
|  | // | 
|  | // SAFETY: We just checked that `next` is not null, and it's not dangling by the | 
|  | // list invariants. | 
|  | unsafe { | 
|  | debug_assert_eq!(item, (*next).prev); | 
|  | item = (*next).prev; | 
|  | } | 
|  |  | 
|  | // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it | 
|  | // is in this list. The pointers are in the right order. | 
|  | Some(unsafe { self.remove_internal_inner(item, next, prev) }) | 
|  | } else { | 
|  | None | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Removes the provided item from the list. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// `item` must point at an item in this list. | 
|  | unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> { | 
|  | // SAFETY: The caller promises that this pointer is not dangling, and there's no data race | 
|  | // since we have a mutable reference to the list containing `item`. | 
|  | let ListLinksFields { next, prev } = unsafe { *item }; | 
|  | // SAFETY: The pointers are ok and in the right order. | 
|  | unsafe { self.remove_internal_inner(item, next, prev) } | 
|  | } | 
|  |  | 
|  | /// Removes the provided item from the list. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// The `item` pointer must point at an item in this list, and we must have `(*item).next == | 
|  | /// next` and `(*item).prev == prev`. | 
|  | unsafe fn remove_internal_inner( | 
|  | &mut self, | 
|  | item: *mut ListLinksFields, | 
|  | next: *mut ListLinksFields, | 
|  | prev: *mut ListLinksFields, | 
|  | ) -> ListArc<T, ID> { | 
|  | // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next | 
|  | // pointers are always valid for items in a list. | 
|  | // | 
|  | // INVARIANT: There are three cases: | 
|  | //  * If the list has at least three items, then after removing the item, `prev` and `next` | 
|  | //    will be next to each other. | 
|  | //  * If the list has two items, then the remaining item will point at itself. | 
|  | //  * If the list has one item, then `next == prev == item`, so these writes have no | 
|  | //    effect. The list remains unchanged and `item` is still in the list for now. | 
|  | unsafe { | 
|  | (*next).prev = prev; | 
|  | (*prev).next = next; | 
|  | } | 
|  | // SAFETY: We have exclusive access to items in the list. | 
|  | // INVARIANT: `item` is being removed, so the pointers should be null. | 
|  | unsafe { | 
|  | (*item).prev = ptr::null_mut(); | 
|  | (*item).next = ptr::null_mut(); | 
|  | } | 
|  | // INVARIANT: There are three cases: | 
|  | //  * If `item` was not the first item, then `self.first` should remain unchanged. | 
|  | //  * If `item` was the first item and there is another item, then we just updated | 
|  | //    `prev->next` to `next`, which is the new first item, and setting `item->next` to null | 
|  | //    did not modify `prev->next`. | 
|  | //  * If `item` was the only item in the list, then `prev == item`, and we just set | 
|  | //    `item->next` to null, so this correctly sets `first` to null now that the list is | 
|  | //    empty. | 
|  | if self.first == item { | 
|  | // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this | 
|  | // list, so it must be valid. There is no race since `prev` is still in the list and we | 
|  | // still have exclusive access to the list. | 
|  | self.first = unsafe { (*prev).next }; | 
|  | } | 
|  |  | 
|  | // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants | 
|  | // of `List`. | 
|  | let list_links = unsafe { ListLinks::from_fields(item) }; | 
|  | // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call. | 
|  | let raw_item = unsafe { T::post_remove(list_links) }; | 
|  | // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`. | 
|  | unsafe { ListArc::from_raw(raw_item) } | 
|  | } | 
|  |  | 
|  | /// Moves all items from `other` into `self`. | 
|  | /// | 
|  | /// The items of `other` are added to the back of `self`, so the last item of `other` becomes | 
|  | /// the last item of `self`. | 
|  | pub fn push_all_back(&mut self, other: &mut List<T, ID>) { | 
|  | // First, we insert the elements into `self`. At the end, we make `other` empty. | 
|  | if self.is_empty() { | 
|  | // INVARIANT: All of the elements in `other` become elements of `self`. | 
|  | self.first = other.first; | 
|  | } else if !other.is_empty() { | 
|  | let other_first = other.first; | 
|  | // SAFETY: The other list is not empty, so this pointer is valid. | 
|  | let other_last = unsafe { (*other_first).prev }; | 
|  | let self_first = self.first; | 
|  | // SAFETY: The self list is not empty, so this pointer is valid. | 
|  | let self_last = unsafe { (*self_first).prev }; | 
|  |  | 
|  | // SAFETY: We have exclusive access to both lists, so we can update the pointers. | 
|  | // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to | 
|  | // update `self.first` because the first element of `self` does not change. | 
|  | unsafe { | 
|  | (*self_first).prev = other_last; | 
|  | (*other_last).next = self_first; | 
|  | (*self_last).next = other_first; | 
|  | (*other_first).prev = self_last; | 
|  | } | 
|  | } | 
|  |  | 
|  | // INVARIANT: The other list is now empty, so update its pointer. | 
|  | other.first = ptr::null_mut(); | 
|  | } | 
|  |  | 
|  | /// Returns a cursor that points before the first element of the list. | 
|  | pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> { | 
|  | // INVARIANT: `self.first` is in this list. | 
|  | Cursor { | 
|  | next: self.first, | 
|  | list: self, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns a cursor that points after the last element in the list. | 
|  | pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> { | 
|  | // INVARIANT: `next` is allowed to be null. | 
|  | Cursor { | 
|  | next: core::ptr::null_mut(), | 
|  | list: self, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Creates an iterator over the list. | 
|  | pub fn iter(&self) -> Iter<'_, T, ID> { | 
|  | // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point | 
|  | // at the first element of the same list. | 
|  | Iter { | 
|  | current: self.first, | 
|  | stop: self.first, | 
|  | _ty: PhantomData, | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> { | 
|  | fn default() -> Self { | 
|  | List::new() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> { | 
|  | fn drop(&mut self) { | 
|  | while let Some(item) = self.pop_front() { | 
|  | drop(item); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// An iterator over a [`List`]. | 
|  | /// | 
|  | /// # Invariants | 
|  | /// | 
|  | /// * There must be a [`List`] that is immutably borrowed for the duration of `'a`. | 
|  | /// * The `current` pointer is null or points at a value in that [`List`]. | 
|  | /// * The `stop` pointer is equal to the `first` field of that [`List`]. | 
|  | #[derive(Clone)] | 
|  | pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> { | 
|  | current: *mut ListLinksFields, | 
|  | stop: *mut ListLinksFields, | 
|  | _ty: PhantomData<&'a ListArc<T, ID>>, | 
|  | } | 
|  |  | 
|  | impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> { | 
|  | type Item = ArcBorrow<'a, T>; | 
|  |  | 
|  | fn next(&mut self) -> Option<ArcBorrow<'a, T>> { | 
|  | if self.current.is_null() { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | let current = self.current; | 
|  |  | 
|  | // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not | 
|  | // dangling. There's no race because the iterator holds an immutable borrow to the list. | 
|  | let next = unsafe { (*current).next }; | 
|  | // INVARIANT: If `current` was the last element of the list, then this updates it to null. | 
|  | // Otherwise, we update it to the next element. | 
|  | self.current = if next != self.stop { | 
|  | next | 
|  | } else { | 
|  | ptr::null_mut() | 
|  | }; | 
|  |  | 
|  | // SAFETY: The `current` pointer points at a value in the list. | 
|  | let item = unsafe { T::view_value(ListLinks::from_fields(current)) }; | 
|  | // SAFETY: | 
|  | // * All values in a list are stored in an `Arc`. | 
|  | // * The value cannot be removed from the list for the duration of the lifetime annotated | 
|  | //   on the returned `ArcBorrow`, because removing it from the list would require mutable | 
|  | //   access to the list. However, the `ArcBorrow` is annotated with the iterator's | 
|  | //   lifetime, and the list is immutably borrowed for that lifetime. | 
|  | // * Values in a list never have a `UniqueArc` reference. | 
|  | Some(unsafe { ArcBorrow::from_raw(item) }) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// A cursor into a [`List`]. | 
|  | /// | 
|  | /// A cursor always rests between two elements in the list. This means that a cursor has a previous | 
|  | /// and next element, but no current element. It also means that it's possible to have a cursor | 
|  | /// into an empty list. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use kernel::prelude::*; | 
|  | /// use kernel::list::{List, ListArc, ListLinks}; | 
|  | /// | 
|  | /// #[pin_data] | 
|  | /// struct ListItem { | 
|  | ///     value: u32, | 
|  | ///     #[pin] | 
|  | ///     links: ListLinks, | 
|  | /// } | 
|  | /// | 
|  | /// impl ListItem { | 
|  | ///     fn new(value: u32) -> Result<ListArc<Self>> { | 
|  | ///         ListArc::pin_init(try_pin_init!(Self { | 
|  | ///             value, | 
|  | ///             links <- ListLinks::new(), | 
|  | ///         }), GFP_KERNEL) | 
|  | ///     } | 
|  | /// } | 
|  | /// | 
|  | /// kernel::list::impl_list_arc_safe! { | 
|  | ///     impl ListArcSafe<0> for ListItem { untracked; } | 
|  | /// } | 
|  | /// kernel::list::impl_list_item! { | 
|  | ///     impl ListItem<0> for ListItem { using ListLinks { self.links }; } | 
|  | /// } | 
|  | /// | 
|  | /// // Use a cursor to remove the first element with the given value. | 
|  | /// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> { | 
|  | ///     let mut cursor = list.cursor_front(); | 
|  | ///     while let Some(next) = cursor.peek_next() { | 
|  | ///         if next.value == value { | 
|  | ///             return Some(next.remove()); | 
|  | ///         } | 
|  | ///         cursor.move_next(); | 
|  | ///     } | 
|  | ///     None | 
|  | /// } | 
|  | /// | 
|  | /// // Use a cursor to remove the last element with the given value. | 
|  | /// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> { | 
|  | ///     let mut cursor = list.cursor_back(); | 
|  | ///     while let Some(prev) = cursor.peek_prev() { | 
|  | ///         if prev.value == value { | 
|  | ///             return Some(prev.remove()); | 
|  | ///         } | 
|  | ///         cursor.move_prev(); | 
|  | ///     } | 
|  | ///     None | 
|  | /// } | 
|  | /// | 
|  | /// // Use a cursor to remove all elements with the given value. The removed elements are moved to | 
|  | /// // a new list. | 
|  | /// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> { | 
|  | ///     let mut out = List::new(); | 
|  | ///     let mut cursor = list.cursor_front(); | 
|  | ///     while let Some(next) = cursor.peek_next() { | 
|  | ///         if next.value == value { | 
|  | ///             out.push_back(next.remove()); | 
|  | ///         } else { | 
|  | ///             cursor.move_next(); | 
|  | ///         } | 
|  | ///     } | 
|  | ///     out | 
|  | /// } | 
|  | /// | 
|  | /// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of | 
|  | /// // bounds. | 
|  | /// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result { | 
|  | ///     let mut cursor = list.cursor_front(); | 
|  | ///     for _ in 0..idx { | 
|  | ///         if !cursor.move_next() { | 
|  | ///             return Err(EINVAL); | 
|  | ///         } | 
|  | ///     } | 
|  | ///     cursor.insert_next(new); | 
|  | ///     Ok(()) | 
|  | /// } | 
|  | /// | 
|  | /// // Merge two sorted lists into a single sorted list. | 
|  | /// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) { | 
|  | ///     let mut cursor = list.cursor_front(); | 
|  | ///     for to_insert in merge { | 
|  | ///         while let Some(next) = cursor.peek_next() { | 
|  | ///             if to_insert.value < next.value { | 
|  | ///                 break; | 
|  | ///             } | 
|  | ///             cursor.move_next(); | 
|  | ///         } | 
|  | ///         cursor.insert_prev(to_insert); | 
|  | ///     } | 
|  | /// } | 
|  | /// | 
|  | /// let mut list = List::new(); | 
|  | /// list.push_back(ListItem::new(14)?); | 
|  | /// list.push_back(ListItem::new(12)?); | 
|  | /// list.push_back(ListItem::new(10)?); | 
|  | /// list.push_back(ListItem::new(12)?); | 
|  | /// list.push_back(ListItem::new(15)?); | 
|  | /// list.push_back(ListItem::new(14)?); | 
|  | /// assert_eq!(remove_all(&mut list, 12).iter().count(), 2); | 
|  | /// // [14, 10, 15, 14] | 
|  | /// assert!(remove_first(&mut list, 14).is_some()); | 
|  | /// // [10, 15, 14] | 
|  | /// insert_at(&mut list, ListItem::new(12)?, 2)?; | 
|  | /// // [10, 15, 12, 14] | 
|  | /// assert!(remove_last(&mut list, 15).is_some()); | 
|  | /// // [10, 12, 14] | 
|  | /// | 
|  | /// let mut list2 = List::new(); | 
|  | /// list2.push_back(ListItem::new(11)?); | 
|  | /// list2.push_back(ListItem::new(13)?); | 
|  | /// merge_sorted(&mut list, list2); | 
|  | /// | 
|  | /// let mut items = list.into_iter(); | 
|  | /// assert_eq!(items.next().ok_or(EINVAL)?.value, 10); | 
|  | /// assert_eq!(items.next().ok_or(EINVAL)?.value, 11); | 
|  | /// assert_eq!(items.next().ok_or(EINVAL)?.value, 12); | 
|  | /// assert_eq!(items.next().ok_or(EINVAL)?.value, 13); | 
|  | /// assert_eq!(items.next().ok_or(EINVAL)?.value, 14); | 
|  | /// assert!(items.next().is_none()); | 
|  | /// # Result::<(), Error>::Ok(()) | 
|  | /// ``` | 
|  | /// | 
|  | /// # Invariants | 
|  | /// | 
|  | /// The `next` pointer is null or points a value in `list`. | 
|  | pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> { | 
|  | list: &'a mut List<T, ID>, | 
|  | /// Points at the element after this cursor, or null if the cursor is after the last element. | 
|  | next: *mut ListLinksFields, | 
|  | } | 
|  |  | 
|  | impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> { | 
|  | /// Returns a pointer to the element before the cursor. | 
|  | /// | 
|  | /// Returns null if there is no element before the cursor. | 
|  | fn prev_ptr(&self) -> *mut ListLinksFields { | 
|  | let mut next = self.next; | 
|  | let first = self.list.first; | 
|  | if next == first { | 
|  | // We are before the first element. | 
|  | return core::ptr::null_mut(); | 
|  | } | 
|  |  | 
|  | if next.is_null() { | 
|  | // We are after the last element, so we need a pointer to the last element, which is | 
|  | // the same as `(*first).prev`. | 
|  | next = first; | 
|  | } | 
|  |  | 
|  | // SAFETY: `next` can't be null, because then `first` must also be null, but in that case | 
|  | // we would have exited at the `next == first` check. Thus, `next` is an element in the | 
|  | // list, so we can access its `prev` pointer. | 
|  | unsafe { (*next).prev } | 
|  | } | 
|  |  | 
|  | /// Access the element after this cursor. | 
|  | pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> { | 
|  | if self.next.is_null() { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | // INVARIANT: | 
|  | // * We just checked that `self.next` is non-null, so it must be in `self.list`. | 
|  | // * `ptr` is equal to `self.next`. | 
|  | Some(CursorPeek { | 
|  | ptr: self.next, | 
|  | cursor: self, | 
|  | }) | 
|  | } | 
|  |  | 
|  | /// Access the element before this cursor. | 
|  | pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> { | 
|  | let prev = self.prev_ptr(); | 
|  |  | 
|  | if prev.is_null() { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | // INVARIANT: | 
|  | // * We just checked that `prev` is non-null, so it must be in `self.list`. | 
|  | // * `self.prev_ptr()` never returns `self.next`. | 
|  | Some(CursorPeek { | 
|  | ptr: prev, | 
|  | cursor: self, | 
|  | }) | 
|  | } | 
|  |  | 
|  | /// Move the cursor one element forward. | 
|  | /// | 
|  | /// If the cursor is after the last element, then this call does nothing. This call returns | 
|  | /// `true` if the cursor's position was changed. | 
|  | pub fn move_next(&mut self) -> bool { | 
|  | if self.next.is_null() { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can | 
|  | // access the `next` field. | 
|  | let mut next = unsafe { (*self.next).next }; | 
|  |  | 
|  | if next == self.list.first { | 
|  | next = core::ptr::null_mut(); | 
|  | } | 
|  |  | 
|  | // INVARIANT: `next` is either null or the next element after an element in the list. | 
|  | self.next = next; | 
|  | true | 
|  | } | 
|  |  | 
|  | /// Move the cursor one element backwards. | 
|  | /// | 
|  | /// If the cursor is before the first element, then this call does nothing. This call returns | 
|  | /// `true` if the cursor's position was changed. | 
|  | pub fn move_prev(&mut self) -> bool { | 
|  | if self.next == self.list.first { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list. | 
|  | self.next = self.prev_ptr(); | 
|  | true | 
|  | } | 
|  |  | 
|  | /// Inserts an element where the cursor is pointing and get a pointer to the new element. | 
|  | fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields { | 
|  | let ptr = if self.next.is_null() { | 
|  | self.list.first | 
|  | } else { | 
|  | self.next | 
|  | }; | 
|  | // SAFETY: | 
|  | // * `ptr` is an element in the list or null. | 
|  | // * if `ptr` is null, then `self.list.first` is null so the list is empty. | 
|  | let item = unsafe { self.list.insert_inner(item, ptr) }; | 
|  | if self.next == self.list.first { | 
|  | // INVARIANT: We just inserted `item`, so it's a member of list. | 
|  | self.list.first = item; | 
|  | } | 
|  | item | 
|  | } | 
|  |  | 
|  | /// Insert an element at this cursor's location. | 
|  | pub fn insert(mut self, item: ListArc<T, ID>) { | 
|  | // This is identical to `insert_prev`, but consumes the cursor. This is helpful because it | 
|  | // reduces confusion when the last operation on the cursor is an insertion; in that case, | 
|  | // you just want to insert the element at the cursor, and it is confusing that the call | 
|  | // involves the word prev or next. | 
|  | self.insert_inner(item); | 
|  | } | 
|  |  | 
|  | /// Inserts an element after this cursor. | 
|  | /// | 
|  | /// After insertion, the new element will be after the cursor. | 
|  | pub fn insert_next(&mut self, item: ListArc<T, ID>) { | 
|  | self.next = self.insert_inner(item); | 
|  | } | 
|  |  | 
|  | /// Inserts an element before this cursor. | 
|  | /// | 
|  | /// After insertion, the new element will be before the cursor. | 
|  | pub fn insert_prev(&mut self, item: ListArc<T, ID>) { | 
|  | self.insert_inner(item); | 
|  | } | 
|  |  | 
|  | /// Remove the next element from the list. | 
|  | pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> { | 
|  | self.peek_next().map(|v| v.remove()) | 
|  | } | 
|  |  | 
|  | /// Remove the previous element from the list. | 
|  | pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> { | 
|  | self.peek_prev().map(|v| v.remove()) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// References the element in the list next to the cursor. | 
|  | /// | 
|  | /// # Invariants | 
|  | /// | 
|  | /// * `ptr` is an element in `self.cursor.list`. | 
|  | /// * `ISNEXT == (self.ptr == self.cursor.next)`. | 
|  | pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> { | 
|  | cursor: &'a mut Cursor<'b, T, ID>, | 
|  | ptr: *mut ListLinksFields, | 
|  | } | 
|  |  | 
|  | impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> | 
|  | CursorPeek<'a, 'b, T, ISNEXT, ID> | 
|  | { | 
|  | /// Remove the element from the list. | 
|  | pub fn remove(self) -> ListArc<T, ID> { | 
|  | if ISNEXT { | 
|  | self.cursor.move_next(); | 
|  | } | 
|  |  | 
|  | // INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next` | 
|  | // call. | 
|  | // SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of | 
|  | // `self.cursor.list` by the type invariants of `Cursor`. | 
|  | unsafe { self.cursor.list.remove_internal(self.ptr) } | 
|  | } | 
|  |  | 
|  | /// Access this value as an [`ArcBorrow`]. | 
|  | pub fn arc(&self) -> ArcBorrow<'_, T> { | 
|  | // SAFETY: `self.ptr` points at an element in `self.cursor.list`. | 
|  | let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) }; | 
|  | // SAFETY: | 
|  | // * All values in a list are stored in an `Arc`. | 
|  | // * The value cannot be removed from the list for the duration of the lifetime annotated | 
|  | //   on the returned `ArcBorrow`, because removing it from the list would require mutable | 
|  | //   access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds | 
|  | //   an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the | 
|  | //   `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable | 
|  | //   access requires first releasing the immutable borrow on the `CursorPeek`. | 
|  | // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc` | 
|  | //   reference, and `UniqueArc` references must be unique. | 
|  | unsafe { ArcBorrow::from_raw(me) } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref | 
|  | for CursorPeek<'a, 'b, T, ISNEXT, ID> | 
|  | { | 
|  | // If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could | 
|  | // get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`. | 
|  | // However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>` | 
|  | // and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be | 
|  | // unsound. | 
|  | type Target = T; | 
|  |  | 
|  | fn deref(&self) -> &T { | 
|  | // SAFETY: `self.ptr` points at an element in `self.cursor.list`. | 
|  | let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) }; | 
|  |  | 
|  | // SAFETY: The value cannot be removed from the list for the duration of the lifetime | 
|  | // annotated on the returned `&T`, because removing it from the list would require mutable | 
|  | // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an | 
|  | // immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the | 
|  | // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access | 
|  | // requires first releasing the immutable borrow on the `CursorPeek`. | 
|  | unsafe { &*me } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {} | 
|  |  | 
|  | impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> { | 
|  | type IntoIter = Iter<'a, T, ID>; | 
|  | type Item = ArcBorrow<'a, T>; | 
|  |  | 
|  | fn into_iter(self) -> Iter<'a, T, ID> { | 
|  | self.iter() | 
|  | } | 
|  | } | 
|  |  | 
|  | /// An owning iterator into a [`List`]. | 
|  | pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> { | 
|  | list: List<T, ID>, | 
|  | } | 
|  |  | 
|  | impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> { | 
|  | type Item = ListArc<T, ID>; | 
|  |  | 
|  | fn next(&mut self) -> Option<ListArc<T, ID>> { | 
|  | self.list.pop_front() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {} | 
|  |  | 
|  | impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> { | 
|  | fn next_back(&mut self) -> Option<ListArc<T, ID>> { | 
|  | self.list.pop_back() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> { | 
|  | type IntoIter = IntoIter<T, ID>; | 
|  | type Item = ListArc<T, ID>; | 
|  |  | 
|  | fn into_iter(self) -> IntoIter<T, ID> { | 
|  | IntoIter { list: self } | 
|  | } | 
|  | } |