|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Copyright (C) 2017 Free Electrons | 
|  | * Copyright (C) 2017 NextThing Co | 
|  | * | 
|  | * Author: Boris Brezillon <boris.brezillon@free-electrons.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include "internals.h" | 
|  |  | 
|  | /* | 
|  | * Special Micron status bit 3 indicates that the block has been | 
|  | * corrected by on-die ECC and should be rewritten. | 
|  | */ | 
|  | #define NAND_ECC_STATUS_WRITE_RECOMMENDED	BIT(3) | 
|  |  | 
|  | /* | 
|  | * On chips with 8-bit ECC and additional bit can be used to distinguish | 
|  | * cases where a errors were corrected without needing a rewrite | 
|  | * | 
|  | * Bit 4 Bit 3 Bit 0 Description | 
|  | * ----- ----- ----- ----------- | 
|  | * 0     0     0     No Errors | 
|  | * 0     0     1     Multiple uncorrected errors | 
|  | * 0     1     0     4 - 6 errors corrected, recommend rewrite | 
|  | * 0     1     1     Reserved | 
|  | * 1     0     0     1 - 3 errors corrected | 
|  | * 1     0     1     Reserved | 
|  | * 1     1     0     7 - 8 errors corrected, recommend rewrite | 
|  | */ | 
|  | #define NAND_ECC_STATUS_MASK		(BIT(4) | BIT(3) | BIT(0)) | 
|  | #define NAND_ECC_STATUS_UNCORRECTABLE	BIT(0) | 
|  | #define NAND_ECC_STATUS_4_6_CORRECTED	BIT(3) | 
|  | #define NAND_ECC_STATUS_1_3_CORRECTED	BIT(4) | 
|  | #define NAND_ECC_STATUS_7_8_CORRECTED	(BIT(4) | BIT(3)) | 
|  |  | 
|  | struct nand_onfi_vendor_micron { | 
|  | u8 two_plane_read; | 
|  | u8 read_cache; | 
|  | u8 read_unique_id; | 
|  | u8 dq_imped; | 
|  | u8 dq_imped_num_settings; | 
|  | u8 dq_imped_feat_addr; | 
|  | u8 rb_pulldown_strength; | 
|  | u8 rb_pulldown_strength_feat_addr; | 
|  | u8 rb_pulldown_strength_num_settings; | 
|  | u8 otp_mode; | 
|  | u8 otp_page_start; | 
|  | u8 otp_data_prot_addr; | 
|  | u8 otp_num_pages; | 
|  | u8 otp_feat_addr; | 
|  | u8 read_retry_options; | 
|  | u8 reserved[72]; | 
|  | u8 param_revision; | 
|  | } __packed; | 
|  |  | 
|  | struct micron_on_die_ecc { | 
|  | bool forced; | 
|  | bool enabled; | 
|  | void *rawbuf; | 
|  | }; | 
|  |  | 
|  | struct micron_nand { | 
|  | struct micron_on_die_ecc ecc; | 
|  | }; | 
|  |  | 
|  | static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode) | 
|  | { | 
|  | u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; | 
|  |  | 
|  | return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configure chip properties from Micron vendor-specific ONFI table | 
|  | */ | 
|  | static int micron_nand_onfi_init(struct nand_chip *chip) | 
|  | { | 
|  | struct nand_parameters *p = &chip->parameters; | 
|  |  | 
|  | if (p->onfi) { | 
|  | struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor; | 
|  |  | 
|  | chip->read_retries = micron->read_retry_options; | 
|  | chip->ops.setup_read_retry = micron_nand_setup_read_retry; | 
|  | } | 
|  |  | 
|  | if (p->supports_set_get_features) { | 
|  | set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list); | 
|  | set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list); | 
|  | set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list); | 
|  | set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd, | 
|  | int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | if (section >= 4) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = (section * 16) + 8; | 
|  | oobregion->length = 8; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd, | 
|  | int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | if (section >= 4) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = (section * 16) + 2; | 
|  | oobregion->length = 6; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = { | 
|  | .ecc = micron_nand_on_die_4_ooblayout_ecc, | 
|  | .free = micron_nand_on_die_4_ooblayout_free, | 
|  | }; | 
|  |  | 
|  | static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd, | 
|  | int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  |  | 
|  | if (section) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = mtd->oobsize - chip->ecc.total; | 
|  | oobregion->length = chip->ecc.total; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd, | 
|  | int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  |  | 
|  | if (section) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = 2; | 
|  | oobregion->length = mtd->oobsize - chip->ecc.total - 2; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = { | 
|  | .ecc = micron_nand_on_die_8_ooblayout_ecc, | 
|  | .free = micron_nand_on_die_8_ooblayout_free, | 
|  | }; | 
|  |  | 
|  | static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable) | 
|  | { | 
|  | struct micron_nand *micron = nand_get_manufacturer_data(chip); | 
|  | u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, }; | 
|  | int ret; | 
|  |  | 
|  | if (micron->ecc.forced) | 
|  | return 0; | 
|  |  | 
|  | if (micron->ecc.enabled == enable) | 
|  | return 0; | 
|  |  | 
|  | if (enable) | 
|  | feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN; | 
|  |  | 
|  | ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature); | 
|  | if (!ret) | 
|  | micron->ecc.enabled = enable; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status, | 
|  | void *buf, int page, | 
|  | int oob_required) | 
|  | { | 
|  | struct micron_nand *micron = nand_get_manufacturer_data(chip); | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  | unsigned int step, max_bitflips = 0; | 
|  | bool use_datain = false; | 
|  | int ret; | 
|  |  | 
|  | if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) { | 
|  | if (status & NAND_STATUS_FAIL) | 
|  | mtd->ecc_stats.failed++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The internal ECC doesn't tell us the number of bitflips that have | 
|  | * been corrected, but tells us if it recommends to rewrite the block. | 
|  | * If it's the case, we need to read the page in raw mode and compare | 
|  | * its content to the corrected version to extract the actual number of | 
|  | * bitflips. | 
|  | * But before we do that, we must make sure we have all OOB bytes read | 
|  | * in non-raw mode, even if the user did not request those bytes. | 
|  | */ | 
|  | if (!oob_required) { | 
|  | /* | 
|  | * We first check which operation is supported by the controller | 
|  | * before running it. This trick makes it possible to support | 
|  | * all controllers, even the most constraints, without almost | 
|  | * any performance hit. | 
|  | * | 
|  | * TODO: could be enhanced to avoid repeating the same check | 
|  | * over and over in the fast path. | 
|  | */ | 
|  | if (!nand_has_exec_op(chip) || | 
|  | !nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, | 
|  | true)) | 
|  | use_datain = true; | 
|  |  | 
|  | if (use_datain) | 
|  | ret = nand_read_data_op(chip, chip->oob_poi, | 
|  | mtd->oobsize, false, false); | 
|  | else | 
|  | ret = nand_change_read_column_op(chip, mtd->writesize, | 
|  | chip->oob_poi, | 
|  | mtd->oobsize, false); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | micron_nand_on_die_ecc_setup(chip, false); | 
|  |  | 
|  | ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf, | 
|  | mtd->writesize + mtd->oobsize); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for (step = 0; step < chip->ecc.steps; step++) { | 
|  | unsigned int offs, i, nbitflips = 0; | 
|  | u8 *rawbuf, *corrbuf; | 
|  |  | 
|  | offs = step * chip->ecc.size; | 
|  | rawbuf = micron->ecc.rawbuf + offs; | 
|  | corrbuf = buf + offs; | 
|  |  | 
|  | for (i = 0; i < chip->ecc.size; i++) | 
|  | nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]); | 
|  |  | 
|  | offs = (step * 16) + 4; | 
|  | rawbuf = micron->ecc.rawbuf + mtd->writesize + offs; | 
|  | corrbuf = chip->oob_poi + offs; | 
|  |  | 
|  | for (i = 0; i < chip->ecc.bytes + 4; i++) | 
|  | nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]); | 
|  |  | 
|  | if (WARN_ON(nbitflips > chip->ecc.strength)) | 
|  | return -EINVAL; | 
|  |  | 
|  | max_bitflips = max(nbitflips, max_bitflips); | 
|  | mtd->ecc_stats.corrected += nbitflips; | 
|  | } | 
|  |  | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status) | 
|  | { | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  |  | 
|  | /* | 
|  | * With 8/512 we have more information but still don't know precisely | 
|  | * how many bit-flips were seen. | 
|  | */ | 
|  | switch (status & NAND_ECC_STATUS_MASK) { | 
|  | case NAND_ECC_STATUS_UNCORRECTABLE: | 
|  | mtd->ecc_stats.failed++; | 
|  | return 0; | 
|  | case NAND_ECC_STATUS_1_3_CORRECTED: | 
|  | mtd->ecc_stats.corrected += 3; | 
|  | return 3; | 
|  | case NAND_ECC_STATUS_4_6_CORRECTED: | 
|  | mtd->ecc_stats.corrected += 6; | 
|  | /* rewrite recommended */ | 
|  | return 6; | 
|  | case NAND_ECC_STATUS_7_8_CORRECTED: | 
|  | mtd->ecc_stats.corrected += 8; | 
|  | /* rewrite recommended */ | 
|  | return 8; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  | bool use_datain = false; | 
|  | u8 status; | 
|  | int ret, max_bitflips = 0; | 
|  |  | 
|  | ret = micron_nand_on_die_ecc_setup(chip, true); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = nand_read_page_op(chip, page, 0, NULL, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = nand_status_op(chip, &status); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We first check which operation is supported by the controller before | 
|  | * running it. This trick makes it possible to support all controllers, | 
|  | * even the most constraints, without almost any performance hit. | 
|  | * | 
|  | * TODO: could be enhanced to avoid repeating the same check over and | 
|  | * over in the fast path. | 
|  | */ | 
|  | if (!nand_has_exec_op(chip) || | 
|  | !nand_read_data_op(chip, buf, mtd->writesize, false, true)) | 
|  | use_datain = true; | 
|  |  | 
|  | if (use_datain) { | 
|  | ret = nand_exit_status_op(chip); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = nand_read_data_op(chip, buf, mtd->writesize, false, | 
|  | false); | 
|  | if (!ret && oob_required) | 
|  | ret = nand_read_data_op(chip, chip->oob_poi, | 
|  | mtd->oobsize, false, false); | 
|  | } else { | 
|  | ret = nand_change_read_column_op(chip, 0, buf, mtd->writesize, | 
|  | false); | 
|  | if (!ret && oob_required) | 
|  | ret = nand_change_read_column_op(chip, mtd->writesize, | 
|  | chip->oob_poi, | 
|  | mtd->oobsize, false); | 
|  | } | 
|  |  | 
|  | if (chip->ecc.strength == 4) | 
|  | max_bitflips = micron_nand_on_die_ecc_status_4(chip, status, | 
|  | buf, page, | 
|  | oob_required); | 
|  | else | 
|  | max_bitflips = micron_nand_on_die_ecc_status_8(chip, status); | 
|  |  | 
|  | out: | 
|  | micron_nand_on_die_ecc_setup(chip, false); | 
|  |  | 
|  | return ret ? ret : max_bitflips; | 
|  | } | 
|  |  | 
|  | static int | 
|  | micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = micron_nand_on_die_ecc_setup(chip, true); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = nand_write_page_raw(chip, buf, oob_required, page); | 
|  | micron_nand_on_die_ecc_setup(chip, false); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | /* The NAND flash doesn't support on-die ECC */ | 
|  | MICRON_ON_DIE_UNSUPPORTED, | 
|  |  | 
|  | /* | 
|  | * The NAND flash supports on-die ECC and it can be | 
|  | * enabled/disabled by a set features command. | 
|  | */ | 
|  | MICRON_ON_DIE_SUPPORTED, | 
|  |  | 
|  | /* | 
|  | * The NAND flash supports on-die ECC, and it cannot be | 
|  | * disabled. | 
|  | */ | 
|  | MICRON_ON_DIE_MANDATORY, | 
|  | }; | 
|  |  | 
|  | #define MICRON_ID_INTERNAL_ECC_MASK	GENMASK(1, 0) | 
|  | #define MICRON_ID_ECC_ENABLED		BIT(7) | 
|  |  | 
|  | /* | 
|  | * Try to detect if the NAND support on-die ECC. To do this, we enable | 
|  | * the feature, and read back if it has been enabled as expected. We | 
|  | * also check if it can be disabled, because some Micron NANDs do not | 
|  | * allow disabling the on-die ECC and we don't support such NANDs for | 
|  | * now. | 
|  | * | 
|  | * This function also has the side effect of disabling on-die ECC if | 
|  | * it had been left enabled by the firmware/bootloader. | 
|  | */ | 
|  | static int micron_supports_on_die_ecc(struct nand_chip *chip) | 
|  | { | 
|  | const struct nand_ecc_props *requirements = | 
|  | nanddev_get_ecc_requirements(&chip->base); | 
|  | u8 id[5]; | 
|  | int ret; | 
|  |  | 
|  | if (!chip->parameters.onfi) | 
|  | return MICRON_ON_DIE_UNSUPPORTED; | 
|  |  | 
|  | if (nanddev_bits_per_cell(&chip->base) != 1) | 
|  | return MICRON_ON_DIE_UNSUPPORTED; | 
|  |  | 
|  | /* | 
|  | * We only support on-die ECC of 4/512 or 8/512 | 
|  | */ | 
|  | if  (requirements->strength != 4 && requirements->strength != 8) | 
|  | return MICRON_ON_DIE_UNSUPPORTED; | 
|  |  | 
|  | /* 0x2 means on-die ECC is available. */ | 
|  | if (chip->id.len != 5 || | 
|  | (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2) | 
|  | return MICRON_ON_DIE_UNSUPPORTED; | 
|  |  | 
|  | /* | 
|  | * It seems that there are devices which do not support ECC officially. | 
|  | * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports | 
|  | * enabling the ECC feature but don't reflect that to the READ_ID table. | 
|  | * So we have to guarantee that we disable the ECC feature directly | 
|  | * after we did the READ_ID table command. Later we can evaluate the | 
|  | * ECC_ENABLE support. | 
|  | */ | 
|  | ret = micron_nand_on_die_ecc_setup(chip, true); | 
|  | if (ret) | 
|  | return MICRON_ON_DIE_UNSUPPORTED; | 
|  |  | 
|  | ret = nand_readid_op(chip, 0, id, sizeof(id)); | 
|  | if (ret) | 
|  | return MICRON_ON_DIE_UNSUPPORTED; | 
|  |  | 
|  | ret = micron_nand_on_die_ecc_setup(chip, false); | 
|  | if (ret) | 
|  | return MICRON_ON_DIE_UNSUPPORTED; | 
|  |  | 
|  | if (!(id[4] & MICRON_ID_ECC_ENABLED)) | 
|  | return MICRON_ON_DIE_UNSUPPORTED; | 
|  |  | 
|  | ret = nand_readid_op(chip, 0, id, sizeof(id)); | 
|  | if (ret) | 
|  | return MICRON_ON_DIE_UNSUPPORTED; | 
|  |  | 
|  | if (id[4] & MICRON_ID_ECC_ENABLED) | 
|  | return MICRON_ON_DIE_MANDATORY; | 
|  |  | 
|  | /* | 
|  | * We only support on-die ECC of 4/512 or 8/512 | 
|  | */ | 
|  | if  (requirements->strength != 4 && requirements->strength != 8) | 
|  | return MICRON_ON_DIE_UNSUPPORTED; | 
|  |  | 
|  | return MICRON_ON_DIE_SUPPORTED; | 
|  | } | 
|  |  | 
|  | static int micron_nand_init(struct nand_chip *chip) | 
|  | { | 
|  | struct nand_device *base = &chip->base; | 
|  | const struct nand_ecc_props *requirements = | 
|  | nanddev_get_ecc_requirements(base); | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  | struct micron_nand *micron; | 
|  | int ondie; | 
|  | int ret; | 
|  |  | 
|  | micron = kzalloc(sizeof(*micron), GFP_KERNEL); | 
|  | if (!micron) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nand_set_manufacturer_data(chip, micron); | 
|  |  | 
|  | ret = micron_nand_onfi_init(chip); | 
|  | if (ret) | 
|  | goto err_free_manuf_data; | 
|  |  | 
|  | chip->options |= NAND_BBM_FIRSTPAGE; | 
|  |  | 
|  | if (mtd->writesize == 2048) | 
|  | chip->options |= NAND_BBM_SECONDPAGE; | 
|  |  | 
|  | ondie = micron_supports_on_die_ecc(chip); | 
|  |  | 
|  | if (ondie == MICRON_ON_DIE_MANDATORY && | 
|  | chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_DIE) { | 
|  | pr_err("On-die ECC forcefully enabled, not supported\n"); | 
|  | ret = -EINVAL; | 
|  | goto err_free_manuf_data; | 
|  | } | 
|  |  | 
|  | if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE) { | 
|  | if (ondie == MICRON_ON_DIE_UNSUPPORTED) { | 
|  | pr_err("On-die ECC selected but not supported\n"); | 
|  | ret = -EINVAL; | 
|  | goto err_free_manuf_data; | 
|  | } | 
|  |  | 
|  | if (ondie == MICRON_ON_DIE_MANDATORY) { | 
|  | micron->ecc.forced = true; | 
|  | micron->ecc.enabled = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In case of 4bit on-die ECC, we need a buffer to store a | 
|  | * page dumped in raw mode so that we can compare its content | 
|  | * to the same page after ECC correction happened and extract | 
|  | * the real number of bitflips from this comparison. | 
|  | * That's not needed for 8-bit ECC, because the status expose | 
|  | * a better approximation of the number of bitflips in a page. | 
|  | */ | 
|  | if (requirements->strength == 4) { | 
|  | micron->ecc.rawbuf = kmalloc(mtd->writesize + | 
|  | mtd->oobsize, | 
|  | GFP_KERNEL); | 
|  | if (!micron->ecc.rawbuf) { | 
|  | ret = -ENOMEM; | 
|  | goto err_free_manuf_data; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (requirements->strength == 4) | 
|  | mtd_set_ooblayout(mtd, | 
|  | µn_nand_on_die_4_ooblayout_ops); | 
|  | else | 
|  | mtd_set_ooblayout(mtd, | 
|  | µn_nand_on_die_8_ooblayout_ops); | 
|  |  | 
|  | chip->ecc.bytes = requirements->strength * 2; | 
|  | chip->ecc.size = 512; | 
|  | chip->ecc.strength = requirements->strength; | 
|  | chip->ecc.algo = NAND_ECC_ALGO_BCH; | 
|  | chip->ecc.read_page = micron_nand_read_page_on_die_ecc; | 
|  | chip->ecc.write_page = micron_nand_write_page_on_die_ecc; | 
|  |  | 
|  | if (ondie == MICRON_ON_DIE_MANDATORY) { | 
|  | chip->ecc.read_page_raw = nand_read_page_raw_notsupp; | 
|  | chip->ecc.write_page_raw = nand_write_page_raw_notsupp; | 
|  | } else { | 
|  | if (!chip->ecc.read_page_raw) | 
|  | chip->ecc.read_page_raw = nand_read_page_raw; | 
|  | if (!chip->ecc.write_page_raw) | 
|  | chip->ecc.write_page_raw = nand_write_page_raw; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_free_manuf_data: | 
|  | kfree(micron->ecc.rawbuf); | 
|  | kfree(micron); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void micron_nand_cleanup(struct nand_chip *chip) | 
|  | { | 
|  | struct micron_nand *micron = nand_get_manufacturer_data(chip); | 
|  |  | 
|  | kfree(micron->ecc.rawbuf); | 
|  | kfree(micron); | 
|  | } | 
|  |  | 
|  | static void micron_fixup_onfi_param_page(struct nand_chip *chip, | 
|  | struct nand_onfi_params *p) | 
|  | { | 
|  | /* | 
|  | * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the | 
|  | * revision number field of the ONFI parameter page. Assume ONFI | 
|  | * version 1.0 if the revision number is 00 00. | 
|  | */ | 
|  | if (le16_to_cpu(p->revision) == 0) | 
|  | p->revision = cpu_to_le16(ONFI_VERSION_1_0); | 
|  | } | 
|  |  | 
|  | const struct nand_manufacturer_ops micron_nand_manuf_ops = { | 
|  | .init = micron_nand_init, | 
|  | .cleanup = micron_nand_cleanup, | 
|  | .fixup_onfi_param_page = micron_fixup_onfi_param_page, | 
|  | }; |