|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Driver for Digigram VX222 V2/Mic soundcards | 
|  | * | 
|  | * VX222-specific low-level routines | 
|  | * | 
|  | * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de> | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/firmware.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/io.h> | 
|  |  | 
|  | #include <sound/core.h> | 
|  | #include <sound/control.h> | 
|  | #include <sound/tlv.h> | 
|  | #include "vx222.h" | 
|  |  | 
|  |  | 
|  | static const int vx2_reg_offset[VX_REG_MAX] = { | 
|  | [VX_ICR]    = 0x00, | 
|  | [VX_CVR]    = 0x04, | 
|  | [VX_ISR]    = 0x08, | 
|  | [VX_IVR]    = 0x0c, | 
|  | [VX_RXH]    = 0x14, | 
|  | [VX_RXM]    = 0x18, | 
|  | [VX_RXL]    = 0x1c, | 
|  | [VX_DMA]    = 0x10, | 
|  | [VX_CDSP]   = 0x20, | 
|  | [VX_CFG]    = 0x24, | 
|  | [VX_RUER]   = 0x28, | 
|  | [VX_DATA]   = 0x2c, | 
|  | [VX_STATUS] = 0x30, | 
|  | [VX_LOFREQ] = 0x34, | 
|  | [VX_HIFREQ] = 0x38, | 
|  | [VX_CSUER]  = 0x3c, | 
|  | [VX_SELMIC] = 0x40, | 
|  | [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate | 
|  | [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate | 
|  | [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate | 
|  | [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET | 
|  | [VX_CNTRL]  = 0x50,		// VX_CNTRL_REGISTER_OFFSET | 
|  | [VX_GPIOC]  = 0x54,		// VX_GPIOC (new with PLX9030) | 
|  | }; | 
|  |  | 
|  | static const int vx2_reg_index[VX_REG_MAX] = { | 
|  | [VX_ICR]	= 1, | 
|  | [VX_CVR]	= 1, | 
|  | [VX_ISR]	= 1, | 
|  | [VX_IVR]	= 1, | 
|  | [VX_RXH]	= 1, | 
|  | [VX_RXM]	= 1, | 
|  | [VX_RXL]	= 1, | 
|  | [VX_DMA]	= 1, | 
|  | [VX_CDSP]	= 1, | 
|  | [VX_CFG]	= 1, | 
|  | [VX_RUER]	= 1, | 
|  | [VX_DATA]	= 1, | 
|  | [VX_STATUS]	= 1, | 
|  | [VX_LOFREQ]	= 1, | 
|  | [VX_HIFREQ]	= 1, | 
|  | [VX_CSUER]	= 1, | 
|  | [VX_SELMIC]	= 1, | 
|  | [VX_COMPOT]	= 1, | 
|  | [VX_SCOMPR]	= 1, | 
|  | [VX_GLIMIT]	= 1, | 
|  | [VX_INTCSR]	= 0,	/* on the PLX */ | 
|  | [VX_CNTRL]	= 0,	/* on the PLX */ | 
|  | [VX_GPIOC]	= 0,	/* on the PLX */ | 
|  | }; | 
|  |  | 
|  | static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg) | 
|  | { | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  | return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vx2_inb - read a byte from the register | 
|  | * @chip: VX core instance | 
|  | * @offset: register enum | 
|  | */ | 
|  | static unsigned char vx2_inb(struct vx_core *chip, int offset) | 
|  | { | 
|  | return inb(vx2_reg_addr(chip, offset)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vx2_outb - write a byte on the register | 
|  | * @chip: VX core instance | 
|  | * @offset: the register offset | 
|  | * @val: the value to write | 
|  | */ | 
|  | static void vx2_outb(struct vx_core *chip, int offset, unsigned char val) | 
|  | { | 
|  | outb(val, vx2_reg_addr(chip, offset)); | 
|  | /* | 
|  | dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset)); | 
|  | */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vx2_inl - read a 32bit word from the register | 
|  | * @chip: VX core instance | 
|  | * @offset: register enum | 
|  | */ | 
|  | static unsigned int vx2_inl(struct vx_core *chip, int offset) | 
|  | { | 
|  | return inl(vx2_reg_addr(chip, offset)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vx2_outl - write a 32bit word on the register | 
|  | * @chip: VX core instance | 
|  | * @offset: the register enum | 
|  | * @val: the value to write | 
|  | */ | 
|  | static void vx2_outl(struct vx_core *chip, int offset, unsigned int val) | 
|  | { | 
|  | /* | 
|  | dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset)); | 
|  | */ | 
|  | outl(val, vx2_reg_addr(chip, offset)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * redefine macros to call directly | 
|  | */ | 
|  | #undef vx_inb | 
|  | #define vx_inb(chip,reg)	vx2_inb((struct vx_core*)(chip), VX_##reg) | 
|  | #undef vx_outb | 
|  | #define vx_outb(chip,reg,val)	vx2_outb((struct vx_core*)(chip), VX_##reg, val) | 
|  | #undef vx_inl | 
|  | #define vx_inl(chip,reg)	vx2_inl((struct vx_core*)(chip), VX_##reg) | 
|  | #undef vx_outl | 
|  | #define vx_outl(chip,reg,val)	vx2_outl((struct vx_core*)(chip), VX_##reg, val) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * vx_reset_dsp - reset the DSP | 
|  | */ | 
|  |  | 
|  | #define XX_DSP_RESET_WAIT_TIME		2	/* ms */ | 
|  |  | 
|  | static void vx2_reset_dsp(struct vx_core *_chip) | 
|  | { | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  |  | 
|  | /* set the reset dsp bit to 0 */ | 
|  | vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK); | 
|  |  | 
|  | mdelay(XX_DSP_RESET_WAIT_TIME); | 
|  |  | 
|  | chip->regCDSP |= VX_CDSP_DSP_RESET_MASK; | 
|  | /* set the reset dsp bit to 1 */ | 
|  | vx_outl(chip, CDSP, chip->regCDSP); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int vx2_test_xilinx(struct vx_core *_chip) | 
|  | { | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  | unsigned int data; | 
|  |  | 
|  | dev_dbg(_chip->card->dev, "testing xilinx...\n"); | 
|  | /* This test uses several write/read sequences on TEST0 and TEST1 bits | 
|  | * to figure out whever or not the xilinx was correctly loaded | 
|  | */ | 
|  |  | 
|  | /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */ | 
|  | vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK); | 
|  | vx_inl(chip, ISR); | 
|  | data = vx_inl(chip, STATUS); | 
|  | if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) { | 
|  | dev_dbg(_chip->card->dev, "bad!\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */ | 
|  | vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK); | 
|  | vx_inl(chip, ISR); | 
|  | data = vx_inl(chip, STATUS); | 
|  | if (! (data & VX_STATUS_VAL_TEST0_MASK)) { | 
|  | dev_dbg(_chip->card->dev, "bad! #2\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (_chip->type == VX_TYPE_BOARD) { | 
|  | /* not implemented on VX_2_BOARDS */ | 
|  | /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */ | 
|  | vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK); | 
|  | vx_inl(chip, ISR); | 
|  | data = vx_inl(chip, STATUS); | 
|  | if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) { | 
|  | dev_dbg(_chip->card->dev, "bad! #3\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */ | 
|  | vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK); | 
|  | vx_inl(chip, ISR); | 
|  | data = vx_inl(chip, STATUS); | 
|  | if (! (data & VX_STATUS_VAL_TEST1_MASK)) { | 
|  | dev_dbg(_chip->card->dev, "bad! #4\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  | dev_dbg(_chip->card->dev, "ok, xilinx fine.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * vx2_setup_pseudo_dma - set up the pseudo dma read/write mode. | 
|  | * @chip: VX core instance | 
|  | * @do_write: 0 = read, 1 = set up for DMA write | 
|  | */ | 
|  | static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write) | 
|  | { | 
|  | /* Interrupt mode and HREQ pin enabled for host transmit data transfers | 
|  | * (in case of the use of the pseudo-dma facility). | 
|  | */ | 
|  | vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ); | 
|  |  | 
|  | /* Reset the pseudo-dma register (in case of the use of the | 
|  | * pseudo-dma facility). | 
|  | */ | 
|  | vx_outl(chip, RESET_DMA, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vx_release_pseudo_dma - disable the pseudo-DMA mode | 
|  | */ | 
|  | static inline void vx2_release_pseudo_dma(struct vx_core *chip) | 
|  | { | 
|  | /* HREQ pin disabled. */ | 
|  | vx_outl(chip, ICR, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* pseudo-dma write */ | 
|  | static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime, | 
|  | struct vx_pipe *pipe, int count) | 
|  | { | 
|  | unsigned long port = vx2_reg_addr(chip, VX_DMA); | 
|  | int offset = pipe->hw_ptr; | 
|  | u32 *addr = (u32 *)(runtime->dma_area + offset); | 
|  |  | 
|  | if (snd_BUG_ON(count % 4)) | 
|  | return; | 
|  |  | 
|  | vx2_setup_pseudo_dma(chip, 1); | 
|  |  | 
|  | /* Transfer using pseudo-dma. | 
|  | */ | 
|  | if (offset + count >= pipe->buffer_bytes) { | 
|  | int length = pipe->buffer_bytes - offset; | 
|  | count -= length; | 
|  | length >>= 2; /* in 32bit words */ | 
|  | /* Transfer using pseudo-dma. */ | 
|  | for (; length > 0; length--) { | 
|  | outl(*addr, port); | 
|  | addr++; | 
|  | } | 
|  | addr = (u32 *)runtime->dma_area; | 
|  | pipe->hw_ptr = 0; | 
|  | } | 
|  | pipe->hw_ptr += count; | 
|  | count >>= 2; /* in 32bit words */ | 
|  | /* Transfer using pseudo-dma. */ | 
|  | for (; count > 0; count--) { | 
|  | outl(*addr, port); | 
|  | addr++; | 
|  | } | 
|  |  | 
|  | vx2_release_pseudo_dma(chip); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* pseudo dma read */ | 
|  | static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime, | 
|  | struct vx_pipe *pipe, int count) | 
|  | { | 
|  | int offset = pipe->hw_ptr; | 
|  | u32 *addr = (u32 *)(runtime->dma_area + offset); | 
|  | unsigned long port = vx2_reg_addr(chip, VX_DMA); | 
|  |  | 
|  | if (snd_BUG_ON(count % 4)) | 
|  | return; | 
|  |  | 
|  | vx2_setup_pseudo_dma(chip, 0); | 
|  | /* Transfer using pseudo-dma. | 
|  | */ | 
|  | if (offset + count >= pipe->buffer_bytes) { | 
|  | int length = pipe->buffer_bytes - offset; | 
|  | count -= length; | 
|  | length >>= 2; /* in 32bit words */ | 
|  | /* Transfer using pseudo-dma. */ | 
|  | for (; length > 0; length--) | 
|  | *addr++ = inl(port); | 
|  | addr = (u32 *)runtime->dma_area; | 
|  | pipe->hw_ptr = 0; | 
|  | } | 
|  | pipe->hw_ptr += count; | 
|  | count >>= 2; /* in 32bit words */ | 
|  | /* Transfer using pseudo-dma. */ | 
|  | for (; count > 0; count--) | 
|  | *addr++ = inl(port); | 
|  |  | 
|  | vx2_release_pseudo_dma(chip); | 
|  | } | 
|  |  | 
|  | #define VX_XILINX_RESET_MASK        0x40000000 | 
|  | #define VX_USERBIT0_MASK            0x00000004 | 
|  | #define VX_USERBIT1_MASK            0x00000020 | 
|  | #define VX_CNTRL_REGISTER_VALUE     0x00172012 | 
|  |  | 
|  | /* | 
|  | * transfer counts bits to PLX | 
|  | */ | 
|  | static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < counts; i++) { | 
|  | unsigned int val; | 
|  |  | 
|  | /* set the clock bit to 0. */ | 
|  | val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK; | 
|  | vx2_outl(chip, port, val); | 
|  | vx2_inl(chip, port); | 
|  | udelay(1); | 
|  |  | 
|  | if (data & (1 << i)) | 
|  | val |= VX_USERBIT1_MASK; | 
|  | else | 
|  | val &= ~VX_USERBIT1_MASK; | 
|  | vx2_outl(chip, port, val); | 
|  | vx2_inl(chip, port); | 
|  |  | 
|  | /* set the clock bit to 1. */ | 
|  | val |= VX_USERBIT0_MASK; | 
|  | vx2_outl(chip, port, val); | 
|  | vx2_inl(chip, port); | 
|  | udelay(1); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * load the xilinx image | 
|  | */ | 
|  | static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx) | 
|  | { | 
|  | unsigned int i; | 
|  | unsigned int port; | 
|  | const unsigned char *image; | 
|  |  | 
|  | /* XILINX reset (wait at least 1 millisecond between reset on and off). */ | 
|  | vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK); | 
|  | vx_inl(chip, CNTRL); | 
|  | msleep(10); | 
|  | vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE); | 
|  | vx_inl(chip, CNTRL); | 
|  | msleep(10); | 
|  |  | 
|  | if (chip->type == VX_TYPE_BOARD) | 
|  | port = VX_CNTRL; | 
|  | else | 
|  | port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */ | 
|  |  | 
|  | image = xilinx->data; | 
|  | for (i = 0; i < xilinx->size; i++, image++) { | 
|  | if (put_xilinx_data(chip, port, 8, *image) < 0) | 
|  | return -EINVAL; | 
|  | /* don't take too much time in this loop... */ | 
|  | cond_resched(); | 
|  | } | 
|  | put_xilinx_data(chip, port, 4, 0xff); /* end signature */ | 
|  |  | 
|  | msleep(200); | 
|  |  | 
|  | /* test after loading (is buggy with VX222) */ | 
|  | if (chip->type != VX_TYPE_BOARD) { | 
|  | /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */ | 
|  | i = vx_inl(chip, GPIOC); | 
|  | if (i & 0x0100) | 
|  | return 0; | 
|  | dev_err(chip->card->dev, | 
|  | "xilinx test failed after load, GPIOC=0x%x\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * load the boot/dsp images | 
|  | */ | 
|  | static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | switch (index) { | 
|  | case 1: | 
|  | /* xilinx image */ | 
|  | err = vx2_load_xilinx_binary(vx, dsp); | 
|  | if (err < 0) | 
|  | return err; | 
|  | err = vx2_test_xilinx(vx); | 
|  | if (err < 0) | 
|  | return err; | 
|  | return 0; | 
|  | case 2: | 
|  | /* DSP boot */ | 
|  | return snd_vx_dsp_boot(vx, dsp); | 
|  | case 3: | 
|  | /* DSP image */ | 
|  | return snd_vx_dsp_load(vx, dsp); | 
|  | default: | 
|  | snd_BUG(); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * vx_test_and_ack - test and acknowledge interrupt | 
|  | * | 
|  | * called from irq hander, too | 
|  | * | 
|  | * spinlock held! | 
|  | */ | 
|  | static int vx2_test_and_ack(struct vx_core *chip) | 
|  | { | 
|  | /* not booted yet? */ | 
|  | if (! (chip->chip_status & VX_STAT_XILINX_LOADED)) | 
|  | return -ENXIO; | 
|  |  | 
|  | if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK)) | 
|  | return -EIO; | 
|  |  | 
|  | /* ok, interrupts generated, now ack it */ | 
|  | /* set ACQUIT bit up and down */ | 
|  | vx_outl(chip, STATUS, 0); | 
|  | /* useless read just to spend some time and maintain | 
|  | * the ACQUIT signal up for a while ( a bus cycle ) | 
|  | */ | 
|  | vx_inl(chip, STATUS); | 
|  | /* ack */ | 
|  | vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK); | 
|  | /* useless read just to spend some time and maintain | 
|  | * the ACQUIT signal up for a while ( a bus cycle ) */ | 
|  | vx_inl(chip, STATUS); | 
|  | /* clear */ | 
|  | vx_outl(chip, STATUS, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * vx_validate_irq - enable/disable IRQ | 
|  | */ | 
|  | static void vx2_validate_irq(struct vx_core *_chip, int enable) | 
|  | { | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  |  | 
|  | /* Set the interrupt enable bit to 1 in CDSP register */ | 
|  | if (enable) { | 
|  | /* Set the PCI interrupt enable bit to 1.*/ | 
|  | vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK); | 
|  | chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK; | 
|  | } else { | 
|  | /* Set the PCI interrupt enable bit to 0. */ | 
|  | vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK); | 
|  | chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK; | 
|  | } | 
|  | vx_outl(chip, CDSP, chip->regCDSP); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * write an AKM codec data (24bit) | 
|  | */ | 
|  | static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | vx_inl(chip, HIFREQ); | 
|  |  | 
|  | /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */ | 
|  | for (i = 0; i < 24; i++, data <<= 1) | 
|  | vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0)); | 
|  | /* Terminate access to codec registers */ | 
|  | vx_inl(chip, RUER); | 
|  | } | 
|  |  | 
|  |  | 
|  | #define AKM_CODEC_POWER_CONTROL_CMD 0xA007 | 
|  | #define AKM_CODEC_RESET_ON_CMD      0xA100 | 
|  | #define AKM_CODEC_RESET_OFF_CMD     0xA103 | 
|  | #define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240 | 
|  | #define AKM_CODEC_MUTE_CMD          0xA38D | 
|  | #define AKM_CODEC_UNMUTE_CMD        0xA30D | 
|  | #define AKM_CODEC_LEFT_LEVEL_CMD    0xA400 | 
|  | #define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500 | 
|  |  | 
|  | static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = { | 
|  | 0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB) | 
|  | 0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB) | 
|  | 0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB) | 
|  | 0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB) | 
|  | 0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB) | 
|  | 0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB) | 
|  | 0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB) | 
|  | 0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB) | 
|  | 0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB) | 
|  | 0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB) | 
|  | 0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB) | 
|  | 0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB) | 
|  | 0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB) | 
|  | 0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB) | 
|  | 0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB) | 
|  | 0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB) | 
|  | 0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB) | 
|  | 0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB) | 
|  | 0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB) | 
|  | 0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB) | 
|  | 0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB) | 
|  | 0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB) | 
|  | 0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB) | 
|  | 0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB) | 
|  | 0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB) | 
|  | 0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB) | 
|  | 0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB) | 
|  | 0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB) | 
|  | 0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB) | 
|  | 0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB) | 
|  | 0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB) | 
|  | 0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB) | 
|  | 0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB) | 
|  | 0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB) | 
|  | 0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB) | 
|  | 0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB) | 
|  | 0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB) | 
|  | 0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB) | 
|  | 0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB) | 
|  | 0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB) | 
|  | 0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB) | 
|  | 0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB) | 
|  | 0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB) | 
|  | 0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB) | 
|  | 0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB) | 
|  | 0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB) | 
|  | 0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB) | 
|  | 0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB) | 
|  | 0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB) | 
|  | 0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB) | 
|  | 0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB) | 
|  | 0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB) | 
|  | 0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB) | 
|  | 0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB) | 
|  | 0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB) | 
|  | 0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB) | 
|  | 0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB) | 
|  | 0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB) | 
|  | 0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB) | 
|  | 0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB) | 
|  | 0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB) | 
|  | 0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB) | 
|  | 0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB) | 
|  | 0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB) | 
|  | 0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB) | 
|  | 0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB) | 
|  | 0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB) | 
|  | 0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB) | 
|  | 0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB) | 
|  | 0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB) | 
|  | 0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB) | 
|  | 0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB) | 
|  | 0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB) | 
|  | 0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB) | 
|  | 0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB) | 
|  | 0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB) | 
|  | 0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB) | 
|  | 0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB) | 
|  | 0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB) | 
|  | 0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB) | 
|  | 0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB) | 
|  | 0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB) | 
|  | 0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB) | 
|  | 0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB) | 
|  | 0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB) | 
|  | 0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB) | 
|  | 0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB) | 
|  | 0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB) | 
|  | 0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB) | 
|  | 0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB) | 
|  | 0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB) | 
|  | 0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB) | 
|  | 0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB) | 
|  | 0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB) | 
|  | 0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB) | 
|  | 0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB) | 
|  | 0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB) | 
|  | 0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB) | 
|  | 0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB) | 
|  | 0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB) | 
|  | 0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB) | 
|  | 0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB) | 
|  | 0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB) | 
|  | 0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB) | 
|  | 0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB) | 
|  | 0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB) | 
|  | 0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB) | 
|  | 0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB) | 
|  | 0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB) | 
|  | 0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB) | 
|  | 0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB) | 
|  | 0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB) | 
|  | 0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB) | 
|  | 0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB) | 
|  | 0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB) | 
|  | 0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB) | 
|  | 0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB) | 
|  | 0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB) | 
|  | 0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB) | 
|  | 0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB) | 
|  | 0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB) | 
|  | 0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB) | 
|  | 0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB) | 
|  | 0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB) | 
|  | 0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB) | 
|  | 0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB) | 
|  | 0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB) | 
|  | 0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB) | 
|  | 0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB) | 
|  | 0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB) | 
|  | 0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB) | 
|  | 0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB) | 
|  | 0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB) | 
|  | 0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB) | 
|  | 0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB) | 
|  | 0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB) | 
|  | 0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB) | 
|  | 0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB) | 
|  | 0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB) | 
|  | 0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB) | 
|  | 0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB) | 
|  | 0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB) | 
|  | 0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB) | 
|  | 0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB) | 
|  | 0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB) | 
|  | 0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB) | 
|  | 0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB) | 
|  | 0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini) | 
|  |  | 
|  | /* | 
|  | * pseudo-codec write entry | 
|  | */ | 
|  | static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data) | 
|  | { | 
|  | unsigned int val; | 
|  |  | 
|  | if (reg == XX_CODEC_DAC_CONTROL_REGISTER) { | 
|  | vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need | 
|  | a look up table, as there is no linear matching between the driver codec values | 
|  | and the real dBu value | 
|  | */ | 
|  | if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut))) | 
|  | return; | 
|  |  | 
|  | switch (reg) { | 
|  | case XX_CODEC_LEVEL_LEFT_REGISTER: | 
|  | val = AKM_CODEC_LEFT_LEVEL_CMD; | 
|  | break; | 
|  | case XX_CODEC_LEVEL_RIGHT_REGISTER: | 
|  | val = AKM_CODEC_RIGHT_LEVEL_CMD; | 
|  | break; | 
|  | default: | 
|  | snd_BUG(); | 
|  | return; | 
|  | } | 
|  | val |= vx2_akm_gains_lut[data]; | 
|  |  | 
|  | vx2_write_codec_reg(chip, val); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * write codec bit for old VX222 board | 
|  | */ | 
|  | static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* activate access to codec registers */ | 
|  | vx_inl(chip, HIFREQ); | 
|  |  | 
|  | for (i = 0; i < 24; i++, data <<= 1) | 
|  | vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0)); | 
|  |  | 
|  | /* Terminate access to codec registers */ | 
|  | vx_inl(chip, RUER); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * reset codec bit | 
|  | */ | 
|  | static void vx2_reset_codec(struct vx_core *_chip) | 
|  | { | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  |  | 
|  | /* Set the reset CODEC bit to 0. */ | 
|  | vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK); | 
|  | vx_inl(chip, CDSP); | 
|  | msleep(10); | 
|  | /* Set the reset CODEC bit to 1. */ | 
|  | chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK; | 
|  | vx_outl(chip, CDSP, chip->regCDSP); | 
|  | vx_inl(chip, CDSP); | 
|  | if (_chip->type == VX_TYPE_BOARD) { | 
|  | msleep(1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | msleep(5);  /* additionnel wait time for AKM's */ | 
|  |  | 
|  | vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */ | 
|  |  | 
|  | vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */ | 
|  | vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */ | 
|  | vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */ | 
|  |  | 
|  | if (_chip->type == VX_TYPE_MIC) { | 
|  | /* set up the micro input selector */ | 
|  | chip->regSELMIC =  MICRO_SELECT_INPUT_NORM | | 
|  | MICRO_SELECT_PREAMPLI_G_0 | | 
|  | MICRO_SELECT_NOISE_T_52DB; | 
|  |  | 
|  | /* reset phantom power supply */ | 
|  | chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM; | 
|  |  | 
|  | vx_outl(_chip, SELMIC, chip->regSELMIC); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * change the audio source | 
|  | */ | 
|  | static void vx2_change_audio_source(struct vx_core *_chip, int src) | 
|  | { | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  |  | 
|  | switch (src) { | 
|  | case VX_AUDIO_SRC_DIGITAL: | 
|  | chip->regCFG |= VX_CFG_DATAIN_SEL_MASK; | 
|  | break; | 
|  | default: | 
|  | chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK; | 
|  | break; | 
|  | } | 
|  | vx_outl(chip, CFG, chip->regCFG); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * set the clock source | 
|  | */ | 
|  | static void vx2_set_clock_source(struct vx_core *_chip, int source) | 
|  | { | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  |  | 
|  | if (source == INTERNAL_QUARTZ) | 
|  | chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK; | 
|  | else | 
|  | chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK; | 
|  | vx_outl(chip, CFG, chip->regCFG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reset the board | 
|  | */ | 
|  | static void vx2_reset_board(struct vx_core *_chip, int cold_reset) | 
|  | { | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  |  | 
|  | /* initialize the register values */ | 
|  | chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ; | 
|  | chip->regCFG = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | * input level controls for VX222 Mic | 
|  | */ | 
|  |  | 
|  | /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318), | 
|  | * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli) | 
|  | * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset ! | 
|  | */ | 
|  | #define V2_MICRO_LEVEL_RANGE        (318 - 255) | 
|  |  | 
|  | static void vx2_set_input_level(struct snd_vx222 *chip) | 
|  | { | 
|  | int i, miclevel, preamp; | 
|  | unsigned int data; | 
|  |  | 
|  | miclevel = chip->mic_level; | 
|  | miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */ | 
|  | preamp = 0; | 
|  | while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */ | 
|  | preamp++;	/* raise pre ampli + 18dB */ | 
|  | miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */ | 
|  | } | 
|  | if (snd_BUG_ON(preamp >= 4)) | 
|  | return; | 
|  |  | 
|  | /* set pre-amp level */ | 
|  | chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK; | 
|  | chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK; | 
|  | vx_outl(chip, SELMIC, chip->regSELMIC); | 
|  |  | 
|  | data = (unsigned int)miclevel << 16 | | 
|  | (unsigned int)chip->input_level[1] << 8 | | 
|  | (unsigned int)chip->input_level[0]; | 
|  | vx_inl(chip, DATA); /* Activate input level programming */ | 
|  |  | 
|  | /* We have to send 32 bits (4 x 8 bits) */ | 
|  | for (i = 0; i < 32; i++, data <<= 1) | 
|  | vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0)); | 
|  |  | 
|  | vx_inl(chip, RUER); /* Terminate input level programming */ | 
|  | } | 
|  |  | 
|  |  | 
|  | #define MIC_LEVEL_MAX	0xff | 
|  |  | 
|  | static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0); | 
|  |  | 
|  | /* | 
|  | * controls API for input levels | 
|  | */ | 
|  |  | 
|  | /* input levels */ | 
|  | static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) | 
|  | { | 
|  | uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; | 
|  | uinfo->count = 2; | 
|  | uinfo->value.integer.min = 0; | 
|  | uinfo->value.integer.max = MIC_LEVEL_MAX; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) | 
|  | { | 
|  | struct vx_core *_chip = snd_kcontrol_chip(kcontrol); | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  | mutex_lock(&_chip->mixer_mutex); | 
|  | ucontrol->value.integer.value[0] = chip->input_level[0]; | 
|  | ucontrol->value.integer.value[1] = chip->input_level[1]; | 
|  | mutex_unlock(&_chip->mixer_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) | 
|  | { | 
|  | struct vx_core *_chip = snd_kcontrol_chip(kcontrol); | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  | if (ucontrol->value.integer.value[0] < 0 || | 
|  | ucontrol->value.integer.value[0] > MIC_LEVEL_MAX) | 
|  | return -EINVAL; | 
|  | if (ucontrol->value.integer.value[1] < 0 || | 
|  | ucontrol->value.integer.value[1] > MIC_LEVEL_MAX) | 
|  | return -EINVAL; | 
|  | mutex_lock(&_chip->mixer_mutex); | 
|  | if (chip->input_level[0] != ucontrol->value.integer.value[0] || | 
|  | chip->input_level[1] != ucontrol->value.integer.value[1]) { | 
|  | chip->input_level[0] = ucontrol->value.integer.value[0]; | 
|  | chip->input_level[1] = ucontrol->value.integer.value[1]; | 
|  | vx2_set_input_level(chip); | 
|  | mutex_unlock(&_chip->mixer_mutex); | 
|  | return 1; | 
|  | } | 
|  | mutex_unlock(&_chip->mixer_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* mic level */ | 
|  | static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) | 
|  | { | 
|  | uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; | 
|  | uinfo->count = 1; | 
|  | uinfo->value.integer.min = 0; | 
|  | uinfo->value.integer.max = MIC_LEVEL_MAX; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) | 
|  | { | 
|  | struct vx_core *_chip = snd_kcontrol_chip(kcontrol); | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  | ucontrol->value.integer.value[0] = chip->mic_level; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) | 
|  | { | 
|  | struct vx_core *_chip = snd_kcontrol_chip(kcontrol); | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  | if (ucontrol->value.integer.value[0] < 0 || | 
|  | ucontrol->value.integer.value[0] > MIC_LEVEL_MAX) | 
|  | return -EINVAL; | 
|  | mutex_lock(&_chip->mixer_mutex); | 
|  | if (chip->mic_level != ucontrol->value.integer.value[0]) { | 
|  | chip->mic_level = ucontrol->value.integer.value[0]; | 
|  | vx2_set_input_level(chip); | 
|  | mutex_unlock(&_chip->mixer_mutex); | 
|  | return 1; | 
|  | } | 
|  | mutex_unlock(&_chip->mixer_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct snd_kcontrol_new vx_control_input_level = { | 
|  | .iface =	SNDRV_CTL_ELEM_IFACE_MIXER, | 
|  | .access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE | | 
|  | SNDRV_CTL_ELEM_ACCESS_TLV_READ), | 
|  | .name =		"Capture Volume", | 
|  | .info =		vx_input_level_info, | 
|  | .get =		vx_input_level_get, | 
|  | .put =		vx_input_level_put, | 
|  | .tlv = { .p = db_scale_mic }, | 
|  | }; | 
|  |  | 
|  | static const struct snd_kcontrol_new vx_control_mic_level = { | 
|  | .iface =	SNDRV_CTL_ELEM_IFACE_MIXER, | 
|  | .access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE | | 
|  | SNDRV_CTL_ELEM_ACCESS_TLV_READ), | 
|  | .name =		"Mic Capture Volume", | 
|  | .info =		vx_mic_level_info, | 
|  | .get =		vx_mic_level_get, | 
|  | .put =		vx_mic_level_put, | 
|  | .tlv = { .p = db_scale_mic }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * FIXME: compressor/limiter implementation is missing yet... | 
|  | */ | 
|  |  | 
|  | static int vx2_add_mic_controls(struct vx_core *_chip) | 
|  | { | 
|  | struct snd_vx222 *chip = to_vx222(_chip); | 
|  | int err; | 
|  |  | 
|  | if (_chip->type != VX_TYPE_MIC) | 
|  | return 0; | 
|  |  | 
|  | /* mute input levels */ | 
|  | chip->input_level[0] = chip->input_level[1] = 0; | 
|  | chip->mic_level = 0; | 
|  | vx2_set_input_level(chip); | 
|  |  | 
|  | /* controls */ | 
|  | err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip)); | 
|  | if (err < 0) | 
|  | return err; | 
|  | err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * callbacks | 
|  | */ | 
|  | const struct snd_vx_ops vx222_ops = { | 
|  | .in8 = vx2_inb, | 
|  | .in32 = vx2_inl, | 
|  | .out8 = vx2_outb, | 
|  | .out32 = vx2_outl, | 
|  | .test_and_ack = vx2_test_and_ack, | 
|  | .validate_irq = vx2_validate_irq, | 
|  | .akm_write = vx2_write_akm, | 
|  | .reset_codec = vx2_reset_codec, | 
|  | .change_audio_source = vx2_change_audio_source, | 
|  | .set_clock_source = vx2_set_clock_source, | 
|  | .load_dsp = vx2_load_dsp, | 
|  | .reset_dsp = vx2_reset_dsp, | 
|  | .reset_board = vx2_reset_board, | 
|  | .dma_write = vx2_dma_write, | 
|  | .dma_read = vx2_dma_read, | 
|  | .add_controls = vx2_add_mic_controls, | 
|  | }; | 
|  |  | 
|  | /* for old VX222 board */ | 
|  | const struct snd_vx_ops vx222_old_ops = { | 
|  | .in8 = vx2_inb, | 
|  | .in32 = vx2_inl, | 
|  | .out8 = vx2_outb, | 
|  | .out32 = vx2_outl, | 
|  | .test_and_ack = vx2_test_and_ack, | 
|  | .validate_irq = vx2_validate_irq, | 
|  | .write_codec = vx2_old_write_codec_bit, | 
|  | .reset_codec = vx2_reset_codec, | 
|  | .change_audio_source = vx2_change_audio_source, | 
|  | .set_clock_source = vx2_set_clock_source, | 
|  | .load_dsp = vx2_load_dsp, | 
|  | .reset_dsp = vx2_reset_dsp, | 
|  | .reset_board = vx2_reset_board, | 
|  | .dma_write = vx2_dma_write, | 
|  | .dma_read = vx2_dma_read, | 
|  | }; | 
|  |  |