|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * The file intends to implement the platform dependent EEH operations on pseries. | 
|  | * Actually, the pseries platform is built based on RTAS heavily. That means the | 
|  | * pseries platform dependent EEH operations will be built on RTAS calls. The functions | 
|  | * are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has | 
|  | * been done. | 
|  | * | 
|  | * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011. | 
|  | * Copyright IBM Corporation 2001, 2005, 2006 | 
|  | * Copyright Dave Engebretsen & Todd Inglett 2001 | 
|  | * Copyright Linas Vepstas 2005, 2006 | 
|  | */ | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/crash_dump.h> | 
|  |  | 
|  | #include <asm/eeh.h> | 
|  | #include <asm/eeh_event.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/ppc-pci.h> | 
|  | #include <asm/rtas.h> | 
|  |  | 
|  | /* RTAS tokens */ | 
|  | static int ibm_set_eeh_option; | 
|  | static int ibm_set_slot_reset; | 
|  | static int ibm_read_slot_reset_state; | 
|  | static int ibm_read_slot_reset_state2; | 
|  | static int ibm_slot_error_detail; | 
|  | static int ibm_get_config_addr_info; | 
|  | static int ibm_get_config_addr_info2; | 
|  | static int ibm_configure_pe; | 
|  |  | 
|  | static void pseries_eeh_init_edev(struct pci_dn *pdn); | 
|  |  | 
|  | static void pseries_pcibios_bus_add_device(struct pci_dev *pdev) | 
|  | { | 
|  | struct pci_dn *pdn = pci_get_pdn(pdev); | 
|  |  | 
|  | if (eeh_has_flag(EEH_FORCE_DISABLED)) | 
|  | return; | 
|  |  | 
|  | dev_dbg(&pdev->dev, "EEH: Setting up device\n"); | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | if (pdev->is_virtfn) { | 
|  | pdn->device_id  =  pdev->device; | 
|  | pdn->vendor_id  =  pdev->vendor; | 
|  | pdn->class_code =  pdev->class; | 
|  | /* | 
|  | * Last allow unfreeze return code used for retrieval | 
|  | * by user space in eeh-sysfs to show the last command | 
|  | * completion from platform. | 
|  | */ | 
|  | pdn->last_allow_rc =  0; | 
|  | } | 
|  | #endif | 
|  | pseries_eeh_init_edev(pdn); | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | if (pdev->is_virtfn) { | 
|  | /* | 
|  | * FIXME: This really should be handled by choosing the right | 
|  | *        parent PE in pseries_eeh_init_edev(). | 
|  | */ | 
|  | struct eeh_pe *physfn_pe = pci_dev_to_eeh_dev(pdev->physfn)->pe; | 
|  | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
|  |  | 
|  | edev->pe_config_addr =  (pdn->busno << 16) | (pdn->devfn << 8); | 
|  | eeh_pe_tree_remove(edev); /* Remove as it is adding to bus pe */ | 
|  | eeh_pe_tree_insert(edev, physfn_pe);   /* Add as VF PE type */ | 
|  | } | 
|  | #endif | 
|  | eeh_probe_device(pdev); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_get_pe_config_addr - Find the pe_config_addr for a device | 
|  | * @pdn: pci_dn of the input device | 
|  | * | 
|  | * The EEH RTAS calls use a tuple consisting of: (buid_hi, buid_lo, | 
|  | * pe_config_addr) as a handle to a given PE. This function finds the | 
|  | * pe_config_addr based on the device's config addr. | 
|  | * | 
|  | * Keep in mind that the pe_config_addr *might* be numerically identical to the | 
|  | * device's config addr, but the two are conceptually distinct. | 
|  | * | 
|  | * Returns the pe_config_addr, or a negative error code. | 
|  | */ | 
|  | static int pseries_eeh_get_pe_config_addr(struct pci_dn *pdn) | 
|  | { | 
|  | int config_addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); | 
|  | struct pci_controller *phb = pdn->phb; | 
|  | int ret, rets[3]; | 
|  |  | 
|  | if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) { | 
|  | /* | 
|  | * First of all, use function 1 to determine if this device is | 
|  | * part of a PE or not. ret[0] being zero indicates it's not. | 
|  | */ | 
|  | ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, | 
|  | config_addr, BUID_HI(phb->buid), | 
|  | BUID_LO(phb->buid), 1); | 
|  | if (ret || (rets[0] == 0)) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* Retrieve the associated PE config address with function 0 */ | 
|  | ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets, | 
|  | config_addr, BUID_HI(phb->buid), | 
|  | BUID_LO(phb->buid), 0); | 
|  | if (ret) { | 
|  | pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n", | 
|  | __func__, phb->global_number, config_addr); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | return rets[0]; | 
|  | } | 
|  |  | 
|  | if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) { | 
|  | ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets, | 
|  | config_addr, BUID_HI(phb->buid), | 
|  | BUID_LO(phb->buid), 0); | 
|  | if (ret) { | 
|  | pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n", | 
|  | __func__, phb->global_number, config_addr); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | return rets[0]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PAPR does describe a process for finding the pe_config_addr that was | 
|  | * used before the ibm,get-config-addr-info calls were added. However, | 
|  | * I haven't found *any* systems that don't have that RTAS call | 
|  | * implemented. If you happen to find one that needs the old DT based | 
|  | * process, patches are welcome! | 
|  | */ | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_phb_reset - Reset the specified PHB | 
|  | * @phb: PCI controller | 
|  | * @config_addr: the associated config address | 
|  | * @option: reset option | 
|  | * | 
|  | * Reset the specified PHB/PE | 
|  | */ | 
|  | static int pseries_eeh_phb_reset(struct pci_controller *phb, int config_addr, int option) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Reset PE through RTAS call */ | 
|  | ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL, | 
|  | config_addr, BUID_HI(phb->buid), | 
|  | BUID_LO(phb->buid), option); | 
|  |  | 
|  | /* If fundamental-reset not supported, try hot-reset */ | 
|  | if (option == EEH_RESET_FUNDAMENTAL && ret == -8) { | 
|  | option = EEH_RESET_HOT; | 
|  | ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL, | 
|  | config_addr, BUID_HI(phb->buid), | 
|  | BUID_LO(phb->buid), option); | 
|  | } | 
|  |  | 
|  | /* We need reset hold or settlement delay */ | 
|  | if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT) | 
|  | msleep(EEH_PE_RST_HOLD_TIME); | 
|  | else | 
|  | msleep(EEH_PE_RST_SETTLE_TIME); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE | 
|  | * @phb: PCI controller | 
|  | * @config_addr: the associated config address | 
|  | * | 
|  | * The function will be called to reconfigure the bridges included | 
|  | * in the specified PE so that the mulfunctional PE would be recovered | 
|  | * again. | 
|  | */ | 
|  | static int pseries_eeh_phb_configure_bridge(struct pci_controller *phb, int config_addr) | 
|  | { | 
|  | int ret; | 
|  | /* Waiting 0.2s maximum before skipping configuration */ | 
|  | int max_wait = 200; | 
|  |  | 
|  | while (max_wait > 0) { | 
|  | ret = rtas_call(ibm_configure_pe, 3, 1, NULL, | 
|  | config_addr, BUID_HI(phb->buid), | 
|  | BUID_LO(phb->buid)); | 
|  |  | 
|  | if (!ret) | 
|  | return ret; | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If RTAS returns a delay value that's above 100ms, cut it | 
|  | * down to 100ms in case firmware made a mistake.  For more | 
|  | * on how these delay values work see rtas_busy_delay_time | 
|  | */ | 
|  | if (ret > RTAS_EXTENDED_DELAY_MIN+2 && | 
|  | ret <= RTAS_EXTENDED_DELAY_MAX) | 
|  | ret = RTAS_EXTENDED_DELAY_MIN+2; | 
|  |  | 
|  | max_wait -= rtas_busy_delay_time(ret); | 
|  |  | 
|  | if (max_wait < 0) | 
|  | break; | 
|  |  | 
|  | rtas_busy_delay(ret); | 
|  | } | 
|  |  | 
|  | pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n", | 
|  | __func__, phb->global_number, config_addr, ret); | 
|  | /* PAPR defines -3 as "Parameter Error" for this function: */ | 
|  | if (ret == -3) | 
|  | return -EINVAL; | 
|  | else | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Buffer for reporting slot-error-detail rtas calls. Its here | 
|  | * in BSS, and not dynamically alloced, so that it ends up in | 
|  | * RMO where RTAS can access it. | 
|  | */ | 
|  | static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX]; | 
|  | static DEFINE_SPINLOCK(slot_errbuf_lock); | 
|  | static int eeh_error_buf_size; | 
|  |  | 
|  | static int pseries_eeh_cap_start(struct pci_dn *pdn) | 
|  | { | 
|  | u32 status; | 
|  |  | 
|  | if (!pdn) | 
|  | return 0; | 
|  |  | 
|  | rtas_pci_dn_read_config(pdn, PCI_STATUS, 2, &status); | 
|  | if (!(status & PCI_STATUS_CAP_LIST)) | 
|  | return 0; | 
|  |  | 
|  | return PCI_CAPABILITY_LIST; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap) | 
|  | { | 
|  | int pos = pseries_eeh_cap_start(pdn); | 
|  | int cnt = 48;	/* Maximal number of capabilities */ | 
|  | u32 id; | 
|  |  | 
|  | if (!pos) | 
|  | return 0; | 
|  |  | 
|  | while (cnt--) { | 
|  | rtas_pci_dn_read_config(pdn, pos, 1, &pos); | 
|  | if (pos < 0x40) | 
|  | break; | 
|  | pos &= ~3; | 
|  | rtas_pci_dn_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id); | 
|  | if (id == 0xff) | 
|  | break; | 
|  | if (id == cap) | 
|  | return pos; | 
|  | pos += PCI_CAP_LIST_NEXT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap) | 
|  | { | 
|  | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
|  | u32 header; | 
|  | int pos = 256; | 
|  | int ttl = (4096 - 256) / 8; | 
|  |  | 
|  | if (!edev || !edev->pcie_cap) | 
|  | return 0; | 
|  | if (rtas_pci_dn_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) | 
|  | return 0; | 
|  | else if (!header) | 
|  | return 0; | 
|  |  | 
|  | while (ttl-- > 0) { | 
|  | if (PCI_EXT_CAP_ID(header) == cap && pos) | 
|  | return pos; | 
|  |  | 
|  | pos = PCI_EXT_CAP_NEXT(header); | 
|  | if (pos < 256) | 
|  | break; | 
|  |  | 
|  | if (rtas_pci_dn_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_pe_get_parent - Retrieve the parent PE | 
|  | * @edev: EEH device | 
|  | * | 
|  | * The whole PEs existing in the system are organized as hierarchy | 
|  | * tree. The function is used to retrieve the parent PE according | 
|  | * to the parent EEH device. | 
|  | */ | 
|  | static struct eeh_pe *pseries_eeh_pe_get_parent(struct eeh_dev *edev) | 
|  | { | 
|  | struct eeh_dev *parent; | 
|  | struct pci_dn *pdn = eeh_dev_to_pdn(edev); | 
|  |  | 
|  | /* | 
|  | * It might have the case for the indirect parent | 
|  | * EEH device already having associated PE, but | 
|  | * the direct parent EEH device doesn't have yet. | 
|  | */ | 
|  | if (edev->physfn) | 
|  | pdn = pci_get_pdn(edev->physfn); | 
|  | else | 
|  | pdn = pdn ? pdn->parent : NULL; | 
|  | while (pdn) { | 
|  | /* We're poking out of PCI territory */ | 
|  | parent = pdn_to_eeh_dev(pdn); | 
|  | if (!parent) | 
|  | return NULL; | 
|  |  | 
|  | if (parent->pe) | 
|  | return parent->pe; | 
|  |  | 
|  | pdn = pdn->parent; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn | 
|  | * | 
|  | * @pdn: PCI device node | 
|  | * | 
|  | * When we discover a new PCI device via the device-tree we create a | 
|  | * corresponding pci_dn and we allocate, but don't initialise, an eeh_dev. | 
|  | * This function takes care of the initialisation and inserts the eeh_dev | 
|  | * into the correct eeh_pe. If no eeh_pe exists we'll allocate one. | 
|  | */ | 
|  | static void pseries_eeh_init_edev(struct pci_dn *pdn) | 
|  | { | 
|  | struct eeh_pe pe, *parent; | 
|  | struct eeh_dev *edev; | 
|  | u32 pcie_flags; | 
|  | int ret; | 
|  |  | 
|  | if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Find the eeh_dev for this pdn. The storage for the eeh_dev was | 
|  | * allocated at the same time as the pci_dn. | 
|  | * | 
|  | * XXX: We should probably re-visit that. | 
|  | */ | 
|  | edev = pdn_to_eeh_dev(pdn); | 
|  | if (!edev) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If ->pe is set then we've already probed this device. We hit | 
|  | * this path when a pci_dev is removed and rescanned while recovering | 
|  | * a PE (i.e. for devices where the driver doesn't support error | 
|  | * recovery). | 
|  | */ | 
|  | if (edev->pe) | 
|  | return; | 
|  |  | 
|  | /* Check class/vendor/device IDs */ | 
|  | if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code) | 
|  | return; | 
|  |  | 
|  | /* Skip for PCI-ISA bridge */ | 
|  | if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA) | 
|  | return; | 
|  |  | 
|  | eeh_edev_dbg(edev, "Probing device\n"); | 
|  |  | 
|  | /* | 
|  | * Update class code and mode of eeh device. We need | 
|  | * correctly reflects that current device is root port | 
|  | * or PCIe switch downstream port. | 
|  | */ | 
|  | edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); | 
|  | edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP); | 
|  | edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); | 
|  | edev->mode &= 0xFFFFFF00; | 
|  | if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) { | 
|  | edev->mode |= EEH_DEV_BRIDGE; | 
|  | if (edev->pcie_cap) { | 
|  | rtas_pci_dn_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS, | 
|  | 2, &pcie_flags); | 
|  | pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; | 
|  | if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) | 
|  | edev->mode |= EEH_DEV_ROOT_PORT; | 
|  | else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) | 
|  | edev->mode |= EEH_DEV_DS_PORT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* first up, find the pe_config_addr for the PE containing the device */ | 
|  | ret = pseries_eeh_get_pe_config_addr(pdn); | 
|  | if (ret < 0) { | 
|  | eeh_edev_dbg(edev, "Unable to find pe_config_addr\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* Try enable EEH on the fake PE */ | 
|  | memset(&pe, 0, sizeof(struct eeh_pe)); | 
|  | pe.phb = pdn->phb; | 
|  | pe.addr = ret; | 
|  |  | 
|  | eeh_edev_dbg(edev, "Enabling EEH on device\n"); | 
|  | ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE); | 
|  | if (ret) { | 
|  | eeh_edev_dbg(edev, "EEH failed to enable on device (code %d)\n", ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | edev->pe_config_addr = pe.addr; | 
|  |  | 
|  | eeh_add_flag(EEH_ENABLED); | 
|  |  | 
|  | parent = pseries_eeh_pe_get_parent(edev); | 
|  | eeh_pe_tree_insert(edev, parent); | 
|  | eeh_save_bars(edev); | 
|  | eeh_edev_dbg(edev, "EEH enabled for device"); | 
|  |  | 
|  | return; | 
|  |  | 
|  | err: | 
|  | eeh_edev_dbg(edev, "EEH is unsupported on device (code = %d)\n", ret); | 
|  | } | 
|  |  | 
|  | static struct eeh_dev *pseries_eeh_probe(struct pci_dev *pdev) | 
|  | { | 
|  | struct eeh_dev *edev; | 
|  | struct pci_dn *pdn; | 
|  |  | 
|  | pdn = pci_get_pdn_by_devfn(pdev->bus, pdev->devfn); | 
|  | if (!pdn) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * If the system supports EEH on this device then the eeh_dev was | 
|  | * configured and inserted into a PE in pseries_eeh_init_edev() | 
|  | */ | 
|  | edev = pdn_to_eeh_dev(pdn); | 
|  | if (!edev || !edev->pe) | 
|  | return NULL; | 
|  |  | 
|  | return edev; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_init_edev_recursive - Enable EEH for the indicated device | 
|  | * @pdn: PCI device node | 
|  | * | 
|  | * This routine must be used to perform EEH initialization for the | 
|  | * indicated PCI device that was added after system boot (e.g. | 
|  | * hotplug, dlpar). | 
|  | */ | 
|  | void pseries_eeh_init_edev_recursive(struct pci_dn *pdn) | 
|  | { | 
|  | struct pci_dn *n; | 
|  |  | 
|  | if (!pdn) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry(n, &pdn->child_list, list) | 
|  | pseries_eeh_init_edev_recursive(n); | 
|  |  | 
|  | pseries_eeh_init_edev(pdn); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive); | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable | 
|  | * @pe: EEH PE | 
|  | * @option: operation to be issued | 
|  | * | 
|  | * The function is used to control the EEH functionality globally. | 
|  | * Currently, following options are support according to PAPR: | 
|  | * Enable EEH, Disable EEH, Enable MMIO and Enable DMA | 
|  | */ | 
|  | static int pseries_eeh_set_option(struct eeh_pe *pe, int option) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * When we're enabling or disabling EEH functionality on | 
|  | * the particular PE, the PE config address is possibly | 
|  | * unavailable. Therefore, we have to figure it out from | 
|  | * the FDT node. | 
|  | */ | 
|  | switch (option) { | 
|  | case EEH_OPT_DISABLE: | 
|  | case EEH_OPT_ENABLE: | 
|  | case EEH_OPT_THAW_MMIO: | 
|  | case EEH_OPT_THAW_DMA: | 
|  | break; | 
|  | case EEH_OPT_FREEZE_PE: | 
|  | /* Not support */ | 
|  | return 0; | 
|  | default: | 
|  | pr_err("%s: Invalid option %d\n", __func__, option); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL, | 
|  | pe->addr, BUID_HI(pe->phb->buid), | 
|  | BUID_LO(pe->phb->buid), option); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_get_state - Retrieve PE state | 
|  | * @pe: EEH PE | 
|  | * @delay: suggested time to wait if state is unavailable | 
|  | * | 
|  | * Retrieve the state of the specified PE. On RTAS compliant | 
|  | * pseries platform, there already has one dedicated RTAS function | 
|  | * for the purpose. It's notable that the associated PE config address | 
|  | * might be ready when calling the function. Therefore, endeavour to | 
|  | * use the PE config address if possible. Further more, there're 2 | 
|  | * RTAS calls for the purpose, we need to try the new one and back | 
|  | * to the old one if the new one couldn't work properly. | 
|  | */ | 
|  | static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay) | 
|  | { | 
|  | int ret; | 
|  | int rets[4]; | 
|  | int result; | 
|  |  | 
|  | if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) { | 
|  | ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets, | 
|  | pe->addr, BUID_HI(pe->phb->buid), | 
|  | BUID_LO(pe->phb->buid)); | 
|  | } else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) { | 
|  | /* Fake PE unavailable info */ | 
|  | rets[2] = 0; | 
|  | ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets, | 
|  | pe->addr, BUID_HI(pe->phb->buid), | 
|  | BUID_LO(pe->phb->buid)); | 
|  | } else { | 
|  | return EEH_STATE_NOT_SUPPORT; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Parse the result out */ | 
|  | if (!rets[1]) | 
|  | return EEH_STATE_NOT_SUPPORT; | 
|  |  | 
|  | switch(rets[0]) { | 
|  | case 0: | 
|  | result = EEH_STATE_MMIO_ACTIVE | | 
|  | EEH_STATE_DMA_ACTIVE; | 
|  | break; | 
|  | case 1: | 
|  | result = EEH_STATE_RESET_ACTIVE | | 
|  | EEH_STATE_MMIO_ACTIVE  | | 
|  | EEH_STATE_DMA_ACTIVE; | 
|  | break; | 
|  | case 2: | 
|  | result = 0; | 
|  | break; | 
|  | case 4: | 
|  | result = EEH_STATE_MMIO_ENABLED; | 
|  | break; | 
|  | case 5: | 
|  | if (rets[2]) { | 
|  | if (delay) | 
|  | *delay = rets[2]; | 
|  | result = EEH_STATE_UNAVAILABLE; | 
|  | } else { | 
|  | result = EEH_STATE_NOT_SUPPORT; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | result = EEH_STATE_NOT_SUPPORT; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_reset - Reset the specified PE | 
|  | * @pe: EEH PE | 
|  | * @option: reset option | 
|  | * | 
|  | * Reset the specified PE | 
|  | */ | 
|  | static int pseries_eeh_reset(struct eeh_pe *pe, int option) | 
|  | { | 
|  | return pseries_eeh_phb_reset(pe->phb, pe->addr, option); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_get_log - Retrieve error log | 
|  | * @pe: EEH PE | 
|  | * @severity: temporary or permanent error log | 
|  | * @drv_log: driver log to be combined with retrieved error log | 
|  | * @len: length of driver log | 
|  | * | 
|  | * Retrieve the temporary or permanent error from the PE. | 
|  | * Actually, the error will be retrieved through the dedicated | 
|  | * RTAS call. | 
|  | */ | 
|  | static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irqsave(&slot_errbuf_lock, flags); | 
|  | memset(slot_errbuf, 0, eeh_error_buf_size); | 
|  |  | 
|  | ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, pe->addr, | 
|  | BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid), | 
|  | virt_to_phys(drv_log), len, | 
|  | virt_to_phys(slot_errbuf), eeh_error_buf_size, | 
|  | severity); | 
|  | if (!ret) | 
|  | log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0); | 
|  | spin_unlock_irqrestore(&slot_errbuf_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE | 
|  | * @pe: EEH PE | 
|  | * | 
|  | */ | 
|  | static int pseries_eeh_configure_bridge(struct eeh_pe *pe) | 
|  | { | 
|  | return pseries_eeh_phb_configure_bridge(pe->phb, pe->addr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_read_config - Read PCI config space | 
|  | * @edev: EEH device handle | 
|  | * @where: PCI config space offset | 
|  | * @size: size to read | 
|  | * @val: return value | 
|  | * | 
|  | * Read config space from the speicifed device | 
|  | */ | 
|  | static int pseries_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val) | 
|  | { | 
|  | struct pci_dn *pdn = eeh_dev_to_pdn(edev); | 
|  |  | 
|  | return rtas_pci_dn_read_config(pdn, where, size, val); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseries_eeh_write_config - Write PCI config space | 
|  | * @edev: EEH device handle | 
|  | * @where: PCI config space offset | 
|  | * @size: size to write | 
|  | * @val: value to be written | 
|  | * | 
|  | * Write config space to the specified device | 
|  | */ | 
|  | static int pseries_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val) | 
|  | { | 
|  | struct pci_dn *pdn = eeh_dev_to_pdn(edev); | 
|  |  | 
|  | return rtas_pci_dn_write_config(pdn, where, size, val); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | static int pseries_send_allow_unfreeze(struct pci_dn *pdn, u16 *vf_pe_array, int cur_vfs) | 
|  | { | 
|  | int rc; | 
|  | int ibm_allow_unfreeze = rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE); | 
|  | unsigned long buid, addr; | 
|  |  | 
|  | addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); | 
|  | buid = pdn->phb->buid; | 
|  | spin_lock(&rtas_data_buf_lock); | 
|  | memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE); | 
|  | rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL, | 
|  | addr, | 
|  | BUID_HI(buid), | 
|  | BUID_LO(buid), | 
|  | rtas_data_buf, cur_vfs * sizeof(u16)); | 
|  | spin_unlock(&rtas_data_buf_lock); | 
|  | if (rc) | 
|  | pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n", | 
|  | __func__, | 
|  | pdn->phb->global_number, addr, rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int pseries_call_allow_unfreeze(struct eeh_dev *edev) | 
|  | { | 
|  | int cur_vfs = 0, rc = 0, vf_index, bus, devfn, vf_pe_num; | 
|  | struct pci_dn *pdn, *tmp, *parent, *physfn_pdn; | 
|  | u16 *vf_pe_array; | 
|  |  | 
|  | vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL); | 
|  | if (!vf_pe_array) | 
|  | return -ENOMEM; | 
|  | if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) { | 
|  | if (edev->pdev->is_physfn) { | 
|  | cur_vfs = pci_num_vf(edev->pdev); | 
|  | pdn = eeh_dev_to_pdn(edev); | 
|  | parent = pdn->parent; | 
|  | for (vf_index = 0; vf_index < cur_vfs; vf_index++) | 
|  | vf_pe_array[vf_index] = | 
|  | cpu_to_be16(pdn->pe_num_map[vf_index]); | 
|  | rc = pseries_send_allow_unfreeze(pdn, vf_pe_array, | 
|  | cur_vfs); | 
|  | pdn->last_allow_rc = rc; | 
|  | for (vf_index = 0; vf_index < cur_vfs; vf_index++) { | 
|  | list_for_each_entry_safe(pdn, tmp, | 
|  | &parent->child_list, | 
|  | list) { | 
|  | bus = pci_iov_virtfn_bus(edev->pdev, | 
|  | vf_index); | 
|  | devfn = pci_iov_virtfn_devfn(edev->pdev, | 
|  | vf_index); | 
|  | if (pdn->busno != bus || | 
|  | pdn->devfn != devfn) | 
|  | continue; | 
|  | pdn->last_allow_rc = rc; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | pdn = pci_get_pdn(edev->pdev); | 
|  | physfn_pdn = pci_get_pdn(edev->physfn); | 
|  |  | 
|  | vf_pe_num = physfn_pdn->pe_num_map[edev->vf_index]; | 
|  | vf_pe_array[0] = cpu_to_be16(vf_pe_num); | 
|  | rc = pseries_send_allow_unfreeze(physfn_pdn, | 
|  | vf_pe_array, 1); | 
|  | pdn->last_allow_rc = rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(vf_pe_array); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int pseries_notify_resume(struct eeh_dev *edev) | 
|  | { | 
|  | if (!edev) | 
|  | return -EEXIST; | 
|  |  | 
|  | if (rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE) == RTAS_UNKNOWN_SERVICE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (edev->pdev->is_physfn || edev->pdev->is_virtfn) | 
|  | return pseries_call_allow_unfreeze(edev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct eeh_ops pseries_eeh_ops = { | 
|  | .name			= "pseries", | 
|  | .probe			= pseries_eeh_probe, | 
|  | .set_option		= pseries_eeh_set_option, | 
|  | .get_state		= pseries_eeh_get_state, | 
|  | .reset			= pseries_eeh_reset, | 
|  | .get_log		= pseries_eeh_get_log, | 
|  | .configure_bridge       = pseries_eeh_configure_bridge, | 
|  | .err_inject		= NULL, | 
|  | .read_config		= pseries_eeh_read_config, | 
|  | .write_config		= pseries_eeh_write_config, | 
|  | .next_error		= NULL, | 
|  | .restore_config		= NULL, /* NB: configure_bridge() does this */ | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | .notify_resume		= pseries_notify_resume | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * eeh_pseries_init - Register platform dependent EEH operations | 
|  | * | 
|  | * EEH initialization on pseries platform. This function should be | 
|  | * called before any EEH related functions. | 
|  | */ | 
|  | static int __init eeh_pseries_init(void) | 
|  | { | 
|  | struct pci_controller *phb; | 
|  | struct pci_dn *pdn; | 
|  | int ret, config_addr; | 
|  |  | 
|  | /* figure out EEH RTAS function call tokens */ | 
|  | ibm_set_eeh_option		= rtas_function_token(RTAS_FN_IBM_SET_EEH_OPTION); | 
|  | ibm_set_slot_reset		= rtas_function_token(RTAS_FN_IBM_SET_SLOT_RESET); | 
|  | ibm_read_slot_reset_state2	= rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE2); | 
|  | ibm_read_slot_reset_state	= rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE); | 
|  | ibm_slot_error_detail		= rtas_function_token(RTAS_FN_IBM_SLOT_ERROR_DETAIL); | 
|  | ibm_get_config_addr_info2	= rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO2); | 
|  | ibm_get_config_addr_info	= rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO); | 
|  | ibm_configure_pe		= rtas_function_token(RTAS_FN_IBM_CONFIGURE_PE); | 
|  |  | 
|  | /* | 
|  | * ibm,configure-pe and ibm,configure-bridge have the same semantics, | 
|  | * however ibm,configure-pe can be faster.  If we can't find | 
|  | * ibm,configure-pe then fall back to using ibm,configure-bridge. | 
|  | */ | 
|  | if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE) | 
|  | ibm_configure_pe	= rtas_function_token(RTAS_FN_IBM_CONFIGURE_BRIDGE); | 
|  |  | 
|  | /* | 
|  | * Necessary sanity check. We needn't check "get-config-addr-info" | 
|  | * and its variant since the old firmware probably support address | 
|  | * of domain/bus/slot/function for EEH RTAS operations. | 
|  | */ | 
|  | if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE		|| | 
|  | ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE		|| | 
|  | (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE && | 
|  | ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE)	|| | 
|  | ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE	|| | 
|  | ibm_configure_pe == RTAS_UNKNOWN_SERVICE) { | 
|  | pr_info("EEH functionality not supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Initialize error log size */ | 
|  | eeh_error_buf_size = rtas_get_error_log_max(); | 
|  |  | 
|  | /* Set EEH probe mode */ | 
|  | eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG); | 
|  |  | 
|  | /* Set EEH machine dependent code */ | 
|  | ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device; | 
|  |  | 
|  | if (is_kdump_kernel() || reset_devices) { | 
|  | pr_info("Issue PHB reset ...\n"); | 
|  | list_for_each_entry(phb, &hose_list, list_node) { | 
|  | // Skip if the slot is empty | 
|  | if (list_empty(&PCI_DN(phb->dn)->child_list)) | 
|  | continue; | 
|  |  | 
|  | pdn = list_first_entry(&PCI_DN(phb->dn)->child_list, struct pci_dn, list); | 
|  | config_addr = pseries_eeh_get_pe_config_addr(pdn); | 
|  |  | 
|  | /* invalid PE config addr */ | 
|  | if (config_addr < 0) | 
|  | continue; | 
|  |  | 
|  | pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_FUNDAMENTAL); | 
|  | pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_DEACTIVATE); | 
|  | pseries_eeh_phb_configure_bridge(phb, config_addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = eeh_init(&pseries_eeh_ops); | 
|  | if (!ret) | 
|  | pr_info("EEH: pSeries platform initialized\n"); | 
|  | else | 
|  | pr_info("EEH: pSeries platform initialization failure (%d)\n", | 
|  | ret); | 
|  | return ret; | 
|  | } | 
|  | machine_arch_initcall(pseries, eeh_pseries_init); |