|  | /* SPDX-License-Identifier: GPL-2.0-only */ | 
|  | /* | 
|  | * | 
|  | * Copyright SUSE Linux Products GmbH 2010 | 
|  | * | 
|  | * Authors: Alexander Graf <agraf@suse.de> | 
|  | */ | 
|  |  | 
|  | #ifndef __ASM_KVM_BOOK3S_64_H__ | 
|  | #define __ASM_KVM_BOOK3S_64_H__ | 
|  |  | 
|  | #include <linux/string.h> | 
|  | #include <asm/bitops.h> | 
|  | #include <asm/book3s/64/mmu-hash.h> | 
|  | #include <asm/cpu_has_feature.h> | 
|  | #include <asm/ppc-opcode.h> | 
|  | #include <asm/pte-walk.h> | 
|  |  | 
|  | /* | 
|  | * Structure for a nested guest, that is, for a guest that is managed by | 
|  | * one of our guests. | 
|  | */ | 
|  | struct kvm_nested_guest { | 
|  | struct kvm *l1_host;		/* L1 VM that owns this nested guest */ | 
|  | int l1_lpid;			/* lpid L1 guest thinks this guest is */ | 
|  | int shadow_lpid;		/* real lpid of this nested guest */ | 
|  | pgd_t *shadow_pgtable;		/* our page table for this guest */ | 
|  | u64 l1_gr_to_hr;		/* L1's addr of part'n-scoped table */ | 
|  | u64 process_table;		/* process table entry for this guest */ | 
|  | long refcnt;			/* number of pointers to this struct */ | 
|  | struct mutex tlb_lock;		/* serialize page faults and tlbies */ | 
|  | struct kvm_nested_guest *next; | 
|  | cpumask_t need_tlb_flush; | 
|  | short prev_cpu[NR_CPUS]; | 
|  | u8 radix;			/* is this nested guest radix */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * We define a nested rmap entry as a single 64-bit quantity | 
|  | * 0xFFF0000000000000	12-bit lpid field | 
|  | * 0x000FFFFFFFFFF000	40-bit guest 4k page frame number | 
|  | * 0x0000000000000001	1-bit  single entry flag | 
|  | */ | 
|  | #define RMAP_NESTED_LPID_MASK		0xFFF0000000000000UL | 
|  | #define RMAP_NESTED_LPID_SHIFT		(52) | 
|  | #define RMAP_NESTED_GPA_MASK		0x000FFFFFFFFFF000UL | 
|  | #define RMAP_NESTED_IS_SINGLE_ENTRY	0x0000000000000001UL | 
|  |  | 
|  | /* Structure for a nested guest rmap entry */ | 
|  | struct rmap_nested { | 
|  | struct llist_node list; | 
|  | u64 rmap; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * for_each_nest_rmap_safe - iterate over the list of nested rmap entries | 
|  | *			     safe against removal of the list entry or NULL list | 
|  | * @pos:	a (struct rmap_nested *) to use as a loop cursor | 
|  | * @node:	pointer to the first entry | 
|  | *		NOTE: this can be NULL | 
|  | * @rmapp:	an (unsigned long *) in which to return the rmap entries on each | 
|  | *		iteration | 
|  | *		NOTE: this must point to already allocated memory | 
|  | * | 
|  | * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the | 
|  | * rmap entry in the memslot. The list is always terminated by a "single entry" | 
|  | * stored in the list element of the final entry of the llist. If there is ONLY | 
|  | * a single entry then this is itself in the rmap entry of the memslot, not a | 
|  | * llist head pointer. | 
|  | * | 
|  | * Note that the iterator below assumes that a nested rmap entry is always | 
|  | * non-zero.  This is true for our usage because the LPID field is always | 
|  | * non-zero (zero is reserved for the host). | 
|  | * | 
|  | * This should be used to iterate over the list of rmap_nested entries with | 
|  | * processing done on the u64 rmap value given by each iteration. This is safe | 
|  | * against removal of list entries and it is always safe to call free on (pos). | 
|  | * | 
|  | * e.g. | 
|  | * struct rmap_nested *cursor; | 
|  | * struct llist_node *first; | 
|  | * unsigned long rmap; | 
|  | * for_each_nest_rmap_safe(cursor, first, &rmap) { | 
|  | *	do_something(rmap); | 
|  | *	free(cursor); | 
|  | * } | 
|  | */ | 
|  | #define for_each_nest_rmap_safe(pos, node, rmapp)			       \ | 
|  | for ((pos) = llist_entry((node), typeof(*(pos)), list);		       \ | 
|  | (node) &&							       \ | 
|  | (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?     \ | 
|  | ((u64) (node)) : ((pos)->rmap))) &&		       \ | 
|  | (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?      \ | 
|  | ((struct llist_node *) ((pos) = NULL)) :	       \ | 
|  | (pos)->list.next)), true);			       \ | 
|  | (pos) = llist_entry((node), typeof(*(pos)), list)) | 
|  |  | 
|  | struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, | 
|  | bool create); | 
|  | void kvmhv_put_nested(struct kvm_nested_guest *gp); | 
|  | int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid); | 
|  |  | 
|  | /* Encoding of first parameter for H_TLB_INVALIDATE */ | 
|  | #define H_TLBIE_P1_ENC(ric, prs, r)	(___PPC_RIC(ric) | ___PPC_PRS(prs) | \ | 
|  | ___PPC_R(r)) | 
|  |  | 
|  | /* Power architecture requires HPT is at least 256kiB, at most 64TiB */ | 
|  | #define PPC_MIN_HPT_ORDER	18 | 
|  | #define PPC_MAX_HPT_ORDER	46 | 
|  |  | 
|  | #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE | 
|  | static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | preempt_disable(); | 
|  | return &get_paca()->shadow_vcpu; | 
|  | } | 
|  |  | 
|  | static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu) | 
|  | { | 
|  | preempt_enable(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE | 
|  |  | 
|  | static inline bool kvm_is_radix(struct kvm *kvm) | 
|  | { | 
|  | return kvm->arch.radix; | 
|  | } | 
|  |  | 
|  | static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | bool radix; | 
|  |  | 
|  | if (vcpu->arch.nested) | 
|  | radix = vcpu->arch.nested->radix; | 
|  | else | 
|  | radix = kvm_is_radix(vcpu->kvm); | 
|  |  | 
|  | return radix; | 
|  | } | 
|  |  | 
|  | unsigned long kvmppc_msr_hard_disable_set_facilities(struct kvm_vcpu *vcpu, unsigned long msr); | 
|  |  | 
|  | int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb); | 
|  |  | 
|  | #define KVM_DEFAULT_HPT_ORDER	24	/* 16MB HPT by default */ | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Invalid HDSISR value which is used to indicate when HW has not set the reg. | 
|  | * Used to work around an errata. | 
|  | */ | 
|  | #define HDSISR_CANARY	0x7fff | 
|  |  | 
|  | /* | 
|  | * We use a lock bit in HPTE dword 0 to synchronize updates and | 
|  | * accesses to each HPTE, and another bit to indicate non-present | 
|  | * HPTEs. | 
|  | */ | 
|  | #define HPTE_V_HVLOCK	0x40UL | 
|  | #define HPTE_V_ABSENT	0x20UL | 
|  |  | 
|  | /* | 
|  | * We use this bit in the guest_rpte field of the revmap entry | 
|  | * to indicate a modified HPTE. | 
|  | */ | 
|  | #define HPTE_GR_MODIFIED	(1ul << 62) | 
|  |  | 
|  | /* These bits are reserved in the guest view of the HPTE */ | 
|  | #define HPTE_GR_RESERVED	HPTE_GR_MODIFIED | 
|  |  | 
|  | static inline long try_lock_hpte(__be64 *hpte, unsigned long bits) | 
|  | { | 
|  | unsigned long tmp, old; | 
|  | __be64 be_lockbit, be_bits; | 
|  |  | 
|  | /* | 
|  | * We load/store in native endian, but the HTAB is in big endian. If | 
|  | * we byte swap all data we apply on the PTE we're implicitly correct | 
|  | * again. | 
|  | */ | 
|  | be_lockbit = cpu_to_be64(HPTE_V_HVLOCK); | 
|  | be_bits = cpu_to_be64(bits); | 
|  |  | 
|  | asm volatile("	ldarx	%0,0,%2\n" | 
|  | "	and.	%1,%0,%3\n" | 
|  | "	bne	2f\n" | 
|  | "	or	%0,%0,%4\n" | 
|  | "  stdcx.	%0,0,%2\n" | 
|  | "	beq+	2f\n" | 
|  | "	mr	%1,%3\n" | 
|  | "2:	isync" | 
|  | : "=&r" (tmp), "=&r" (old) | 
|  | : "r" (hpte), "r" (be_bits), "r" (be_lockbit) | 
|  | : "cc", "memory"); | 
|  | return old == 0; | 
|  | } | 
|  |  | 
|  | static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v) | 
|  | { | 
|  | hpte_v &= ~HPTE_V_HVLOCK; | 
|  | asm volatile(PPC_RELEASE_BARRIER "" : : : "memory"); | 
|  | hpte[0] = cpu_to_be64(hpte_v); | 
|  | } | 
|  |  | 
|  | /* Without barrier */ | 
|  | static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v) | 
|  | { | 
|  | hpte_v &= ~HPTE_V_HVLOCK; | 
|  | hpte[0] = cpu_to_be64(hpte_v); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These functions encode knowledge of the POWER7/8/9 hardware | 
|  | * interpretations of the HPTE LP (large page size) field. | 
|  | */ | 
|  | static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l) | 
|  | { | 
|  | unsigned int lphi; | 
|  |  | 
|  | if (!(h & HPTE_V_LARGE)) | 
|  | return 12;	/* 4kB */ | 
|  | lphi = (l >> 16) & 0xf; | 
|  | switch ((l >> 12) & 0xf) { | 
|  | case 0: | 
|  | return !lphi ? 24 : 0;		/* 16MB */ | 
|  | break; | 
|  | case 1: | 
|  | return 16;			/* 64kB */ | 
|  | break; | 
|  | case 3: | 
|  | return !lphi ? 34 : 0;		/* 16GB */ | 
|  | break; | 
|  | case 7: | 
|  | return (16 << 8) + 12;		/* 64kB in 4kB */ | 
|  | break; | 
|  | case 8: | 
|  | if (!lphi) | 
|  | return (24 << 8) + 16;	/* 16MB in 64kkB */ | 
|  | if (lphi == 3) | 
|  | return (24 << 8) + 12;	/* 16MB in 4kB */ | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l) | 
|  | { | 
|  | return kvmppc_hpte_page_shifts(h, l) & 0xff; | 
|  | } | 
|  |  | 
|  | static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l) | 
|  | { | 
|  | int tmp = kvmppc_hpte_page_shifts(h, l); | 
|  |  | 
|  | if (tmp >= 0x100) | 
|  | tmp >>= 8; | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r) | 
|  | { | 
|  | int shift = kvmppc_hpte_actual_page_shift(v, r); | 
|  |  | 
|  | if (shift) | 
|  | return 1ul << shift; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift) | 
|  | { | 
|  | switch (base_shift) { | 
|  | case 12: | 
|  | switch (actual_shift) { | 
|  | case 12: | 
|  | return 0; | 
|  | case 16: | 
|  | return 7; | 
|  | case 24: | 
|  | return 0x38; | 
|  | } | 
|  | break; | 
|  | case 16: | 
|  | switch (actual_shift) { | 
|  | case 16: | 
|  | return 1; | 
|  | case 24: | 
|  | return 8; | 
|  | } | 
|  | break; | 
|  | case 24: | 
|  | return 0; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r, | 
|  | unsigned long pte_index) | 
|  | { | 
|  | int a_pgshift, b_pgshift; | 
|  | unsigned long rb = 0, va_low, sllp; | 
|  |  | 
|  | b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r); | 
|  | if (a_pgshift >= 0x100) { | 
|  | b_pgshift &= 0xff; | 
|  | a_pgshift >>= 8; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ignore the top 14 bits of va | 
|  | * v have top two bits covering segment size, hence move | 
|  | * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits. | 
|  | * AVA field in v also have the lower 23 bits ignored. | 
|  | * For base page size 4K we need 14 .. 65 bits (so need to | 
|  | * collect extra 11 bits) | 
|  | * For others we need 14..14+i | 
|  | */ | 
|  | /* This covers 14..54 bits of va*/ | 
|  | rb = (v & ~0x7fUL) << 16;		/* AVA field */ | 
|  |  | 
|  | /* | 
|  | * AVA in v had cleared lower 23 bits. We need to derive | 
|  | * that from pteg index | 
|  | */ | 
|  | va_low = pte_index >> 3; | 
|  | if (v & HPTE_V_SECONDARY) | 
|  | va_low = ~va_low; | 
|  | /* | 
|  | * get the vpn bits from va_low using reverse of hashing. | 
|  | * In v we have va with 23 bits dropped and then left shifted | 
|  | * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need | 
|  | * right shift it with (SID_SHIFT - (23 - 7)) | 
|  | */ | 
|  | if (!(v & HPTE_V_1TB_SEG)) | 
|  | va_low ^= v >> (SID_SHIFT - 16); | 
|  | else | 
|  | va_low ^= v >> (SID_SHIFT_1T - 16); | 
|  | va_low &= 0x7ff; | 
|  |  | 
|  | if (b_pgshift <= 12) { | 
|  | if (a_pgshift > 12) { | 
|  | sllp = (a_pgshift == 16) ? 5 : 4; | 
|  | rb |= sllp << 5;	/*  AP field */ | 
|  | } | 
|  | rb |= (va_low & 0x7ff) << 12;	/* remaining 11 bits of AVA */ | 
|  | } else { | 
|  | int aval_shift; | 
|  | /* | 
|  | * remaining bits of AVA/LP fields | 
|  | * Also contain the rr bits of LP | 
|  | */ | 
|  | rb |= (va_low << b_pgshift) & 0x7ff000; | 
|  | /* | 
|  | * Now clear not needed LP bits based on actual psize | 
|  | */ | 
|  | rb &= ~((1ul << a_pgshift) - 1); | 
|  | /* | 
|  | * AVAL field 58..77 - base_page_shift bits of va | 
|  | * we have space for 58..64 bits, Missing bits should | 
|  | * be zero filled. +1 is to take care of L bit shift | 
|  | */ | 
|  | aval_shift = 64 - (77 - b_pgshift) + 1; | 
|  | rb |= ((va_low << aval_shift) & 0xfe); | 
|  |  | 
|  | rb |= 1;		/* L field */ | 
|  | rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */ | 
|  | } | 
|  | /* | 
|  | * This sets both bits of the B field in the PTE. 0b1x values are | 
|  | * reserved, but those will have been filtered by kvmppc_do_h_enter. | 
|  | */ | 
|  | rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;	/* B field */ | 
|  | return rb; | 
|  | } | 
|  |  | 
|  | static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize) | 
|  | { | 
|  | return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline int hpte_is_writable(unsigned long ptel) | 
|  | { | 
|  | unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP); | 
|  |  | 
|  | return pp != PP_RXRX && pp != PP_RXXX; | 
|  | } | 
|  |  | 
|  | static inline unsigned long hpte_make_readonly(unsigned long ptel) | 
|  | { | 
|  | if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX) | 
|  | ptel = (ptel & ~HPTE_R_PP) | PP_RXXX; | 
|  | else | 
|  | ptel |= PP_RXRX; | 
|  | return ptel; | 
|  | } | 
|  |  | 
|  | static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci) | 
|  | { | 
|  | unsigned int wimg = hptel & HPTE_R_WIMG; | 
|  |  | 
|  | /* Handle SAO */ | 
|  | if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) && | 
|  | cpu_has_feature(CPU_FTR_ARCH_206)) | 
|  | wimg = HPTE_R_M; | 
|  |  | 
|  | if (!is_ci) | 
|  | return wimg == HPTE_R_M; | 
|  | /* | 
|  | * if host is mapped cache inhibited, make sure hptel also have | 
|  | * cache inhibited. | 
|  | */ | 
|  | if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */ | 
|  | return false; | 
|  | return !!(wimg & HPTE_R_I); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it's present and writable, atomically set dirty and referenced bits and | 
|  | * return the PTE, otherwise return 0. | 
|  | */ | 
|  | static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing) | 
|  | { | 
|  | pte_t old_pte, new_pte = __pte(0); | 
|  |  | 
|  | while (1) { | 
|  | /* | 
|  | * Make sure we don't reload from ptep | 
|  | */ | 
|  | old_pte = READ_ONCE(*ptep); | 
|  | /* | 
|  | * wait until H_PAGE_BUSY is clear then set it atomically | 
|  | */ | 
|  | if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) { | 
|  | cpu_relax(); | 
|  | continue; | 
|  | } | 
|  | /* If pte is not present return None */ | 
|  | if (unlikely(!pte_present(old_pte))) | 
|  | return __pte(0); | 
|  |  | 
|  | new_pte = pte_mkyoung(old_pte); | 
|  | if (writing && pte_write(old_pte)) | 
|  | new_pte = pte_mkdirty(new_pte); | 
|  |  | 
|  | if (pte_xchg(ptep, old_pte, new_pte)) | 
|  | break; | 
|  | } | 
|  | return new_pte; | 
|  | } | 
|  |  | 
|  | static inline bool hpte_read_permission(unsigned long pp, unsigned long key) | 
|  | { | 
|  | if (key) | 
|  | return PP_RWRX <= pp && pp <= PP_RXRX; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool hpte_write_permission(unsigned long pp, unsigned long key) | 
|  | { | 
|  | if (key) | 
|  | return pp == PP_RWRW; | 
|  | return pp <= PP_RWRW; | 
|  | } | 
|  |  | 
|  | static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr) | 
|  | { | 
|  | unsigned long skey; | 
|  |  | 
|  | skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) | | 
|  | ((hpte_r & HPTE_R_KEY_LO) >> 9); | 
|  | return (amr >> (62 - 2 * skey)) & 3; | 
|  | } | 
|  |  | 
|  | static inline void lock_rmap(unsigned long *rmap) | 
|  | { | 
|  | do { | 
|  | while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap)) | 
|  | cpu_relax(); | 
|  | } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap)); | 
|  | } | 
|  |  | 
|  | static inline void unlock_rmap(unsigned long *rmap) | 
|  | { | 
|  | __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap); | 
|  | } | 
|  |  | 
|  | static inline bool slot_is_aligned(struct kvm_memory_slot *memslot, | 
|  | unsigned long pagesize) | 
|  | { | 
|  | unsigned long mask = (pagesize >> PAGE_SHIFT) - 1; | 
|  |  | 
|  | if (pagesize <= PAGE_SIZE) | 
|  | return true; | 
|  | return !(memslot->base_gfn & mask) && !(memslot->npages & mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This works for 4k, 64k and 16M pages on POWER7, | 
|  | * and 4k and 16M pages on PPC970. | 
|  | */ | 
|  | static inline unsigned long slb_pgsize_encoding(unsigned long psize) | 
|  | { | 
|  | unsigned long senc = 0; | 
|  |  | 
|  | if (psize > 0x1000) { | 
|  | senc = SLB_VSID_L; | 
|  | if (psize == 0x10000) | 
|  | senc |= SLB_VSID_LP_01; | 
|  | } | 
|  | return senc; | 
|  | } | 
|  |  | 
|  | static inline int is_vrma_hpte(unsigned long hpte_v) | 
|  | { | 
|  | return (hpte_v & ~0xffffffUL) == | 
|  | (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16))); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE | 
|  | /* | 
|  | * Note modification of an HPTE; set the HPTE modified bit | 
|  | * if anyone is interested. | 
|  | */ | 
|  | static inline void note_hpte_modification(struct kvm *kvm, | 
|  | struct revmap_entry *rev) | 
|  | { | 
|  | if (atomic_read(&kvm->arch.hpte_mod_interest)) | 
|  | rev->guest_rpte |= HPTE_GR_MODIFIED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like kvm_memslots(), but for use in real mode when we can't do | 
|  | * any RCU stuff (since the secondary threads are offline from the | 
|  | * kernel's point of view), and we can't print anything. | 
|  | * Thus we use rcu_dereference_raw() rather than rcu_dereference_check(). | 
|  | */ | 
|  | static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm) | 
|  | { | 
|  | return rcu_dereference_raw_check(kvm->memslots[0]); | 
|  | } | 
|  |  | 
|  | extern void kvmppc_mmu_debugfs_init(struct kvm *kvm); | 
|  | extern void kvmhv_radix_debugfs_init(struct kvm *kvm); | 
|  |  | 
|  | extern void kvmhv_rm_send_ipi(int cpu); | 
|  |  | 
|  | static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt) | 
|  | { | 
|  | /* HPTEs are 2**4 bytes long */ | 
|  | return 1UL << (hpt->order - 4); | 
|  | } | 
|  |  | 
|  | static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt) | 
|  | { | 
|  | /* 128 (2**7) bytes in each HPTEG */ | 
|  | return (1UL << (hpt->order - 7)) - 1; | 
|  | } | 
|  |  | 
|  | /* Set bits in a dirty bitmap, which is in LE format */ | 
|  | static inline void set_dirty_bits(unsigned long *map, unsigned long i, | 
|  | unsigned long npages) | 
|  | { | 
|  |  | 
|  | if (npages >= 8) | 
|  | memset((char *)map + i / 8, 0xff, npages / 8); | 
|  | else | 
|  | for (; npages; ++i, --npages) | 
|  | __set_bit_le(i, map); | 
|  | } | 
|  |  | 
|  | static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i, | 
|  | unsigned long npages) | 
|  | { | 
|  | if (npages >= 8) | 
|  | memset((char *)map + i / 8, 0xff, npages / 8); | 
|  | else | 
|  | for (; npages; ++i, --npages) | 
|  | set_bit_le(i, map); | 
|  | } | 
|  |  | 
|  | static inline u64 sanitize_msr(u64 msr) | 
|  | { | 
|  | msr &= ~MSR_HV; | 
|  | msr |= MSR_ME; | 
|  | return msr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.regs.ccr  = vcpu->arch.cr_tm; | 
|  | vcpu->arch.regs.xer = vcpu->arch.xer_tm; | 
|  | vcpu->arch.regs.link  = vcpu->arch.lr_tm; | 
|  | vcpu->arch.regs.ctr = vcpu->arch.ctr_tm; | 
|  | vcpu->arch.amr = vcpu->arch.amr_tm; | 
|  | vcpu->arch.ppr = vcpu->arch.ppr_tm; | 
|  | vcpu->arch.dscr = vcpu->arch.dscr_tm; | 
|  | vcpu->arch.tar = vcpu->arch.tar_tm; | 
|  | memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm, | 
|  | sizeof(vcpu->arch.regs.gpr)); | 
|  | vcpu->arch.fp  = vcpu->arch.fp_tm; | 
|  | vcpu->arch.vr  = vcpu->arch.vr_tm; | 
|  | vcpu->arch.vrsave = vcpu->arch.vrsave_tm; | 
|  | } | 
|  |  | 
|  | static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.cr_tm  = vcpu->arch.regs.ccr; | 
|  | vcpu->arch.xer_tm = vcpu->arch.regs.xer; | 
|  | vcpu->arch.lr_tm  = vcpu->arch.regs.link; | 
|  | vcpu->arch.ctr_tm = vcpu->arch.regs.ctr; | 
|  | vcpu->arch.amr_tm = vcpu->arch.amr; | 
|  | vcpu->arch.ppr_tm = vcpu->arch.ppr; | 
|  | vcpu->arch.dscr_tm = vcpu->arch.dscr; | 
|  | vcpu->arch.tar_tm = vcpu->arch.tar; | 
|  | memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr, | 
|  | sizeof(vcpu->arch.regs.gpr)); | 
|  | vcpu->arch.fp_tm  = vcpu->arch.fp; | 
|  | vcpu->arch.vr_tm  = vcpu->arch.vr; | 
|  | vcpu->arch.vrsave_tm = vcpu->arch.vrsave; | 
|  | } | 
|  | #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ | 
|  |  | 
|  | extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, | 
|  | unsigned long gpa, unsigned int level, | 
|  | unsigned long mmu_seq, u64 lpid, | 
|  | unsigned long *rmapp, struct rmap_nested **n_rmap); | 
|  | extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, | 
|  | struct rmap_nested **n_rmap); | 
|  | extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, | 
|  | unsigned long clr, unsigned long set, | 
|  | unsigned long hpa, unsigned long nbytes); | 
|  | extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm, | 
|  | const struct kvm_memory_slot *memslot, | 
|  | unsigned long gpa, unsigned long hpa, | 
|  | unsigned long nbytes); | 
|  |  | 
|  | static inline pte_t * | 
|  | find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea, | 
|  | unsigned *hshift) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea, | 
|  | unsigned *hshift) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | VM_WARN(!spin_is_locked(&kvm->mmu_lock), | 
|  | "%s called with kvm mmu_lock not held \n", __func__); | 
|  | pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq, | 
|  | unsigned long ea, unsigned *hshift) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | VM_WARN(!spin_is_locked(&kvm->mmu_lock), | 
|  | "%s called with kvm mmu_lock not held \n", __func__); | 
|  |  | 
|  | if (mmu_invalidate_retry(kvm, mmu_seq)) | 
|  | return NULL; | 
|  |  | 
|  | pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid, | 
|  | unsigned long ea, unsigned *hshift); | 
|  |  | 
|  | int kvmhv_nestedv2_vcpu_create(struct kvm_vcpu *vcpu, struct kvmhv_nestedv2_io *io); | 
|  | void kvmhv_nestedv2_vcpu_free(struct kvm_vcpu *vcpu, struct kvmhv_nestedv2_io *io); | 
|  | int kvmhv_nestedv2_flush_vcpu(struct kvm_vcpu *vcpu, u64 time_limit); | 
|  | int kvmhv_nestedv2_set_ptbl_entry(unsigned long lpid, u64 dw0, u64 dw1); | 
|  | int kvmhv_nestedv2_parse_output(struct kvm_vcpu *vcpu); | 
|  | int kvmhv_nestedv2_set_vpa(struct kvm_vcpu *vcpu, unsigned long vpa); | 
|  |  | 
|  | #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ | 
|  |  | 
|  | #endif /* __ASM_KVM_BOOK3S_64_H__ */ |