blob: 5bc15bb6b7ce64540c219841c0e2697289ae1fe0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2020 Facebook */
#include <test_progs.h>
#include <bpf/btf.h>
#include "btf_helpers.h"
static void test_split_simple() {
const struct btf_type *t;
struct btf *btf1, *btf2;
int str_off, err;
btf1 = btf__new_empty();
if (!ASSERT_OK_PTR(btf1, "empty_main_btf"))
return;
btf__set_pointer_size(btf1, 8); /* enforce 64-bit arch */
btf__add_int(btf1, "int", 4, BTF_INT_SIGNED); /* [1] int */
btf__add_ptr(btf1, 1); /* [2] ptr to int */
btf__add_struct(btf1, "s1", 4); /* [3] struct s1 { */
btf__add_field(btf1, "f1", 1, 0, 0); /* int f1; */
/* } */
VALIDATE_RAW_BTF(
btf1,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] PTR '(anon)' type_id=1",
"[3] STRUCT 's1' size=4 vlen=1\n"
"\t'f1' type_id=1 bits_offset=0");
ASSERT_STREQ(btf_type_c_dump(btf1), "\
struct s1 {\n\
int f1;\n\
};\n\n", "c_dump");
btf2 = btf__new_empty_split(btf1);
if (!ASSERT_OK_PTR(btf2, "empty_split_btf"))
goto cleanup;
/* pointer size should be "inherited" from main BTF */
ASSERT_EQ(btf__pointer_size(btf2), 8, "inherit_ptr_sz");
str_off = btf__find_str(btf2, "int");
ASSERT_NEQ(str_off, -ENOENT, "str_int_missing");
t = btf__type_by_id(btf2, 1);
if (!ASSERT_OK_PTR(t, "int_type"))
goto cleanup;
ASSERT_EQ(btf_is_int(t), true, "int_kind");
ASSERT_STREQ(btf__str_by_offset(btf2, t->name_off), "int", "int_name");
btf__add_struct(btf2, "s2", 16); /* [4] struct s2 { */
btf__add_field(btf2, "f1", 6, 0, 0); /* struct s1 f1; */
btf__add_field(btf2, "f2", 5, 32, 0); /* int f2; */
btf__add_field(btf2, "f3", 2, 64, 0); /* int *f3; */
/* } */
/* duplicated int */
btf__add_int(btf2, "int", 4, BTF_INT_SIGNED); /* [5] int */
/* duplicated struct s1 */
btf__add_struct(btf2, "s1", 4); /* [6] struct s1 { */
btf__add_field(btf2, "f1", 5, 0, 0); /* int f1; */
/* } */
VALIDATE_RAW_BTF(
btf2,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] PTR '(anon)' type_id=1",
"[3] STRUCT 's1' size=4 vlen=1\n"
"\t'f1' type_id=1 bits_offset=0",
"[4] STRUCT 's2' size=16 vlen=3\n"
"\t'f1' type_id=6 bits_offset=0\n"
"\t'f2' type_id=5 bits_offset=32\n"
"\t'f3' type_id=2 bits_offset=64",
"[5] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[6] STRUCT 's1' size=4 vlen=1\n"
"\t'f1' type_id=5 bits_offset=0");
ASSERT_STREQ(btf_type_c_dump(btf2), "\
struct s1 {\n\
int f1;\n\
};\n\
\n\
struct s1___2 {\n\
int f1;\n\
};\n\
\n\
struct s2 {\n\
struct s1___2 f1;\n\
int f2;\n\
int *f3;\n\
};\n\n", "c_dump");
err = btf__dedup(btf2, NULL);
if (!ASSERT_OK(err, "btf_dedup"))
goto cleanup;
VALIDATE_RAW_BTF(
btf2,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] PTR '(anon)' type_id=1",
"[3] STRUCT 's1' size=4 vlen=1\n"
"\t'f1' type_id=1 bits_offset=0",
"[4] STRUCT 's2' size=16 vlen=3\n"
"\t'f1' type_id=3 bits_offset=0\n"
"\t'f2' type_id=1 bits_offset=32\n"
"\t'f3' type_id=2 bits_offset=64");
ASSERT_STREQ(btf_type_c_dump(btf2), "\
struct s1 {\n\
int f1;\n\
};\n\
\n\
struct s2 {\n\
struct s1 f1;\n\
int f2;\n\
int *f3;\n\
};\n\n", "c_dump");
cleanup:
btf__free(btf2);
btf__free(btf1);
}
static void test_split_fwd_resolve() {
struct btf *btf1, *btf2;
int err;
btf1 = btf__new_empty();
if (!ASSERT_OK_PTR(btf1, "empty_main_btf"))
return;
btf__set_pointer_size(btf1, 8); /* enforce 64-bit arch */
btf__add_int(btf1, "int", 4, BTF_INT_SIGNED); /* [1] int */
btf__add_ptr(btf1, 4); /* [2] ptr to struct s1 */
btf__add_ptr(btf1, 5); /* [3] ptr to struct s2 */
btf__add_struct(btf1, "s1", 16); /* [4] struct s1 { */
btf__add_field(btf1, "f1", 2, 0, 0); /* struct s1 *f1; */
btf__add_field(btf1, "f2", 3, 64, 0); /* struct s2 *f2; */
/* } */
btf__add_struct(btf1, "s2", 4); /* [5] struct s2 { */
btf__add_field(btf1, "f1", 1, 0, 0); /* int f1; */
/* } */
/* keep this not a part of type the graph to test btf_dedup_resolve_fwds */
btf__add_struct(btf1, "s3", 4); /* [6] struct s3 { */
btf__add_field(btf1, "f1", 1, 0, 0); /* int f1; */
/* } */
VALIDATE_RAW_BTF(
btf1,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] PTR '(anon)' type_id=4",
"[3] PTR '(anon)' type_id=5",
"[4] STRUCT 's1' size=16 vlen=2\n"
"\t'f1' type_id=2 bits_offset=0\n"
"\t'f2' type_id=3 bits_offset=64",
"[5] STRUCT 's2' size=4 vlen=1\n"
"\t'f1' type_id=1 bits_offset=0",
"[6] STRUCT 's3' size=4 vlen=1\n"
"\t'f1' type_id=1 bits_offset=0");
btf2 = btf__new_empty_split(btf1);
if (!ASSERT_OK_PTR(btf2, "empty_split_btf"))
goto cleanup;
btf__add_int(btf2, "int", 4, BTF_INT_SIGNED); /* [7] int */
btf__add_ptr(btf2, 11); /* [8] ptr to struct s1 */
btf__add_fwd(btf2, "s2", BTF_FWD_STRUCT); /* [9] fwd for struct s2 */
btf__add_ptr(btf2, 9); /* [10] ptr to fwd struct s2 */
btf__add_struct(btf2, "s1", 16); /* [11] struct s1 { */
btf__add_field(btf2, "f1", 8, 0, 0); /* struct s1 *f1; */
btf__add_field(btf2, "f2", 10, 64, 0); /* struct s2 *f2; */
/* } */
btf__add_fwd(btf2, "s3", BTF_FWD_STRUCT); /* [12] fwd for struct s3 */
btf__add_ptr(btf2, 12); /* [13] ptr to struct s1 */
VALIDATE_RAW_BTF(
btf2,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] PTR '(anon)' type_id=4",
"[3] PTR '(anon)' type_id=5",
"[4] STRUCT 's1' size=16 vlen=2\n"
"\t'f1' type_id=2 bits_offset=0\n"
"\t'f2' type_id=3 bits_offset=64",
"[5] STRUCT 's2' size=4 vlen=1\n"
"\t'f1' type_id=1 bits_offset=0",
"[6] STRUCT 's3' size=4 vlen=1\n"
"\t'f1' type_id=1 bits_offset=0",
"[7] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[8] PTR '(anon)' type_id=11",
"[9] FWD 's2' fwd_kind=struct",
"[10] PTR '(anon)' type_id=9",
"[11] STRUCT 's1' size=16 vlen=2\n"
"\t'f1' type_id=8 bits_offset=0\n"
"\t'f2' type_id=10 bits_offset=64",
"[12] FWD 's3' fwd_kind=struct",
"[13] PTR '(anon)' type_id=12");
err = btf__dedup(btf2, NULL);
if (!ASSERT_OK(err, "btf_dedup"))
goto cleanup;
VALIDATE_RAW_BTF(
btf2,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] PTR '(anon)' type_id=4",
"[3] PTR '(anon)' type_id=5",
"[4] STRUCT 's1' size=16 vlen=2\n"
"\t'f1' type_id=2 bits_offset=0\n"
"\t'f2' type_id=3 bits_offset=64",
"[5] STRUCT 's2' size=4 vlen=1\n"
"\t'f1' type_id=1 bits_offset=0",
"[6] STRUCT 's3' size=4 vlen=1\n"
"\t'f1' type_id=1 bits_offset=0",
"[7] PTR '(anon)' type_id=6");
cleanup:
btf__free(btf2);
btf__free(btf1);
}
static void test_split_struct_duped() {
struct btf *btf1, *btf2;
int err;
btf1 = btf__new_empty();
if (!ASSERT_OK_PTR(btf1, "empty_main_btf"))
return;
btf__set_pointer_size(btf1, 8); /* enforce 64-bit arch */
btf__add_int(btf1, "int", 4, BTF_INT_SIGNED); /* [1] int */
btf__add_ptr(btf1, 5); /* [2] ptr to struct s1 */
btf__add_fwd(btf1, "s2", BTF_FWD_STRUCT); /* [3] fwd for struct s2 */
btf__add_ptr(btf1, 3); /* [4] ptr to fwd struct s2 */
btf__add_struct(btf1, "s1", 16); /* [5] struct s1 { */
btf__add_field(btf1, "f1", 2, 0, 0); /* struct s1 *f1; */
btf__add_field(btf1, "f2", 4, 64, 0); /* struct s2 *f2; */
/* } */
VALIDATE_RAW_BTF(
btf1,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] PTR '(anon)' type_id=5",
"[3] FWD 's2' fwd_kind=struct",
"[4] PTR '(anon)' type_id=3",
"[5] STRUCT 's1' size=16 vlen=2\n"
"\t'f1' type_id=2 bits_offset=0\n"
"\t'f2' type_id=4 bits_offset=64");
btf2 = btf__new_empty_split(btf1);
if (!ASSERT_OK_PTR(btf2, "empty_split_btf"))
goto cleanup;
btf__add_int(btf2, "int", 4, BTF_INT_SIGNED); /* [6] int */
btf__add_ptr(btf2, 10); /* [7] ptr to struct s1 */
btf__add_fwd(btf2, "s2", BTF_FWD_STRUCT); /* [8] fwd for struct s2 */
btf__add_ptr(btf2, 11); /* [9] ptr to struct s2 */
btf__add_struct(btf2, "s1", 16); /* [10] struct s1 { */
btf__add_field(btf2, "f1", 7, 0, 0); /* struct s1 *f1; */
btf__add_field(btf2, "f2", 9, 64, 0); /* struct s2 *f2; */
/* } */
btf__add_struct(btf2, "s2", 40); /* [11] struct s2 { */
btf__add_field(btf2, "f1", 7, 0, 0); /* struct s1 *f1; */
btf__add_field(btf2, "f2", 9, 64, 0); /* struct s2 *f2; */
btf__add_field(btf2, "f3", 6, 128, 0); /* int f3; */
btf__add_field(btf2, "f4", 10, 192, 0); /* struct s1 f4; */
/* } */
btf__add_ptr(btf2, 8); /* [12] ptr to fwd struct s2 */
btf__add_struct(btf2, "s3", 8); /* [13] struct s3 { */
btf__add_field(btf2, "f1", 12, 0, 0); /* struct s2 *f1; (fwd) */
/* } */
VALIDATE_RAW_BTF(
btf2,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] PTR '(anon)' type_id=5",
"[3] FWD 's2' fwd_kind=struct",
"[4] PTR '(anon)' type_id=3",
"[5] STRUCT 's1' size=16 vlen=2\n"
"\t'f1' type_id=2 bits_offset=0\n"
"\t'f2' type_id=4 bits_offset=64",
"[6] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[7] PTR '(anon)' type_id=10",
"[8] FWD 's2' fwd_kind=struct",
"[9] PTR '(anon)' type_id=11",
"[10] STRUCT 's1' size=16 vlen=2\n"
"\t'f1' type_id=7 bits_offset=0\n"
"\t'f2' type_id=9 bits_offset=64",
"[11] STRUCT 's2' size=40 vlen=4\n"
"\t'f1' type_id=7 bits_offset=0\n"
"\t'f2' type_id=9 bits_offset=64\n"
"\t'f3' type_id=6 bits_offset=128\n"
"\t'f4' type_id=10 bits_offset=192",
"[12] PTR '(anon)' type_id=8",
"[13] STRUCT 's3' size=8 vlen=1\n"
"\t'f1' type_id=12 bits_offset=0");
err = btf__dedup(btf2, NULL);
if (!ASSERT_OK(err, "btf_dedup"))
goto cleanup;
VALIDATE_RAW_BTF(
btf2,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] PTR '(anon)' type_id=5",
"[3] FWD 's2' fwd_kind=struct",
"[4] PTR '(anon)' type_id=3",
"[5] STRUCT 's1' size=16 vlen=2\n"
"\t'f1' type_id=2 bits_offset=0\n"
"\t'f2' type_id=4 bits_offset=64",
"[6] PTR '(anon)' type_id=8",
"[7] PTR '(anon)' type_id=9",
"[8] STRUCT 's1' size=16 vlen=2\n"
"\t'f1' type_id=6 bits_offset=0\n"
"\t'f2' type_id=7 bits_offset=64",
"[9] STRUCT 's2' size=40 vlen=4\n"
"\t'f1' type_id=6 bits_offset=0\n"
"\t'f2' type_id=7 bits_offset=64\n"
"\t'f3' type_id=1 bits_offset=128\n"
"\t'f4' type_id=8 bits_offset=192",
"[10] STRUCT 's3' size=8 vlen=1\n"
"\t'f1' type_id=7 bits_offset=0");
cleanup:
btf__free(btf2);
btf__free(btf1);
}
static void btf_add_dup_struct_in_cu(struct btf *btf, int start_id)
{
#define ID(n) (start_id + n)
btf__set_pointer_size(btf, 8); /* enforce 64-bit arch */
btf__add_int(btf, "int", 4, BTF_INT_SIGNED); /* [1] int */
btf__add_struct(btf, "s", 8); /* [2] struct s { */
btf__add_field(btf, "a", ID(3), 0, 0); /* struct anon a; */
btf__add_field(btf, "b", ID(4), 0, 0); /* struct anon b; */
/* } */
btf__add_struct(btf, "(anon)", 8); /* [3] struct anon { */
btf__add_field(btf, "f1", ID(1), 0, 0); /* int f1; */
btf__add_field(btf, "f2", ID(1), 32, 0); /* int f2; */
/* } */
btf__add_struct(btf, "(anon)", 8); /* [4] struct anon { */
btf__add_field(btf, "f1", ID(1), 0, 0); /* int f1; */
btf__add_field(btf, "f2", ID(1), 32, 0); /* int f2; */
/* } */
#undef ID
}
static void test_split_dup_struct_in_cu()
{
struct btf *btf1, *btf2 = NULL;
int err;
/* generate the base data.. */
btf1 = btf__new_empty();
if (!ASSERT_OK_PTR(btf1, "empty_main_btf"))
return;
btf_add_dup_struct_in_cu(btf1, 0);
VALIDATE_RAW_BTF(
btf1,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] STRUCT 's' size=8 vlen=2\n"
"\t'a' type_id=3 bits_offset=0\n"
"\t'b' type_id=4 bits_offset=0",
"[3] STRUCT '(anon)' size=8 vlen=2\n"
"\t'f1' type_id=1 bits_offset=0\n"
"\t'f2' type_id=1 bits_offset=32",
"[4] STRUCT '(anon)' size=8 vlen=2\n"
"\t'f1' type_id=1 bits_offset=0\n"
"\t'f2' type_id=1 bits_offset=32");
/* ..dedup them... */
err = btf__dedup(btf1, NULL);
if (!ASSERT_OK(err, "btf_dedup"))
goto cleanup;
VALIDATE_RAW_BTF(
btf1,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] STRUCT 's' size=8 vlen=2\n"
"\t'a' type_id=3 bits_offset=0\n"
"\t'b' type_id=3 bits_offset=0",
"[3] STRUCT '(anon)' size=8 vlen=2\n"
"\t'f1' type_id=1 bits_offset=0\n"
"\t'f2' type_id=1 bits_offset=32");
/* and add the same data on top of it */
btf2 = btf__new_empty_split(btf1);
if (!ASSERT_OK_PTR(btf2, "empty_split_btf"))
goto cleanup;
btf_add_dup_struct_in_cu(btf2, 3);
VALIDATE_RAW_BTF(
btf2,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] STRUCT 's' size=8 vlen=2\n"
"\t'a' type_id=3 bits_offset=0\n"
"\t'b' type_id=3 bits_offset=0",
"[3] STRUCT '(anon)' size=8 vlen=2\n"
"\t'f1' type_id=1 bits_offset=0\n"
"\t'f2' type_id=1 bits_offset=32",
"[4] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[5] STRUCT 's' size=8 vlen=2\n"
"\t'a' type_id=6 bits_offset=0\n"
"\t'b' type_id=7 bits_offset=0",
"[6] STRUCT '(anon)' size=8 vlen=2\n"
"\t'f1' type_id=4 bits_offset=0\n"
"\t'f2' type_id=4 bits_offset=32",
"[7] STRUCT '(anon)' size=8 vlen=2\n"
"\t'f1' type_id=4 bits_offset=0\n"
"\t'f2' type_id=4 bits_offset=32");
err = btf__dedup(btf2, NULL);
if (!ASSERT_OK(err, "btf_dedup"))
goto cleanup;
/* after dedup it should match the original data */
VALIDATE_RAW_BTF(
btf2,
"[1] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED",
"[2] STRUCT 's' size=8 vlen=2\n"
"\t'a' type_id=3 bits_offset=0\n"
"\t'b' type_id=3 bits_offset=0",
"[3] STRUCT '(anon)' size=8 vlen=2\n"
"\t'f1' type_id=1 bits_offset=0\n"
"\t'f2' type_id=1 bits_offset=32");
cleanup:
btf__free(btf2);
btf__free(btf1);
}
/* Ensure module split BTF dedup worked correctly; when dedup fails badly
* core kernel types are in split BTF also, so ensure that references to
* such types point at base - not split - BTF.
*
* bpf_testmod_test_write() has multiple core kernel type parameters;
*
* ssize_t
* bpf_testmod_test_write(struct file *file, struct kobject *kobj,
* struct bin_attribute *bin_attr,
* char *buf, loff_t off, size_t len);
*
* Ensure each of the FUNC_PROTO params is a core kernel type.
*
* Do the same for
*
* __bpf_kfunc struct sock *bpf_kfunc_call_test3(struct sock *sk);
*
* ...and
*
* __bpf_kfunc void bpf_kfunc_call_test_pass_ctx(struct __sk_buff *skb);
*
*/
const char *mod_funcs[] = {
"bpf_testmod_test_write",
"bpf_kfunc_call_test3",
"bpf_kfunc_call_test_pass_ctx"
};
static void test_split_module(void)
{
struct btf *vmlinux_btf, *btf1 = NULL;
int i, nr_base_types;
vmlinux_btf = btf__load_vmlinux_btf();
if (!ASSERT_OK_PTR(vmlinux_btf, "vmlinux_btf"))
return;
nr_base_types = btf__type_cnt(vmlinux_btf);
if (!ASSERT_GT(nr_base_types, 0, "nr_base_types"))
goto cleanup;
btf1 = btf__parse_split("/sys/kernel/btf/bpf_testmod", vmlinux_btf);
if (!ASSERT_OK_PTR(btf1, "split_btf"))
return;
for (i = 0; i < ARRAY_SIZE(mod_funcs); i++) {
const struct btf_param *p;
const struct btf_type *t;
__u16 vlen;
__u32 id;
int j;
id = btf__find_by_name_kind(btf1, mod_funcs[i], BTF_KIND_FUNC);
if (!ASSERT_GE(id, nr_base_types, "func_id"))
goto cleanup;
t = btf__type_by_id(btf1, id);
if (!ASSERT_OK_PTR(t, "func_id_type"))
goto cleanup;
t = btf__type_by_id(btf1, t->type);
if (!ASSERT_OK_PTR(t, "func_proto_id_type"))
goto cleanup;
if (!ASSERT_EQ(btf_is_func_proto(t), true, "is_func_proto"))
goto cleanup;
vlen = btf_vlen(t);
for (j = 0, p = btf_params(t); j < vlen; j++, p++) {
/* bpf_testmod uses resilient split BTF, so any
* reference types will be added to split BTF and their
* associated targets will be base BTF types; for example
* for a "struct sock *" the PTR will be in split BTF
* while the "struct sock" will be in base.
*
* In some cases like loff_t we have to resolve
* multiple typedefs hence the while() loop below.
*
* Note that resilient split BTF generation depends
* on pahole version, so we do not assert that
* reference types are in split BTF, as if pahole
* does not support resilient split BTF they will
* also be base BTF types.
*/
id = p->type;
do {
t = btf__type_by_id(btf1, id);
if (!ASSERT_OK_PTR(t, "param_ref_type"))
goto cleanup;
if (!btf_is_mod(t) && !btf_is_ptr(t) && !btf_is_typedef(t))
break;
id = t->type;
} while (true);
if (!ASSERT_LT(id, nr_base_types, "verify_base_type"))
goto cleanup;
}
}
cleanup:
btf__free(btf1);
btf__free(vmlinux_btf);
}
void test_btf_dedup_split()
{
if (test__start_subtest("split_simple"))
test_split_simple();
if (test__start_subtest("split_struct_duped"))
test_split_struct_duped();
if (test__start_subtest("split_fwd_resolve"))
test_split_fwd_resolve();
if (test__start_subtest("split_dup_struct_in_cu"))
test_split_dup_struct_in_cu();
if (test__start_subtest("split_module"))
test_split_module();
}