| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2017 - Columbia University and Linaro Ltd. |
| * Author: Jintack Lim <jintack.lim@linaro.org> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| |
| #include <asm/fixmap.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_nested.h> |
| #include <asm/sysreg.h> |
| |
| #include "sys_regs.h" |
| |
| struct vncr_tlb { |
| /* The guest's VNCR_EL2 */ |
| u64 gva; |
| struct s1_walk_info wi; |
| struct s1_walk_result wr; |
| |
| u64 hpa; |
| |
| /* -1 when not mapped on a CPU */ |
| int cpu; |
| |
| /* |
| * true if the TLB is valid. Can only be changed with the |
| * mmu_lock held. |
| */ |
| bool valid; |
| }; |
| |
| /* |
| * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between |
| * memory usage and potential number of different sets of S2 PTs in |
| * the guests. Running out of S2 MMUs only affects performance (we |
| * will invalidate them more often). |
| */ |
| #define S2_MMU_PER_VCPU 2 |
| |
| void kvm_init_nested(struct kvm *kvm) |
| { |
| kvm->arch.nested_mmus = NULL; |
| kvm->arch.nested_mmus_size = 0; |
| atomic_set(&kvm->arch.vncr_map_count, 0); |
| } |
| |
| static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) |
| { |
| /* |
| * We only initialise the IPA range on the canonical MMU, which |
| * defines the contract between KVM and userspace on where the |
| * "hardware" is in the IPA space. This affects the validity of MMIO |
| * exits forwarded to userspace, for example. |
| * |
| * For nested S2s, we use the PARange as exposed to the guest, as it |
| * is allowed to use it at will to expose whatever memory map it |
| * wants to its own guests as it would be on real HW. |
| */ |
| return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm)); |
| } |
| |
| int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_s2_mmu *tmp; |
| int num_mmus, ret = 0; |
| |
| if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features) && |
| !cpus_have_final_cap(ARM64_HAS_HCR_NV1)) |
| return -EINVAL; |
| |
| if (!vcpu->arch.ctxt.vncr_array) |
| vcpu->arch.ctxt.vncr_array = (u64 *)__get_free_page(GFP_KERNEL_ACCOUNT | |
| __GFP_ZERO); |
| |
| if (!vcpu->arch.ctxt.vncr_array) |
| return -ENOMEM; |
| |
| /* |
| * Let's treat memory allocation failures as benign: If we fail to |
| * allocate anything, return an error and keep the allocated array |
| * alive. Userspace may try to recover by intializing the vcpu |
| * again, and there is no reason to affect the whole VM for this. |
| */ |
| num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU; |
| tmp = kvrealloc(kvm->arch.nested_mmus, |
| size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus), |
| GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| if (!tmp) |
| return -ENOMEM; |
| |
| swap(kvm->arch.nested_mmus, tmp); |
| |
| /* |
| * If we went through a realocation, adjust the MMU back-pointers in |
| * the previously initialised kvm_pgtable structures. |
| */ |
| if (kvm->arch.nested_mmus != tmp) |
| for (int i = 0; i < kvm->arch.nested_mmus_size; i++) |
| kvm->arch.nested_mmus[i].pgt->mmu = &kvm->arch.nested_mmus[i]; |
| |
| for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++) |
| ret = init_nested_s2_mmu(kvm, &kvm->arch.nested_mmus[i]); |
| |
| if (ret) { |
| for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++) |
| kvm_free_stage2_pgd(&kvm->arch.nested_mmus[i]); |
| |
| free_page((unsigned long)vcpu->arch.ctxt.vncr_array); |
| vcpu->arch.ctxt.vncr_array = NULL; |
| |
| return ret; |
| } |
| |
| kvm->arch.nested_mmus_size = num_mmus; |
| |
| return 0; |
| } |
| |
| struct s2_walk_info { |
| int (*read_desc)(phys_addr_t pa, u64 *desc, void *data); |
| void *data; |
| u64 baddr; |
| unsigned int max_oa_bits; |
| unsigned int pgshift; |
| unsigned int sl; |
| unsigned int t0sz; |
| bool be; |
| }; |
| |
| static u32 compute_fsc(int level, u32 fsc) |
| { |
| return fsc | (level & 0x3); |
| } |
| |
| static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc) |
| { |
| u32 esr; |
| |
| esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC; |
| esr |= compute_fsc(level, fsc); |
| return esr; |
| } |
| |
| static int get_ia_size(struct s2_walk_info *wi) |
| { |
| return 64 - wi->t0sz; |
| } |
| |
| static int check_base_s2_limits(struct s2_walk_info *wi, |
| int level, int input_size, int stride) |
| { |
| int start_size, ia_size; |
| |
| ia_size = get_ia_size(wi); |
| |
| /* Check translation limits */ |
| switch (BIT(wi->pgshift)) { |
| case SZ_64K: |
| if (level == 0 || (level == 1 && ia_size <= 42)) |
| return -EFAULT; |
| break; |
| case SZ_16K: |
| if (level == 0 || (level == 1 && ia_size <= 40)) |
| return -EFAULT; |
| break; |
| case SZ_4K: |
| if (level < 0 || (level == 0 && ia_size <= 42)) |
| return -EFAULT; |
| break; |
| } |
| |
| /* Check input size limits */ |
| if (input_size > ia_size) |
| return -EFAULT; |
| |
| /* Check number of entries in starting level table */ |
| start_size = input_size - ((3 - level) * stride + wi->pgshift); |
| if (start_size < 1 || start_size > stride + 4) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* Check if output is within boundaries */ |
| static int check_output_size(struct s2_walk_info *wi, phys_addr_t output) |
| { |
| unsigned int output_size = wi->max_oa_bits; |
| |
| if (output_size != 48 && (output & GENMASK_ULL(47, output_size))) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* |
| * This is essentially a C-version of the pseudo code from the ARM ARM |
| * AArch64.TranslationTableWalk function. I strongly recommend looking at |
| * that pseudocode in trying to understand this. |
| * |
| * Must be called with the kvm->srcu read lock held |
| */ |
| static int walk_nested_s2_pgd(phys_addr_t ipa, |
| struct s2_walk_info *wi, struct kvm_s2_trans *out) |
| { |
| int first_block_level, level, stride, input_size, base_lower_bound; |
| phys_addr_t base_addr; |
| unsigned int addr_top, addr_bottom; |
| u64 desc; /* page table entry */ |
| int ret; |
| phys_addr_t paddr; |
| |
| switch (BIT(wi->pgshift)) { |
| default: |
| case SZ_64K: |
| case SZ_16K: |
| level = 3 - wi->sl; |
| first_block_level = 2; |
| break; |
| case SZ_4K: |
| level = 2 - wi->sl; |
| first_block_level = 1; |
| break; |
| } |
| |
| stride = wi->pgshift - 3; |
| input_size = get_ia_size(wi); |
| if (input_size > 48 || input_size < 25) |
| return -EFAULT; |
| |
| ret = check_base_s2_limits(wi, level, input_size, stride); |
| if (WARN_ON(ret)) |
| return ret; |
| |
| base_lower_bound = 3 + input_size - ((3 - level) * stride + |
| wi->pgshift); |
| base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound); |
| |
| if (check_output_size(wi, base_addr)) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); |
| return 1; |
| } |
| |
| addr_top = input_size - 1; |
| |
| while (1) { |
| phys_addr_t index; |
| |
| addr_bottom = (3 - level) * stride + wi->pgshift; |
| index = (ipa & GENMASK_ULL(addr_top, addr_bottom)) |
| >> (addr_bottom - 3); |
| |
| paddr = base_addr | index; |
| ret = wi->read_desc(paddr, &desc, wi->data); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Handle reversedescriptors if endianness differs between the |
| * host and the guest hypervisor. |
| */ |
| if (wi->be) |
| desc = be64_to_cpu((__force __be64)desc); |
| else |
| desc = le64_to_cpu((__force __le64)desc); |
| |
| /* Check for valid descriptor at this point */ |
| if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); |
| out->desc = desc; |
| return 1; |
| } |
| |
| /* We're at the final level or block translation level */ |
| if ((desc & 3) == 1 || level == 3) |
| break; |
| |
| if (check_output_size(wi, desc)) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); |
| out->desc = desc; |
| return 1; |
| } |
| |
| base_addr = desc & GENMASK_ULL(47, wi->pgshift); |
| |
| level += 1; |
| addr_top = addr_bottom - 1; |
| } |
| |
| if (level < first_block_level) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); |
| out->desc = desc; |
| return 1; |
| } |
| |
| if (check_output_size(wi, desc)) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); |
| out->desc = desc; |
| return 1; |
| } |
| |
| if (!(desc & BIT(10))) { |
| out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS); |
| out->desc = desc; |
| return 1; |
| } |
| |
| addr_bottom += contiguous_bit_shift(desc, wi, level); |
| |
| /* Calculate and return the result */ |
| paddr = (desc & GENMASK_ULL(47, addr_bottom)) | |
| (ipa & GENMASK_ULL(addr_bottom - 1, 0)); |
| out->output = paddr; |
| out->block_size = 1UL << ((3 - level) * stride + wi->pgshift); |
| out->readable = desc & (0b01 << 6); |
| out->writable = desc & (0b10 << 6); |
| out->level = level; |
| out->desc = desc; |
| return 0; |
| } |
| |
| static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data) |
| { |
| struct kvm_vcpu *vcpu = data; |
| |
| return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc)); |
| } |
| |
| static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi) |
| { |
| wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK; |
| |
| switch (vtcr & VTCR_EL2_TG0_MASK) { |
| case VTCR_EL2_TG0_4K: |
| wi->pgshift = 12; break; |
| case VTCR_EL2_TG0_16K: |
| wi->pgshift = 14; break; |
| case VTCR_EL2_TG0_64K: |
| default: /* IMPDEF: treat any other value as 64k */ |
| wi->pgshift = 16; break; |
| } |
| |
| wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); |
| /* Global limit for now, should eventually be per-VM */ |
| wi->max_oa_bits = min(get_kvm_ipa_limit(), |
| ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr))); |
| } |
| |
| int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa, |
| struct kvm_s2_trans *result) |
| { |
| u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); |
| struct s2_walk_info wi; |
| int ret; |
| |
| result->esr = 0; |
| |
| if (!vcpu_has_nv(vcpu)) |
| return 0; |
| |
| wi.read_desc = read_guest_s2_desc; |
| wi.data = vcpu; |
| wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); |
| |
| vtcr_to_walk_info(vtcr, &wi); |
| |
| wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE; |
| |
| ret = walk_nested_s2_pgd(gipa, &wi, result); |
| if (ret) |
| result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC); |
| |
| return ret; |
| } |
| |
| static unsigned int ttl_to_size(u8 ttl) |
| { |
| int level = ttl & 3; |
| int gran = (ttl >> 2) & 3; |
| unsigned int max_size = 0; |
| |
| switch (gran) { |
| case TLBI_TTL_TG_4K: |
| switch (level) { |
| case 0: |
| break; |
| case 1: |
| max_size = SZ_1G; |
| break; |
| case 2: |
| max_size = SZ_2M; |
| break; |
| case 3: |
| max_size = SZ_4K; |
| break; |
| } |
| break; |
| case TLBI_TTL_TG_16K: |
| switch (level) { |
| case 0: |
| case 1: |
| break; |
| case 2: |
| max_size = SZ_32M; |
| break; |
| case 3: |
| max_size = SZ_16K; |
| break; |
| } |
| break; |
| case TLBI_TTL_TG_64K: |
| switch (level) { |
| case 0: |
| case 1: |
| /* No 52bit IPA support */ |
| break; |
| case 2: |
| max_size = SZ_512M; |
| break; |
| case 3: |
| max_size = SZ_64K; |
| break; |
| } |
| break; |
| default: /* No size information */ |
| break; |
| } |
| |
| return max_size; |
| } |
| |
| static u8 pgshift_level_to_ttl(u16 shift, u8 level) |
| { |
| u8 ttl; |
| |
| switch(shift) { |
| case 12: |
| ttl = TLBI_TTL_TG_4K; |
| break; |
| case 14: |
| ttl = TLBI_TTL_TG_16K; |
| break; |
| case 16: |
| ttl = TLBI_TTL_TG_64K; |
| break; |
| default: |
| BUG(); |
| } |
| |
| ttl <<= 2; |
| ttl |= level & 3; |
| |
| return ttl; |
| } |
| |
| /* |
| * Compute the equivalent of the TTL field by parsing the shadow PT. The |
| * granule size is extracted from the cached VTCR_EL2.TG0 while the level is |
| * retrieved from first entry carrying the level as a tag. |
| */ |
| static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr) |
| { |
| u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr; |
| kvm_pte_t pte; |
| u8 ttl, level; |
| |
| lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock); |
| |
| switch (vtcr & VTCR_EL2_TG0_MASK) { |
| case VTCR_EL2_TG0_4K: |
| ttl = (TLBI_TTL_TG_4K << 2); |
| break; |
| case VTCR_EL2_TG0_16K: |
| ttl = (TLBI_TTL_TG_16K << 2); |
| break; |
| case VTCR_EL2_TG0_64K: |
| default: /* IMPDEF: treat any other value as 64k */ |
| ttl = (TLBI_TTL_TG_64K << 2); |
| break; |
| } |
| |
| tmp = addr; |
| |
| again: |
| /* Iteratively compute the block sizes for a particular granule size */ |
| switch (vtcr & VTCR_EL2_TG0_MASK) { |
| case VTCR_EL2_TG0_4K: |
| if (sz < SZ_4K) sz = SZ_4K; |
| else if (sz < SZ_2M) sz = SZ_2M; |
| else if (sz < SZ_1G) sz = SZ_1G; |
| else sz = 0; |
| break; |
| case VTCR_EL2_TG0_16K: |
| if (sz < SZ_16K) sz = SZ_16K; |
| else if (sz < SZ_32M) sz = SZ_32M; |
| else sz = 0; |
| break; |
| case VTCR_EL2_TG0_64K: |
| default: /* IMPDEF: treat any other value as 64k */ |
| if (sz < SZ_64K) sz = SZ_64K; |
| else if (sz < SZ_512M) sz = SZ_512M; |
| else sz = 0; |
| break; |
| } |
| |
| if (sz == 0) |
| return 0; |
| |
| tmp &= ~(sz - 1); |
| if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL)) |
| goto again; |
| if (!(pte & PTE_VALID)) |
| goto again; |
| level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte); |
| if (!level) |
| goto again; |
| |
| ttl |= level; |
| |
| /* |
| * We now have found some level information in the shadow S2. Check |
| * that the resulting range is actually including the original IPA. |
| */ |
| sz = ttl_to_size(ttl); |
| if (addr < (tmp + sz)) |
| return ttl; |
| |
| return 0; |
| } |
| |
| unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val) |
| { |
| struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); |
| unsigned long max_size; |
| u8 ttl; |
| |
| ttl = FIELD_GET(TLBI_TTL_MASK, val); |
| |
| if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) { |
| /* No TTL, check the shadow S2 for a hint */ |
| u64 addr = (val & GENMASK_ULL(35, 0)) << 12; |
| ttl = get_guest_mapping_ttl(mmu, addr); |
| } |
| |
| max_size = ttl_to_size(ttl); |
| |
| if (!max_size) { |
| /* Compute the maximum extent of the invalidation */ |
| switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) { |
| case VTCR_EL2_TG0_4K: |
| max_size = SZ_1G; |
| break; |
| case VTCR_EL2_TG0_16K: |
| max_size = SZ_32M; |
| break; |
| case VTCR_EL2_TG0_64K: |
| default: /* IMPDEF: treat any other value as 64k */ |
| /* |
| * No, we do not support 52bit IPA in nested yet. Once |
| * we do, this should be 4TB. |
| */ |
| max_size = SZ_512M; |
| break; |
| } |
| } |
| |
| WARN_ON(!max_size); |
| return max_size; |
| } |
| |
| /* |
| * We can have multiple *different* MMU contexts with the same VMID: |
| * |
| * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit |
| * |
| * - Multiple vcpus using private S2s (huh huh...), hence differing by the |
| * VBBTR_EL2.BADDR address |
| * |
| * - A combination of the above... |
| * |
| * We can always identify which MMU context to pick at run-time. However, |
| * TLB invalidation involving a VMID must take action on all the TLBs using |
| * this particular VMID. This translates into applying the same invalidation |
| * operation to all the contexts that are using this VMID. Moar phun! |
| */ |
| void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid, |
| const union tlbi_info *info, |
| void (*tlbi_callback)(struct kvm_s2_mmu *, |
| const union tlbi_info *)) |
| { |
| write_lock(&kvm->mmu_lock); |
| |
| for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (!kvm_s2_mmu_valid(mmu)) |
| continue; |
| |
| if (vmid == get_vmid(mmu->tlb_vttbr)) |
| tlbi_callback(mmu, info); |
| } |
| |
| write_unlock(&kvm->mmu_lock); |
| } |
| |
| struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| bool nested_stage2_enabled; |
| u64 vttbr, vtcr, hcr; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| |
| vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); |
| vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); |
| hcr = vcpu_read_sys_reg(vcpu, HCR_EL2); |
| |
| nested_stage2_enabled = hcr & HCR_VM; |
| |
| /* Don't consider the CnP bit for the vttbr match */ |
| vttbr &= ~VTTBR_CNP_BIT; |
| |
| /* |
| * Two possibilities when looking up a S2 MMU context: |
| * |
| * - either S2 is enabled in the guest, and we need a context that is |
| * S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR, |
| * which makes it safe from a TLB conflict perspective (a broken |
| * guest won't be able to generate them), |
| * |
| * - or S2 is disabled, and we need a context that is S2-disabled |
| * and matches the VMID only, as all TLBs are tagged by VMID even |
| * if S2 translation is disabled. |
| */ |
| for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (!kvm_s2_mmu_valid(mmu)) |
| continue; |
| |
| if (nested_stage2_enabled && |
| mmu->nested_stage2_enabled && |
| vttbr == mmu->tlb_vttbr && |
| vtcr == mmu->tlb_vtcr) |
| return mmu; |
| |
| if (!nested_stage2_enabled && |
| !mmu->nested_stage2_enabled && |
| get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr)) |
| return mmu; |
| } |
| return NULL; |
| } |
| |
| static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_s2_mmu *s2_mmu; |
| int i; |
| |
| lockdep_assert_held_write(&vcpu->kvm->mmu_lock); |
| |
| s2_mmu = lookup_s2_mmu(vcpu); |
| if (s2_mmu) |
| goto out; |
| |
| /* |
| * Make sure we don't always search from the same point, or we |
| * will always reuse a potentially active context, leaving |
| * free contexts unused. |
| */ |
| for (i = kvm->arch.nested_mmus_next; |
| i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next); |
| i++) { |
| s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size]; |
| |
| if (atomic_read(&s2_mmu->refcnt) == 0) |
| break; |
| } |
| BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */ |
| |
| /* Set the scene for the next search */ |
| kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size; |
| |
| /* Make sure we don't forget to do the laundry */ |
| if (kvm_s2_mmu_valid(s2_mmu)) |
| s2_mmu->pending_unmap = true; |
| |
| /* |
| * The virtual VMID (modulo CnP) will be used as a key when matching |
| * an existing kvm_s2_mmu. |
| * |
| * We cache VTCR at allocation time, once and for all. It'd be great |
| * if the guest didn't screw that one up, as this is not very |
| * forgiving... |
| */ |
| s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT; |
| s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); |
| s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM; |
| |
| out: |
| atomic_inc(&s2_mmu->refcnt); |
| |
| /* |
| * Set the vCPU request to perform an unmap, even if the pending unmap |
| * originates from another vCPU. This guarantees that the MMU has been |
| * completely unmapped before any vCPU actually uses it, and allows |
| * multiple vCPUs to lend a hand with completing the unmap. |
| */ |
| if (s2_mmu->pending_unmap) |
| kvm_make_request(KVM_REQ_NESTED_S2_UNMAP, vcpu); |
| |
| return s2_mmu; |
| } |
| |
| void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu) |
| { |
| /* CnP being set denotes an invalid entry */ |
| mmu->tlb_vttbr = VTTBR_CNP_BIT; |
| mmu->nested_stage2_enabled = false; |
| atomic_set(&mmu->refcnt, 0); |
| } |
| |
| void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * If the vCPU kept its reference on the MMU after the last put, |
| * keep rolling with it. |
| */ |
| if (is_hyp_ctxt(vcpu)) { |
| if (!vcpu->arch.hw_mmu) |
| vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; |
| } else { |
| if (!vcpu->arch.hw_mmu) { |
| scoped_guard(write_lock, &vcpu->kvm->mmu_lock) |
| vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu); |
| } |
| |
| if (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) |
| kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu); |
| } |
| } |
| |
| void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu) |
| { |
| /* Unconditionally drop the VNCR mapping if we have one */ |
| if (host_data_test_flag(L1_VNCR_MAPPED)) { |
| BUG_ON(vcpu->arch.vncr_tlb->cpu != smp_processor_id()); |
| BUG_ON(is_hyp_ctxt(vcpu)); |
| |
| clear_fixmap(vncr_fixmap(vcpu->arch.vncr_tlb->cpu)); |
| vcpu->arch.vncr_tlb->cpu = -1; |
| host_data_clear_flag(L1_VNCR_MAPPED); |
| atomic_dec(&vcpu->kvm->arch.vncr_map_count); |
| } |
| |
| /* |
| * Keep a reference on the associated stage-2 MMU if the vCPU is |
| * scheduling out and not in WFI emulation, suggesting it is likely to |
| * reuse the MMU sometime soon. |
| */ |
| if (vcpu->scheduled_out && !vcpu_get_flag(vcpu, IN_WFI)) |
| return; |
| |
| if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) |
| atomic_dec(&vcpu->arch.hw_mmu->refcnt); |
| |
| vcpu->arch.hw_mmu = NULL; |
| } |
| |
| /* |
| * Returns non-zero if permission fault is handled by injecting it to the next |
| * level hypervisor. |
| */ |
| int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans) |
| { |
| bool forward_fault = false; |
| |
| trans->esr = 0; |
| |
| if (!kvm_vcpu_trap_is_permission_fault(vcpu)) |
| return 0; |
| |
| if (kvm_vcpu_trap_is_iabt(vcpu)) { |
| forward_fault = !kvm_s2_trans_executable(trans); |
| } else { |
| bool write_fault = kvm_is_write_fault(vcpu); |
| |
| forward_fault = ((write_fault && !trans->writable) || |
| (!write_fault && !trans->readable)); |
| } |
| |
| if (forward_fault) |
| trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM); |
| |
| return forward_fault; |
| } |
| |
| int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2) |
| { |
| vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2); |
| vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2); |
| |
| return kvm_inject_nested_sync(vcpu, esr_el2); |
| } |
| |
| static void invalidate_vncr(struct vncr_tlb *vt) |
| { |
| vt->valid = false; |
| if (vt->cpu != -1) |
| clear_fixmap(vncr_fixmap(vt->cpu)); |
| } |
| |
| static void kvm_invalidate_vncr_ipa(struct kvm *kvm, u64 start, u64 end) |
| { |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| |
| if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)) |
| return; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| struct vncr_tlb *vt = vcpu->arch.vncr_tlb; |
| u64 ipa_start, ipa_end, ipa_size; |
| |
| /* |
| * Careful here: We end-up here from an MMU notifier, |
| * and this can race against a vcpu not being onlined |
| * yet, without the pseudo-TLB being allocated. |
| * |
| * Skip those, as they obviously don't participate in |
| * the invalidation at this stage. |
| */ |
| if (!vt) |
| continue; |
| |
| if (!vt->valid) |
| continue; |
| |
| ipa_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift, |
| vt->wr.level)); |
| ipa_start = vt->wr.pa & (ipa_size - 1); |
| ipa_end = ipa_start + ipa_size; |
| |
| if (ipa_end <= start || ipa_start >= end) |
| continue; |
| |
| invalidate_vncr(vt); |
| } |
| } |
| |
| struct s1e2_tlbi_scope { |
| enum { |
| TLBI_ALL, |
| TLBI_VA, |
| TLBI_VAA, |
| TLBI_ASID, |
| } type; |
| |
| u16 asid; |
| u64 va; |
| u64 size; |
| }; |
| |
| static void invalidate_vncr_va(struct kvm *kvm, |
| struct s1e2_tlbi_scope *scope) |
| { |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| struct vncr_tlb *vt = vcpu->arch.vncr_tlb; |
| u64 va_start, va_end, va_size; |
| |
| if (!vt->valid) |
| continue; |
| |
| va_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift, |
| vt->wr.level)); |
| va_start = vt->gva & (va_size - 1); |
| va_end = va_start + va_size; |
| |
| switch (scope->type) { |
| case TLBI_ALL: |
| break; |
| |
| case TLBI_VA: |
| if (va_end <= scope->va || |
| va_start >= (scope->va + scope->size)) |
| continue; |
| if (vt->wr.nG && vt->wr.asid != scope->asid) |
| continue; |
| break; |
| |
| case TLBI_VAA: |
| if (va_end <= scope->va || |
| va_start >= (scope->va + scope->size)) |
| continue; |
| break; |
| |
| case TLBI_ASID: |
| if (!vt->wr.nG || vt->wr.asid != scope->asid) |
| continue; |
| break; |
| } |
| |
| invalidate_vncr(vt); |
| } |
| } |
| |
| #define tlbi_va_s1_to_va(v) (u64)sign_extend64((v) << 12, 48) |
| |
| static void compute_s1_tlbi_range(struct kvm_vcpu *vcpu, u32 inst, u64 val, |
| struct s1e2_tlbi_scope *scope) |
| { |
| switch (inst) { |
| case OP_TLBI_ALLE2: |
| case OP_TLBI_ALLE2IS: |
| case OP_TLBI_ALLE2OS: |
| case OP_TLBI_VMALLE1: |
| case OP_TLBI_VMALLE1IS: |
| case OP_TLBI_VMALLE1OS: |
| case OP_TLBI_ALLE2NXS: |
| case OP_TLBI_ALLE2ISNXS: |
| case OP_TLBI_ALLE2OSNXS: |
| case OP_TLBI_VMALLE1NXS: |
| case OP_TLBI_VMALLE1ISNXS: |
| case OP_TLBI_VMALLE1OSNXS: |
| scope->type = TLBI_ALL; |
| break; |
| case OP_TLBI_VAE2: |
| case OP_TLBI_VAE2IS: |
| case OP_TLBI_VAE2OS: |
| case OP_TLBI_VAE1: |
| case OP_TLBI_VAE1IS: |
| case OP_TLBI_VAE1OS: |
| case OP_TLBI_VAE2NXS: |
| case OP_TLBI_VAE2ISNXS: |
| case OP_TLBI_VAE2OSNXS: |
| case OP_TLBI_VAE1NXS: |
| case OP_TLBI_VAE1ISNXS: |
| case OP_TLBI_VAE1OSNXS: |
| case OP_TLBI_VALE2: |
| case OP_TLBI_VALE2IS: |
| case OP_TLBI_VALE2OS: |
| case OP_TLBI_VALE1: |
| case OP_TLBI_VALE1IS: |
| case OP_TLBI_VALE1OS: |
| case OP_TLBI_VALE2NXS: |
| case OP_TLBI_VALE2ISNXS: |
| case OP_TLBI_VALE2OSNXS: |
| case OP_TLBI_VALE1NXS: |
| case OP_TLBI_VALE1ISNXS: |
| case OP_TLBI_VALE1OSNXS: |
| scope->type = TLBI_VA; |
| scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val)); |
| if (!scope->size) |
| scope->size = SZ_1G; |
| scope->va = tlbi_va_s1_to_va(val) & ~(scope->size - 1); |
| scope->asid = FIELD_GET(TLBIR_ASID_MASK, val); |
| break; |
| case OP_TLBI_ASIDE1: |
| case OP_TLBI_ASIDE1IS: |
| case OP_TLBI_ASIDE1OS: |
| case OP_TLBI_ASIDE1NXS: |
| case OP_TLBI_ASIDE1ISNXS: |
| case OP_TLBI_ASIDE1OSNXS: |
| scope->type = TLBI_ASID; |
| scope->asid = FIELD_GET(TLBIR_ASID_MASK, val); |
| break; |
| case OP_TLBI_VAAE1: |
| case OP_TLBI_VAAE1IS: |
| case OP_TLBI_VAAE1OS: |
| case OP_TLBI_VAAE1NXS: |
| case OP_TLBI_VAAE1ISNXS: |
| case OP_TLBI_VAAE1OSNXS: |
| case OP_TLBI_VAALE1: |
| case OP_TLBI_VAALE1IS: |
| case OP_TLBI_VAALE1OS: |
| case OP_TLBI_VAALE1NXS: |
| case OP_TLBI_VAALE1ISNXS: |
| case OP_TLBI_VAALE1OSNXS: |
| scope->type = TLBI_VAA; |
| scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val)); |
| if (!scope->size) |
| scope->size = SZ_1G; |
| scope->va = tlbi_va_s1_to_va(val) & ~(scope->size - 1); |
| break; |
| case OP_TLBI_RVAE2: |
| case OP_TLBI_RVAE2IS: |
| case OP_TLBI_RVAE2OS: |
| case OP_TLBI_RVAE1: |
| case OP_TLBI_RVAE1IS: |
| case OP_TLBI_RVAE1OS: |
| case OP_TLBI_RVAE2NXS: |
| case OP_TLBI_RVAE2ISNXS: |
| case OP_TLBI_RVAE2OSNXS: |
| case OP_TLBI_RVAE1NXS: |
| case OP_TLBI_RVAE1ISNXS: |
| case OP_TLBI_RVAE1OSNXS: |
| case OP_TLBI_RVALE2: |
| case OP_TLBI_RVALE2IS: |
| case OP_TLBI_RVALE2OS: |
| case OP_TLBI_RVALE1: |
| case OP_TLBI_RVALE1IS: |
| case OP_TLBI_RVALE1OS: |
| case OP_TLBI_RVALE2NXS: |
| case OP_TLBI_RVALE2ISNXS: |
| case OP_TLBI_RVALE2OSNXS: |
| case OP_TLBI_RVALE1NXS: |
| case OP_TLBI_RVALE1ISNXS: |
| case OP_TLBI_RVALE1OSNXS: |
| scope->type = TLBI_VA; |
| scope->va = decode_range_tlbi(val, &scope->size, &scope->asid); |
| break; |
| case OP_TLBI_RVAAE1: |
| case OP_TLBI_RVAAE1IS: |
| case OP_TLBI_RVAAE1OS: |
| case OP_TLBI_RVAAE1NXS: |
| case OP_TLBI_RVAAE1ISNXS: |
| case OP_TLBI_RVAAE1OSNXS: |
| case OP_TLBI_RVAALE1: |
| case OP_TLBI_RVAALE1IS: |
| case OP_TLBI_RVAALE1OS: |
| case OP_TLBI_RVAALE1NXS: |
| case OP_TLBI_RVAALE1ISNXS: |
| case OP_TLBI_RVAALE1OSNXS: |
| scope->type = TLBI_VAA; |
| scope->va = decode_range_tlbi(val, &scope->size, NULL); |
| break; |
| } |
| } |
| |
| void kvm_handle_s1e2_tlbi(struct kvm_vcpu *vcpu, u32 inst, u64 val) |
| { |
| struct s1e2_tlbi_scope scope = {}; |
| |
| compute_s1_tlbi_range(vcpu, inst, val, &scope); |
| |
| guard(write_lock)(&vcpu->kvm->mmu_lock); |
| invalidate_vncr_va(vcpu->kvm, &scope); |
| } |
| |
| void kvm_nested_s2_wp(struct kvm *kvm) |
| { |
| int i; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| |
| for (i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (kvm_s2_mmu_valid(mmu)) |
| kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu)); |
| } |
| |
| kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits)); |
| } |
| |
| void kvm_nested_s2_unmap(struct kvm *kvm, bool may_block) |
| { |
| int i; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| |
| for (i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (kvm_s2_mmu_valid(mmu)) |
| kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), may_block); |
| } |
| |
| kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits)); |
| } |
| |
| void kvm_nested_s2_flush(struct kvm *kvm) |
| { |
| int i; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| |
| for (i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (kvm_s2_mmu_valid(mmu)) |
| kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu)); |
| } |
| } |
| |
| void kvm_arch_flush_shadow_all(struct kvm *kvm) |
| { |
| int i; |
| |
| for (i = 0; i < kvm->arch.nested_mmus_size; i++) { |
| struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; |
| |
| if (!WARN_ON(atomic_read(&mmu->refcnt))) |
| kvm_free_stage2_pgd(mmu); |
| } |
| kvfree(kvm->arch.nested_mmus); |
| kvm->arch.nested_mmus = NULL; |
| kvm->arch.nested_mmus_size = 0; |
| kvm_uninit_stage2_mmu(kvm); |
| } |
| |
| /* |
| * Dealing with VNCR_EL2 exposed by the *guest* is a complicated matter: |
| * |
| * - We introduce an internal representation of a vcpu-private TLB, |
| * representing the mapping between the guest VA contained in VNCR_EL2, |
| * the IPA the guest's EL2 PTs point to, and the actual PA this lives at. |
| * |
| * - On translation fault from a nested VNCR access, we create such a TLB. |
| * If there is no mapping to describe, the guest inherits the fault. |
| * Crucially, no actual mapping is done at this stage. |
| * |
| * - On vcpu_load() in a non-HYP context with HCR_EL2.NV==1, if the above |
| * TLB exists, we map it in the fixmap for this CPU, and run with it. We |
| * have to respect the permissions dictated by the guest, but not the |
| * memory type (FWB is a must). |
| * |
| * - Note that we usually don't do a vcpu_load() on the back of a fault |
| * (unless we are preempted), so the resolution of a translation fault |
| * must go via a request that will map the VNCR page in the fixmap. |
| * vcpu_load() might as well use the same mechanism. |
| * |
| * - On vcpu_put() in a non-HYP context with HCR_EL2.NV==1, if the TLB was |
| * mapped, we unmap it. Yes it is that simple. The TLB still exists |
| * though, and may be reused at a later load. |
| * |
| * - On permission fault, we simply forward the fault to the guest's EL2. |
| * Get out of my way. |
| * |
| * - On any TLBI for the EL2&0 translation regime, we must find any TLB that |
| * intersects with the TLBI request, invalidate it, and unmap the page |
| * from the fixmap. Because we need to look at all the vcpu-private TLBs, |
| * this requires some wide-ranging locking to ensure that nothing races |
| * against it. This may require some refcounting to avoid the search when |
| * no such TLB is present. |
| * |
| * - On MMU notifiers, we must invalidate our TLB in a similar way, but |
| * looking at the IPA instead. The funny part is that there may not be a |
| * stage-2 mapping for this page if L1 hasn't accessed it using LD/ST |
| * instructions. |
| */ |
| |
| int kvm_vcpu_allocate_vncr_tlb(struct kvm_vcpu *vcpu) |
| { |
| if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)) |
| return 0; |
| |
| vcpu->arch.vncr_tlb = kzalloc(sizeof(*vcpu->arch.vncr_tlb), |
| GFP_KERNEL_ACCOUNT); |
| if (!vcpu->arch.vncr_tlb) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static u64 read_vncr_el2(struct kvm_vcpu *vcpu) |
| { |
| return (u64)sign_extend64(__vcpu_sys_reg(vcpu, VNCR_EL2), 48); |
| } |
| |
| static int kvm_translate_vncr(struct kvm_vcpu *vcpu) |
| { |
| bool write_fault, writable; |
| unsigned long mmu_seq; |
| struct vncr_tlb *vt; |
| struct page *page; |
| u64 va, pfn, gfn; |
| int ret; |
| |
| vt = vcpu->arch.vncr_tlb; |
| |
| /* |
| * If we're about to walk the EL2 S1 PTs, we must invalidate the |
| * current TLB, as it could be sampled from another vcpu doing a |
| * TLBI *IS. A real CPU wouldn't do that, but we only keep a single |
| * translation, so not much of a choice. |
| * |
| * We also prepare the next walk wilst we're at it. |
| */ |
| scoped_guard(write_lock, &vcpu->kvm->mmu_lock) { |
| invalidate_vncr(vt); |
| |
| vt->wi = (struct s1_walk_info) { |
| .regime = TR_EL20, |
| .as_el0 = false, |
| .pan = false, |
| }; |
| vt->wr = (struct s1_walk_result){}; |
| } |
| |
| guard(srcu)(&vcpu->kvm->srcu); |
| |
| va = read_vncr_el2(vcpu); |
| |
| ret = __kvm_translate_va(vcpu, &vt->wi, &vt->wr, va); |
| if (ret) |
| return ret; |
| |
| write_fault = kvm_is_write_fault(vcpu); |
| |
| mmu_seq = vcpu->kvm->mmu_invalidate_seq; |
| smp_rmb(); |
| |
| gfn = vt->wr.pa >> PAGE_SHIFT; |
| pfn = kvm_faultin_pfn(vcpu, gfn, write_fault, &writable, &page); |
| if (is_error_noslot_pfn(pfn) || (write_fault && !writable)) |
| return -EFAULT; |
| |
| scoped_guard(write_lock, &vcpu->kvm->mmu_lock) { |
| if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) |
| return -EAGAIN; |
| |
| vt->gva = va; |
| vt->hpa = pfn << PAGE_SHIFT; |
| vt->valid = true; |
| vt->cpu = -1; |
| |
| kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu); |
| kvm_release_faultin_page(vcpu->kvm, page, false, vt->wr.pw); |
| } |
| |
| if (vt->wr.pw) |
| mark_page_dirty(vcpu->kvm, gfn); |
| |
| return 0; |
| } |
| |
| static void inject_vncr_perm(struct kvm_vcpu *vcpu) |
| { |
| struct vncr_tlb *vt = vcpu->arch.vncr_tlb; |
| u64 esr = kvm_vcpu_get_esr(vcpu); |
| |
| /* Adjust the fault level to reflect that of the guest's */ |
| esr &= ~ESR_ELx_FSC; |
| esr |= FIELD_PREP(ESR_ELx_FSC, |
| ESR_ELx_FSC_PERM_L(vt->wr.level)); |
| |
| kvm_inject_nested_sync(vcpu, esr); |
| } |
| |
| static bool kvm_vncr_tlb_lookup(struct kvm_vcpu *vcpu) |
| { |
| struct vncr_tlb *vt = vcpu->arch.vncr_tlb; |
| |
| lockdep_assert_held_read(&vcpu->kvm->mmu_lock); |
| |
| if (!vt->valid) |
| return false; |
| |
| if (read_vncr_el2(vcpu) != vt->gva) |
| return false; |
| |
| if (vt->wr.nG) { |
| u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2); |
| u64 ttbr = ((tcr & TCR_A1) ? |
| vcpu_read_sys_reg(vcpu, TTBR1_EL2) : |
| vcpu_read_sys_reg(vcpu, TTBR0_EL2)); |
| u16 asid; |
| |
| asid = FIELD_GET(TTBR_ASID_MASK, ttbr); |
| if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) || |
| !(tcr & TCR_ASID16)) |
| asid &= GENMASK(7, 0); |
| |
| return asid != vt->wr.asid; |
| } |
| |
| return true; |
| } |
| |
| int kvm_handle_vncr_abort(struct kvm_vcpu *vcpu) |
| { |
| struct vncr_tlb *vt = vcpu->arch.vncr_tlb; |
| u64 esr = kvm_vcpu_get_esr(vcpu); |
| |
| BUG_ON(!(esr & ESR_ELx_VNCR_SHIFT)); |
| |
| if (esr_fsc_is_permission_fault(esr)) { |
| inject_vncr_perm(vcpu); |
| } else if (esr_fsc_is_translation_fault(esr)) { |
| bool valid; |
| int ret; |
| |
| scoped_guard(read_lock, &vcpu->kvm->mmu_lock) |
| valid = kvm_vncr_tlb_lookup(vcpu); |
| |
| if (!valid) |
| ret = kvm_translate_vncr(vcpu); |
| else |
| ret = -EPERM; |
| |
| switch (ret) { |
| case -EAGAIN: |
| case -ENOMEM: |
| /* Let's try again... */ |
| break; |
| case -EFAULT: |
| case -EINVAL: |
| case -ENOENT: |
| case -EACCES: |
| /* |
| * Translation failed, inject the corresponding |
| * exception back to EL2. |
| */ |
| BUG_ON(!vt->wr.failed); |
| |
| esr &= ~ESR_ELx_FSC; |
| esr |= FIELD_PREP(ESR_ELx_FSC, vt->wr.fst); |
| |
| kvm_inject_nested_sync(vcpu, esr); |
| break; |
| case -EPERM: |
| /* Hack to deal with POE until we get kernel support */ |
| inject_vncr_perm(vcpu); |
| break; |
| case 0: |
| break; |
| } |
| } else { |
| WARN_ONCE(1, "Unhandled VNCR abort, ESR=%llx\n", esr); |
| } |
| |
| return 1; |
| } |
| |
| static void kvm_map_l1_vncr(struct kvm_vcpu *vcpu) |
| { |
| struct vncr_tlb *vt = vcpu->arch.vncr_tlb; |
| pgprot_t prot; |
| |
| guard(preempt)(); |
| guard(read_lock)(&vcpu->kvm->mmu_lock); |
| |
| /* |
| * The request to map VNCR may have raced against some other |
| * event, such as an interrupt, and may not be valid anymore. |
| */ |
| if (is_hyp_ctxt(vcpu)) |
| return; |
| |
| /* |
| * Check that the pseudo-TLB is valid and that VNCR_EL2 still |
| * contains the expected value. If it doesn't, we simply bail out |
| * without a mapping -- a transformed MSR/MRS will generate the |
| * fault and allows us to populate the pseudo-TLB. |
| */ |
| if (!vt->valid) |
| return; |
| |
| if (read_vncr_el2(vcpu) != vt->gva) |
| return; |
| |
| if (vt->wr.nG) { |
| u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2); |
| u64 ttbr = ((tcr & TCR_A1) ? |
| vcpu_read_sys_reg(vcpu, TTBR1_EL2) : |
| vcpu_read_sys_reg(vcpu, TTBR0_EL2)); |
| u16 asid; |
| |
| asid = FIELD_GET(TTBR_ASID_MASK, ttbr); |
| if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) || |
| !(tcr & TCR_ASID16)) |
| asid &= GENMASK(7, 0); |
| |
| if (asid != vt->wr.asid) |
| return; |
| } |
| |
| vt->cpu = smp_processor_id(); |
| |
| if (vt->wr.pw && vt->wr.pr) |
| prot = PAGE_KERNEL; |
| else if (vt->wr.pr) |
| prot = PAGE_KERNEL_RO; |
| else |
| prot = PAGE_NONE; |
| |
| /* |
| * We can't map write-only (or no permission at all) in the kernel, |
| * but the guest can do it if using POE, so we'll have to turn a |
| * translation fault into a permission fault at runtime. |
| * FIXME: WO doesn't work at all, need POE support in the kernel. |
| */ |
| if (pgprot_val(prot) != pgprot_val(PAGE_NONE)) { |
| __set_fixmap(vncr_fixmap(vt->cpu), vt->hpa, prot); |
| host_data_set_flag(L1_VNCR_MAPPED); |
| atomic_inc(&vcpu->kvm->arch.vncr_map_count); |
| } |
| } |
| |
| #define has_tgran_2(__r, __sz) \ |
| ({ \ |
| u64 _s1, _s2, _mmfr0 = __r; \ |
| \ |
| _s2 = SYS_FIELD_GET(ID_AA64MMFR0_EL1, \ |
| TGRAN##__sz##_2, _mmfr0); \ |
| \ |
| _s1 = SYS_FIELD_GET(ID_AA64MMFR0_EL1, \ |
| TGRAN##__sz, _mmfr0); \ |
| \ |
| ((_s2 != ID_AA64MMFR0_EL1_TGRAN##__sz##_2_NI && \ |
| _s2 != ID_AA64MMFR0_EL1_TGRAN##__sz##_2_TGRAN##__sz) || \ |
| (_s2 == ID_AA64MMFR0_EL1_TGRAN##__sz##_2_TGRAN##__sz && \ |
| _s1 != ID_AA64MMFR0_EL1_TGRAN##__sz##_NI)); \ |
| }) |
| /* |
| * Our emulated CPU doesn't support all the possible features. For the |
| * sake of simplicity (and probably mental sanity), wipe out a number |
| * of feature bits we don't intend to support for the time being. |
| * This list should get updated as new features get added to the NV |
| * support, and new extension to the architecture. |
| */ |
| u64 limit_nv_id_reg(struct kvm *kvm, u32 reg, u64 val) |
| { |
| u64 orig_val = val; |
| |
| switch (reg) { |
| case SYS_ID_AA64ISAR0_EL1: |
| /* Support everything but TME */ |
| val &= ~ID_AA64ISAR0_EL1_TME; |
| break; |
| |
| case SYS_ID_AA64ISAR1_EL1: |
| /* Support everything but LS64 and Spec Invalidation */ |
| val &= ~(ID_AA64ISAR1_EL1_LS64 | |
| ID_AA64ISAR1_EL1_SPECRES); |
| break; |
| |
| case SYS_ID_AA64PFR0_EL1: |
| /* No RME, AMU, MPAM, or S-EL2 */ |
| val &= ~(ID_AA64PFR0_EL1_RME | |
| ID_AA64PFR0_EL1_AMU | |
| ID_AA64PFR0_EL1_MPAM | |
| ID_AA64PFR0_EL1_SEL2 | |
| ID_AA64PFR0_EL1_EL3 | |
| ID_AA64PFR0_EL1_EL2 | |
| ID_AA64PFR0_EL1_EL1 | |
| ID_AA64PFR0_EL1_EL0); |
| /* 64bit only at any EL */ |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL0, IMP); |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL1, IMP); |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL2, IMP); |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL3, IMP); |
| break; |
| |
| case SYS_ID_AA64PFR1_EL1: |
| /* Only support BTI, SSBS, CSV2_frac */ |
| val &= (ID_AA64PFR1_EL1_BT | |
| ID_AA64PFR1_EL1_SSBS | |
| ID_AA64PFR1_EL1_CSV2_frac); |
| break; |
| |
| case SYS_ID_AA64MMFR0_EL1: |
| /* Hide ExS, Secure Memory */ |
| val &= ~(ID_AA64MMFR0_EL1_EXS | |
| ID_AA64MMFR0_EL1_TGRAN4_2 | |
| ID_AA64MMFR0_EL1_TGRAN16_2 | |
| ID_AA64MMFR0_EL1_TGRAN64_2 | |
| ID_AA64MMFR0_EL1_SNSMEM); |
| |
| /* Hide CNTPOFF if present */ |
| val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, ECV, IMP); |
| |
| /* Disallow unsupported S2 page sizes */ |
| switch (PAGE_SIZE) { |
| case SZ_64K: |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, NI); |
| fallthrough; |
| case SZ_16K: |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, NI); |
| fallthrough; |
| case SZ_4K: |
| /* Support everything */ |
| break; |
| } |
| |
| /* |
| * Since we can't support a guest S2 page size smaller |
| * than the host's own page size (due to KVM only |
| * populating its own S2 using the kernel's page |
| * size), advertise the limitation using FEAT_GTG. |
| */ |
| switch (PAGE_SIZE) { |
| case SZ_4K: |
| if (has_tgran_2(orig_val, 4)) |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, IMP); |
| fallthrough; |
| case SZ_16K: |
| if (has_tgran_2(orig_val, 16)) |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, IMP); |
| fallthrough; |
| case SZ_64K: |
| if (has_tgran_2(orig_val, 64)) |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN64_2, IMP); |
| break; |
| } |
| |
| /* Cap PARange to 48bits */ |
| val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, PARANGE, 48); |
| break; |
| |
| case SYS_ID_AA64MMFR1_EL1: |
| val &= (ID_AA64MMFR1_EL1_HCX | |
| ID_AA64MMFR1_EL1_PAN | |
| ID_AA64MMFR1_EL1_LO | |
| ID_AA64MMFR1_EL1_HPDS | |
| ID_AA64MMFR1_EL1_VH | |
| ID_AA64MMFR1_EL1_VMIDBits); |
| /* FEAT_E2H0 implies no VHE */ |
| if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) |
| val &= ~ID_AA64MMFR1_EL1_VH; |
| break; |
| |
| case SYS_ID_AA64MMFR2_EL1: |
| val &= ~(ID_AA64MMFR2_EL1_BBM | |
| ID_AA64MMFR2_EL1_TTL | |
| GENMASK_ULL(47, 44) | |
| ID_AA64MMFR2_EL1_ST | |
| ID_AA64MMFR2_EL1_CCIDX | |
| ID_AA64MMFR2_EL1_VARange); |
| |
| /* Force TTL support */ |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR2_EL1, TTL, IMP); |
| break; |
| |
| case SYS_ID_AA64MMFR4_EL1: |
| /* |
| * You get EITHER |
| * |
| * - FEAT_VHE without FEAT_E2H0 |
| * - FEAT_NV limited to FEAT_NV2 |
| * - HCR_EL2.NV1 being RES0 |
| * |
| * OR |
| * |
| * - FEAT_E2H0 without FEAT_VHE nor FEAT_NV |
| * |
| * Life is too short for anything else. |
| */ |
| if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) { |
| val = 0; |
| } else { |
| val = SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY); |
| val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, E2H0, NI_NV1); |
| } |
| break; |
| |
| case SYS_ID_AA64DFR0_EL1: |
| /* Only limited support for PMU, Debug, BPs, WPs, and HPMN0 */ |
| val &= (ID_AA64DFR0_EL1_PMUVer | |
| ID_AA64DFR0_EL1_WRPs | |
| ID_AA64DFR0_EL1_BRPs | |
| ID_AA64DFR0_EL1_DebugVer| |
| ID_AA64DFR0_EL1_HPMN0); |
| |
| /* Cap Debug to ARMv8.1 */ |
| val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, VHE); |
| break; |
| } |
| |
| return val; |
| } |
| |
| u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *vcpu, |
| enum vcpu_sysreg sr, u64 v) |
| { |
| struct kvm_sysreg_masks *masks; |
| |
| masks = vcpu->kvm->arch.sysreg_masks; |
| |
| if (masks) { |
| sr -= __SANITISED_REG_START__; |
| |
| v &= ~masks->mask[sr].res0; |
| v |= masks->mask[sr].res1; |
| } |
| |
| return v; |
| } |
| |
| static __always_inline void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1) |
| { |
| int i = sr - __SANITISED_REG_START__; |
| |
| BUILD_BUG_ON(!__builtin_constant_p(sr)); |
| BUILD_BUG_ON(sr < __SANITISED_REG_START__); |
| BUILD_BUG_ON(sr >= NR_SYS_REGS); |
| |
| kvm->arch.sysreg_masks->mask[i].res0 = res0; |
| kvm->arch.sysreg_masks->mask[i].res1 = res1; |
| } |
| |
| int kvm_init_nv_sysregs(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| u64 res0, res1; |
| |
| lockdep_assert_held(&kvm->arch.config_lock); |
| |
| if (kvm->arch.sysreg_masks) |
| goto out; |
| |
| kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)), |
| GFP_KERNEL_ACCOUNT); |
| if (!kvm->arch.sysreg_masks) |
| return -ENOMEM; |
| |
| /* VTTBR_EL2 */ |
| res0 = res1 = 0; |
| if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16)) |
| res0 |= GENMASK(63, 56); |
| if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP)) |
| res0 |= VTTBR_CNP_BIT; |
| set_sysreg_masks(kvm, VTTBR_EL2, res0, res1); |
| |
| /* VTCR_EL2 */ |
| res0 = GENMASK(63, 32) | GENMASK(30, 20); |
| res1 = BIT(31); |
| set_sysreg_masks(kvm, VTCR_EL2, res0, res1); |
| |
| /* VMPIDR_EL2 */ |
| res0 = GENMASK(63, 40) | GENMASK(30, 24); |
| res1 = BIT(31); |
| set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1); |
| |
| /* HCR_EL2 */ |
| get_reg_fixed_bits(kvm, HCR_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HCR_EL2, res0, res1); |
| |
| /* HCRX_EL2 */ |
| get_reg_fixed_bits(kvm, HCRX_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HCRX_EL2, res0, res1); |
| |
| /* HFG[RW]TR_EL2 */ |
| get_reg_fixed_bits(kvm, HFGRTR_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HFGRTR_EL2, res0, res1); |
| get_reg_fixed_bits(kvm, HFGWTR_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HFGWTR_EL2, res0, res1); |
| |
| /* HDFG[RW]TR_EL2 */ |
| get_reg_fixed_bits(kvm, HDFGRTR_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HDFGRTR_EL2, res0, res1); |
| get_reg_fixed_bits(kvm, HDFGWTR_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HDFGWTR_EL2, res0, res1); |
| |
| /* HFGITR_EL2 */ |
| get_reg_fixed_bits(kvm, HFGITR_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HFGITR_EL2, res0, res1); |
| |
| /* HAFGRTR_EL2 - not a lot to see here */ |
| get_reg_fixed_bits(kvm, HAFGRTR_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1); |
| |
| /* HFG[RW]TR2_EL2 */ |
| get_reg_fixed_bits(kvm, HFGRTR2_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HFGRTR2_EL2, res0, res1); |
| get_reg_fixed_bits(kvm, HFGWTR2_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HFGWTR2_EL2, res0, res1); |
| |
| /* HDFG[RW]TR2_EL2 */ |
| get_reg_fixed_bits(kvm, HDFGRTR2_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HDFGRTR2_EL2, res0, res1); |
| get_reg_fixed_bits(kvm, HDFGWTR2_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HDFGWTR2_EL2, res0, res1); |
| |
| /* HFGITR2_EL2 */ |
| get_reg_fixed_bits(kvm, HFGITR2_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, HFGITR2_EL2, res0, res1); |
| |
| /* TCR2_EL2 */ |
| get_reg_fixed_bits(kvm, TCR2_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, TCR2_EL2, res0, res1); |
| |
| /* SCTLR_EL1 */ |
| get_reg_fixed_bits(kvm, SCTLR_EL1, &res0, &res1); |
| set_sysreg_masks(kvm, SCTLR_EL1, res0, res1); |
| |
| /* SCTLR2_ELx */ |
| get_reg_fixed_bits(kvm, SCTLR2_EL1, &res0, &res1); |
| set_sysreg_masks(kvm, SCTLR2_EL1, res0, res1); |
| get_reg_fixed_bits(kvm, SCTLR2_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, SCTLR2_EL2, res0, res1); |
| |
| /* MDCR_EL2 */ |
| get_reg_fixed_bits(kvm, MDCR_EL2, &res0, &res1); |
| set_sysreg_masks(kvm, MDCR_EL2, res0, res1); |
| |
| /* CNTHCTL_EL2 */ |
| res0 = GENMASK(63, 20); |
| res1 = 0; |
| if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RME, IMP)) |
| res0 |= CNTHCTL_CNTPMASK | CNTHCTL_CNTVMASK; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, CNTPOFF)) { |
| res0 |= CNTHCTL_ECV; |
| if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, IMP)) |
| res0 |= (CNTHCTL_EL1TVT | CNTHCTL_EL1TVCT | |
| CNTHCTL_EL1NVPCT | CNTHCTL_EL1NVVCT); |
| } |
| if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP)) |
| res0 |= GENMASK(11, 8); |
| set_sysreg_masks(kvm, CNTHCTL_EL2, res0, res1); |
| |
| /* ICH_HCR_EL2 */ |
| res0 = ICH_HCR_EL2_RES0; |
| res1 = ICH_HCR_EL2_RES1; |
| if (!(kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_EL2_TDS)) |
| res0 |= ICH_HCR_EL2_TDIR; |
| /* No GICv4 is presented to the guest */ |
| res0 |= ICH_HCR_EL2_DVIM | ICH_HCR_EL2_vSGIEOICount; |
| set_sysreg_masks(kvm, ICH_HCR_EL2, res0, res1); |
| |
| /* VNCR_EL2 */ |
| set_sysreg_masks(kvm, VNCR_EL2, VNCR_EL2_RES0, VNCR_EL2_RES1); |
| |
| out: |
| for (enum vcpu_sysreg sr = __SANITISED_REG_START__; sr < NR_SYS_REGS; sr++) |
| __vcpu_rmw_sys_reg(vcpu, sr, |=, 0); |
| |
| return 0; |
| } |
| |
| void check_nested_vcpu_requests(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_check_request(KVM_REQ_NESTED_S2_UNMAP, vcpu)) { |
| struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu; |
| |
| write_lock(&vcpu->kvm->mmu_lock); |
| if (mmu->pending_unmap) { |
| kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), true); |
| mmu->pending_unmap = false; |
| } |
| write_unlock(&vcpu->kvm->mmu_lock); |
| } |
| |
| if (kvm_check_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu)) |
| kvm_map_l1_vncr(vcpu); |
| |
| /* Must be last, as may switch context! */ |
| if (kvm_check_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu)) |
| kvm_inject_nested_irq(vcpu); |
| } |
| |
| /* |
| * One of the many architectural bugs in FEAT_NV2 is that the guest hypervisor |
| * can write to HCR_EL2 behind our back, potentially changing the exception |
| * routing / masking for even the host context. |
| * |
| * What follows is some slop to (1) react to exception routing / masking and (2) |
| * preserve the pending SError state across translation regimes. |
| */ |
| void kvm_nested_flush_hwstate(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu_has_nv(vcpu)) |
| return; |
| |
| if (unlikely(vcpu_test_and_clear_flag(vcpu, NESTED_SERROR_PENDING))) |
| kvm_inject_serror_esr(vcpu, vcpu_get_vsesr(vcpu)); |
| } |
| |
| void kvm_nested_sync_hwstate(struct kvm_vcpu *vcpu) |
| { |
| unsigned long *hcr = vcpu_hcr(vcpu); |
| |
| if (!vcpu_has_nv(vcpu)) |
| return; |
| |
| /* |
| * We previously decided that an SError was deliverable to the guest. |
| * Reap the pending state from HCR_EL2 and... |
| */ |
| if (unlikely(__test_and_clear_bit(__ffs(HCR_VSE), hcr))) |
| vcpu_set_flag(vcpu, NESTED_SERROR_PENDING); |
| |
| /* |
| * Re-attempt SError injection in case the deliverability has changed, |
| * which is necessary to faithfully emulate WFI the case of a pending |
| * SError being a wakeup condition. |
| */ |
| if (unlikely(vcpu_test_and_clear_flag(vcpu, NESTED_SERROR_PENDING))) |
| kvm_inject_serror_esr(vcpu, vcpu_get_vsesr(vcpu)); |
| } |