|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2014-2020, NVIDIA CORPORATION.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/of.h> | 
|  |  | 
|  | #include <soc/tegra/mc.h> | 
|  |  | 
|  | #include "tegra210-emc.h" | 
|  | #include "tegra210-mc.h" | 
|  |  | 
|  | /* | 
|  | * Enable flags for specifying verbosity. | 
|  | */ | 
|  | #define INFO            (1 << 0) | 
|  | #define STEPS           (1 << 1) | 
|  | #define SUB_STEPS       (1 << 2) | 
|  | #define PRELOCK         (1 << 3) | 
|  | #define PRELOCK_STEPS   (1 << 4) | 
|  | #define ACTIVE_EN       (1 << 5) | 
|  | #define PRAMP_UP        (1 << 6) | 
|  | #define PRAMP_DN        (1 << 7) | 
|  | #define EMA_WRITES      (1 << 10) | 
|  | #define EMA_UPDATES     (1 << 11) | 
|  | #define PER_TRAIN       (1 << 16) | 
|  | #define CC_PRINT        (1 << 17) | 
|  | #define CCFIFO          (1 << 29) | 
|  | #define REGS            (1 << 30) | 
|  | #define REG_LISTS       (1 << 31) | 
|  |  | 
|  | #define emc_dbg(emc, flags, ...) dev_dbg(emc->dev, __VA_ARGS__) | 
|  |  | 
|  | #define DVFS_CLOCK_CHANGE_VERSION	21021 | 
|  | #define EMC_PRELOCK_VERSION		2101 | 
|  |  | 
|  | enum { | 
|  | DVFS_SEQUENCE = 1, | 
|  | WRITE_TRAINING_SEQUENCE = 2, | 
|  | PERIODIC_TRAINING_SEQUENCE = 3, | 
|  | DVFS_PT1 = 10, | 
|  | DVFS_UPDATE = 11, | 
|  | TRAINING_PT1 = 12, | 
|  | TRAINING_UPDATE = 13, | 
|  | PERIODIC_TRAINING_UPDATE = 14 | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * PTFV defines - basically just indexes into the per table PTFV array. | 
|  | */ | 
|  | #define PTFV_DQSOSC_MOVAVG_C0D0U0_INDEX		0 | 
|  | #define PTFV_DQSOSC_MOVAVG_C0D0U1_INDEX		1 | 
|  | #define PTFV_DQSOSC_MOVAVG_C0D1U0_INDEX		2 | 
|  | #define PTFV_DQSOSC_MOVAVG_C0D1U1_INDEX		3 | 
|  | #define PTFV_DQSOSC_MOVAVG_C1D0U0_INDEX		4 | 
|  | #define PTFV_DQSOSC_MOVAVG_C1D0U1_INDEX		5 | 
|  | #define PTFV_DQSOSC_MOVAVG_C1D1U0_INDEX		6 | 
|  | #define PTFV_DQSOSC_MOVAVG_C1D1U1_INDEX		7 | 
|  | #define PTFV_DVFS_SAMPLES_INDEX			9 | 
|  | #define PTFV_MOVAVG_WEIGHT_INDEX		10 | 
|  | #define PTFV_CONFIG_CTRL_INDEX			11 | 
|  |  | 
|  | #define PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA	(1 << 0) | 
|  |  | 
|  | /* | 
|  | * Do arithmetic in fixed point. | 
|  | */ | 
|  | #define MOVAVG_PRECISION_FACTOR		100 | 
|  |  | 
|  | /* | 
|  | * The division portion of the average operation. | 
|  | */ | 
|  | #define __AVERAGE_PTFV(dev)						\ | 
|  | ({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] =	\ | 
|  | next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] /	\ | 
|  | next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; }) | 
|  |  | 
|  | /* | 
|  | * Convert val to fixed point and add it to the temporary average. | 
|  | */ | 
|  | #define __INCREMENT_PTFV(dev, val)					\ | 
|  | ({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] +=	\ | 
|  | ((val) * MOVAVG_PRECISION_FACTOR); }) | 
|  |  | 
|  | /* | 
|  | * Convert a moving average back to integral form and return the value. | 
|  | */ | 
|  | #define __MOVAVG_AC(timing, dev)					\ | 
|  | ((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] /	\ | 
|  | MOVAVG_PRECISION_FACTOR) | 
|  |  | 
|  | /* Weighted update. */ | 
|  | #define __WEIGHTED_UPDATE_PTFV(dev, nval)				\ | 
|  | do {								\ | 
|  | int w = PTFV_MOVAVG_WEIGHT_INDEX;			\ | 
|  | int dqs = PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX;		\ | 
|  | \ | 
|  | next->ptfv_list[dqs] =					\ | 
|  | ((nval * MOVAVG_PRECISION_FACTOR) +		\ | 
|  | (next->ptfv_list[dqs] *			\ | 
|  | next->ptfv_list[w])) /			\ | 
|  | (next->ptfv_list[w] + 1);			\ | 
|  | \ | 
|  | emc_dbg(emc, EMA_UPDATES, "%s: (s=%lu) EMA: %u\n",	\ | 
|  | __stringify(dev), nval, next->ptfv_list[dqs]);	\ | 
|  | } while (0) | 
|  |  | 
|  | /* Access a particular average. */ | 
|  | #define __MOVAVG(timing, dev)                      \ | 
|  | ((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX]) | 
|  |  | 
|  | static u32 update_clock_tree_delay(struct tegra210_emc *emc, int type) | 
|  | { | 
|  | bool periodic_training_update = type == PERIODIC_TRAINING_UPDATE; | 
|  | struct tegra210_emc_timing *last = emc->last; | 
|  | struct tegra210_emc_timing *next = emc->next; | 
|  | u32 last_timing_rate_mhz = last->rate / 1000; | 
|  | u32 next_timing_rate_mhz = next->rate / 1000; | 
|  | bool dvfs_update = type == DVFS_UPDATE; | 
|  | s32 tdel = 0, tmdel = 0, adel = 0; | 
|  | bool dvfs_pt1 = type == DVFS_PT1; | 
|  | unsigned long cval = 0; | 
|  | u32 temp[2][2], value; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Dev0 MSB. | 
|  | */ | 
|  | if (dvfs_pt1 || periodic_training_update) { | 
|  | value = tegra210_emc_mrr_read(emc, 2, 19); | 
|  |  | 
|  | for (i = 0; i < emc->num_channels; i++) { | 
|  | temp[i][0] = (value & 0x00ff) << 8; | 
|  | temp[i][1] = (value & 0xff00) << 0; | 
|  | value >>= 16; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dev0 LSB. | 
|  | */ | 
|  | value = tegra210_emc_mrr_read(emc, 2, 18); | 
|  |  | 
|  | for (i = 0; i < emc->num_channels; i++) { | 
|  | temp[i][0] |= (value & 0x00ff) >> 0; | 
|  | temp[i][1] |= (value & 0xff00) >> 8; | 
|  | value >>= 16; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1 || periodic_training_update) { | 
|  | cval = tegra210_emc_actual_osc_clocks(last->run_clocks); | 
|  | cval *= 1000000; | 
|  | cval /= last_timing_rate_mhz * 2 * temp[0][0]; | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1) | 
|  | __INCREMENT_PTFV(C0D0U0, cval); | 
|  | else if (dvfs_update) | 
|  | __AVERAGE_PTFV(C0D0U0); | 
|  | else if (periodic_training_update) | 
|  | __WEIGHTED_UPDATE_PTFV(C0D0U0, cval); | 
|  |  | 
|  | if (dvfs_update || periodic_training_update) { | 
|  | tdel = next->current_dram_clktree[C0D0U0] - | 
|  | __MOVAVG_AC(next, C0D0U0); | 
|  | tmdel = (tdel < 0) ? -1 * tdel : tdel; | 
|  | adel = tmdel; | 
|  |  | 
|  | if (tmdel * 128 * next_timing_rate_mhz / 1000000 > | 
|  | next->tree_margin) | 
|  | next->current_dram_clktree[C0D0U0] = | 
|  | __MOVAVG_AC(next, C0D0U0); | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1 || periodic_training_update) { | 
|  | cval = tegra210_emc_actual_osc_clocks(last->run_clocks); | 
|  | cval *= 1000000; | 
|  | cval /= last_timing_rate_mhz * 2 * temp[0][1]; | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1) | 
|  | __INCREMENT_PTFV(C0D0U1, cval); | 
|  | else if (dvfs_update) | 
|  | __AVERAGE_PTFV(C0D0U1); | 
|  | else if (periodic_training_update) | 
|  | __WEIGHTED_UPDATE_PTFV(C0D0U1, cval); | 
|  |  | 
|  | if (dvfs_update || periodic_training_update) { | 
|  | tdel = next->current_dram_clktree[C0D0U1] - | 
|  | __MOVAVG_AC(next, C0D0U1); | 
|  | tmdel = (tdel < 0) ? -1 * tdel : tdel; | 
|  |  | 
|  | if (tmdel > adel) | 
|  | adel = tmdel; | 
|  |  | 
|  | if (tmdel * 128 * next_timing_rate_mhz / 1000000 > | 
|  | next->tree_margin) | 
|  | next->current_dram_clktree[C0D0U1] = | 
|  | __MOVAVG_AC(next, C0D0U1); | 
|  | } | 
|  |  | 
|  | if (emc->num_channels > 1) { | 
|  | if (dvfs_pt1 || periodic_training_update) { | 
|  | cval = tegra210_emc_actual_osc_clocks(last->run_clocks); | 
|  | cval *= 1000000; | 
|  | cval /= last_timing_rate_mhz * 2 * temp[1][0]; | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1) | 
|  | __INCREMENT_PTFV(C1D0U0, cval); | 
|  | else if (dvfs_update) | 
|  | __AVERAGE_PTFV(C1D0U0); | 
|  | else if (periodic_training_update) | 
|  | __WEIGHTED_UPDATE_PTFV(C1D0U0, cval); | 
|  |  | 
|  | if (dvfs_update || periodic_training_update) { | 
|  | tdel = next->current_dram_clktree[C1D0U0] - | 
|  | __MOVAVG_AC(next, C1D0U0); | 
|  | tmdel = (tdel < 0) ? -1 * tdel : tdel; | 
|  |  | 
|  | if (tmdel > adel) | 
|  | adel = tmdel; | 
|  |  | 
|  | if (tmdel * 128 * next_timing_rate_mhz / 1000000 > | 
|  | next->tree_margin) | 
|  | next->current_dram_clktree[C1D0U0] = | 
|  | __MOVAVG_AC(next, C1D0U0); | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1 || periodic_training_update) { | 
|  | cval = tegra210_emc_actual_osc_clocks(last->run_clocks); | 
|  | cval *= 1000000; | 
|  | cval /= last_timing_rate_mhz * 2 * temp[1][1]; | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1) | 
|  | __INCREMENT_PTFV(C1D0U1, cval); | 
|  | else if (dvfs_update) | 
|  | __AVERAGE_PTFV(C1D0U1); | 
|  | else if (periodic_training_update) | 
|  | __WEIGHTED_UPDATE_PTFV(C1D0U1, cval); | 
|  |  | 
|  | if (dvfs_update || periodic_training_update) { | 
|  | tdel = next->current_dram_clktree[C1D0U1] - | 
|  | __MOVAVG_AC(next, C1D0U1); | 
|  | tmdel = (tdel < 0) ? -1 * tdel : tdel; | 
|  |  | 
|  | if (tmdel > adel) | 
|  | adel = tmdel; | 
|  |  | 
|  | if (tmdel * 128 * next_timing_rate_mhz / 1000000 > | 
|  | next->tree_margin) | 
|  | next->current_dram_clktree[C1D0U1] = | 
|  | __MOVAVG_AC(next, C1D0U1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (emc->num_devices < 2) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * Dev1 MSB. | 
|  | */ | 
|  | if (dvfs_pt1 || periodic_training_update) { | 
|  | value = tegra210_emc_mrr_read(emc, 1, 19); | 
|  |  | 
|  | for (i = 0; i < emc->num_channels; i++) { | 
|  | temp[i][0] = (value & 0x00ff) << 8; | 
|  | temp[i][1] = (value & 0xff00) << 0; | 
|  | value >>= 16; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dev1 LSB. | 
|  | */ | 
|  | value = tegra210_emc_mrr_read(emc, 1, 18); | 
|  |  | 
|  | for (i = 0; i < emc->num_channels; i++) { | 
|  | temp[i][0] |= (value & 0x00ff) >> 0; | 
|  | temp[i][1] |= (value & 0xff00) >> 8; | 
|  | value >>= 16; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1 || periodic_training_update) { | 
|  | cval = tegra210_emc_actual_osc_clocks(last->run_clocks); | 
|  | cval *= 1000000; | 
|  | cval /= last_timing_rate_mhz * 2 * temp[0][0]; | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1) | 
|  | __INCREMENT_PTFV(C0D1U0, cval); | 
|  | else if (dvfs_update) | 
|  | __AVERAGE_PTFV(C0D1U0); | 
|  | else if (periodic_training_update) | 
|  | __WEIGHTED_UPDATE_PTFV(C0D1U0, cval); | 
|  |  | 
|  | if (dvfs_update || periodic_training_update) { | 
|  | tdel = next->current_dram_clktree[C0D1U0] - | 
|  | __MOVAVG_AC(next, C0D1U0); | 
|  | tmdel = (tdel < 0) ? -1 * tdel : tdel; | 
|  |  | 
|  | if (tmdel > adel) | 
|  | adel = tmdel; | 
|  |  | 
|  | if (tmdel * 128 * next_timing_rate_mhz / 1000000 > | 
|  | next->tree_margin) | 
|  | next->current_dram_clktree[C0D1U0] = | 
|  | __MOVAVG_AC(next, C0D1U0); | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1 || periodic_training_update) { | 
|  | cval = tegra210_emc_actual_osc_clocks(last->run_clocks); | 
|  | cval *= 1000000; | 
|  | cval /= last_timing_rate_mhz * 2 * temp[0][1]; | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1) | 
|  | __INCREMENT_PTFV(C0D1U1, cval); | 
|  | else if (dvfs_update) | 
|  | __AVERAGE_PTFV(C0D1U1); | 
|  | else if (periodic_training_update) | 
|  | __WEIGHTED_UPDATE_PTFV(C0D1U1, cval); | 
|  |  | 
|  | if (dvfs_update || periodic_training_update) { | 
|  | tdel = next->current_dram_clktree[C0D1U1] - | 
|  | __MOVAVG_AC(next, C0D1U1); | 
|  | tmdel = (tdel < 0) ? -1 * tdel : tdel; | 
|  |  | 
|  | if (tmdel > adel) | 
|  | adel = tmdel; | 
|  |  | 
|  | if (tmdel * 128 * next_timing_rate_mhz / 1000000 > | 
|  | next->tree_margin) | 
|  | next->current_dram_clktree[C0D1U1] = | 
|  | __MOVAVG_AC(next, C0D1U1); | 
|  | } | 
|  |  | 
|  | if (emc->num_channels > 1) { | 
|  | if (dvfs_pt1 || periodic_training_update) { | 
|  | cval = tegra210_emc_actual_osc_clocks(last->run_clocks); | 
|  | cval *= 1000000; | 
|  | cval /= last_timing_rate_mhz * 2 * temp[1][0]; | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1) | 
|  | __INCREMENT_PTFV(C1D1U0, cval); | 
|  | else if (dvfs_update) | 
|  | __AVERAGE_PTFV(C1D1U0); | 
|  | else if (periodic_training_update) | 
|  | __WEIGHTED_UPDATE_PTFV(C1D1U0, cval); | 
|  |  | 
|  | if (dvfs_update || periodic_training_update) { | 
|  | tdel = next->current_dram_clktree[C1D1U0] - | 
|  | __MOVAVG_AC(next, C1D1U0); | 
|  | tmdel = (tdel < 0) ? -1 * tdel : tdel; | 
|  |  | 
|  | if (tmdel > adel) | 
|  | adel = tmdel; | 
|  |  | 
|  | if (tmdel * 128 * next_timing_rate_mhz / 1000000 > | 
|  | next->tree_margin) | 
|  | next->current_dram_clktree[C1D1U0] = | 
|  | __MOVAVG_AC(next, C1D1U0); | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1 || periodic_training_update) { | 
|  | cval = tegra210_emc_actual_osc_clocks(last->run_clocks); | 
|  | cval *= 1000000; | 
|  | cval /= last_timing_rate_mhz * 2 * temp[1][1]; | 
|  | } | 
|  |  | 
|  | if (dvfs_pt1) | 
|  | __INCREMENT_PTFV(C1D1U1, cval); | 
|  | else if (dvfs_update) | 
|  | __AVERAGE_PTFV(C1D1U1); | 
|  | else if (periodic_training_update) | 
|  | __WEIGHTED_UPDATE_PTFV(C1D1U1, cval); | 
|  |  | 
|  | if (dvfs_update || periodic_training_update) { | 
|  | tdel = next->current_dram_clktree[C1D1U1] - | 
|  | __MOVAVG_AC(next, C1D1U1); | 
|  | tmdel = (tdel < 0) ? -1 * tdel : tdel; | 
|  |  | 
|  | if (tmdel > adel) | 
|  | adel = tmdel; | 
|  |  | 
|  | if (tmdel * 128 * next_timing_rate_mhz / 1000000 > | 
|  | next->tree_margin) | 
|  | next->current_dram_clktree[C1D1U1] = | 
|  | __MOVAVG_AC(next, C1D1U1); | 
|  | } | 
|  | } | 
|  |  | 
|  | done: | 
|  | return adel; | 
|  | } | 
|  |  | 
|  | static u32 periodic_compensation_handler(struct tegra210_emc *emc, u32 type, | 
|  | struct tegra210_emc_timing *last, | 
|  | struct tegra210_emc_timing *next) | 
|  | { | 
|  | #define __COPY_EMA(nt, lt, dev)						\ | 
|  | ({ __MOVAVG(nt, dev) = __MOVAVG(lt, dev) *			\ | 
|  | (nt)->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; }) | 
|  |  | 
|  | u32 i, adel = 0, samples = next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; | 
|  | u32 delay; | 
|  |  | 
|  | delay = tegra210_emc_actual_osc_clocks(last->run_clocks); | 
|  | delay *= 1000; | 
|  | delay = 2 + (delay / last->rate); | 
|  |  | 
|  | if (!next->periodic_training) | 
|  | return 0; | 
|  |  | 
|  | if (type == DVFS_SEQUENCE) { | 
|  | if (last->periodic_training && | 
|  | (next->ptfv_list[PTFV_CONFIG_CTRL_INDEX] & | 
|  | PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA)) { | 
|  | /* | 
|  | * If the previous frequency was using periodic | 
|  | * calibration then we can reuse the previous | 
|  | * frequencies EMA data. | 
|  | */ | 
|  | __COPY_EMA(next, last, C0D0U0); | 
|  | __COPY_EMA(next, last, C0D0U1); | 
|  | __COPY_EMA(next, last, C1D0U0); | 
|  | __COPY_EMA(next, last, C1D0U1); | 
|  | __COPY_EMA(next, last, C0D1U0); | 
|  | __COPY_EMA(next, last, C0D1U1); | 
|  | __COPY_EMA(next, last, C1D1U0); | 
|  | __COPY_EMA(next, last, C1D1U1); | 
|  | } else { | 
|  | /* Reset the EMA.*/ | 
|  | __MOVAVG(next, C0D0U0) = 0; | 
|  | __MOVAVG(next, C0D0U1) = 0; | 
|  | __MOVAVG(next, C1D0U0) = 0; | 
|  | __MOVAVG(next, C1D0U1) = 0; | 
|  | __MOVAVG(next, C0D1U0) = 0; | 
|  | __MOVAVG(next, C0D1U1) = 0; | 
|  | __MOVAVG(next, C1D1U0) = 0; | 
|  | __MOVAVG(next, C1D1U1) = 0; | 
|  |  | 
|  | for (i = 0; i < samples; i++) { | 
|  | tegra210_emc_start_periodic_compensation(emc); | 
|  | udelay(delay); | 
|  |  | 
|  | /* | 
|  | * Generate next sample of data. | 
|  | */ | 
|  | adel = update_clock_tree_delay(emc, DVFS_PT1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Seems like it should be part of the | 
|  | * 'if (last_timing->periodic_training)' conditional | 
|  | * since is already done for the else clause. | 
|  | */ | 
|  | adel = update_clock_tree_delay(emc, DVFS_UPDATE); | 
|  | } | 
|  |  | 
|  | if (type == PERIODIC_TRAINING_SEQUENCE) { | 
|  | tegra210_emc_start_periodic_compensation(emc); | 
|  | udelay(delay); | 
|  |  | 
|  | adel = update_clock_tree_delay(emc, PERIODIC_TRAINING_UPDATE); | 
|  | } | 
|  |  | 
|  | return adel; | 
|  | } | 
|  |  | 
|  | static u32 tegra210_emc_r21021_periodic_compensation(struct tegra210_emc *emc) | 
|  | { | 
|  | u32 emc_cfg, emc_cfg_o, emc_cfg_update, del, value; | 
|  | static const u32 list[] = { | 
|  | EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0, | 
|  | EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1, | 
|  | EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2, | 
|  | EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3, | 
|  | EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0, | 
|  | EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1, | 
|  | EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2, | 
|  | EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3, | 
|  | EMC_DATA_BRLSHFT_0, | 
|  | EMC_DATA_BRLSHFT_1 | 
|  | }; | 
|  | struct tegra210_emc_timing *last = emc->last; | 
|  | unsigned int items = ARRAY_SIZE(list), i; | 
|  | unsigned long delay; | 
|  |  | 
|  | if (last->periodic_training) { | 
|  | emc_dbg(emc, PER_TRAIN, "Periodic training starting\n"); | 
|  |  | 
|  | value = emc_readl(emc, EMC_DBG); | 
|  | emc_cfg_o = emc_readl(emc, EMC_CFG); | 
|  | emc_cfg = emc_cfg_o & ~(EMC_CFG_DYN_SELF_REF | | 
|  | EMC_CFG_DRAM_ACPD | | 
|  | EMC_CFG_DRAM_CLKSTOP_PD); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * 1. Power optimizations should be off. | 
|  | */ | 
|  | emc_writel(emc, emc_cfg, EMC_CFG); | 
|  |  | 
|  | /* Does emc_timing_update() for above changes. */ | 
|  | tegra210_emc_dll_disable(emc); | 
|  |  | 
|  | for (i = 0; i < emc->num_channels; i++) | 
|  | tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, | 
|  | EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK, | 
|  | 0); | 
|  |  | 
|  | for (i = 0; i < emc->num_channels; i++) | 
|  | tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, | 
|  | EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, | 
|  | 0); | 
|  |  | 
|  | emc_cfg_update = value = emc_readl(emc, EMC_CFG_UPDATE); | 
|  | value &= ~EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_MASK; | 
|  | value |= (2 << EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_SHIFT); | 
|  | emc_writel(emc, value, EMC_CFG_UPDATE); | 
|  |  | 
|  | /* | 
|  | * 2. osc kick off - this assumes training and dvfs have set | 
|  | *    correct MR23. | 
|  | */ | 
|  | tegra210_emc_start_periodic_compensation(emc); | 
|  |  | 
|  | /* | 
|  | * 3. Let dram capture its clock tree delays. | 
|  | */ | 
|  | delay = tegra210_emc_actual_osc_clocks(last->run_clocks); | 
|  | delay *= 1000; | 
|  | delay /= last->rate + 1; | 
|  | udelay(delay); | 
|  |  | 
|  | /* | 
|  | * 4. Check delta wrt previous values (save value if margin | 
|  | *    exceeds what is set in table). | 
|  | */ | 
|  | del = periodic_compensation_handler(emc, | 
|  | PERIODIC_TRAINING_SEQUENCE, | 
|  | last, last); | 
|  |  | 
|  | /* | 
|  | * 5. Apply compensation w.r.t. trained values (if clock tree | 
|  | *    has drifted more than the set margin). | 
|  | */ | 
|  | if (last->tree_margin < ((del * 128 * (last->rate / 1000)) / 1000000)) { | 
|  | for (i = 0; i < items; i++) { | 
|  | value = tegra210_emc_compensate(last, list[i]); | 
|  | emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", | 
|  | list[i], value); | 
|  | emc_writel(emc, value, list[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | emc_writel(emc, emc_cfg_o, EMC_CFG); | 
|  |  | 
|  | /* | 
|  | * 6. Timing update actally applies the new trimmers. | 
|  | */ | 
|  | tegra210_emc_timing_update(emc); | 
|  |  | 
|  | /* 6.1. Restore the UPDATE_DLL_IN_UPDATE field. */ | 
|  | emc_writel(emc, emc_cfg_update, EMC_CFG_UPDATE); | 
|  |  | 
|  | /* 6.2. Restore the DLL. */ | 
|  | tegra210_emc_dll_enable(emc); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the clock change sequence. | 
|  | */ | 
|  | static void tegra210_emc_r21021_set_clock(struct tegra210_emc *emc, u32 clksrc) | 
|  | { | 
|  | /* state variables */ | 
|  | static bool fsp_for_next_freq; | 
|  | /* constant configuration parameters */ | 
|  | const bool save_restore_clkstop_pd = true; | 
|  | const u32 zqcal_before_cc_cutoff = 2400; | 
|  | const bool cya_allow_ref_cc = false; | 
|  | const bool cya_issue_pc_ref = false; | 
|  | const bool opt_cc_short_zcal = true; | 
|  | const bool ref_b4_sref_en = false; | 
|  | const u32 tZQCAL_lpddr4 = 1000000; | 
|  | const bool opt_short_zcal = true; | 
|  | const bool opt_do_sw_qrst = true; | 
|  | const u32 opt_dvfs_mode = MAN_SR; | 
|  | /* | 
|  | * This is the timing table for the source frequency. It does _not_ | 
|  | * necessarily correspond to the actual timing values in the EMC at the | 
|  | * moment. If the boot BCT differs from the table then this can happen. | 
|  | * However, we need it for accessing the dram_timings (which are not | 
|  | * really registers) array for the current frequency. | 
|  | */ | 
|  | struct tegra210_emc_timing *fake, *last = emc->last, *next = emc->next; | 
|  | u32 tRTM, RP_war, R2P_war, TRPab_war, deltaTWATM, W2P_war, tRPST; | 
|  | u32 mr13_flip_fspwr, mr13_flip_fspop, ramp_up_wait, ramp_down_wait; | 
|  | u32 zq_wait_long, zq_latch_dvfs_wait_time, tZQCAL_lpddr4_fc_adj; | 
|  | u32 emc_auto_cal_config, auto_cal_en, emc_cfg, emc_sel_dpd_ctrl; | 
|  | u32 tFC_lpddr4 = 1000 * next->dram_timings[T_FC_LPDDR4]; | 
|  | u32 bg_reg_mode_change, enable_bglp_reg, enable_bg_reg; | 
|  | bool opt_zcal_en_cc = false, is_lpddr3 = false; | 
|  | bool compensate_trimmer_applicable = false; | 
|  | u32 emc_dbg, emc_cfg_pipe_clk, emc_pin; | 
|  | u32 src_clk_period, dst_clk_period; /* in picoseconds */ | 
|  | bool shared_zq_resistor = false; | 
|  | u32 value, dram_type; | 
|  | u32 opt_dll_mode = 0; | 
|  | unsigned long delay; | 
|  | unsigned int i; | 
|  |  | 
|  | emc_dbg(emc, INFO, "Running clock change.\n"); | 
|  |  | 
|  | /* XXX fake == last */ | 
|  | fake = tegra210_emc_find_timing(emc, last->rate * 1000UL); | 
|  | fsp_for_next_freq = !fsp_for_next_freq; | 
|  |  | 
|  | value = emc_readl(emc, EMC_FBIO_CFG5) & EMC_FBIO_CFG5_DRAM_TYPE_MASK; | 
|  | dram_type = value >> EMC_FBIO_CFG5_DRAM_TYPE_SHIFT; | 
|  |  | 
|  | if (last->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX] & BIT(31)) | 
|  | shared_zq_resistor = true; | 
|  |  | 
|  | if ((next->burst_regs[EMC_ZCAL_INTERVAL_INDEX] != 0 && | 
|  | last->burst_regs[EMC_ZCAL_INTERVAL_INDEX] == 0) || | 
|  | dram_type == DRAM_TYPE_LPDDR4) | 
|  | opt_zcal_en_cc = true; | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_DDR3) | 
|  | opt_dll_mode = tegra210_emc_get_dll_state(next); | 
|  |  | 
|  | if ((next->burst_regs[EMC_FBIO_CFG5_INDEX] & BIT(25)) && | 
|  | (dram_type == DRAM_TYPE_LPDDR2)) | 
|  | is_lpddr3 = true; | 
|  |  | 
|  | emc_readl(emc, EMC_CFG); | 
|  | emc_readl(emc, EMC_AUTO_CAL_CONFIG); | 
|  |  | 
|  | src_clk_period = 1000000000 / last->rate; | 
|  | dst_clk_period = 1000000000 / next->rate; | 
|  |  | 
|  | if (dst_clk_period <= zqcal_before_cc_cutoff) | 
|  | tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4 - tFC_lpddr4; | 
|  | else | 
|  | tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4; | 
|  |  | 
|  | tZQCAL_lpddr4_fc_adj /= dst_clk_period; | 
|  |  | 
|  | emc_dbg = emc_readl(emc, EMC_DBG); | 
|  | emc_pin = emc_readl(emc, EMC_PIN); | 
|  | emc_cfg_pipe_clk = emc_readl(emc, EMC_CFG_PIPE_CLK); | 
|  |  | 
|  | emc_cfg = next->burst_regs[EMC_CFG_INDEX]; | 
|  | emc_cfg &= ~(EMC_CFG_DYN_SELF_REF | EMC_CFG_DRAM_ACPD | | 
|  | EMC_CFG_DRAM_CLKSTOP_SR | EMC_CFG_DRAM_CLKSTOP_PD); | 
|  | emc_sel_dpd_ctrl = next->emc_sel_dpd_ctrl; | 
|  | emc_sel_dpd_ctrl &= ~(EMC_SEL_DPD_CTRL_CLK_SEL_DPD_EN | | 
|  | EMC_SEL_DPD_CTRL_CA_SEL_DPD_EN | | 
|  | EMC_SEL_DPD_CTRL_RESET_SEL_DPD_EN | | 
|  | EMC_SEL_DPD_CTRL_ODT_SEL_DPD_EN | | 
|  | EMC_SEL_DPD_CTRL_DATA_SEL_DPD_EN); | 
|  |  | 
|  | emc_dbg(emc, INFO, "Clock change version: %d\n", | 
|  | DVFS_CLOCK_CHANGE_VERSION); | 
|  | emc_dbg(emc, INFO, "DRAM type = %d\n", dram_type); | 
|  | emc_dbg(emc, INFO, "DRAM dev #: %u\n", emc->num_devices); | 
|  | emc_dbg(emc, INFO, "Next EMC clksrc: 0x%08x\n", clksrc); | 
|  | emc_dbg(emc, INFO, "DLL clksrc:      0x%08x\n", next->dll_clk_src); | 
|  | emc_dbg(emc, INFO, "last rate: %u, next rate %u\n", last->rate, | 
|  | next->rate); | 
|  | emc_dbg(emc, INFO, "last period: %u, next period: %u\n", | 
|  | src_clk_period, dst_clk_period); | 
|  | emc_dbg(emc, INFO, "  shared_zq_resistor: %d\n", !!shared_zq_resistor); | 
|  | emc_dbg(emc, INFO, "  num_channels: %u\n", emc->num_channels); | 
|  | emc_dbg(emc, INFO, "  opt_dll_mode: %d\n", opt_dll_mode); | 
|  |  | 
|  | /* | 
|  | * Step 1: | 
|  | *   Pre DVFS SW sequence. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 1\n"); | 
|  | emc_dbg(emc, STEPS, "Step 1.1: Disable DLL temporarily.\n"); | 
|  |  | 
|  | value = emc_readl(emc, EMC_CFG_DIG_DLL); | 
|  | value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; | 
|  | emc_writel(emc, value, EMC_CFG_DIG_DLL); | 
|  |  | 
|  | tegra210_emc_timing_update(emc); | 
|  |  | 
|  | for (i = 0; i < emc->num_channels; i++) | 
|  | tegra210_emc_wait_for_update(emc, i, EMC_CFG_DIG_DLL, | 
|  | EMC_CFG_DIG_DLL_CFG_DLL_EN, 0); | 
|  |  | 
|  | emc_dbg(emc, STEPS, "Step 1.2: Disable AUTOCAL temporarily.\n"); | 
|  |  | 
|  | emc_auto_cal_config = next->emc_auto_cal_config; | 
|  | auto_cal_en = emc_auto_cal_config & EMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE; | 
|  | emc_auto_cal_config &= ~EMC_AUTO_CAL_CONFIG_AUTO_CAL_START; | 
|  | emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_MEASURE_STALL; | 
|  | emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_UPDATE_STALL; | 
|  | emc_auto_cal_config |= auto_cal_en; | 
|  | emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); | 
|  | emc_readl(emc, EMC_AUTO_CAL_CONFIG); /* Flush write. */ | 
|  |  | 
|  | emc_dbg(emc, STEPS, "Step 1.3: Disable other power features.\n"); | 
|  |  | 
|  | tegra210_emc_set_shadow_bypass(emc, ACTIVE); | 
|  | emc_writel(emc, emc_cfg, EMC_CFG); | 
|  | emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); | 
|  | tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); | 
|  |  | 
|  | if (next->periodic_training) { | 
|  | tegra210_emc_reset_dram_clktree_values(next); | 
|  |  | 
|  | for (i = 0; i < emc->num_channels; i++) | 
|  | tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, | 
|  | EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK, | 
|  | 0); | 
|  |  | 
|  | for (i = 0; i < emc->num_channels; i++) | 
|  | tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, | 
|  | EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, | 
|  | 0); | 
|  |  | 
|  | tegra210_emc_start_periodic_compensation(emc); | 
|  |  | 
|  | delay = 1000 * tegra210_emc_actual_osc_clocks(last->run_clocks); | 
|  | udelay((delay / last->rate) + 2); | 
|  |  | 
|  | value = periodic_compensation_handler(emc, DVFS_SEQUENCE, fake, | 
|  | next); | 
|  | value = (value * 128 * next->rate / 1000) / 1000000; | 
|  |  | 
|  | if (next->periodic_training && value > next->tree_margin) | 
|  | compensate_trimmer_applicable = true; | 
|  | } | 
|  |  | 
|  | emc_writel(emc, EMC_INTSTATUS_CLKCHANGE_COMPLETE, EMC_INTSTATUS); | 
|  | tegra210_emc_set_shadow_bypass(emc, ACTIVE); | 
|  | emc_writel(emc, emc_cfg, EMC_CFG); | 
|  | emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); | 
|  | emc_writel(emc, emc_cfg_pipe_clk | EMC_CFG_PIPE_CLK_CLK_ALWAYS_ON, | 
|  | EMC_CFG_PIPE_CLK); | 
|  | emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp & | 
|  | ~EMC_FDPD_CTRL_CMD_NO_RAMP_CMD_DPD_NO_RAMP_ENABLE, | 
|  | EMC_FDPD_CTRL_CMD_NO_RAMP); | 
|  |  | 
|  | bg_reg_mode_change = | 
|  | ((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & | 
|  | EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) ^ | 
|  | (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & | 
|  | EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD)) || | 
|  | ((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & | 
|  | EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) ^ | 
|  | (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & | 
|  | EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD)); | 
|  | enable_bglp_reg = | 
|  | (next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & | 
|  | EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) == 0; | 
|  | enable_bg_reg = | 
|  | (next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & | 
|  | EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) == 0; | 
|  |  | 
|  | if (bg_reg_mode_change) { | 
|  | if (enable_bg_reg) | 
|  | emc_writel(emc, last->burst_regs | 
|  | [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & | 
|  | ~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD, | 
|  | EMC_PMACRO_BG_BIAS_CTRL_0); | 
|  |  | 
|  | if (enable_bglp_reg) | 
|  | emc_writel(emc, last->burst_regs | 
|  | [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & | 
|  | ~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD, | 
|  | EMC_PMACRO_BG_BIAS_CTRL_0); | 
|  | } | 
|  |  | 
|  | /* Check if we need to turn on VREF generator. */ | 
|  | if ((((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & | 
|  | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 0) && | 
|  | ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & | 
|  | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 1)) || | 
|  | (((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & | 
|  | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) == 0) && | 
|  | ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & | 
|  | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) != 0))) { | 
|  | u32 pad_tx_ctrl = | 
|  | next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; | 
|  | u32 last_pad_tx_ctrl = | 
|  | last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; | 
|  | u32 next_dq_e_ivref, next_dqs_e_ivref; | 
|  |  | 
|  | next_dqs_e_ivref = pad_tx_ctrl & | 
|  | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF; | 
|  | next_dq_e_ivref = pad_tx_ctrl & | 
|  | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF; | 
|  | value = (last_pad_tx_ctrl & | 
|  | ~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF & | 
|  | ~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) | | 
|  | next_dq_e_ivref | next_dqs_e_ivref; | 
|  | emc_writel(emc, value, EMC_PMACRO_DATA_PAD_TX_CTRL); | 
|  | udelay(1); | 
|  | } else if (bg_reg_mode_change) { | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); | 
|  |  | 
|  | /* | 
|  | * Step 2: | 
|  | *   Prelock the DLL. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 2\n"); | 
|  |  | 
|  | if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] & | 
|  | EMC_CFG_DIG_DLL_CFG_DLL_EN) { | 
|  | emc_dbg(emc, INFO, "Prelock enabled for target frequency.\n"); | 
|  | value = tegra210_emc_dll_prelock(emc, clksrc); | 
|  | emc_dbg(emc, INFO, "DLL out: 0x%03x\n", value); | 
|  | } else { | 
|  | emc_dbg(emc, INFO, "Disabling DLL for target frequency.\n"); | 
|  | tegra210_emc_dll_disable(emc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 3: | 
|  | *   Prepare autocal for the clock change. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 3\n"); | 
|  |  | 
|  | tegra210_emc_set_shadow_bypass(emc, ACTIVE); | 
|  | emc_writel(emc, next->emc_auto_cal_config2, EMC_AUTO_CAL_CONFIG2); | 
|  | emc_writel(emc, next->emc_auto_cal_config3, EMC_AUTO_CAL_CONFIG3); | 
|  | emc_writel(emc, next->emc_auto_cal_config4, EMC_AUTO_CAL_CONFIG4); | 
|  | emc_writel(emc, next->emc_auto_cal_config5, EMC_AUTO_CAL_CONFIG5); | 
|  | emc_writel(emc, next->emc_auto_cal_config6, EMC_AUTO_CAL_CONFIG6); | 
|  | emc_writel(emc, next->emc_auto_cal_config7, EMC_AUTO_CAL_CONFIG7); | 
|  | emc_writel(emc, next->emc_auto_cal_config8, EMC_AUTO_CAL_CONFIG8); | 
|  | tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); | 
|  |  | 
|  | emc_auto_cal_config |= (EMC_AUTO_CAL_CONFIG_AUTO_CAL_COMPUTE_START | | 
|  | auto_cal_en); | 
|  | emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); | 
|  |  | 
|  | /* | 
|  | * Step 4: | 
|  | *   Update EMC_CFG. (??) | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 4\n"); | 
|  |  | 
|  | if (src_clk_period > 50000 && dram_type == DRAM_TYPE_LPDDR4) | 
|  | ccfifo_writel(emc, 1, EMC_SELF_REF, 0); | 
|  | else | 
|  | emc_writel(emc, next->emc_cfg_2, EMC_CFG_2); | 
|  |  | 
|  | /* | 
|  | * Step 5: | 
|  | *   Prepare reference variables for ZQCAL regs. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 5\n"); | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR4) | 
|  | zq_wait_long = max((u32)1, div_o3(1000000, dst_clk_period)); | 
|  | else if (dram_type == DRAM_TYPE_LPDDR2 || is_lpddr3) | 
|  | zq_wait_long = max(next->min_mrs_wait, | 
|  | div_o3(360000, dst_clk_period)) + 4; | 
|  | else if (dram_type == DRAM_TYPE_DDR3) | 
|  | zq_wait_long = max((u32)256, | 
|  | div_o3(320000, dst_clk_period) + 2); | 
|  | else | 
|  | zq_wait_long = 0; | 
|  |  | 
|  | /* | 
|  | * Step 6: | 
|  | *   Training code - removed. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 6\n"); | 
|  |  | 
|  | /* | 
|  | * Step 7: | 
|  | *   Program FSP reference registers and send MRWs to new FSPWR. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 7\n"); | 
|  | emc_dbg(emc, SUB_STEPS, "Step 7.1: Bug 200024907 - Patch RP R2P"); | 
|  |  | 
|  | /* WAR 200024907 */ | 
|  | if (dram_type == DRAM_TYPE_LPDDR4) { | 
|  | u32 nRTP = 16; | 
|  |  | 
|  | if (src_clk_period >= 1000000 / 1866) /* 535.91 ps */ | 
|  | nRTP = 14; | 
|  |  | 
|  | if (src_clk_period >= 1000000 / 1600) /* 625.00 ps */ | 
|  | nRTP = 12; | 
|  |  | 
|  | if (src_clk_period >= 1000000 / 1333) /* 750.19 ps */ | 
|  | nRTP = 10; | 
|  |  | 
|  | if (src_clk_period >= 1000000 / 1066) /* 938.09 ps */ | 
|  | nRTP = 8; | 
|  |  | 
|  | deltaTWATM = max_t(u32, div_o3(7500, src_clk_period), 8); | 
|  |  | 
|  | /* | 
|  | * Originally there was a + .5 in the tRPST calculation. | 
|  | * However since we can't do FP in the kernel and the tRTM | 
|  | * computation was in a floating point ceiling function, adding | 
|  | * one to tRTP should be ok. There is no other source of non | 
|  | * integer values, so the result was always going to be | 
|  | * something for the form: f_ceil(N + .5) = N + 1; | 
|  | */ | 
|  | tRPST = (last->emc_mrw & 0x80) >> 7; | 
|  | tRTM = fake->dram_timings[RL] + div_o3(3600, src_clk_period) + | 
|  | max_t(u32, div_o3(7500, src_clk_period), 8) + tRPST + | 
|  | 1 + nRTP; | 
|  |  | 
|  | emc_dbg(emc, INFO, "tRTM = %u, EMC_RP = %u\n", tRTM, | 
|  | next->burst_regs[EMC_RP_INDEX]); | 
|  |  | 
|  | if (last->burst_regs[EMC_RP_INDEX] < tRTM) { | 
|  | if (tRTM > (last->burst_regs[EMC_R2P_INDEX] + | 
|  | last->burst_regs[EMC_RP_INDEX])) { | 
|  | R2P_war = tRTM - last->burst_regs[EMC_RP_INDEX]; | 
|  | RP_war = last->burst_regs[EMC_RP_INDEX]; | 
|  | TRPab_war = last->burst_regs[EMC_TRPAB_INDEX]; | 
|  |  | 
|  | if (R2P_war > 63) { | 
|  | RP_war = R2P_war + | 
|  | last->burst_regs[EMC_RP_INDEX] - 63; | 
|  |  | 
|  | if (TRPab_war < RP_war) | 
|  | TRPab_war = RP_war; | 
|  |  | 
|  | R2P_war = 63; | 
|  | } | 
|  | } else { | 
|  | R2P_war = last->burst_regs[EMC_R2P_INDEX]; | 
|  | RP_war = last->burst_regs[EMC_RP_INDEX]; | 
|  | TRPab_war = last->burst_regs[EMC_TRPAB_INDEX]; | 
|  | } | 
|  |  | 
|  | if (RP_war < deltaTWATM) { | 
|  | W2P_war = last->burst_regs[EMC_W2P_INDEX] | 
|  | + deltaTWATM - RP_war; | 
|  | if (W2P_war > 63) { | 
|  | RP_war = RP_war + W2P_war - 63; | 
|  | if (TRPab_war < RP_war) | 
|  | TRPab_war = RP_war; | 
|  | W2P_war = 63; | 
|  | } | 
|  | } else { | 
|  | W2P_war = last->burst_regs[ | 
|  | EMC_W2P_INDEX]; | 
|  | } | 
|  |  | 
|  | if ((last->burst_regs[EMC_W2P_INDEX] ^ W2P_war) || | 
|  | (last->burst_regs[EMC_R2P_INDEX] ^ R2P_war) || | 
|  | (last->burst_regs[EMC_RP_INDEX] ^ RP_war) || | 
|  | (last->burst_regs[EMC_TRPAB_INDEX] ^ TRPab_war)) { | 
|  | emc_writel(emc, RP_war, EMC_RP); | 
|  | emc_writel(emc, R2P_war, EMC_R2P); | 
|  | emc_writel(emc, W2P_war, EMC_W2P); | 
|  | emc_writel(emc, TRPab_war, EMC_TRPAB); | 
|  | } | 
|  |  | 
|  | tegra210_emc_timing_update(emc); | 
|  | } else { | 
|  | emc_dbg(emc, INFO, "Skipped WAR\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!fsp_for_next_freq) { | 
|  | mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x80; | 
|  | mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0x00; | 
|  | } else { | 
|  | mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x40; | 
|  | mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0xc0; | 
|  | } | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR4) { | 
|  | emc_writel(emc, mr13_flip_fspwr, EMC_MRW3); | 
|  | emc_writel(emc, next->emc_mrw, EMC_MRW); | 
|  | emc_writel(emc, next->emc_mrw2, EMC_MRW2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 8: | 
|  | *   Program the shadow registers. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 8\n"); | 
|  | emc_dbg(emc, SUB_STEPS, "Writing burst_regs\n"); | 
|  |  | 
|  | for (i = 0; i < next->num_burst; i++) { | 
|  | const u16 *offsets = emc->offsets->burst; | 
|  | u16 offset; | 
|  |  | 
|  | if (!offsets[i]) | 
|  | continue; | 
|  |  | 
|  | value = next->burst_regs[i]; | 
|  | offset = offsets[i]; | 
|  |  | 
|  | if (dram_type != DRAM_TYPE_LPDDR4 && | 
|  | (offset == EMC_MRW6 || offset == EMC_MRW7 || | 
|  | offset == EMC_MRW8 || offset == EMC_MRW9 || | 
|  | offset == EMC_MRW10 || offset == EMC_MRW11 || | 
|  | offset == EMC_MRW12 || offset == EMC_MRW13 || | 
|  | offset == EMC_MRW14 || offset == EMC_MRW15 || | 
|  | offset == EMC_TRAINING_CTRL)) | 
|  | continue; | 
|  |  | 
|  | /* Pain... And suffering. */ | 
|  | if (offset == EMC_CFG) { | 
|  | value &= ~EMC_CFG_DRAM_ACPD; | 
|  | value &= ~EMC_CFG_DYN_SELF_REF; | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR4) { | 
|  | value &= ~EMC_CFG_DRAM_CLKSTOP_SR; | 
|  | value &= ~EMC_CFG_DRAM_CLKSTOP_PD; | 
|  | } | 
|  | } else if (offset == EMC_MRS_WAIT_CNT && | 
|  | dram_type == DRAM_TYPE_LPDDR2 && | 
|  | opt_zcal_en_cc && !opt_cc_short_zcal && | 
|  | opt_short_zcal) { | 
|  | value = (value & ~(EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK << | 
|  | EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT)) | | 
|  | ((zq_wait_long & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK) << | 
|  | EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT); | 
|  | } else if (offset == EMC_ZCAL_WAIT_CNT && | 
|  | dram_type == DRAM_TYPE_DDR3 && opt_zcal_en_cc && | 
|  | !opt_cc_short_zcal && opt_short_zcal) { | 
|  | value = (value & ~(EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK << | 
|  | EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_SHIFT)) | | 
|  | ((zq_wait_long & EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK) << | 
|  | EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT); | 
|  | } else if (offset == EMC_ZCAL_INTERVAL && opt_zcal_en_cc) { | 
|  | value = 0; /* EMC_ZCAL_INTERVAL reset value. */ | 
|  | } else if (offset == EMC_PMACRO_AUTOCAL_CFG_COMMON) { | 
|  | value |= EMC_PMACRO_AUTOCAL_CFG_COMMON_E_CAL_BYPASS_DVFS; | 
|  | } else if (offset == EMC_PMACRO_DATA_PAD_TX_CTRL) { | 
|  | value &= ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | | 
|  | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC | | 
|  | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | | 
|  | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC); | 
|  | } else if (offset == EMC_PMACRO_CMD_PAD_TX_CTRL) { | 
|  | value |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON; | 
|  | value &= ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | | 
|  | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC | | 
|  | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | | 
|  | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC); | 
|  | } else if (offset == EMC_PMACRO_BRICK_CTRL_RFU1) { | 
|  | value &= 0xf800f800; | 
|  | } else if (offset == EMC_PMACRO_COMMON_PAD_TX_CTRL) { | 
|  | value &= 0xfffffff0; | 
|  | } | 
|  |  | 
|  | emc_writel(emc, value, offset); | 
|  | } | 
|  |  | 
|  | /* SW addition: do EMC refresh adjustment here. */ | 
|  | tegra210_emc_adjust_timing(emc, next); | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR4) { | 
|  | value = (23 << EMC_MRW_MRW_MA_SHIFT) | | 
|  | (next->run_clocks & EMC_MRW_MRW_OP_MASK); | 
|  | emc_writel(emc, value, EMC_MRW); | 
|  | } | 
|  |  | 
|  | /* Per channel burst registers. */ | 
|  | emc_dbg(emc, SUB_STEPS, "Writing burst_regs_per_ch\n"); | 
|  |  | 
|  | for (i = 0; i < next->num_burst_per_ch; i++) { | 
|  | const struct tegra210_emc_per_channel_regs *burst = | 
|  | emc->offsets->burst_per_channel; | 
|  |  | 
|  | if (!burst[i].offset) | 
|  | continue; | 
|  |  | 
|  | if (dram_type != DRAM_TYPE_LPDDR4 && | 
|  | (burst[i].offset == EMC_MRW6 || | 
|  | burst[i].offset == EMC_MRW7 || | 
|  | burst[i].offset == EMC_MRW8 || | 
|  | burst[i].offset == EMC_MRW9 || | 
|  | burst[i].offset == EMC_MRW10 || | 
|  | burst[i].offset == EMC_MRW11 || | 
|  | burst[i].offset == EMC_MRW12 || | 
|  | burst[i].offset == EMC_MRW13 || | 
|  | burst[i].offset == EMC_MRW14 || | 
|  | burst[i].offset == EMC_MRW15)) | 
|  | continue; | 
|  |  | 
|  | /* Filter out second channel if not in DUAL_CHANNEL mode. */ | 
|  | if (emc->num_channels < 2 && burst[i].bank >= 1) | 
|  | continue; | 
|  |  | 
|  | emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, | 
|  | next->burst_reg_per_ch[i], burst[i].offset); | 
|  | emc_channel_writel(emc, burst[i].bank, | 
|  | next->burst_reg_per_ch[i], | 
|  | burst[i].offset); | 
|  | } | 
|  |  | 
|  | /* Vref regs. */ | 
|  | emc_dbg(emc, SUB_STEPS, "Writing vref_regs\n"); | 
|  |  | 
|  | for (i = 0; i < next->vref_num; i++) { | 
|  | const struct tegra210_emc_per_channel_regs *vref = | 
|  | emc->offsets->vref_per_channel; | 
|  |  | 
|  | if (!vref[i].offset) | 
|  | continue; | 
|  |  | 
|  | if (emc->num_channels < 2 && vref[i].bank >= 1) | 
|  | continue; | 
|  |  | 
|  | emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, | 
|  | next->vref_perch_regs[i], vref[i].offset); | 
|  | emc_channel_writel(emc, vref[i].bank, next->vref_perch_regs[i], | 
|  | vref[i].offset); | 
|  | } | 
|  |  | 
|  | /* Trimmers. */ | 
|  | emc_dbg(emc, SUB_STEPS, "Writing trim_regs\n"); | 
|  |  | 
|  | for (i = 0; i < next->num_trim; i++) { | 
|  | const u16 *offsets = emc->offsets->trim; | 
|  |  | 
|  | if (!offsets[i]) | 
|  | continue; | 
|  |  | 
|  | if (compensate_trimmer_applicable && | 
|  | (offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 || | 
|  | offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 || | 
|  | offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 || | 
|  | offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 || | 
|  | offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 || | 
|  | offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 || | 
|  | offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 || | 
|  | offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 || | 
|  | offsets[i] == EMC_DATA_BRLSHFT_0 || | 
|  | offsets[i] == EMC_DATA_BRLSHFT_1)) { | 
|  | value = tegra210_emc_compensate(next, offsets[i]); | 
|  | emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, | 
|  | value, offsets[i]); | 
|  | emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", | 
|  | (u32)(u64)offsets[i], value); | 
|  | emc_writel(emc, value, offsets[i]); | 
|  | } else { | 
|  | emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, | 
|  | next->trim_regs[i], offsets[i]); | 
|  | emc_writel(emc, next->trim_regs[i], offsets[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Per channel trimmers. */ | 
|  | emc_dbg(emc, SUB_STEPS, "Writing trim_regs_per_ch\n"); | 
|  |  | 
|  | for (i = 0; i < next->num_trim_per_ch; i++) { | 
|  | const struct tegra210_emc_per_channel_regs *trim = | 
|  | &emc->offsets->trim_per_channel[0]; | 
|  | unsigned int offset; | 
|  |  | 
|  | if (!trim[i].offset) | 
|  | continue; | 
|  |  | 
|  | if (emc->num_channels < 2 && trim[i].bank >= 1) | 
|  | continue; | 
|  |  | 
|  | offset = trim[i].offset; | 
|  |  | 
|  | if (compensate_trimmer_applicable && | 
|  | (offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 || | 
|  | offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 || | 
|  | offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 || | 
|  | offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 || | 
|  | offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 || | 
|  | offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 || | 
|  | offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 || | 
|  | offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 || | 
|  | offset == EMC_DATA_BRLSHFT_0 || | 
|  | offset == EMC_DATA_BRLSHFT_1)) { | 
|  | value = tegra210_emc_compensate(next, offset); | 
|  | emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, | 
|  | value, offset); | 
|  | emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", offset, | 
|  | value); | 
|  | emc_channel_writel(emc, trim[i].bank, value, offset); | 
|  | } else { | 
|  | emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, | 
|  | next->trim_perch_regs[i], offset); | 
|  | emc_channel_writel(emc, trim[i].bank, | 
|  | next->trim_perch_regs[i], offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | emc_dbg(emc, SUB_STEPS, "Writing burst_mc_regs\n"); | 
|  |  | 
|  | for (i = 0; i < next->num_mc_regs; i++) { | 
|  | const u16 *offsets = emc->offsets->burst_mc; | 
|  | u32 *values = next->burst_mc_regs; | 
|  |  | 
|  | emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, | 
|  | values[i], offsets[i]); | 
|  | mc_writel(emc->mc, values[i], offsets[i]); | 
|  | } | 
|  |  | 
|  | /* Registers to be programmed on the faster clock. */ | 
|  | if (next->rate < last->rate) { | 
|  | const u16 *la = emc->offsets->la_scale; | 
|  |  | 
|  | emc_dbg(emc, SUB_STEPS, "Writing la_scale_regs\n"); | 
|  |  | 
|  | for (i = 0; i < next->num_up_down; i++) { | 
|  | emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, | 
|  | next->la_scale_regs[i], la[i]); | 
|  | mc_writel(emc->mc, next->la_scale_regs[i], la[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Flush all the burst register writes. */ | 
|  | mc_readl(emc->mc, MC_EMEM_ADR_CFG); | 
|  |  | 
|  | /* | 
|  | * Step 9: | 
|  | *   LPDDR4 section A. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 9\n"); | 
|  |  | 
|  | value = next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX]; | 
|  | value &= ~EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK; | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR4) { | 
|  | emc_writel(emc, 0, EMC_ZCAL_INTERVAL); | 
|  | emc_writel(emc, value, EMC_ZCAL_WAIT_CNT); | 
|  |  | 
|  | value = emc_dbg | (EMC_DBG_WRITE_MUX_ACTIVE | | 
|  | EMC_DBG_WRITE_ACTIVE_ONLY); | 
|  |  | 
|  | emc_writel(emc, value, EMC_DBG); | 
|  | emc_writel(emc, 0, EMC_ZCAL_INTERVAL); | 
|  | emc_writel(emc, emc_dbg, EMC_DBG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 10: | 
|  | *   LPDDR4 and DDR3 common section. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 10\n"); | 
|  |  | 
|  | if (opt_dvfs_mode == MAN_SR || dram_type == DRAM_TYPE_LPDDR4) { | 
|  | if (dram_type == DRAM_TYPE_LPDDR4) | 
|  | ccfifo_writel(emc, 0x101, EMC_SELF_REF, 0); | 
|  | else | 
|  | ccfifo_writel(emc, 0x1, EMC_SELF_REF, 0); | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR4 && | 
|  | dst_clk_period <= zqcal_before_cc_cutoff) { | 
|  | ccfifo_writel(emc, mr13_flip_fspwr ^ 0x40, EMC_MRW3, 0); | 
|  | ccfifo_writel(emc, (next->burst_regs[EMC_MRW6_INDEX] & | 
|  | 0xFFFF3F3F) | | 
|  | (last->burst_regs[EMC_MRW6_INDEX] & | 
|  | 0x0000C0C0), EMC_MRW6, 0); | 
|  | ccfifo_writel(emc, (next->burst_regs[EMC_MRW14_INDEX] & | 
|  | 0xFFFF0707) | | 
|  | (last->burst_regs[EMC_MRW14_INDEX] & | 
|  | 0x00003838), EMC_MRW14, 0); | 
|  |  | 
|  | if (emc->num_devices > 1) { | 
|  | ccfifo_writel(emc, | 
|  | (next->burst_regs[EMC_MRW7_INDEX] & | 
|  | 0xFFFF3F3F) | | 
|  | (last->burst_regs[EMC_MRW7_INDEX] & | 
|  | 0x0000C0C0), EMC_MRW7, 0); | 
|  | ccfifo_writel(emc, | 
|  | (next->burst_regs[EMC_MRW15_INDEX] & | 
|  | 0xFFFF0707) | | 
|  | (last->burst_regs[EMC_MRW15_INDEX] & | 
|  | 0x00003838), EMC_MRW15, 0); | 
|  | } | 
|  |  | 
|  | if (opt_zcal_en_cc) { | 
|  | if (emc->num_devices < 2) | 
|  | ccfifo_writel(emc, | 
|  | 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | 
|  | | EMC_ZQ_CAL_ZQ_CAL_CMD, | 
|  | EMC_ZQ_CAL, 0); | 
|  | else if (shared_zq_resistor) | 
|  | ccfifo_writel(emc, | 
|  | 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | 
|  | | EMC_ZQ_CAL_ZQ_CAL_CMD, | 
|  | EMC_ZQ_CAL, 0); | 
|  | else | 
|  | ccfifo_writel(emc, | 
|  | EMC_ZQ_CAL_ZQ_CAL_CMD, | 
|  | EMC_ZQ_CAL, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR4) { | 
|  | value = (1000 * fake->dram_timings[T_RP]) / src_clk_period; | 
|  | ccfifo_writel(emc, mr13_flip_fspop | 0x8, EMC_MRW3, value); | 
|  | ccfifo_writel(emc, 0, 0, tFC_lpddr4 / src_clk_period); | 
|  | } | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR4 || opt_dvfs_mode != MAN_SR) { | 
|  | delay = 30; | 
|  |  | 
|  | if (cya_allow_ref_cc) { | 
|  | delay += (1000 * fake->dram_timings[T_RP]) / | 
|  | src_clk_period; | 
|  | delay += 4000 * fake->dram_timings[T_RFC]; | 
|  | } | 
|  |  | 
|  | ccfifo_writel(emc, emc_pin & ~(EMC_PIN_PIN_CKE_PER_DEV | | 
|  | EMC_PIN_PIN_CKEB | | 
|  | EMC_PIN_PIN_CKE), | 
|  | EMC_PIN, delay); | 
|  | } | 
|  |  | 
|  | /* calculate reference delay multiplier */ | 
|  | value = 1; | 
|  |  | 
|  | if (ref_b4_sref_en) | 
|  | value++; | 
|  |  | 
|  | if (cya_allow_ref_cc) | 
|  | value++; | 
|  |  | 
|  | if (cya_issue_pc_ref) | 
|  | value++; | 
|  |  | 
|  | if (dram_type != DRAM_TYPE_LPDDR4) { | 
|  | delay = ((1000 * fake->dram_timings[T_RP] / src_clk_period) + | 
|  | (1000 * fake->dram_timings[T_RFC] / src_clk_period)); | 
|  | delay = value * delay + 20; | 
|  | } else { | 
|  | delay = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 11: | 
|  | *   Ramp down. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 11\n"); | 
|  |  | 
|  | ccfifo_writel(emc, 0x0, EMC_CFG_SYNC, delay); | 
|  |  | 
|  | value = emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE | EMC_DBG_WRITE_ACTIVE_ONLY; | 
|  | ccfifo_writel(emc, value, EMC_DBG, 0); | 
|  |  | 
|  | ramp_down_wait = tegra210_emc_dvfs_power_ramp_down(emc, src_clk_period, | 
|  | 0); | 
|  |  | 
|  | /* | 
|  | * Step 12: | 
|  | *   And finally - trigger the clock change. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 12\n"); | 
|  |  | 
|  | ccfifo_writel(emc, 1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 0); | 
|  | value &= ~EMC_DBG_WRITE_ACTIVE_ONLY; | 
|  | ccfifo_writel(emc, value, EMC_DBG, 0); | 
|  |  | 
|  | /* | 
|  | * Step 13: | 
|  | *   Ramp up. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 13\n"); | 
|  |  | 
|  | ramp_up_wait = tegra210_emc_dvfs_power_ramp_up(emc, dst_clk_period, 0); | 
|  | ccfifo_writel(emc, emc_dbg, EMC_DBG, 0); | 
|  |  | 
|  | /* | 
|  | * Step 14: | 
|  | *   Bringup CKE pins. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 14\n"); | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR4) { | 
|  | value = emc_pin | EMC_PIN_PIN_CKE; | 
|  |  | 
|  | if (emc->num_devices <= 1) | 
|  | value &= ~(EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV); | 
|  | else | 
|  | value |= EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV; | 
|  |  | 
|  | ccfifo_writel(emc, value, EMC_PIN, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 15: (two step 15s ??) | 
|  | *   Calculate zqlatch wait time; has dependency on ramping times. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 15\n"); | 
|  |  | 
|  | if (dst_clk_period <= zqcal_before_cc_cutoff) { | 
|  | s32 t = (s32)(ramp_up_wait + ramp_down_wait) / | 
|  | (s32)dst_clk_period; | 
|  | zq_latch_dvfs_wait_time = (s32)tZQCAL_lpddr4_fc_adj - t; | 
|  | } else { | 
|  | zq_latch_dvfs_wait_time = tZQCAL_lpddr4_fc_adj - | 
|  | div_o3(1000 * next->dram_timings[T_PDEX], | 
|  | dst_clk_period); | 
|  | } | 
|  |  | 
|  | emc_dbg(emc, INFO, "tZQCAL_lpddr4_fc_adj = %u\n", tZQCAL_lpddr4_fc_adj); | 
|  | emc_dbg(emc, INFO, "dst_clk_period = %u\n", | 
|  | dst_clk_period); | 
|  | emc_dbg(emc, INFO, "next->dram_timings[T_PDEX] = %u\n", | 
|  | next->dram_timings[T_PDEX]); | 
|  | emc_dbg(emc, INFO, "zq_latch_dvfs_wait_time = %d\n", | 
|  | max_t(s32, 0, zq_latch_dvfs_wait_time)); | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR4 && opt_zcal_en_cc) { | 
|  | delay = div_o3(1000 * next->dram_timings[T_PDEX], | 
|  | dst_clk_period); | 
|  |  | 
|  | if (emc->num_devices < 2) { | 
|  | if (dst_clk_period > zqcal_before_cc_cutoff) | 
|  | ccfifo_writel(emc, | 
|  | 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | | 
|  | EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, | 
|  | delay); | 
|  |  | 
|  | value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; | 
|  | ccfifo_writel(emc, value, EMC_MRW3, delay); | 
|  | ccfifo_writel(emc, 0, EMC_SELF_REF, 0); | 
|  | ccfifo_writel(emc, 0, EMC_REF, 0); | 
|  | ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | | 
|  | EMC_ZQ_CAL_ZQ_LATCH_CMD, | 
|  | EMC_ZQ_CAL, | 
|  | max_t(s32, 0, zq_latch_dvfs_wait_time)); | 
|  | } else if (shared_zq_resistor) { | 
|  | if (dst_clk_period > zqcal_before_cc_cutoff) | 
|  | ccfifo_writel(emc, | 
|  | 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | | 
|  | EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, | 
|  | delay); | 
|  |  | 
|  | ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | | 
|  | EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, | 
|  | max_t(s32, 0, zq_latch_dvfs_wait_time) + | 
|  | delay); | 
|  | ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | | 
|  | EMC_ZQ_CAL_ZQ_LATCH_CMD, | 
|  | EMC_ZQ_CAL, 0); | 
|  |  | 
|  | value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; | 
|  | ccfifo_writel(emc, value, EMC_MRW3, 0); | 
|  | ccfifo_writel(emc, 0, EMC_SELF_REF, 0); | 
|  | ccfifo_writel(emc, 0, EMC_REF, 0); | 
|  |  | 
|  | ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | | 
|  | EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, | 
|  | tZQCAL_lpddr4 / dst_clk_period); | 
|  | } else { | 
|  | if (dst_clk_period > zqcal_before_cc_cutoff) | 
|  | ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_CAL_CMD, | 
|  | EMC_ZQ_CAL, delay); | 
|  |  | 
|  | value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; | 
|  | ccfifo_writel(emc, value, EMC_MRW3, delay); | 
|  | ccfifo_writel(emc, 0, EMC_SELF_REF, 0); | 
|  | ccfifo_writel(emc, 0, EMC_REF, 0); | 
|  |  | 
|  | ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, | 
|  | max_t(s32, 0, zq_latch_dvfs_wait_time)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* WAR: delay for zqlatch */ | 
|  | ccfifo_writel(emc, 0, 0, 10); | 
|  |  | 
|  | /* | 
|  | * Step 16: | 
|  | *   LPDDR4 Conditional Training Kickoff. Removed. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Step 17: | 
|  | *   MANSR exit self refresh. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 17\n"); | 
|  |  | 
|  | if (opt_dvfs_mode == MAN_SR && dram_type != DRAM_TYPE_LPDDR4) | 
|  | ccfifo_writel(emc, 0, EMC_SELF_REF, 0); | 
|  |  | 
|  | /* | 
|  | * Step 18: | 
|  | *   Send MRWs to LPDDR3/DDR3. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 18\n"); | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR2) { | 
|  | ccfifo_writel(emc, next->emc_mrw2, EMC_MRW2, 0); | 
|  | ccfifo_writel(emc, next->emc_mrw,  EMC_MRW,  0); | 
|  | if (is_lpddr3) | 
|  | ccfifo_writel(emc, next->emc_mrw4, EMC_MRW4, 0); | 
|  | } else if (dram_type == DRAM_TYPE_DDR3) { | 
|  | if (opt_dll_mode) | 
|  | ccfifo_writel(emc, next->emc_emrs & | 
|  | ~EMC_EMRS_USE_EMRS_LONG_CNT, EMC_EMRS, 0); | 
|  | ccfifo_writel(emc, next->emc_emrs2 & | 
|  | ~EMC_EMRS2_USE_EMRS2_LONG_CNT, EMC_EMRS2, 0); | 
|  | ccfifo_writel(emc, next->emc_mrs | | 
|  | EMC_EMRS_USE_EMRS_LONG_CNT, EMC_MRS, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 19: | 
|  | *   ZQCAL for LPDDR3/DDR3 | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 19\n"); | 
|  |  | 
|  | if (opt_zcal_en_cc) { | 
|  | if (dram_type == DRAM_TYPE_LPDDR2) { | 
|  | value = opt_cc_short_zcal ? 90000 : 360000; | 
|  | value = div_o3(value, dst_clk_period); | 
|  | value = value << | 
|  | EMC_MRS_WAIT_CNT2_MRS_EXT2_WAIT_CNT_SHIFT | | 
|  | value << | 
|  | EMC_MRS_WAIT_CNT2_MRS_EXT1_WAIT_CNT_SHIFT; | 
|  | ccfifo_writel(emc, value, EMC_MRS_WAIT_CNT2, 0); | 
|  |  | 
|  | value = opt_cc_short_zcal ? 0x56 : 0xab; | 
|  | ccfifo_writel(emc, 2 << EMC_MRW_MRW_DEV_SELECTN_SHIFT | | 
|  | EMC_MRW_USE_MRW_EXT_CNT | | 
|  | 10 << EMC_MRW_MRW_MA_SHIFT | | 
|  | value << EMC_MRW_MRW_OP_SHIFT, | 
|  | EMC_MRW, 0); | 
|  |  | 
|  | if (emc->num_devices > 1) { | 
|  | value = 1 << EMC_MRW_MRW_DEV_SELECTN_SHIFT | | 
|  | EMC_MRW_USE_MRW_EXT_CNT | | 
|  | 10 << EMC_MRW_MRW_MA_SHIFT | | 
|  | value << EMC_MRW_MRW_OP_SHIFT; | 
|  | ccfifo_writel(emc, value, EMC_MRW, 0); | 
|  | } | 
|  | } else if (dram_type == DRAM_TYPE_DDR3) { | 
|  | value = opt_cc_short_zcal ? 0 : EMC_ZQ_CAL_LONG; | 
|  |  | 
|  | ccfifo_writel(emc, value | | 
|  | 2 << EMC_ZQ_CAL_DEV_SEL_SHIFT | | 
|  | EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, | 
|  | 0); | 
|  |  | 
|  | if (emc->num_devices > 1) { | 
|  | value = value | 1 << EMC_ZQ_CAL_DEV_SEL_SHIFT | | 
|  | EMC_ZQ_CAL_ZQ_CAL_CMD; | 
|  | ccfifo_writel(emc, value, EMC_ZQ_CAL, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bg_reg_mode_change) { | 
|  | tegra210_emc_set_shadow_bypass(emc, ACTIVE); | 
|  |  | 
|  | if (ramp_up_wait <= 1250000) | 
|  | delay = (1250000 - ramp_up_wait) / dst_clk_period; | 
|  | else | 
|  | delay = 0; | 
|  |  | 
|  | ccfifo_writel(emc, | 
|  | next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX], | 
|  | EMC_PMACRO_BG_BIAS_CTRL_0, delay); | 
|  | tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 20: | 
|  | *   Issue ref and optional QRST. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 20\n"); | 
|  |  | 
|  | if (dram_type != DRAM_TYPE_LPDDR4) | 
|  | ccfifo_writel(emc, 0, EMC_REF, 0); | 
|  |  | 
|  | if (opt_do_sw_qrst) { | 
|  | ccfifo_writel(emc, 1, EMC_ISSUE_QRST, 0); | 
|  | ccfifo_writel(emc, 0, EMC_ISSUE_QRST, 2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 21: | 
|  | *   Restore ZCAL and ZCAL interval. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 21\n"); | 
|  |  | 
|  | if (save_restore_clkstop_pd || opt_zcal_en_cc) { | 
|  | ccfifo_writel(emc, emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, | 
|  | EMC_DBG, 0); | 
|  | if (opt_zcal_en_cc && dram_type != DRAM_TYPE_LPDDR4) | 
|  | ccfifo_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX], | 
|  | EMC_ZCAL_INTERVAL, 0); | 
|  |  | 
|  | if (save_restore_clkstop_pd) | 
|  | ccfifo_writel(emc, next->burst_regs[EMC_CFG_INDEX] & | 
|  | ~EMC_CFG_DYN_SELF_REF, | 
|  | EMC_CFG, 0); | 
|  | ccfifo_writel(emc, emc_dbg, EMC_DBG, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 22: | 
|  | *   Restore EMC_CFG_PIPE_CLK. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 22\n"); | 
|  |  | 
|  | ccfifo_writel(emc, emc_cfg_pipe_clk, EMC_CFG_PIPE_CLK, 0); | 
|  |  | 
|  | if (bg_reg_mode_change) { | 
|  | if (enable_bg_reg) | 
|  | emc_writel(emc, | 
|  | next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & | 
|  | ~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD, | 
|  | EMC_PMACRO_BG_BIAS_CTRL_0); | 
|  | else | 
|  | emc_writel(emc, | 
|  | next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & | 
|  | ~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD, | 
|  | EMC_PMACRO_BG_BIAS_CTRL_0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 23: | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 23\n"); | 
|  |  | 
|  | value = emc_readl(emc, EMC_CFG_DIG_DLL); | 
|  | value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC; | 
|  | value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK; | 
|  | value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK; | 
|  | value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; | 
|  | value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) | | 
|  | (2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT); | 
|  | emc_writel(emc, value, EMC_CFG_DIG_DLL); | 
|  |  | 
|  | tegra210_emc_do_clock_change(emc, clksrc); | 
|  |  | 
|  | /* | 
|  | * Step 24: | 
|  | *   Save training results. Removed. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Step 25: | 
|  | *   Program MC updown registers. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 25\n"); | 
|  |  | 
|  | if (next->rate > last->rate) { | 
|  | for (i = 0; i < next->num_up_down; i++) | 
|  | mc_writel(emc->mc, next->la_scale_regs[i], | 
|  | emc->offsets->la_scale[i]); | 
|  |  | 
|  | tegra210_emc_timing_update(emc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 26: | 
|  | *   Restore ZCAL registers. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 26\n"); | 
|  |  | 
|  | if (dram_type == DRAM_TYPE_LPDDR4) { | 
|  | tegra210_emc_set_shadow_bypass(emc, ACTIVE); | 
|  | emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX], | 
|  | EMC_ZCAL_WAIT_CNT); | 
|  | emc_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX], | 
|  | EMC_ZCAL_INTERVAL); | 
|  | tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); | 
|  | } | 
|  |  | 
|  | if (dram_type != DRAM_TYPE_LPDDR4 && opt_zcal_en_cc && | 
|  | !opt_short_zcal && opt_cc_short_zcal) { | 
|  | udelay(2); | 
|  |  | 
|  | tegra210_emc_set_shadow_bypass(emc, ACTIVE); | 
|  | if (dram_type == DRAM_TYPE_LPDDR2) | 
|  | emc_writel(emc, next->burst_regs[EMC_MRS_WAIT_CNT_INDEX], | 
|  | EMC_MRS_WAIT_CNT); | 
|  | else if (dram_type == DRAM_TYPE_DDR3) | 
|  | emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX], | 
|  | EMC_ZCAL_WAIT_CNT); | 
|  | tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 27: | 
|  | *   Restore EMC_CFG, FDPD registers. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 27\n"); | 
|  |  | 
|  | tegra210_emc_set_shadow_bypass(emc, ACTIVE); | 
|  | emc_writel(emc, next->burst_regs[EMC_CFG_INDEX], EMC_CFG); | 
|  | tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); | 
|  | emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp, | 
|  | EMC_FDPD_CTRL_CMD_NO_RAMP); | 
|  | emc_writel(emc, next->emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); | 
|  |  | 
|  | /* | 
|  | * Step 28: | 
|  | *   Training recover. Removed. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 28\n"); | 
|  |  | 
|  | tegra210_emc_set_shadow_bypass(emc, ACTIVE); | 
|  | emc_writel(emc, | 
|  | next->burst_regs[EMC_PMACRO_AUTOCAL_CFG_COMMON_INDEX], | 
|  | EMC_PMACRO_AUTOCAL_CFG_COMMON); | 
|  | tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); | 
|  |  | 
|  | /* | 
|  | * Step 29: | 
|  | *   Power fix WAR. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 29\n"); | 
|  |  | 
|  | emc_writel(emc, EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE0 | | 
|  | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE1 | | 
|  | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE2 | | 
|  | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE3 | | 
|  | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE4 | | 
|  | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE5 | | 
|  | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE6 | | 
|  | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE7, | 
|  | EMC_PMACRO_CFG_PM_GLOBAL_0); | 
|  | emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_0_CH0_TRAINING_E_WRPTR, | 
|  | EMC_PMACRO_TRAINING_CTRL_0); | 
|  | emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_1_CH1_TRAINING_E_WRPTR, | 
|  | EMC_PMACRO_TRAINING_CTRL_1); | 
|  | emc_writel(emc, 0, EMC_PMACRO_CFG_PM_GLOBAL_0); | 
|  |  | 
|  | /* | 
|  | * Step 30: | 
|  | *   Re-enable autocal. | 
|  | */ | 
|  | emc_dbg(emc, STEPS, "Step 30: Re-enable DLL and AUTOCAL\n"); | 
|  |  | 
|  | if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] & EMC_CFG_DIG_DLL_CFG_DLL_EN) { | 
|  | value = emc_readl(emc, EMC_CFG_DIG_DLL); | 
|  | value |=  EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC; | 
|  | value |=  EMC_CFG_DIG_DLL_CFG_DLL_EN; | 
|  | value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK; | 
|  | value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK; | 
|  | value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) | | 
|  | (2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT); | 
|  | emc_writel(emc, value, EMC_CFG_DIG_DLL); | 
|  | tegra210_emc_timing_update(emc); | 
|  | } | 
|  |  | 
|  | emc_writel(emc, next->emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); | 
|  |  | 
|  | /* Done! Yay. */ | 
|  | } | 
|  |  | 
|  | const struct tegra210_emc_sequence tegra210_emc_r21021 = { | 
|  | .revision = 0x7, | 
|  | .set_clock = tegra210_emc_r21021_set_clock, | 
|  | .periodic_compensation = tegra210_emc_r21021_periodic_compensation, | 
|  | }; |