|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  | /* | 
|  | * R-Car Display Unit Channels Pair | 
|  | * | 
|  | * Copyright (C) 2013-2015 Renesas Electronics Corporation | 
|  | * | 
|  | * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending | 
|  | * unit, timings generator, ...) and device-global resources (start/stop | 
|  | * control, planes, ...) shared between the two CRTCs. | 
|  | * | 
|  | * The R8A7790 introduced a third CRTC with its own set of global resources. | 
|  | * This would be modeled as two separate DU device instances if it wasn't for | 
|  | * a handful or resources that are shared between the three CRTCs (mostly | 
|  | * related to input and output routing). For this reason the R8A7790 DU must be | 
|  | * modeled as a single device with three CRTCs, two sets of "semi-global" | 
|  | * resources, and a few device-global resources. | 
|  | * | 
|  | * The rcar_du_group object is a driver specific object, without any real | 
|  | * counterpart in the DU documentation, that models those semi-global resources. | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/io.h> | 
|  |  | 
|  | #include "rcar_du_drv.h" | 
|  | #include "rcar_du_group.h" | 
|  | #include "rcar_du_regs.h" | 
|  |  | 
|  | u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg) | 
|  | { | 
|  | return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg); | 
|  | } | 
|  |  | 
|  | void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data) | 
|  | { | 
|  | rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data); | 
|  | } | 
|  |  | 
|  | static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp) | 
|  | { | 
|  | u32 defr6 = DEFR6_CODE; | 
|  |  | 
|  | if (rgrp->channels_mask & BIT(0)) | 
|  | defr6 |= DEFR6_ODPM02_DISP; | 
|  |  | 
|  | if (rgrp->channels_mask & BIT(1)) | 
|  | defr6 |= DEFR6_ODPM12_DISP; | 
|  |  | 
|  | rcar_du_group_write(rgrp, DEFR6, defr6); | 
|  | } | 
|  |  | 
|  | static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rgrp->dev; | 
|  | u32 defr8 = DEFR8_CODE; | 
|  |  | 
|  | if (rcdu->info->gen < 3) { | 
|  | defr8 |= DEFR8_DEFE8; | 
|  |  | 
|  | /* | 
|  | * On Gen2 the DEFR8 register for the first group also controls | 
|  | * RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for | 
|  | * DU instances that support it. | 
|  | */ | 
|  | if (rgrp->index == 0) { | 
|  | defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source); | 
|  | if (rgrp->dev->vspd1_sink == 2) | 
|  | defr8 |= DEFR8_VSCS; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * On Gen3 VSPD routing can't be configured, and DPAD routing | 
|  | * is set in the group corresponding to the DPAD output (no Gen3 | 
|  | * SoC has multiple DPAD sources belonging to separate groups). | 
|  | */ | 
|  | if (rgrp->index == rcdu->dpad0_source / 2) | 
|  | defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source); | 
|  | } | 
|  |  | 
|  | rcar_du_group_write(rgrp, DEFR8, defr8); | 
|  | } | 
|  |  | 
|  | static void rcar_du_group_setup_didsr(struct rcar_du_group *rgrp) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rgrp->dev; | 
|  | struct rcar_du_crtc *rcrtc; | 
|  | unsigned int num_crtcs = 0; | 
|  | unsigned int i; | 
|  | u32 didsr; | 
|  |  | 
|  | /* | 
|  | * Configure input dot clock routing with a hardcoded configuration. If | 
|  | * the DU channel can use the LVDS encoder output clock as the dot | 
|  | * clock, do so. Otherwise route DU_DOTCLKINn signal to DUn. | 
|  | * | 
|  | * Each channel can then select between the dot clock configured here | 
|  | * and the clock provided by the CPG through the ESCR register. | 
|  | */ | 
|  | if (rcdu->info->gen < 3 && rgrp->index == 0) { | 
|  | /* | 
|  | * On Gen2 a single register in the first group controls dot | 
|  | * clock selection for all channels. | 
|  | */ | 
|  | rcrtc = rcdu->crtcs; | 
|  | num_crtcs = rcdu->num_crtcs; | 
|  | } else if (rcdu->info->gen >= 3 && rgrp->num_crtcs > 1) { | 
|  | /* | 
|  | * On Gen3 dot clocks are setup through per-group registers, | 
|  | * only available when the group has two channels. | 
|  | */ | 
|  | rcrtc = &rcdu->crtcs[rgrp->index * 2]; | 
|  | num_crtcs = rgrp->num_crtcs; | 
|  | } | 
|  |  | 
|  | if (!num_crtcs) | 
|  | return; | 
|  |  | 
|  | didsr = DIDSR_CODE; | 
|  | for (i = 0; i < num_crtcs; ++i, ++rcrtc) { | 
|  | if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) | 
|  | didsr |= DIDSR_LDCS_LVDS0(i) | 
|  | |  DIDSR_PDCS_CLK(i, 0); | 
|  | else if (rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) | 
|  | didsr |= DIDSR_LDCS_DSI(i); | 
|  | else | 
|  | didsr |= DIDSR_LDCS_DCLKIN(i) | 
|  | |  DIDSR_PDCS_CLK(i, 0); | 
|  | } | 
|  |  | 
|  | rcar_du_group_write(rgrp, DIDSR, didsr); | 
|  | } | 
|  |  | 
|  | static void rcar_du_group_setup(struct rcar_du_group *rgrp) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rgrp->dev; | 
|  | u32 defr7 = DEFR7_CODE; | 
|  | u32 dorcr; | 
|  |  | 
|  | /* Enable extended features */ | 
|  | rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE); | 
|  | if (rcdu->info->gen < 3) { | 
|  | rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G); | 
|  | rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3); | 
|  | rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE); | 
|  | } | 
|  | rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5); | 
|  |  | 
|  | if (rcdu->info->gen < 4) | 
|  | rcar_du_group_setup_pins(rgrp); | 
|  |  | 
|  | if (rcdu->info->gen < 4) { | 
|  | /* | 
|  | * TODO: Handle routing of the DU output to CMM dynamically, as | 
|  | * we should bypass CMM completely when no color management | 
|  | * feature is used. | 
|  | */ | 
|  | defr7 |= (rgrp->cmms_mask & BIT(1) ? DEFR7_CMME1 : 0) | | 
|  | (rgrp->cmms_mask & BIT(0) ? DEFR7_CMME0 : 0); | 
|  | rcar_du_group_write(rgrp, DEFR7, defr7); | 
|  | } | 
|  |  | 
|  | if (rcdu->info->gen >= 2) { | 
|  | if (rcdu->info->gen < 4) | 
|  | rcar_du_group_setup_defr8(rgrp); | 
|  | rcar_du_group_setup_didsr(rgrp); | 
|  | } | 
|  |  | 
|  | if (rcdu->info->gen >= 3) | 
|  | rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10); | 
|  |  | 
|  | /* | 
|  | * Use DS1PR and DS2PR to configure planes priorities and connects the | 
|  | * superposition 0 to DU0 pins. DU1 pins will be configured dynamically. | 
|  | * | 
|  | * Groups that have a single channel have a hardcoded configuration. On | 
|  | * Gen3 and newer, the documentation requires PG1T, DK1S and PG1D_DS1 to | 
|  | * always be set in this case. | 
|  | */ | 
|  | dorcr = DORCR_PG0D_DS0 | DORCR_DPRS; | 
|  | if (rcdu->info->gen >= 3 && rgrp->num_crtcs == 1) | 
|  | dorcr |= DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_DS1; | 
|  | rcar_du_group_write(rgrp, DORCR, dorcr); | 
|  |  | 
|  | /* Apply planes to CRTCs association. */ | 
|  | mutex_lock(&rgrp->lock); | 
|  | rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) | | 
|  | rgrp->dptsr_planes); | 
|  | mutex_unlock(&rgrp->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rcar_du_group_get - Acquire a reference to the DU channels group | 
|  | * | 
|  | * Acquiring the first reference setups core registers. A reference must be held | 
|  | * before accessing any hardware registers. | 
|  | * | 
|  | * This function must be called with the DRM mode_config lock held. | 
|  | * | 
|  | * Return 0 in case of success or a negative error code otherwise. | 
|  | */ | 
|  | int rcar_du_group_get(struct rcar_du_group *rgrp) | 
|  | { | 
|  | if (rgrp->use_count) | 
|  | goto done; | 
|  |  | 
|  | rcar_du_group_setup(rgrp); | 
|  |  | 
|  | done: | 
|  | rgrp->use_count++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rcar_du_group_put - Release a reference to the DU | 
|  | * | 
|  | * This function must be called with the DRM mode_config lock held. | 
|  | */ | 
|  | void rcar_du_group_put(struct rcar_du_group *rgrp) | 
|  | { | 
|  | --rgrp->use_count; | 
|  | } | 
|  |  | 
|  | static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rgrp->dev; | 
|  |  | 
|  | /* | 
|  | * Group start/stop is controlled by the DRES and DEN bits of DSYSR0 | 
|  | * for the first group and DSYSR2 for the second group. On most DU | 
|  | * instances, this maps to the first CRTC of the group, and we can just | 
|  | * use rcar_du_crtc_dsysr_clr_set() to access the correct DSYSR. On | 
|  | * M3-N, however, DU2 doesn't exist, but DSYSR2 does. We thus need to | 
|  | * access the register directly using group read/write. | 
|  | */ | 
|  | if (rcdu->info->channels_mask & BIT(rgrp->index * 2)) { | 
|  | struct rcar_du_crtc *rcrtc = &rgrp->dev->crtcs[rgrp->index * 2]; | 
|  |  | 
|  | rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_DRES | DSYSR_DEN, | 
|  | start ? DSYSR_DEN : DSYSR_DRES); | 
|  | } else { | 
|  | rcar_du_group_write(rgrp, DSYSR, | 
|  | start ? DSYSR_DEN : DSYSR_DRES); | 
|  | } | 
|  | } | 
|  |  | 
|  | void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start) | 
|  | { | 
|  | /* | 
|  | * Many of the configuration bits are only updated when the display | 
|  | * reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some | 
|  | * of those bits could be pre-configured, but others (especially the | 
|  | * bits related to plane assignment to display timing controllers) need | 
|  | * to be modified at runtime. | 
|  | * | 
|  | * Restart the display controller if a start is requested. Sorry for the | 
|  | * flicker. It should be possible to move most of the "DRES-update" bits | 
|  | * setup to driver initialization time and minimize the number of cases | 
|  | * when the display controller will have to be restarted. | 
|  | */ | 
|  | if (start) { | 
|  | if (rgrp->used_crtcs++ != 0) | 
|  | __rcar_du_group_start_stop(rgrp, false); | 
|  | __rcar_du_group_start_stop(rgrp, true); | 
|  | } else { | 
|  | if (--rgrp->used_crtcs == 0) | 
|  | __rcar_du_group_start_stop(rgrp, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void rcar_du_group_restart(struct rcar_du_group *rgrp) | 
|  | { | 
|  | rgrp->need_restart = false; | 
|  |  | 
|  | __rcar_du_group_start_stop(rgrp, false); | 
|  | __rcar_du_group_start_stop(rgrp, true); | 
|  | } | 
|  |  | 
|  | int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu) | 
|  | { | 
|  | struct rcar_du_group *rgrp; | 
|  | struct rcar_du_crtc *crtc; | 
|  | unsigned int index; | 
|  | int ret; | 
|  |  | 
|  | if (rcdu->info->gen < 2) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are | 
|  | * configured in the DEFR8 register of the first group on Gen2 and the | 
|  | * last group on Gen3. As this function can be called with the DU | 
|  | * channels of the corresponding CRTCs disabled, we need to enable the | 
|  | * group clock before accessing the register. | 
|  | */ | 
|  | index = rcdu->info->gen < 3 ? 0 : DIV_ROUND_UP(rcdu->num_crtcs, 2) - 1; | 
|  | rgrp = &rcdu->groups[index]; | 
|  | crtc = &rcdu->crtcs[index * 2]; | 
|  |  | 
|  | ret = clk_prepare_enable(crtc->clock); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | rcar_du_group_setup_defr8(rgrp); | 
|  |  | 
|  | clk_disable_unprepare(crtc->clock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rcar_du_group_set_dpad_levels(struct rcar_du_group *rgrp) | 
|  | { | 
|  | static const u32 doflr_values[2] = { | 
|  | DOFLR_HSYCFL0 | DOFLR_VSYCFL0 | DOFLR_ODDFL0 | | 
|  | DOFLR_DISPFL0 | DOFLR_CDEFL0  | DOFLR_RGBFL0, | 
|  | DOFLR_HSYCFL1 | DOFLR_VSYCFL1 | DOFLR_ODDFL1 | | 
|  | DOFLR_DISPFL1 | DOFLR_CDEFL1  | DOFLR_RGBFL1, | 
|  | }; | 
|  | static const u32 dpad_mask = BIT(RCAR_DU_OUTPUT_DPAD1) | 
|  | | BIT(RCAR_DU_OUTPUT_DPAD0); | 
|  | struct rcar_du_device *rcdu = rgrp->dev; | 
|  | u32 doflr = DOFLR_CODE; | 
|  | unsigned int i; | 
|  |  | 
|  | if (rcdu->info->gen < 2) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The DPAD outputs can't be controlled directly. However, the parallel | 
|  | * output of the DU channels routed to DPAD can be set to fixed levels | 
|  | * through the DOFLR group register. Use this to turn the DPAD on or off | 
|  | * by driving fixed low-level signals at the output of any DU channel | 
|  | * not routed to a DPAD output. This doesn't affect the DU output | 
|  | * signals going to other outputs, such as the internal LVDS and HDMI | 
|  | * encoders. | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < rgrp->num_crtcs; ++i) { | 
|  | struct rcar_du_crtc_state *rstate; | 
|  | struct rcar_du_crtc *rcrtc; | 
|  |  | 
|  | rcrtc = &rcdu->crtcs[rgrp->index * 2 + i]; | 
|  | rstate = to_rcar_crtc_state(rcrtc->crtc.state); | 
|  |  | 
|  | if (!(rstate->outputs & dpad_mask)) | 
|  | doflr |= doflr_values[i]; | 
|  | } | 
|  |  | 
|  | rcar_du_group_write(rgrp, DOFLR, doflr); | 
|  | } | 
|  |  | 
|  | int rcar_du_group_set_routing(struct rcar_du_group *rgrp) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rgrp->dev; | 
|  | u32 dorcr = rcar_du_group_read(rgrp, DORCR); | 
|  |  | 
|  | dorcr &= ~(DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_MASK); | 
|  |  | 
|  | /* | 
|  | * Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and | 
|  | * CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1 | 
|  | * by default. | 
|  | */ | 
|  | if (rcdu->dpad1_source == rgrp->index * 2) | 
|  | dorcr |= DORCR_PG1D_DS0; | 
|  | else | 
|  | dorcr |= DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_DS1; | 
|  |  | 
|  | rcar_du_group_write(rgrp, DORCR, dorcr); | 
|  |  | 
|  | rcar_du_group_set_dpad_levels(rgrp); | 
|  |  | 
|  | return rcar_du_set_dpad0_vsp1_routing(rgrp->dev); | 
|  | } |