|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * kernel/lockdep.c | 
|  | * | 
|  | * Runtime locking correctness validator | 
|  | * | 
|  | * Started by Ingo Molnar: | 
|  | * | 
|  | *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
|  | *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra | 
|  | * | 
|  | * this code maps all the lock dependencies as they occur in a live kernel | 
|  | * and will warn about the following classes of locking bugs: | 
|  | * | 
|  | * - lock inversion scenarios | 
|  | * - circular lock dependencies | 
|  | * - hardirq/softirq safe/unsafe locking bugs | 
|  | * | 
|  | * Bugs are reported even if the current locking scenario does not cause | 
|  | * any deadlock at this point. | 
|  | * | 
|  | * I.e. if anytime in the past two locks were taken in a different order, | 
|  | * even if it happened for another task, even if those were different | 
|  | * locks (but of the same class as this lock), this code will detect it. | 
|  | * | 
|  | * Thanks to Arjan van de Ven for coming up with the initial idea of | 
|  | * mapping lock dependencies runtime. | 
|  | */ | 
|  | #define DISABLE_BRANCH_PROFILING | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/stacktrace.h> | 
|  | #include <linux/debug_locks.h> | 
|  | #include <linux/irqflags.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <linux/stringify.h> | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/jhash.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/lockdep.h> | 
|  | #include <linux/context_tracking.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/kasan.h> | 
|  |  | 
|  | #include <asm/sections.h> | 
|  |  | 
|  | #include "lockdep_internals.h" | 
|  | #include "lock_events.h" | 
|  |  | 
|  | #include <trace/events/lock.h> | 
|  |  | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | static int prove_locking = 1; | 
|  | module_param(prove_locking, int, 0644); | 
|  | #else | 
|  | #define prove_locking 0 | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_LOCK_STAT | 
|  | static int lock_stat = 1; | 
|  | module_param(lock_stat, int, 0644); | 
|  | #else | 
|  | #define lock_stat 0 | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static const struct ctl_table kern_lockdep_table[] = { | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | { | 
|  | .procname       = "prove_locking", | 
|  | .data           = &prove_locking, | 
|  | .maxlen         = sizeof(int), | 
|  | .mode           = 0644, | 
|  | .proc_handler   = proc_dointvec, | 
|  | }, | 
|  | #endif /* CONFIG_PROVE_LOCKING */ | 
|  | #ifdef CONFIG_LOCK_STAT | 
|  | { | 
|  | .procname       = "lock_stat", | 
|  | .data           = &lock_stat, | 
|  | .maxlen         = sizeof(int), | 
|  | .mode           = 0644, | 
|  | .proc_handler   = proc_dointvec, | 
|  | }, | 
|  | #endif /* CONFIG_LOCK_STAT */ | 
|  | }; | 
|  |  | 
|  | static __init int kernel_lockdep_sysctls_init(void) | 
|  | { | 
|  | register_sysctl_init("kernel", kern_lockdep_table); | 
|  | return 0; | 
|  | } | 
|  | late_initcall(kernel_lockdep_sysctls_init); | 
|  | #endif /* CONFIG_SYSCTL */ | 
|  |  | 
|  | DEFINE_PER_CPU(unsigned int, lockdep_recursion); | 
|  | EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); | 
|  |  | 
|  | static __always_inline bool lockdep_enabled(void) | 
|  | { | 
|  | if (!debug_locks) | 
|  | return false; | 
|  |  | 
|  | if (this_cpu_read(lockdep_recursion)) | 
|  | return false; | 
|  |  | 
|  | if (current->lockdep_recursion) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lockdep_lock: protects the lockdep graph, the hashes and the | 
|  | *               class/list/hash allocators. | 
|  | * | 
|  | * This is one of the rare exceptions where it's justified | 
|  | * to use a raw spinlock - we really dont want the spinlock | 
|  | * code to recurse back into the lockdep code... | 
|  | */ | 
|  | static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; | 
|  | static struct task_struct *__owner; | 
|  |  | 
|  | static inline void lockdep_lock(void) | 
|  | { | 
|  | DEBUG_LOCKS_WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | __this_cpu_inc(lockdep_recursion); | 
|  | arch_spin_lock(&__lock); | 
|  | __owner = current; | 
|  | } | 
|  |  | 
|  | static inline void lockdep_unlock(void) | 
|  | { | 
|  | DEBUG_LOCKS_WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) | 
|  | return; | 
|  |  | 
|  | __owner = NULL; | 
|  | arch_spin_unlock(&__lock); | 
|  | __this_cpu_dec(lockdep_recursion); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | static inline bool lockdep_assert_locked(void) | 
|  | { | 
|  | return DEBUG_LOCKS_WARN_ON(__owner != current); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct task_struct *lockdep_selftest_task_struct; | 
|  |  | 
|  |  | 
|  | static int graph_lock(void) | 
|  | { | 
|  | lockdep_lock(); | 
|  | lockevent_inc(lockdep_lock); | 
|  | /* | 
|  | * Make sure that if another CPU detected a bug while | 
|  | * walking the graph we dont change it (while the other | 
|  | * CPU is busy printing out stuff with the graph lock | 
|  | * dropped already) | 
|  | */ | 
|  | if (!debug_locks) { | 
|  | lockdep_unlock(); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline void graph_unlock(void) | 
|  | { | 
|  | lockdep_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Turn lock debugging off and return with 0 if it was off already, | 
|  | * and also release the graph lock: | 
|  | */ | 
|  | static inline int debug_locks_off_graph_unlock(void) | 
|  | { | 
|  | int ret = debug_locks_off(); | 
|  |  | 
|  | lockdep_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | unsigned long nr_list_entries; | 
|  | static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; | 
|  | static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); | 
|  |  | 
|  | /* | 
|  | * All data structures here are protected by the global debug_lock. | 
|  | * | 
|  | * nr_lock_classes is the number of elements of lock_classes[] that is | 
|  | * in use. | 
|  | */ | 
|  | #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1) | 
|  | #define KEYHASH_SIZE		(1UL << KEYHASH_BITS) | 
|  | static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; | 
|  | unsigned long nr_lock_classes; | 
|  | unsigned long nr_zapped_classes; | 
|  | unsigned long nr_dynamic_keys; | 
|  | unsigned long max_lock_class_idx; | 
|  | struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; | 
|  | DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); | 
|  |  | 
|  | static inline struct lock_class *hlock_class(struct held_lock *hlock) | 
|  | { | 
|  | unsigned int class_idx = hlock->class_idx; | 
|  |  | 
|  | /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ | 
|  | barrier(); | 
|  |  | 
|  | if (!test_bit(class_idx, lock_classes_in_use)) { | 
|  | /* | 
|  | * Someone passed in garbage, we give up. | 
|  | */ | 
|  | DEBUG_LOCKS_WARN_ON(1); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point, if the passed hlock->class_idx is still garbage, | 
|  | * we just have to live with it | 
|  | */ | 
|  | return lock_classes + class_idx; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_LOCK_STAT | 
|  | static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); | 
|  |  | 
|  | static inline u64 lockstat_clock(void) | 
|  | { | 
|  | return local_clock(); | 
|  | } | 
|  |  | 
|  | static int lock_point(unsigned long points[], unsigned long ip) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < LOCKSTAT_POINTS; i++) { | 
|  | if (points[i] == 0) { | 
|  | points[i] = ip; | 
|  | break; | 
|  | } | 
|  | if (points[i] == ip) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static void lock_time_inc(struct lock_time *lt, u64 time) | 
|  | { | 
|  | if (time > lt->max) | 
|  | lt->max = time; | 
|  |  | 
|  | if (time < lt->min || !lt->nr) | 
|  | lt->min = time; | 
|  |  | 
|  | lt->total += time; | 
|  | lt->nr++; | 
|  | } | 
|  |  | 
|  | static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) | 
|  | { | 
|  | if (!src->nr) | 
|  | return; | 
|  |  | 
|  | if (src->max > dst->max) | 
|  | dst->max = src->max; | 
|  |  | 
|  | if (src->min < dst->min || !dst->nr) | 
|  | dst->min = src->min; | 
|  |  | 
|  | dst->total += src->total; | 
|  | dst->nr += src->nr; | 
|  | } | 
|  |  | 
|  | void lock_stats(struct lock_class *class, struct lock_class_stats *stats) | 
|  | { | 
|  | int cpu, i; | 
|  |  | 
|  | memset(stats, 0, sizeof(struct lock_class_stats)); | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct lock_class_stats *pcs = | 
|  | &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(stats->contention_point); i++) | 
|  | stats->contention_point[i] += pcs->contention_point[i]; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(stats->contending_point); i++) | 
|  | stats->contending_point[i] += pcs->contending_point[i]; | 
|  |  | 
|  | lock_time_add(&pcs->read_waittime, &stats->read_waittime); | 
|  | lock_time_add(&pcs->write_waittime, &stats->write_waittime); | 
|  |  | 
|  | lock_time_add(&pcs->read_holdtime, &stats->read_holdtime); | 
|  | lock_time_add(&pcs->write_holdtime, &stats->write_holdtime); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(stats->bounces); i++) | 
|  | stats->bounces[i] += pcs->bounces[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void clear_lock_stats(struct lock_class *class) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct lock_class_stats *cpu_stats = | 
|  | &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; | 
|  |  | 
|  | memset(cpu_stats, 0, sizeof(struct lock_class_stats)); | 
|  | } | 
|  | memset(class->contention_point, 0, sizeof(class->contention_point)); | 
|  | memset(class->contending_point, 0, sizeof(class->contending_point)); | 
|  | } | 
|  |  | 
|  | static struct lock_class_stats *get_lock_stats(struct lock_class *class) | 
|  | { | 
|  | return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; | 
|  | } | 
|  |  | 
|  | static void lock_release_holdtime(struct held_lock *hlock) | 
|  | { | 
|  | struct lock_class_stats *stats; | 
|  | u64 holdtime; | 
|  |  | 
|  | if (!lock_stat) | 
|  | return; | 
|  |  | 
|  | holdtime = lockstat_clock() - hlock->holdtime_stamp; | 
|  |  | 
|  | stats = get_lock_stats(hlock_class(hlock)); | 
|  | if (hlock->read) | 
|  | lock_time_inc(&stats->read_holdtime, holdtime); | 
|  | else | 
|  | lock_time_inc(&stats->write_holdtime, holdtime); | 
|  | } | 
|  | #else | 
|  | static inline void lock_release_holdtime(struct held_lock *hlock) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We keep a global list of all lock classes. The list is only accessed with | 
|  | * the lockdep spinlock lock held. free_lock_classes is a list with free | 
|  | * elements. These elements are linked together by the lock_entry member in | 
|  | * struct lock_class. | 
|  | */ | 
|  | static LIST_HEAD(all_lock_classes); | 
|  | static LIST_HEAD(free_lock_classes); | 
|  |  | 
|  | /** | 
|  | * struct pending_free - information about data structures about to be freed | 
|  | * @zapped: Head of a list with struct lock_class elements. | 
|  | * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements | 
|  | *	are about to be freed. | 
|  | */ | 
|  | struct pending_free { | 
|  | struct list_head zapped; | 
|  | DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct delayed_free - data structures used for delayed freeing | 
|  | * | 
|  | * A data structure for delayed freeing of data structures that may be | 
|  | * accessed by RCU readers at the time these were freed. | 
|  | * | 
|  | * @rcu_head:  Used to schedule an RCU callback for freeing data structures. | 
|  | * @index:     Index of @pf to which freed data structures are added. | 
|  | * @scheduled: Whether or not an RCU callback has been scheduled. | 
|  | * @pf:        Array with information about data structures about to be freed. | 
|  | */ | 
|  | static struct delayed_free { | 
|  | struct rcu_head		rcu_head; | 
|  | int			index; | 
|  | int			scheduled; | 
|  | struct pending_free	pf[2]; | 
|  | } delayed_free; | 
|  |  | 
|  | /* | 
|  | * The lockdep classes are in a hash-table as well, for fast lookup: | 
|  | */ | 
|  | #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1) | 
|  | #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS) | 
|  | #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS) | 
|  | #define classhashentry(key)	(classhash_table + __classhashfn((key))) | 
|  |  | 
|  | static struct hlist_head classhash_table[CLASSHASH_SIZE]; | 
|  |  | 
|  | /* | 
|  | * We put the lock dependency chains into a hash-table as well, to cache | 
|  | * their existence: | 
|  | */ | 
|  | #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1) | 
|  | #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS) | 
|  | #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS) | 
|  | #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain))) | 
|  |  | 
|  | static struct hlist_head chainhash_table[CHAINHASH_SIZE]; | 
|  |  | 
|  | /* | 
|  | * the id of held_lock | 
|  | */ | 
|  | static inline u16 hlock_id(struct held_lock *hlock) | 
|  | { | 
|  | BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); | 
|  |  | 
|  | return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); | 
|  | } | 
|  |  | 
|  | static inline __maybe_unused unsigned int chain_hlock_class_idx(u16 hlock_id) | 
|  | { | 
|  | return hlock_id & (MAX_LOCKDEP_KEYS - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The hash key of the lock dependency chains is a hash itself too: | 
|  | * it's a hash of all locks taken up to that lock, including that lock. | 
|  | * It's a 64-bit hash, because it's important for the keys to be | 
|  | * unique. | 
|  | */ | 
|  | static inline u64 iterate_chain_key(u64 key, u32 idx) | 
|  | { | 
|  | u32 k0 = key, k1 = key >> 32; | 
|  |  | 
|  | __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ | 
|  |  | 
|  | return k0 | (u64)k1 << 32; | 
|  | } | 
|  |  | 
|  | void lockdep_init_task(struct task_struct *task) | 
|  | { | 
|  | task->lockdep_depth = 0; /* no locks held yet */ | 
|  | task->curr_chain_key = INITIAL_CHAIN_KEY; | 
|  | task->lockdep_recursion = 0; | 
|  | } | 
|  |  | 
|  | static __always_inline void lockdep_recursion_inc(void) | 
|  | { | 
|  | __this_cpu_inc(lockdep_recursion); | 
|  | } | 
|  |  | 
|  | static __always_inline void lockdep_recursion_finish(void) | 
|  | { | 
|  | if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) | 
|  | __this_cpu_write(lockdep_recursion, 0); | 
|  | } | 
|  |  | 
|  | void lockdep_set_selftest_task(struct task_struct *task) | 
|  | { | 
|  | lockdep_selftest_task_struct = task; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Debugging switches: | 
|  | */ | 
|  |  | 
|  | #define VERBOSE			0 | 
|  | #define VERY_VERBOSE		0 | 
|  |  | 
|  | #if VERBOSE | 
|  | # define HARDIRQ_VERBOSE	1 | 
|  | # define SOFTIRQ_VERBOSE	1 | 
|  | #else | 
|  | # define HARDIRQ_VERBOSE	0 | 
|  | # define SOFTIRQ_VERBOSE	0 | 
|  | #endif | 
|  |  | 
|  | #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE | 
|  | /* | 
|  | * Quick filtering for interesting events: | 
|  | */ | 
|  | static int class_filter(struct lock_class *class) | 
|  | { | 
|  | #if 0 | 
|  | /* Example */ | 
|  | if (class->name_version == 1 && | 
|  | !strcmp(class->name, "lockname")) | 
|  | return 1; | 
|  | if (class->name_version == 1 && | 
|  | !strcmp(class->name, "&struct->lockfield")) | 
|  | return 1; | 
|  | #endif | 
|  | /* Filter everything else. 1 would be to allow everything else */ | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int verbose(struct lock_class *class) | 
|  | { | 
|  | #if VERBOSE | 
|  | return class_filter(class); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void print_lockdep_off(const char *bug_msg) | 
|  | { | 
|  | printk(KERN_DEBUG "%s\n", bug_msg); | 
|  | printk(KERN_DEBUG "turning off the locking correctness validator.\n"); | 
|  | #ifdef CONFIG_LOCK_STAT | 
|  | printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | unsigned long nr_stack_trace_entries; | 
|  |  | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | /** | 
|  | * struct lock_trace - single stack backtrace | 
|  | * @hash_entry:	Entry in a stack_trace_hash[] list. | 
|  | * @hash:	jhash() of @entries. | 
|  | * @nr_entries:	Number of entries in @entries. | 
|  | * @entries:	Actual stack backtrace. | 
|  | */ | 
|  | struct lock_trace { | 
|  | struct hlist_node	hash_entry; | 
|  | u32			hash; | 
|  | u32			nr_entries; | 
|  | unsigned long		entries[] __aligned(sizeof(unsigned long)); | 
|  | }; | 
|  | #define LOCK_TRACE_SIZE_IN_LONGS				\ | 
|  | (sizeof(struct lock_trace) / sizeof(unsigned long)) | 
|  | /* | 
|  | * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. | 
|  | */ | 
|  | static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; | 
|  | static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; | 
|  |  | 
|  | static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) | 
|  | { | 
|  | return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && | 
|  | memcmp(t1->entries, t2->entries, | 
|  | t1->nr_entries * sizeof(t1->entries[0])) == 0; | 
|  | } | 
|  |  | 
|  | static struct lock_trace *save_trace(void) | 
|  | { | 
|  | struct lock_trace *trace, *t2; | 
|  | struct hlist_head *hash_head; | 
|  | u32 hash; | 
|  | int max_entries; | 
|  |  | 
|  | BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); | 
|  | BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); | 
|  |  | 
|  | trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); | 
|  | max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - | 
|  | LOCK_TRACE_SIZE_IN_LONGS; | 
|  |  | 
|  | if (max_entries <= 0) { | 
|  | if (!debug_locks_off_graph_unlock()) | 
|  | return NULL; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  | print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); | 
|  |  | 
|  | hash = jhash(trace->entries, trace->nr_entries * | 
|  | sizeof(trace->entries[0]), 0); | 
|  | trace->hash = hash; | 
|  | hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); | 
|  | hlist_for_each_entry(t2, hash_head, hash_entry) { | 
|  | if (traces_identical(trace, t2)) | 
|  | return t2; | 
|  | } | 
|  | nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; | 
|  | hlist_add_head(&trace->hash_entry, hash_head); | 
|  |  | 
|  | return trace; | 
|  | } | 
|  |  | 
|  | /* Return the number of stack traces in the stack_trace[] array. */ | 
|  | u64 lockdep_stack_trace_count(void) | 
|  | { | 
|  | struct lock_trace *trace; | 
|  | u64 c = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { | 
|  | hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { | 
|  | c++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | /* Return the number of stack hash chains that have at least one stack trace. */ | 
|  | u64 lockdep_stack_hash_count(void) | 
|  | { | 
|  | u64 c = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) | 
|  | if (!hlist_empty(&stack_trace_hash[i])) | 
|  | c++; | 
|  |  | 
|  | return c; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | unsigned int nr_hardirq_chains; | 
|  | unsigned int nr_softirq_chains; | 
|  | unsigned int nr_process_chains; | 
|  | unsigned int max_lockdep_depth; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_LOCKDEP | 
|  | /* | 
|  | * Various lockdep statistics: | 
|  | */ | 
|  | DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | /* | 
|  | * Locking printouts: | 
|  | */ | 
|  |  | 
|  | #define __USAGE(__STATE)						\ | 
|  | [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\ | 
|  | [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\ | 
|  | [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ | 
|  | [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", | 
|  |  | 
|  | static const char *usage_str[] = | 
|  | { | 
|  | #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) | 
|  | #include "lockdep_states.h" | 
|  | #undef LOCKDEP_STATE | 
|  | [LOCK_USED] = "INITIAL USE", | 
|  | [LOCK_USED_READ] = "INITIAL READ USE", | 
|  | /* abused as string storage for verify_lock_unused() */ | 
|  | [LOCK_USAGE_STATES] = "IN-NMI", | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) | 
|  | { | 
|  | return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); | 
|  | } | 
|  |  | 
|  | static inline unsigned long lock_flag(enum lock_usage_bit bit) | 
|  | { | 
|  | return 1UL << bit; | 
|  | } | 
|  |  | 
|  | static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) | 
|  | { | 
|  | /* | 
|  | * The usage character defaults to '.' (i.e., irqs disabled and not in | 
|  | * irq context), which is the safest usage category. | 
|  | */ | 
|  | char c = '.'; | 
|  |  | 
|  | /* | 
|  | * The order of the following usage checks matters, which will | 
|  | * result in the outcome character as follows: | 
|  | * | 
|  | * - '+': irq is enabled and not in irq context | 
|  | * - '-': in irq context and irq is disabled | 
|  | * - '?': in irq context and irq is enabled | 
|  | */ | 
|  | if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { | 
|  | c = '+'; | 
|  | if (class->usage_mask & lock_flag(bit)) | 
|  | c = '?'; | 
|  | } else if (class->usage_mask & lock_flag(bit)) | 
|  | c = '-'; | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | #define LOCKDEP_STATE(__STATE) 						\ | 
|  | usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\ | 
|  | usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); | 
|  | #include "lockdep_states.h" | 
|  | #undef LOCKDEP_STATE | 
|  |  | 
|  | usage[i] = '\0'; | 
|  | } | 
|  |  | 
|  | static void __print_lock_name(struct held_lock *hlock, struct lock_class *class) | 
|  | { | 
|  | char str[KSYM_NAME_LEN]; | 
|  | const char *name; | 
|  |  | 
|  | name = class->name; | 
|  | if (!name) { | 
|  | name = __get_key_name(class->key, str); | 
|  | printk(KERN_CONT "%s", name); | 
|  | } else { | 
|  | printk(KERN_CONT "%s", name); | 
|  | if (class->name_version > 1) | 
|  | printk(KERN_CONT "#%d", class->name_version); | 
|  | if (class->subclass) | 
|  | printk(KERN_CONT "/%d", class->subclass); | 
|  | if (hlock && class->print_fn) | 
|  | class->print_fn(hlock->instance); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void print_lock_name(struct held_lock *hlock, struct lock_class *class) | 
|  | { | 
|  | char usage[LOCK_USAGE_CHARS]; | 
|  |  | 
|  | get_usage_chars(class, usage); | 
|  |  | 
|  | printk(KERN_CONT " ("); | 
|  | __print_lock_name(hlock, class); | 
|  | printk(KERN_CONT "){%s}-{%d:%d}", usage, | 
|  | class->wait_type_outer ?: class->wait_type_inner, | 
|  | class->wait_type_inner); | 
|  | } | 
|  |  | 
|  | static void print_lockdep_cache(struct lockdep_map *lock) | 
|  | { | 
|  | const char *name; | 
|  | char str[KSYM_NAME_LEN]; | 
|  |  | 
|  | name = lock->name; | 
|  | if (!name) | 
|  | name = __get_key_name(lock->key->subkeys, str); | 
|  |  | 
|  | printk(KERN_CONT "%s", name); | 
|  | } | 
|  |  | 
|  | static void print_lock(struct held_lock *hlock) | 
|  | { | 
|  | /* | 
|  | * We can be called locklessly through debug_show_all_locks() so be | 
|  | * extra careful, the hlock might have been released and cleared. | 
|  | * | 
|  | * If this indeed happens, lets pretend it does not hurt to continue | 
|  | * to print the lock unless the hlock class_idx does not point to a | 
|  | * registered class. The rationale here is: since we don't attempt | 
|  | * to distinguish whether we are in this situation, if it just | 
|  | * happened we can't count on class_idx to tell either. | 
|  | */ | 
|  | struct lock_class *lock = hlock_class(hlock); | 
|  |  | 
|  | if (!lock) { | 
|  | printk(KERN_CONT "<RELEASED>\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | printk(KERN_CONT "%px", hlock->instance); | 
|  | print_lock_name(hlock, lock); | 
|  | printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); | 
|  | } | 
|  |  | 
|  | static void lockdep_print_held_locks(struct task_struct *p) | 
|  | { | 
|  | int i, depth = READ_ONCE(p->lockdep_depth); | 
|  |  | 
|  | if (!depth) | 
|  | printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); | 
|  | else | 
|  | printk("%d lock%s held by %s/%d:\n", depth, | 
|  | str_plural(depth), p->comm, task_pid_nr(p)); | 
|  | /* | 
|  | * It's not reliable to print a task's held locks if it's not sleeping | 
|  | * and it's not the current task. | 
|  | */ | 
|  | if (p != current && task_is_running(p)) | 
|  | return; | 
|  | for (i = 0; i < depth; i++) { | 
|  | printk(" #%d: ", i); | 
|  | print_lock(p->held_locks + i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void print_kernel_ident(void) | 
|  | { | 
|  | printk("%s %.*s %s\n", init_utsname()->release, | 
|  | (int)strcspn(init_utsname()->version, " "), | 
|  | init_utsname()->version, | 
|  | print_tainted()); | 
|  | } | 
|  |  | 
|  | static int very_verbose(struct lock_class *class) | 
|  | { | 
|  | #if VERY_VERBOSE | 
|  | return class_filter(class); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is this the address of a static object: | 
|  | */ | 
|  | #ifdef __KERNEL__ | 
|  | static int static_obj(const void *obj) | 
|  | { | 
|  | unsigned long addr = (unsigned long) obj; | 
|  |  | 
|  | if (is_kernel_core_data(addr)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * keys are allowed in the __ro_after_init section. | 
|  | */ | 
|  | if (is_kernel_rodata(addr)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * in initdata section and used during bootup only? | 
|  | * NOTE: On some platforms the initdata section is | 
|  | * outside of the _stext ... _end range. | 
|  | */ | 
|  | if (system_state < SYSTEM_FREEING_INITMEM && | 
|  | init_section_contains((void *)addr, 1)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * in-kernel percpu var? | 
|  | */ | 
|  | if (is_kernel_percpu_address(addr)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * module static or percpu var? | 
|  | */ | 
|  | return is_module_address(addr) || is_module_percpu_address(addr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * To make lock name printouts unique, we calculate a unique | 
|  | * class->name_version generation counter. The caller must hold the graph | 
|  | * lock. | 
|  | */ | 
|  | static int count_matching_names(struct lock_class *new_class) | 
|  | { | 
|  | struct lock_class *class; | 
|  | int count = 0; | 
|  |  | 
|  | if (!new_class->name) | 
|  | return 0; | 
|  |  | 
|  | list_for_each_entry(class, &all_lock_classes, lock_entry) { | 
|  | if (new_class->key - new_class->subclass == class->key) | 
|  | return class->name_version; | 
|  | if (class->name && !strcmp(class->name, new_class->name)) | 
|  | count = max(count, class->name_version); | 
|  | } | 
|  |  | 
|  | return count + 1; | 
|  | } | 
|  |  | 
|  | /* used from NMI context -- must be lockless */ | 
|  | static noinstr struct lock_class * | 
|  | look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) | 
|  | { | 
|  | struct lockdep_subclass_key *key; | 
|  | struct hlist_head *hash_head; | 
|  | struct lock_class *class; | 
|  |  | 
|  | if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { | 
|  | instrumentation_begin(); | 
|  | debug_locks_off(); | 
|  | nbcon_cpu_emergency_enter(); | 
|  | printk(KERN_ERR | 
|  | "BUG: looking up invalid subclass: %u\n", subclass); | 
|  | printk(KERN_ERR | 
|  | "turning off the locking correctness validator.\n"); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  | instrumentation_end(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it is not initialised then it has never been locked, | 
|  | * so it won't be present in the hash table. | 
|  | */ | 
|  | if (unlikely(!lock->key)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * NOTE: the class-key must be unique. For dynamic locks, a static | 
|  | * lock_class_key variable is passed in through the mutex_init() | 
|  | * (or spin_lock_init()) call - which acts as the key. For static | 
|  | * locks we use the lock object itself as the key. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(struct lock_class_key) > | 
|  | sizeof(struct lockdep_map)); | 
|  |  | 
|  | key = lock->key->subkeys + subclass; | 
|  |  | 
|  | hash_head = classhashentry(key); | 
|  |  | 
|  | /* | 
|  | * We do an RCU walk of the hash, see lockdep_free_key_range(). | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) | 
|  | return NULL; | 
|  |  | 
|  | hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { | 
|  | if (class->key == key) { | 
|  | /* | 
|  | * Huh! same key, different name? Did someone trample | 
|  | * on some memory? We're most confused. | 
|  | */ | 
|  | WARN_ONCE(class->name != lock->name && | 
|  | lock->key != &__lockdep_no_validate__, | 
|  | "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n", | 
|  | lock->name, lock->key, class->name); | 
|  | return class; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Static locks do not have their class-keys yet - for them the key is | 
|  | * the lock object itself. If the lock is in the per cpu area, the | 
|  | * canonical address of the lock (per cpu offset removed) is used. | 
|  | */ | 
|  | static bool assign_lock_key(struct lockdep_map *lock) | 
|  | { | 
|  | unsigned long can_addr, addr = (unsigned long)lock; | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  | /* | 
|  | * lockdep_free_key_range() assumes that struct lock_class_key | 
|  | * objects do not overlap. Since we use the address of lock | 
|  | * objects as class key for static objects, check whether the | 
|  | * size of lock_class_key objects does not exceed the size of | 
|  | * the smallest lock object. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); | 
|  | #endif | 
|  |  | 
|  | if (__is_kernel_percpu_address(addr, &can_addr)) | 
|  | lock->key = (void *)can_addr; | 
|  | else if (__is_module_percpu_address(addr, &can_addr)) | 
|  | lock->key = (void *)can_addr; | 
|  | else if (static_obj(lock)) | 
|  | lock->key = (void *)lock; | 
|  | else { | 
|  | /* Debug-check: all keys must be persistent! */ | 
|  | debug_locks_off(); | 
|  | nbcon_cpu_emergency_enter(); | 
|  | pr_err("INFO: trying to register non-static key.\n"); | 
|  | pr_err("The code is fine but needs lockdep annotation, or maybe\n"); | 
|  | pr_err("you didn't initialize this object before use?\n"); | 
|  | pr_err("turning off the locking correctness validator.\n"); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_LOCKDEP | 
|  |  | 
|  | /* Check whether element @e occurs in list @h */ | 
|  | static bool in_list(struct list_head *e, struct list_head *h) | 
|  | { | 
|  | struct list_head *f; | 
|  |  | 
|  | list_for_each(f, h) { | 
|  | if (e == f) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether entry @e occurs in any of the locks_after or locks_before | 
|  | * lists. | 
|  | */ | 
|  | static bool in_any_class_list(struct list_head *e) | 
|  | { | 
|  | struct lock_class *class; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { | 
|  | class = &lock_classes[i]; | 
|  | if (in_list(e, &class->locks_after) || | 
|  | in_list(e, &class->locks_before)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) | 
|  | { | 
|  | struct lock_list *e; | 
|  |  | 
|  | list_for_each_entry(e, h, entry) { | 
|  | if (e->links_to != c) { | 
|  | printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", | 
|  | c->name ? : "(?)", | 
|  | (unsigned long)(e - list_entries), | 
|  | e->links_to && e->links_to->name ? | 
|  | e->links_to->name : "(?)", | 
|  | e->class && e->class->name ? e->class->name : | 
|  | "(?)"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; | 
|  | #endif | 
|  |  | 
|  | static bool check_lock_chain_key(struct lock_chain *chain) | 
|  | { | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | u64 chain_key = INITIAL_CHAIN_KEY; | 
|  | int i; | 
|  |  | 
|  | for (i = chain->base; i < chain->base + chain->depth; i++) | 
|  | chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); | 
|  | /* | 
|  | * The 'unsigned long long' casts avoid that a compiler warning | 
|  | * is reported when building tools/lib/lockdep. | 
|  | */ | 
|  | if (chain->chain_key != chain_key) { | 
|  | printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", | 
|  | (unsigned long long)(chain - lock_chains), | 
|  | (unsigned long long)chain->chain_key, | 
|  | (unsigned long long)chain_key); | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool in_any_zapped_class_list(struct lock_class *class) | 
|  | { | 
|  | struct pending_free *pf; | 
|  | int i; | 
|  |  | 
|  | for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { | 
|  | if (in_list(&class->lock_entry, &pf->zapped)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool __check_data_structures(void) | 
|  | { | 
|  | struct lock_class *class; | 
|  | struct lock_chain *chain; | 
|  | struct hlist_head *head; | 
|  | struct lock_list *e; | 
|  | int i; | 
|  |  | 
|  | /* Check whether all classes occur in a lock list. */ | 
|  | for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { | 
|  | class = &lock_classes[i]; | 
|  | if (!in_list(&class->lock_entry, &all_lock_classes) && | 
|  | !in_list(&class->lock_entry, &free_lock_classes) && | 
|  | !in_any_zapped_class_list(class)) { | 
|  | printk(KERN_INFO "class %px/%s is not in any class list\n", | 
|  | class, class->name ? : "(?)"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check whether all classes have valid lock lists. */ | 
|  | for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { | 
|  | class = &lock_classes[i]; | 
|  | if (!class_lock_list_valid(class, &class->locks_before)) | 
|  | return false; | 
|  | if (!class_lock_list_valid(class, &class->locks_after)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Check the chain_key of all lock chains. */ | 
|  | for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { | 
|  | head = chainhash_table + i; | 
|  | hlist_for_each_entry_rcu(chain, head, entry) { | 
|  | if (!check_lock_chain_key(chain)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether all list entries that are in use occur in a class | 
|  | * lock list. | 
|  | */ | 
|  | for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { | 
|  | e = list_entries + i; | 
|  | if (!in_any_class_list(&e->entry)) { | 
|  | printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", | 
|  | (unsigned int)(e - list_entries), | 
|  | e->class->name ? : "(?)", | 
|  | e->links_to->name ? : "(?)"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether all list entries that are not in use do not occur in | 
|  | * a class lock list. | 
|  | */ | 
|  | for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { | 
|  | e = list_entries + i; | 
|  | if (in_any_class_list(&e->entry)) { | 
|  | printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", | 
|  | (unsigned int)(e - list_entries), | 
|  | e->class && e->class->name ? e->class->name : | 
|  | "(?)", | 
|  | e->links_to && e->links_to->name ? | 
|  | e->links_to->name : "(?)"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int check_consistency = 0; | 
|  | module_param(check_consistency, int, 0644); | 
|  |  | 
|  | static void check_data_structures(void) | 
|  | { | 
|  | static bool once = false; | 
|  |  | 
|  | if (check_consistency && !once) { | 
|  | if (!__check_data_structures()) { | 
|  | once = true; | 
|  | WARN_ON(once); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_DEBUG_LOCKDEP */ | 
|  |  | 
|  | static inline void check_data_structures(void) { } | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_LOCKDEP */ | 
|  |  | 
|  | static void init_chain_block_buckets(void); | 
|  |  | 
|  | /* | 
|  | * Initialize the lock_classes[] array elements, the free_lock_classes list | 
|  | * and also the delayed_free structure. | 
|  | */ | 
|  | static void init_data_structures_once(void) | 
|  | { | 
|  | static bool __read_mostly ds_initialized, rcu_head_initialized; | 
|  | int i; | 
|  |  | 
|  | if (likely(rcu_head_initialized)) | 
|  | return; | 
|  |  | 
|  | if (system_state >= SYSTEM_SCHEDULING) { | 
|  | init_rcu_head(&delayed_free.rcu_head); | 
|  | rcu_head_initialized = true; | 
|  | } | 
|  |  | 
|  | if (ds_initialized) | 
|  | return; | 
|  |  | 
|  | ds_initialized = true; | 
|  |  | 
|  | INIT_LIST_HEAD(&delayed_free.pf[0].zapped); | 
|  | INIT_LIST_HEAD(&delayed_free.pf[1].zapped); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { | 
|  | list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); | 
|  | INIT_LIST_HEAD(&lock_classes[i].locks_after); | 
|  | INIT_LIST_HEAD(&lock_classes[i].locks_before); | 
|  | } | 
|  | init_chain_block_buckets(); | 
|  | } | 
|  |  | 
|  | static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) | 
|  | { | 
|  | unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); | 
|  |  | 
|  | return lock_keys_hash + hash; | 
|  | } | 
|  |  | 
|  | /* Register a dynamically allocated key. */ | 
|  | void lockdep_register_key(struct lock_class_key *key) | 
|  | { | 
|  | struct hlist_head *hash_head; | 
|  | struct lock_class_key *k; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (WARN_ON_ONCE(static_obj(key))) | 
|  | return; | 
|  | hash_head = keyhashentry(key); | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | if (!graph_lock()) | 
|  | goto restore_irqs; | 
|  | hlist_for_each_entry_rcu(k, hash_head, hash_entry) { | 
|  | if (WARN_ON_ONCE(k == key)) | 
|  | goto out_unlock; | 
|  | } | 
|  | hlist_add_head_rcu(&key->hash_entry, hash_head); | 
|  | nr_dynamic_keys++; | 
|  | out_unlock: | 
|  | graph_unlock(); | 
|  | restore_irqs: | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lockdep_register_key); | 
|  |  | 
|  | /* Check whether a key has been registered as a dynamic key. */ | 
|  | static bool is_dynamic_key(const struct lock_class_key *key) | 
|  | { | 
|  | struct hlist_head *hash_head; | 
|  | struct lock_class_key *k; | 
|  | bool found = false; | 
|  |  | 
|  | if (WARN_ON_ONCE(static_obj(key))) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If lock debugging is disabled lock_keys_hash[] may contain | 
|  | * pointers to memory that has already been freed. Avoid triggering | 
|  | * a use-after-free in that case by returning early. | 
|  | */ | 
|  | if (!debug_locks) | 
|  | return true; | 
|  |  | 
|  | hash_head = keyhashentry(key); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | hlist_for_each_entry_rcu(k, hash_head, hash_entry) { | 
|  | if (k == key) { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register a lock's class in the hash-table, if the class is not present | 
|  | * yet. Otherwise we look it up. We cache the result in the lock object | 
|  | * itself, so actual lookup of the hash should be once per lock object. | 
|  | */ | 
|  | static struct lock_class * | 
|  | register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) | 
|  | { | 
|  | struct lockdep_subclass_key *key; | 
|  | struct hlist_head *hash_head; | 
|  | struct lock_class *class; | 
|  | int idx; | 
|  |  | 
|  | DEBUG_LOCKS_WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | class = look_up_lock_class(lock, subclass); | 
|  | if (likely(class)) | 
|  | goto out_set_class_cache; | 
|  |  | 
|  | if (!lock->key) { | 
|  | if (!assign_lock_key(lock)) | 
|  | return NULL; | 
|  | } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | key = lock->key->subkeys + subclass; | 
|  | hash_head = classhashentry(key); | 
|  |  | 
|  | if (!graph_lock()) { | 
|  | return NULL; | 
|  | } | 
|  | /* | 
|  | * We have to do the hash-walk again, to avoid races | 
|  | * with another CPU: | 
|  | */ | 
|  | hlist_for_each_entry_rcu(class, hash_head, hash_entry) { | 
|  | if (class->key == key) | 
|  | goto out_unlock_set; | 
|  | } | 
|  |  | 
|  | init_data_structures_once(); | 
|  |  | 
|  | /* Allocate a new lock class and add it to the hash. */ | 
|  | class = list_first_entry_or_null(&free_lock_classes, typeof(*class), | 
|  | lock_entry); | 
|  | if (!class) { | 
|  | if (!debug_locks_off_graph_unlock()) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  | print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  | return NULL; | 
|  | } | 
|  | nr_lock_classes++; | 
|  | __set_bit(class - lock_classes, lock_classes_in_use); | 
|  | debug_atomic_inc(nr_unused_locks); | 
|  | class->key = key; | 
|  | class->name = lock->name; | 
|  | class->subclass = subclass; | 
|  | WARN_ON_ONCE(!list_empty(&class->locks_before)); | 
|  | WARN_ON_ONCE(!list_empty(&class->locks_after)); | 
|  | class->name_version = count_matching_names(class); | 
|  | class->wait_type_inner = lock->wait_type_inner; | 
|  | class->wait_type_outer = lock->wait_type_outer; | 
|  | class->lock_type = lock->lock_type; | 
|  | /* | 
|  | * We use RCU's safe list-add method to make | 
|  | * parallel walking of the hash-list safe: | 
|  | */ | 
|  | hlist_add_head_rcu(&class->hash_entry, hash_head); | 
|  | /* | 
|  | * Remove the class from the free list and add it to the global list | 
|  | * of classes. | 
|  | */ | 
|  | list_move_tail(&class->lock_entry, &all_lock_classes); | 
|  | idx = class - lock_classes; | 
|  | if (idx > max_lock_class_idx) | 
|  | max_lock_class_idx = idx; | 
|  |  | 
|  | if (verbose(class)) { | 
|  | graph_unlock(); | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  | printk("\nnew class %px: %s", class->key, class->name); | 
|  | if (class->name_version > 1) | 
|  | printk(KERN_CONT "#%d", class->name_version); | 
|  | printk(KERN_CONT "\n"); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  |  | 
|  | if (!graph_lock()) { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | out_unlock_set: | 
|  | graph_unlock(); | 
|  |  | 
|  | out_set_class_cache: | 
|  | if (!subclass || force) | 
|  | lock->class_cache[0] = class; | 
|  | else if (subclass < NR_LOCKDEP_CACHING_CLASSES) | 
|  | lock->class_cache[subclass] = class; | 
|  |  | 
|  | /* | 
|  | * Hash collision, did we smoke some? We found a class with a matching | 
|  | * hash but the subclass -- which is hashed in -- didn't match. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) | 
|  | return NULL; | 
|  |  | 
|  | return class; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | /* | 
|  | * Allocate a lockdep entry. (assumes the graph_lock held, returns | 
|  | * with NULL on failure) | 
|  | */ | 
|  | static struct lock_list *alloc_list_entry(void) | 
|  | { | 
|  | int idx = find_first_zero_bit(list_entries_in_use, | 
|  | ARRAY_SIZE(list_entries)); | 
|  |  | 
|  | if (idx >= ARRAY_SIZE(list_entries)) { | 
|  | if (!debug_locks_off_graph_unlock()) | 
|  | return NULL; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  | print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  | return NULL; | 
|  | } | 
|  | nr_list_entries++; | 
|  | __set_bit(idx, list_entries_in_use); | 
|  | return list_entries + idx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a new dependency to the head of the list: | 
|  | */ | 
|  | static int add_lock_to_list(struct lock_class *this, | 
|  | struct lock_class *links_to, struct list_head *head, | 
|  | u16 distance, u8 dep, | 
|  | const struct lock_trace *trace) | 
|  | { | 
|  | struct lock_list *entry; | 
|  | /* | 
|  | * Lock not present yet - get a new dependency struct and | 
|  | * add it to the list: | 
|  | */ | 
|  | entry = alloc_list_entry(); | 
|  | if (!entry) | 
|  | return 0; | 
|  |  | 
|  | entry->class = this; | 
|  | entry->links_to = links_to; | 
|  | entry->dep = dep; | 
|  | entry->distance = distance; | 
|  | entry->trace = trace; | 
|  | /* | 
|  | * Both allocation and removal are done under the graph lock; but | 
|  | * iteration is under RCU-sched; see look_up_lock_class() and | 
|  | * lockdep_free_key_range(). | 
|  | */ | 
|  | list_add_tail_rcu(&entry->entry, head); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For good efficiency of modular, we use power of 2 | 
|  | */ | 
|  | #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) | 
|  | #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1) | 
|  |  | 
|  | /* | 
|  | * The circular_queue and helpers are used to implement graph | 
|  | * breadth-first search (BFS) algorithm, by which we can determine | 
|  | * whether there is a path from a lock to another. In deadlock checks, | 
|  | * a path from the next lock to be acquired to a previous held lock | 
|  | * indicates that adding the <prev> -> <next> lock dependency will | 
|  | * produce a circle in the graph. Breadth-first search instead of | 
|  | * depth-first search is used in order to find the shortest (circular) | 
|  | * path. | 
|  | */ | 
|  | struct circular_queue { | 
|  | struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; | 
|  | unsigned int  front, rear; | 
|  | }; | 
|  |  | 
|  | static struct circular_queue lock_cq; | 
|  |  | 
|  | unsigned int max_bfs_queue_depth; | 
|  |  | 
|  | static unsigned int lockdep_dependency_gen_id; | 
|  |  | 
|  | static inline void __cq_init(struct circular_queue *cq) | 
|  | { | 
|  | cq->front = cq->rear = 0; | 
|  | lockdep_dependency_gen_id++; | 
|  | } | 
|  |  | 
|  | static inline int __cq_empty(struct circular_queue *cq) | 
|  | { | 
|  | return (cq->front == cq->rear); | 
|  | } | 
|  |  | 
|  | static inline int __cq_full(struct circular_queue *cq) | 
|  | { | 
|  | return ((cq->rear + 1) & CQ_MASK) == cq->front; | 
|  | } | 
|  |  | 
|  | static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) | 
|  | { | 
|  | if (__cq_full(cq)) | 
|  | return -1; | 
|  |  | 
|  | cq->element[cq->rear] = elem; | 
|  | cq->rear = (cq->rear + 1) & CQ_MASK; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dequeue an element from the circular_queue, return a lock_list if | 
|  | * the queue is not empty, or NULL if otherwise. | 
|  | */ | 
|  | static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) | 
|  | { | 
|  | struct lock_list * lock; | 
|  |  | 
|  | if (__cq_empty(cq)) | 
|  | return NULL; | 
|  |  | 
|  | lock = cq->element[cq->front]; | 
|  | cq->front = (cq->front + 1) & CQ_MASK; | 
|  |  | 
|  | return lock; | 
|  | } | 
|  |  | 
|  | static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq) | 
|  | { | 
|  | return (cq->rear - cq->front) & CQ_MASK; | 
|  | } | 
|  |  | 
|  | static inline void mark_lock_accessed(struct lock_list *lock) | 
|  | { | 
|  | lock->class->dep_gen_id = lockdep_dependency_gen_id; | 
|  | } | 
|  |  | 
|  | static inline void visit_lock_entry(struct lock_list *lock, | 
|  | struct lock_list *parent) | 
|  | { | 
|  | lock->parent = parent; | 
|  | } | 
|  |  | 
|  | static inline unsigned long lock_accessed(struct lock_list *lock) | 
|  | { | 
|  | return lock->class->dep_gen_id == lockdep_dependency_gen_id; | 
|  | } | 
|  |  | 
|  | static inline struct lock_list *get_lock_parent(struct lock_list *child) | 
|  | { | 
|  | return child->parent; | 
|  | } | 
|  |  | 
|  | static inline int get_lock_depth(struct lock_list *child) | 
|  | { | 
|  | int depth = 0; | 
|  | struct lock_list *parent; | 
|  |  | 
|  | while ((parent = get_lock_parent(child))) { | 
|  | child = parent; | 
|  | depth++; | 
|  | } | 
|  | return depth; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the forward or backward dependency list. | 
|  | * | 
|  | * @lock:   the lock_list to get its class's dependency list | 
|  | * @offset: the offset to struct lock_class to determine whether it is | 
|  | *          locks_after or locks_before | 
|  | */ | 
|  | static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) | 
|  | { | 
|  | void *lock_class = lock->class; | 
|  |  | 
|  | return lock_class + offset; | 
|  | } | 
|  | /* | 
|  | * Return values of a bfs search: | 
|  | * | 
|  | * BFS_E* indicates an error | 
|  | * BFS_R* indicates a result (match or not) | 
|  | * | 
|  | * BFS_EINVALIDNODE: Find a invalid node in the graph. | 
|  | * | 
|  | * BFS_EQUEUEFULL: The queue is full while doing the bfs. | 
|  | * | 
|  | * BFS_RMATCH: Find the matched node in the graph, and put that node into | 
|  | *             *@target_entry. | 
|  | * | 
|  | * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry | 
|  | *               _unchanged_. | 
|  | */ | 
|  | enum bfs_result { | 
|  | BFS_EINVALIDNODE = -2, | 
|  | BFS_EQUEUEFULL = -1, | 
|  | BFS_RMATCH = 0, | 
|  | BFS_RNOMATCH = 1, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * bfs_result < 0 means error | 
|  | */ | 
|  | static inline bool bfs_error(enum bfs_result res) | 
|  | { | 
|  | return res < 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DEP_*_BIT in lock_list::dep | 
|  | * | 
|  | * For dependency @prev -> @next: | 
|  | * | 
|  | *   SR: @prev is shared reader (->read != 0) and @next is recursive reader | 
|  | *       (->read == 2) | 
|  | *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader | 
|  | *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2) | 
|  | *   EN: @prev is exclusive locker and @next is non-recursive locker | 
|  | * | 
|  | * Note that we define the value of DEP_*_BITs so that: | 
|  | *   bit0 is prev->read == 0 | 
|  | *   bit1 is next->read != 2 | 
|  | */ | 
|  | #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ | 
|  | #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ | 
|  | #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ | 
|  | #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ | 
|  |  | 
|  | #define DEP_SR_MASK (1U << (DEP_SR_BIT)) | 
|  | #define DEP_ER_MASK (1U << (DEP_ER_BIT)) | 
|  | #define DEP_SN_MASK (1U << (DEP_SN_BIT)) | 
|  | #define DEP_EN_MASK (1U << (DEP_EN_BIT)) | 
|  |  | 
|  | static inline unsigned int | 
|  | __calc_dep_bit(struct held_lock *prev, struct held_lock *next) | 
|  | { | 
|  | return (prev->read == 0) + ((next->read != 2) << 1); | 
|  | } | 
|  |  | 
|  | static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) | 
|  | { | 
|  | return 1U << __calc_dep_bit(prev, next); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate the dep_bit for backwards edges. We care about whether @prev is | 
|  | * shared and whether @next is recursive. | 
|  | */ | 
|  | static inline unsigned int | 
|  | __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) | 
|  | { | 
|  | return (next->read != 2) + ((prev->read == 0) << 1); | 
|  | } | 
|  |  | 
|  | static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) | 
|  | { | 
|  | return 1U << __calc_dep_bitb(prev, next); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize a lock_list entry @lock belonging to @class as the root for a BFS | 
|  | * search. | 
|  | */ | 
|  | static inline void __bfs_init_root(struct lock_list *lock, | 
|  | struct lock_class *class) | 
|  | { | 
|  | lock->class = class; | 
|  | lock->parent = NULL; | 
|  | lock->only_xr = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the | 
|  | * root for a BFS search. | 
|  | * | 
|  | * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure | 
|  | * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> | 
|  | * and -(S*)->. | 
|  | */ | 
|  | static inline void bfs_init_root(struct lock_list *lock, | 
|  | struct held_lock *hlock) | 
|  | { | 
|  | __bfs_init_root(lock, hlock_class(hlock)); | 
|  | lock->only_xr = (hlock->read == 2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar to bfs_init_root() but initialize the root for backwards BFS. | 
|  | * | 
|  | * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure | 
|  | * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not | 
|  | * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). | 
|  | */ | 
|  | static inline void bfs_init_rootb(struct lock_list *lock, | 
|  | struct held_lock *hlock) | 
|  | { | 
|  | __bfs_init_root(lock, hlock_class(hlock)); | 
|  | lock->only_xr = (hlock->read != 0); | 
|  | } | 
|  |  | 
|  | static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) | 
|  | { | 
|  | if (!lock || !lock->parent) | 
|  | return NULL; | 
|  |  | 
|  | return list_next_or_null_rcu(get_dep_list(lock->parent, offset), | 
|  | &lock->entry, struct lock_list, entry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Breadth-First Search to find a strong path in the dependency graph. | 
|  | * | 
|  | * @source_entry: the source of the path we are searching for. | 
|  | * @data: data used for the second parameter of @match function | 
|  | * @match: match function for the search | 
|  | * @target_entry: pointer to the target of a matched path | 
|  | * @offset: the offset to struct lock_class to determine whether it is | 
|  | *          locks_after or locks_before | 
|  | * | 
|  | * We may have multiple edges (considering different kinds of dependencies, | 
|  | * e.g. ER and SN) between two nodes in the dependency graph. But | 
|  | * only the strong dependency path in the graph is relevant to deadlocks. A | 
|  | * strong dependency path is a dependency path that doesn't have two adjacent | 
|  | * dependencies as -(*R)-> -(S*)->, please see: | 
|  | * | 
|  | *         Documentation/locking/lockdep-design.rst | 
|  | * | 
|  | * for more explanation of the definition of strong dependency paths | 
|  | * | 
|  | * In __bfs(), we only traverse in the strong dependency path: | 
|  | * | 
|  | *     In lock_list::only_xr, we record whether the previous dependency only | 
|  | *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we | 
|  | *     filter out any -(S*)-> in the current dependency and after that, the | 
|  | *     ->only_xr is set according to whether we only have -(*R)-> left. | 
|  | */ | 
|  | static enum bfs_result __bfs(struct lock_list *source_entry, | 
|  | void *data, | 
|  | bool (*match)(struct lock_list *entry, void *data), | 
|  | bool (*skip)(struct lock_list *entry, void *data), | 
|  | struct lock_list **target_entry, | 
|  | int offset) | 
|  | { | 
|  | struct circular_queue *cq = &lock_cq; | 
|  | struct lock_list *lock = NULL; | 
|  | struct lock_list *entry; | 
|  | struct list_head *head; | 
|  | unsigned int cq_depth; | 
|  | bool first; | 
|  |  | 
|  | lockdep_assert_locked(); | 
|  |  | 
|  | __cq_init(cq); | 
|  | __cq_enqueue(cq, source_entry); | 
|  |  | 
|  | while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { | 
|  | if (!lock->class) | 
|  | return BFS_EINVALIDNODE; | 
|  |  | 
|  | /* | 
|  | * Step 1: check whether we already finish on this one. | 
|  | * | 
|  | * If we have visited all the dependencies from this @lock to | 
|  | * others (iow, if we have visited all lock_list entries in | 
|  | * @lock->class->locks_{after,before}) we skip, otherwise go | 
|  | * and visit all the dependencies in the list and mark this | 
|  | * list accessed. | 
|  | */ | 
|  | if (lock_accessed(lock)) | 
|  | continue; | 
|  | else | 
|  | mark_lock_accessed(lock); | 
|  |  | 
|  | /* | 
|  | * Step 2: check whether prev dependency and this form a strong | 
|  | *         dependency path. | 
|  | */ | 
|  | if (lock->parent) { /* Parent exists, check prev dependency */ | 
|  | u8 dep = lock->dep; | 
|  | bool prev_only_xr = lock->parent->only_xr; | 
|  |  | 
|  | /* | 
|  | * Mask out all -(S*)-> if we only have *R in previous | 
|  | * step, because -(*R)-> -(S*)-> don't make up a strong | 
|  | * dependency. | 
|  | */ | 
|  | if (prev_only_xr) | 
|  | dep &= ~(DEP_SR_MASK | DEP_SN_MASK); | 
|  |  | 
|  | /* If nothing left, we skip */ | 
|  | if (!dep) | 
|  | continue; | 
|  |  | 
|  | /* If there are only -(*R)-> left, set that for the next step */ | 
|  | lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 3: we haven't visited this and there is a strong | 
|  | *         dependency path to this, so check with @match. | 
|  | *         If @skip is provide and returns true, we skip this | 
|  | *         lock (and any path this lock is in). | 
|  | */ | 
|  | if (skip && skip(lock, data)) | 
|  | continue; | 
|  |  | 
|  | if (match(lock, data)) { | 
|  | *target_entry = lock; | 
|  | return BFS_RMATCH; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 4: if not match, expand the path by adding the | 
|  | *         forward or backwards dependencies in the search | 
|  | * | 
|  | */ | 
|  | first = true; | 
|  | head = get_dep_list(lock, offset); | 
|  | list_for_each_entry_rcu(entry, head, entry) { | 
|  | visit_lock_entry(entry, lock); | 
|  |  | 
|  | /* | 
|  | * Note we only enqueue the first of the list into the | 
|  | * queue, because we can always find a sibling | 
|  | * dependency from one (see __bfs_next()), as a result | 
|  | * the space of queue is saved. | 
|  | */ | 
|  | if (!first) | 
|  | continue; | 
|  |  | 
|  | first = false; | 
|  |  | 
|  | if (__cq_enqueue(cq, entry)) | 
|  | return BFS_EQUEUEFULL; | 
|  |  | 
|  | cq_depth = __cq_get_elem_count(cq); | 
|  | if (max_bfs_queue_depth < cq_depth) | 
|  | max_bfs_queue_depth = cq_depth; | 
|  | } | 
|  | } | 
|  |  | 
|  | return BFS_RNOMATCH; | 
|  | } | 
|  |  | 
|  | static inline enum bfs_result | 
|  | __bfs_forwards(struct lock_list *src_entry, | 
|  | void *data, | 
|  | bool (*match)(struct lock_list *entry, void *data), | 
|  | bool (*skip)(struct lock_list *entry, void *data), | 
|  | struct lock_list **target_entry) | 
|  | { | 
|  | return __bfs(src_entry, data, match, skip, target_entry, | 
|  | offsetof(struct lock_class, locks_after)); | 
|  |  | 
|  | } | 
|  |  | 
|  | static inline enum bfs_result | 
|  | __bfs_backwards(struct lock_list *src_entry, | 
|  | void *data, | 
|  | bool (*match)(struct lock_list *entry, void *data), | 
|  | bool (*skip)(struct lock_list *entry, void *data), | 
|  | struct lock_list **target_entry) | 
|  | { | 
|  | return __bfs(src_entry, data, match, skip, target_entry, | 
|  | offsetof(struct lock_class, locks_before)); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void print_lock_trace(const struct lock_trace *trace, | 
|  | unsigned int spaces) | 
|  | { | 
|  | stack_trace_print(trace->entries, trace->nr_entries, spaces); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print a dependency chain entry (this is only done when a deadlock | 
|  | * has been detected): | 
|  | */ | 
|  | static noinline void | 
|  | print_circular_bug_entry(struct lock_list *target, int depth) | 
|  | { | 
|  | if (debug_locks_silent) | 
|  | return; | 
|  | printk("\n-> #%u", depth); | 
|  | print_lock_name(NULL, target->class); | 
|  | printk(KERN_CONT ":\n"); | 
|  | print_lock_trace(target->trace, 6); | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_circular_lock_scenario(struct held_lock *src, | 
|  | struct held_lock *tgt, | 
|  | struct lock_list *prt) | 
|  | { | 
|  | struct lock_class *source = hlock_class(src); | 
|  | struct lock_class *target = hlock_class(tgt); | 
|  | struct lock_class *parent = prt->class; | 
|  | int src_read = src->read; | 
|  | int tgt_read = tgt->read; | 
|  |  | 
|  | /* | 
|  | * A direct locking problem where unsafe_class lock is taken | 
|  | * directly by safe_class lock, then all we need to show | 
|  | * is the deadlock scenario, as it is obvious that the | 
|  | * unsafe lock is taken under the safe lock. | 
|  | * | 
|  | * But if there is a chain instead, where the safe lock takes | 
|  | * an intermediate lock (middle_class) where this lock is | 
|  | * not the same as the safe lock, then the lock chain is | 
|  | * used to describe the problem. Otherwise we would need | 
|  | * to show a different CPU case for each link in the chain | 
|  | * from the safe_class lock to the unsafe_class lock. | 
|  | */ | 
|  | if (parent != source) { | 
|  | printk("Chain exists of:\n  "); | 
|  | __print_lock_name(src, source); | 
|  | printk(KERN_CONT " --> "); | 
|  | __print_lock_name(NULL, parent); | 
|  | printk(KERN_CONT " --> "); | 
|  | __print_lock_name(tgt, target); | 
|  | printk(KERN_CONT "\n\n"); | 
|  | } | 
|  |  | 
|  | printk(" Possible unsafe locking scenario:\n\n"); | 
|  | printk("       CPU0                    CPU1\n"); | 
|  | printk("       ----                    ----\n"); | 
|  | if (tgt_read != 0) | 
|  | printk("  rlock("); | 
|  | else | 
|  | printk("  lock("); | 
|  | __print_lock_name(tgt, target); | 
|  | printk(KERN_CONT ");\n"); | 
|  | printk("                               lock("); | 
|  | __print_lock_name(NULL, parent); | 
|  | printk(KERN_CONT ");\n"); | 
|  | printk("                               lock("); | 
|  | __print_lock_name(tgt, target); | 
|  | printk(KERN_CONT ");\n"); | 
|  | if (src_read != 0) | 
|  | printk("  rlock("); | 
|  | else if (src->sync) | 
|  | printk("  sync("); | 
|  | else | 
|  | printk("  lock("); | 
|  | __print_lock_name(src, source); | 
|  | printk(KERN_CONT ");\n"); | 
|  | printk("\n *** DEADLOCK ***\n\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a circular dependency is detected, print the | 
|  | * header first: | 
|  | */ | 
|  | static noinline void | 
|  | print_circular_bug_header(struct lock_list *entry, unsigned int depth, | 
|  | struct held_lock *check_src, | 
|  | struct held_lock *check_tgt) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  |  | 
|  | if (debug_locks_silent) | 
|  | return; | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("======================================================\n"); | 
|  | pr_warn("WARNING: possible circular locking dependency detected\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("------------------------------------------------------\n"); | 
|  | pr_warn("%s/%d is trying to acquire lock:\n", | 
|  | curr->comm, task_pid_nr(curr)); | 
|  | print_lock(check_src); | 
|  |  | 
|  | pr_warn("\nbut task is already holding lock:\n"); | 
|  |  | 
|  | print_lock(check_tgt); | 
|  | pr_warn("\nwhich lock already depends on the new lock.\n\n"); | 
|  | pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); | 
|  |  | 
|  | print_circular_bug_entry(entry, depth); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are about to add B -> A into the dependency graph, and in __bfs() a | 
|  | * strong dependency path A -> .. -> B is found: hlock_class equals | 
|  | * entry->class. | 
|  | * | 
|  | * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong | 
|  | * dependency cycle, that means: | 
|  | * | 
|  | * Either | 
|  | * | 
|  | *     a) B -> A is -(E*)-> | 
|  | * | 
|  | * or | 
|  | * | 
|  | *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) | 
|  | * | 
|  | * as then we don't have -(*R)-> -(S*)-> in the cycle. | 
|  | */ | 
|  | static inline bool hlock_conflict(struct lock_list *entry, void *data) | 
|  | { | 
|  | struct held_lock *hlock = (struct held_lock *)data; | 
|  |  | 
|  | return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ | 
|  | (hlock->read == 0 || /* B -> A is -(E*)-> */ | 
|  | !entry->only_xr); /* A -> .. -> B is -(*N)-> */ | 
|  | } | 
|  |  | 
|  | static noinline void print_circular_bug(struct lock_list *this, | 
|  | struct lock_list *target, | 
|  | struct held_lock *check_src, | 
|  | struct held_lock *check_tgt) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | struct lock_list *parent; | 
|  | struct lock_list *first_parent; | 
|  | int depth; | 
|  |  | 
|  | if (!debug_locks_off_graph_unlock() || debug_locks_silent) | 
|  | return; | 
|  |  | 
|  | this->trace = save_trace(); | 
|  | if (!this->trace) | 
|  | return; | 
|  |  | 
|  | depth = get_lock_depth(target); | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | print_circular_bug_header(target, depth, check_src, check_tgt); | 
|  |  | 
|  | parent = get_lock_parent(target); | 
|  | first_parent = parent; | 
|  |  | 
|  | while (parent) { | 
|  | print_circular_bug_entry(parent, --depth); | 
|  | parent = get_lock_parent(parent); | 
|  | } | 
|  |  | 
|  | printk("\nother info that might help us debug this:\n\n"); | 
|  | print_circular_lock_scenario(check_src, check_tgt, | 
|  | first_parent); | 
|  |  | 
|  | lockdep_print_held_locks(curr); | 
|  |  | 
|  | printk("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  |  | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | static noinline void print_bfs_bug(int ret) | 
|  | { | 
|  | if (!debug_locks_off_graph_unlock()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Breadth-first-search failed, graph got corrupted? | 
|  | */ | 
|  | if (ret == BFS_EQUEUEFULL) | 
|  | pr_warn("Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:\n"); | 
|  |  | 
|  | WARN(1, "lockdep bfs error:%d\n", ret); | 
|  | } | 
|  |  | 
|  | static bool noop_count(struct lock_list *entry, void *data) | 
|  | { | 
|  | (*(unsigned long *)data)++; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static unsigned long __lockdep_count_forward_deps(struct lock_list *this) | 
|  | { | 
|  | unsigned long  count = 0; | 
|  | struct lock_list *target_entry; | 
|  |  | 
|  | __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | unsigned long lockdep_count_forward_deps(struct lock_class *class) | 
|  | { | 
|  | unsigned long ret, flags; | 
|  | struct lock_list this; | 
|  |  | 
|  | __bfs_init_root(&this, class); | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_lock(); | 
|  | ret = __lockdep_count_forward_deps(&this); | 
|  | lockdep_unlock(); | 
|  | raw_local_irq_restore(flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned long __lockdep_count_backward_deps(struct lock_list *this) | 
|  | { | 
|  | unsigned long  count = 0; | 
|  | struct lock_list *target_entry; | 
|  |  | 
|  | __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | unsigned long lockdep_count_backward_deps(struct lock_class *class) | 
|  | { | 
|  | unsigned long ret, flags; | 
|  | struct lock_list this; | 
|  |  | 
|  | __bfs_init_root(&this, class); | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_lock(); | 
|  | ret = __lockdep_count_backward_deps(&this); | 
|  | lockdep_unlock(); | 
|  | raw_local_irq_restore(flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the dependency graph starting at <src> can lead to | 
|  | * <target> or not. | 
|  | */ | 
|  | static noinline enum bfs_result | 
|  | check_path(struct held_lock *target, struct lock_list *src_entry, | 
|  | bool (*match)(struct lock_list *entry, void *data), | 
|  | bool (*skip)(struct lock_list *entry, void *data), | 
|  | struct lock_list **target_entry) | 
|  | { | 
|  | enum bfs_result ret; | 
|  |  | 
|  | ret = __bfs_forwards(src_entry, target, match, skip, target_entry); | 
|  |  | 
|  | if (unlikely(bfs_error(ret))) | 
|  | print_bfs_bug(ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *); | 
|  |  | 
|  | /* | 
|  | * Prove that the dependency graph starting at <src> can not | 
|  | * lead to <target>. If it can, there is a circle when adding | 
|  | * <target> -> <src> dependency. | 
|  | * | 
|  | * Print an error and return BFS_RMATCH if it does. | 
|  | */ | 
|  | static noinline enum bfs_result | 
|  | check_noncircular(struct held_lock *src, struct held_lock *target, | 
|  | struct lock_trace **const trace) | 
|  | { | 
|  | enum bfs_result ret; | 
|  | struct lock_list *target_entry; | 
|  | struct lock_list src_entry; | 
|  |  | 
|  | bfs_init_root(&src_entry, src); | 
|  |  | 
|  | debug_atomic_inc(nr_cyclic_checks); | 
|  |  | 
|  | ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); | 
|  |  | 
|  | if (unlikely(ret == BFS_RMATCH)) { | 
|  | if (!*trace) { | 
|  | /* | 
|  | * If save_trace fails here, the printing might | 
|  | * trigger a WARN but because of the !nr_entries it | 
|  | * should not do bad things. | 
|  | */ | 
|  | *trace = save_trace(); | 
|  | } | 
|  |  | 
|  | if (src->class_idx == target->class_idx) | 
|  | print_deadlock_bug(current, src, target); | 
|  | else | 
|  | print_circular_bug(&src_entry, target_entry, src, target); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRACE_IRQFLAGS | 
|  |  | 
|  | /* | 
|  | * Forwards and backwards subgraph searching, for the purposes of | 
|  | * proving that two subgraphs can be connected by a new dependency | 
|  | * without creating any illegal irq-safe -> irq-unsafe lock dependency. | 
|  | * | 
|  | * A irq safe->unsafe deadlock happens with the following conditions: | 
|  | * | 
|  | * 1) We have a strong dependency path A -> ... -> B | 
|  | * | 
|  | * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore | 
|  | *    irq can create a new dependency B -> A (consider the case that a holder | 
|  | *    of B gets interrupted by an irq whose handler will try to acquire A). | 
|  | * | 
|  | * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a | 
|  | *    strong circle: | 
|  | * | 
|  | *      For the usage bits of B: | 
|  | *        a) if A -> B is -(*N)->, then B -> A could be any type, so any | 
|  | *           ENABLED_IRQ usage suffices. | 
|  | *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only | 
|  | *           ENABLED_IRQ_*_READ usage suffices. | 
|  | * | 
|  | *      For the usage bits of A: | 
|  | *        c) if A -> B is -(E*)->, then B -> A could be any type, so any | 
|  | *           USED_IN_IRQ usage suffices. | 
|  | *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only | 
|  | *           USED_IN_IRQ_*_READ usage suffices. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * There is a strong dependency path in the dependency graph: A -> B, and now | 
|  | * we need to decide which usage bit of A should be accumulated to detect | 
|  | * safe->unsafe bugs. | 
|  | * | 
|  | * Note that usage_accumulate() is used in backwards search, so ->only_xr | 
|  | * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). | 
|  | * | 
|  | * As above, if only_xr is false, which means A -> B has -(E*)-> dependency | 
|  | * path, any usage of A should be considered. Otherwise, we should only | 
|  | * consider _READ usage. | 
|  | */ | 
|  | static inline bool usage_accumulate(struct lock_list *entry, void *mask) | 
|  | { | 
|  | if (!entry->only_xr) | 
|  | *(unsigned long *)mask |= entry->class->usage_mask; | 
|  | else /* Mask out _READ usage bits */ | 
|  | *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is a strong dependency path in the dependency graph: A -> B, and now | 
|  | * we need to decide which usage bit of B conflicts with the usage bits of A, | 
|  | * i.e. which usage bit of B may introduce safe->unsafe deadlocks. | 
|  | * | 
|  | * As above, if only_xr is false, which means A -> B has -(*N)-> dependency | 
|  | * path, any usage of B should be considered. Otherwise, we should only | 
|  | * consider _READ usage. | 
|  | */ | 
|  | static inline bool usage_match(struct lock_list *entry, void *mask) | 
|  | { | 
|  | if (!entry->only_xr) | 
|  | return !!(entry->class->usage_mask & *(unsigned long *)mask); | 
|  | else /* Mask out _READ usage bits */ | 
|  | return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); | 
|  | } | 
|  |  | 
|  | static inline bool usage_skip(struct lock_list *entry, void *mask) | 
|  | { | 
|  | if (entry->class->lock_type == LD_LOCK_NORMAL) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Skip local_lock() for irq inversion detection. | 
|  | * | 
|  | * For !RT, local_lock() is not a real lock, so it won't carry any | 
|  | * dependency. | 
|  | * | 
|  | * For RT, an irq inversion happens when we have lock A and B, and on | 
|  | * some CPU we can have: | 
|  | * | 
|  | *	lock(A); | 
|  | *	<interrupted> | 
|  | *	  lock(B); | 
|  | * | 
|  | * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. | 
|  | * | 
|  | * Now we prove local_lock() cannot exist in that dependency. First we | 
|  | * have the observation for any lock chain L1 -> ... -> Ln, for any | 
|  | * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise | 
|  | * wait context check will complain. And since B is not a sleep lock, | 
|  | * therefore B.inner_wait_type >= 2, and since the inner_wait_type of | 
|  | * local_lock() is 3, which is greater than 2, therefore there is no | 
|  | * way the local_lock() exists in the dependency B -> ... -> A. | 
|  | * | 
|  | * As a result, we will skip local_lock(), when we search for irq | 
|  | * inversion bugs. | 
|  | */ | 
|  | if (entry->class->lock_type == LD_LOCK_PERCPU && | 
|  | DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually | 
|  | * a lock and only used to override the wait_type. | 
|  | */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a node in the forwards-direction dependency sub-graph starting | 
|  | * at @root->class that matches @bit. | 
|  | * | 
|  | * Return BFS_MATCH if such a node exists in the subgraph, and put that node | 
|  | * into *@target_entry. | 
|  | */ | 
|  | static enum bfs_result | 
|  | find_usage_forwards(struct lock_list *root, unsigned long usage_mask, | 
|  | struct lock_list **target_entry) | 
|  | { | 
|  | enum bfs_result result; | 
|  |  | 
|  | debug_atomic_inc(nr_find_usage_forwards_checks); | 
|  |  | 
|  | result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a node in the backwards-direction dependency sub-graph starting | 
|  | * at @root->class that matches @bit. | 
|  | */ | 
|  | static enum bfs_result | 
|  | find_usage_backwards(struct lock_list *root, unsigned long usage_mask, | 
|  | struct lock_list **target_entry) | 
|  | { | 
|  | enum bfs_result result; | 
|  |  | 
|  | debug_atomic_inc(nr_find_usage_backwards_checks); | 
|  |  | 
|  | result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void print_lock_class_header(struct lock_class *class, int depth) | 
|  | { | 
|  | int bit; | 
|  |  | 
|  | printk("%*s->", depth, ""); | 
|  | print_lock_name(NULL, class); | 
|  | #ifdef CONFIG_DEBUG_LOCKDEP | 
|  | printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); | 
|  | #endif | 
|  | printk(KERN_CONT " {\n"); | 
|  |  | 
|  | for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { | 
|  | if (class->usage_mask & (1 << bit)) { | 
|  | int len = depth; | 
|  |  | 
|  | len += printk("%*s   %s", depth, "", usage_str[bit]); | 
|  | len += printk(KERN_CONT " at:\n"); | 
|  | print_lock_trace(class->usage_traces[bit], len); | 
|  | } | 
|  | } | 
|  | printk("%*s }\n", depth, ""); | 
|  |  | 
|  | printk("%*s ... key      at: [<%px>] %pS\n", | 
|  | depth, "", class->key, class->key); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dependency path printing: | 
|  | * | 
|  | * After BFS we get a lock dependency path (linked via ->parent of lock_list), | 
|  | * printing out each lock in the dependency path will help on understanding how | 
|  | * the deadlock could happen. Here are some details about dependency path | 
|  | * printing: | 
|  | * | 
|  | * 1)	A lock_list can be either forwards or backwards for a lock dependency, | 
|  | * 	for a lock dependency A -> B, there are two lock_lists: | 
|  | * | 
|  | * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and | 
|  | * 		->links_to is A. In this case, we can say the lock_list is | 
|  | * 		"A -> B" (forwards case). | 
|  | * | 
|  | * 	b)	lock_list in the ->locks_before list of B, whose ->class is A | 
|  | * 		and ->links_to is B. In this case, we can say the lock_list is | 
|  | * 		"B <- A" (bacwards case). | 
|  | * | 
|  | * 	The ->trace of both a) and b) point to the call trace where B was | 
|  | * 	acquired with A held. | 
|  | * | 
|  | * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't | 
|  | * 	represent a certain lock dependency, it only provides an initial entry | 
|  | * 	for BFS. For example, BFS may introduce a "helper" lock_list whose | 
|  | * 	->class is A, as a result BFS will search all dependencies starting with | 
|  | * 	A, e.g. A -> B or A -> C. | 
|  | * | 
|  | * 	The notation of a forwards helper lock_list is like "-> A", which means | 
|  | * 	we should search the forwards dependencies starting with "A", e.g A -> B | 
|  | * 	or A -> C. | 
|  | * | 
|  | * 	The notation of a bacwards helper lock_list is like "<- B", which means | 
|  | * 	we should search the backwards dependencies ending with "B", e.g. | 
|  | * 	B <- A or B <- C. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * printk the shortest lock dependencies from @root to @leaf in reverse order. | 
|  | * | 
|  | * We have a lock dependency path as follow: | 
|  | * | 
|  | *    @root                                                                 @leaf | 
|  | *      |                                                                     | | 
|  | *      V                                                                     V | 
|  | *	          ->parent                                   ->parent | 
|  | * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list | | 
|  | * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln| | 
|  | * | 
|  | * , so it's natural that we start from @leaf and print every ->class and | 
|  | * ->trace until we reach the @root. | 
|  | */ | 
|  | static void __used | 
|  | print_shortest_lock_dependencies(struct lock_list *leaf, | 
|  | struct lock_list *root) | 
|  | { | 
|  | struct lock_list *entry = leaf; | 
|  | int depth; | 
|  |  | 
|  | /*compute depth from generated tree by BFS*/ | 
|  | depth = get_lock_depth(leaf); | 
|  |  | 
|  | do { | 
|  | print_lock_class_header(entry->class, depth); | 
|  | printk("%*s ... acquired at:\n", depth, ""); | 
|  | print_lock_trace(entry->trace, 2); | 
|  | printk("\n"); | 
|  |  | 
|  | if (depth == 0 && (entry != root)) { | 
|  | printk("lockdep:%s bad path found in chain graph\n", __func__); | 
|  | break; | 
|  | } | 
|  |  | 
|  | entry = get_lock_parent(entry); | 
|  | depth--; | 
|  | } while (entry && (depth >= 0)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * printk the shortest lock dependencies from @leaf to @root. | 
|  | * | 
|  | * We have a lock dependency path (from a backwards search) as follow: | 
|  | * | 
|  | *    @leaf                                                                 @root | 
|  | *      |                                                                     | | 
|  | *      V                                                                     V | 
|  | *	          ->parent                                   ->parent | 
|  | * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list | | 
|  | * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  | | 
|  | * | 
|  | * , so when we iterate from @leaf to @root, we actually print the lock | 
|  | * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. | 
|  | * | 
|  | * Another thing to notice here is that ->class of L2 <- L1 is L1, while the | 
|  | * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call | 
|  | * trace of L1 in the dependency path, which is alright, because most of the | 
|  | * time we can figure out where L1 is held from the call trace of L2. | 
|  | */ | 
|  | static void __used | 
|  | print_shortest_lock_dependencies_backwards(struct lock_list *leaf, | 
|  | struct lock_list *root) | 
|  | { | 
|  | struct lock_list *entry = leaf; | 
|  | const struct lock_trace *trace = NULL; | 
|  | int depth; | 
|  |  | 
|  | /*compute depth from generated tree by BFS*/ | 
|  | depth = get_lock_depth(leaf); | 
|  |  | 
|  | do { | 
|  | print_lock_class_header(entry->class, depth); | 
|  | if (trace) { | 
|  | printk("%*s ... acquired at:\n", depth, ""); | 
|  | print_lock_trace(trace, 2); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record the pointer to the trace for the next lock_list | 
|  | * entry, see the comments for the function. | 
|  | */ | 
|  | trace = entry->trace; | 
|  |  | 
|  | if (depth == 0 && (entry != root)) { | 
|  | printk("lockdep:%s bad path found in chain graph\n", __func__); | 
|  | break; | 
|  | } | 
|  |  | 
|  | entry = get_lock_parent(entry); | 
|  | depth--; | 
|  | } while (entry && (depth >= 0)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_irq_lock_scenario(struct lock_list *safe_entry, | 
|  | struct lock_list *unsafe_entry, | 
|  | struct lock_class *prev_class, | 
|  | struct lock_class *next_class) | 
|  | { | 
|  | struct lock_class *safe_class = safe_entry->class; | 
|  | struct lock_class *unsafe_class = unsafe_entry->class; | 
|  | struct lock_class *middle_class = prev_class; | 
|  |  | 
|  | if (middle_class == safe_class) | 
|  | middle_class = next_class; | 
|  |  | 
|  | /* | 
|  | * A direct locking problem where unsafe_class lock is taken | 
|  | * directly by safe_class lock, then all we need to show | 
|  | * is the deadlock scenario, as it is obvious that the | 
|  | * unsafe lock is taken under the safe lock. | 
|  | * | 
|  | * But if there is a chain instead, where the safe lock takes | 
|  | * an intermediate lock (middle_class) where this lock is | 
|  | * not the same as the safe lock, then the lock chain is | 
|  | * used to describe the problem. Otherwise we would need | 
|  | * to show a different CPU case for each link in the chain | 
|  | * from the safe_class lock to the unsafe_class lock. | 
|  | */ | 
|  | if (middle_class != unsafe_class) { | 
|  | printk("Chain exists of:\n  "); | 
|  | __print_lock_name(NULL, safe_class); | 
|  | printk(KERN_CONT " --> "); | 
|  | __print_lock_name(NULL, middle_class); | 
|  | printk(KERN_CONT " --> "); | 
|  | __print_lock_name(NULL, unsafe_class); | 
|  | printk(KERN_CONT "\n\n"); | 
|  | } | 
|  |  | 
|  | printk(" Possible interrupt unsafe locking scenario:\n\n"); | 
|  | printk("       CPU0                    CPU1\n"); | 
|  | printk("       ----                    ----\n"); | 
|  | printk("  lock("); | 
|  | __print_lock_name(NULL, unsafe_class); | 
|  | printk(KERN_CONT ");\n"); | 
|  | printk("                               local_irq_disable();\n"); | 
|  | printk("                               lock("); | 
|  | __print_lock_name(NULL, safe_class); | 
|  | printk(KERN_CONT ");\n"); | 
|  | printk("                               lock("); | 
|  | __print_lock_name(NULL, middle_class); | 
|  | printk(KERN_CONT ");\n"); | 
|  | printk("  <Interrupt>\n"); | 
|  | printk("    lock("); | 
|  | __print_lock_name(NULL, safe_class); | 
|  | printk(KERN_CONT ");\n"); | 
|  | printk("\n *** DEADLOCK ***\n\n"); | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_bad_irq_dependency(struct task_struct *curr, | 
|  | struct lock_list *prev_root, | 
|  | struct lock_list *next_root, | 
|  | struct lock_list *backwards_entry, | 
|  | struct lock_list *forwards_entry, | 
|  | struct held_lock *prev, | 
|  | struct held_lock *next, | 
|  | enum lock_usage_bit bit1, | 
|  | enum lock_usage_bit bit2, | 
|  | const char *irqclass) | 
|  | { | 
|  | if (!debug_locks_off_graph_unlock() || debug_locks_silent) | 
|  | return; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("=====================================================\n"); | 
|  | pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", | 
|  | irqclass, irqclass); | 
|  | print_kernel_ident(); | 
|  | pr_warn("-----------------------------------------------------\n"); | 
|  | pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", | 
|  | curr->comm, task_pid_nr(curr), | 
|  | lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, | 
|  | curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, | 
|  | lockdep_hardirqs_enabled(), | 
|  | curr->softirqs_enabled); | 
|  | print_lock(next); | 
|  |  | 
|  | pr_warn("\nand this task is already holding:\n"); | 
|  | print_lock(prev); | 
|  | pr_warn("which would create a new lock dependency:\n"); | 
|  | print_lock_name(prev, hlock_class(prev)); | 
|  | pr_cont(" ->"); | 
|  | print_lock_name(next, hlock_class(next)); | 
|  | pr_cont("\n"); | 
|  |  | 
|  | pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", | 
|  | irqclass); | 
|  | print_lock_name(NULL, backwards_entry->class); | 
|  | pr_warn("\n... which became %s-irq-safe at:\n", irqclass); | 
|  |  | 
|  | print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); | 
|  |  | 
|  | pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); | 
|  | print_lock_name(NULL, forwards_entry->class); | 
|  | pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); | 
|  | pr_warn("..."); | 
|  |  | 
|  | print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); | 
|  |  | 
|  | pr_warn("\nother info that might help us debug this:\n\n"); | 
|  | print_irq_lock_scenario(backwards_entry, forwards_entry, | 
|  | hlock_class(prev), hlock_class(next)); | 
|  |  | 
|  | lockdep_print_held_locks(curr); | 
|  |  | 
|  | pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); | 
|  | print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); | 
|  |  | 
|  | pr_warn("\nthe dependencies between the lock to be acquired"); | 
|  | pr_warn(" and %s-irq-unsafe lock:\n", irqclass); | 
|  | next_root->trace = save_trace(); | 
|  | if (!next_root->trace) | 
|  | goto out; | 
|  | print_shortest_lock_dependencies(forwards_entry, next_root); | 
|  |  | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  | out: | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | static const char *state_names[] = { | 
|  | #define LOCKDEP_STATE(__STATE) \ | 
|  | __stringify(__STATE), | 
|  | #include "lockdep_states.h" | 
|  | #undef LOCKDEP_STATE | 
|  | }; | 
|  |  | 
|  | static const char *state_rnames[] = { | 
|  | #define LOCKDEP_STATE(__STATE) \ | 
|  | __stringify(__STATE)"-READ", | 
|  | #include "lockdep_states.h" | 
|  | #undef LOCKDEP_STATE | 
|  | }; | 
|  |  | 
|  | static inline const char *state_name(enum lock_usage_bit bit) | 
|  | { | 
|  | if (bit & LOCK_USAGE_READ_MASK) | 
|  | return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; | 
|  | else | 
|  | return state_names[bit >> LOCK_USAGE_DIR_MASK]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The bit number is encoded like: | 
|  | * | 
|  | *  bit0: 0 exclusive, 1 read lock | 
|  | *  bit1: 0 used in irq, 1 irq enabled | 
|  | *  bit2-n: state | 
|  | */ | 
|  | static int exclusive_bit(int new_bit) | 
|  | { | 
|  | int state = new_bit & LOCK_USAGE_STATE_MASK; | 
|  | int dir = new_bit & LOCK_USAGE_DIR_MASK; | 
|  |  | 
|  | /* | 
|  | * keep state, bit flip the direction and strip read. | 
|  | */ | 
|  | return state | (dir ^ LOCK_USAGE_DIR_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Observe that when given a bitmask where each bitnr is encoded as above, a | 
|  | * right shift of the mask transforms the individual bitnrs as -1 and | 
|  | * conversely, a left shift transforms into +1 for the individual bitnrs. | 
|  | * | 
|  | * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can | 
|  | * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) | 
|  | * instead by subtracting the bit number by 2, or shifting the mask right by 2. | 
|  | * | 
|  | * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. | 
|  | * | 
|  | * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is | 
|  | * all bits set) and recompose with bitnr1 flipped. | 
|  | */ | 
|  | static unsigned long invert_dir_mask(unsigned long mask) | 
|  | { | 
|  | unsigned long excl = 0; | 
|  |  | 
|  | /* Invert dir */ | 
|  | excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; | 
|  | excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; | 
|  |  | 
|  | return excl; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ | 
|  | * usage may cause deadlock too, for example: | 
|  | * | 
|  | * P1				P2 | 
|  | * <irq disabled> | 
|  | * write_lock(l1);		<irq enabled> | 
|  | *				read_lock(l2); | 
|  | * write_lock(l2); | 
|  | * 				<in irq> | 
|  | * 				read_lock(l1); | 
|  | * | 
|  | * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 | 
|  | * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible | 
|  | * deadlock. | 
|  | * | 
|  | * In fact, all of the following cases may cause deadlocks: | 
|  | * | 
|  | * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* | 
|  | * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* | 
|  | * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ | 
|  | * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ | 
|  | * | 
|  | * As a result, to calculate the "exclusive mask", first we invert the | 
|  | * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with | 
|  | * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all | 
|  | * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). | 
|  | */ | 
|  | static unsigned long exclusive_mask(unsigned long mask) | 
|  | { | 
|  | unsigned long excl = invert_dir_mask(mask); | 
|  |  | 
|  | excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; | 
|  | excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; | 
|  |  | 
|  | return excl; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieve the _possible_ original mask to which @mask is | 
|  | * exclusive. Ie: this is the opposite of exclusive_mask(). | 
|  | * Note that 2 possible original bits can match an exclusive | 
|  | * bit: one has LOCK_USAGE_READ_MASK set, the other has it | 
|  | * cleared. So both are returned for each exclusive bit. | 
|  | */ | 
|  | static unsigned long original_mask(unsigned long mask) | 
|  | { | 
|  | unsigned long excl = invert_dir_mask(mask); | 
|  |  | 
|  | /* Include read in existing usages */ | 
|  | excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; | 
|  | excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; | 
|  |  | 
|  | return excl; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the first pair of bit match between an original | 
|  | * usage mask and an exclusive usage mask. | 
|  | */ | 
|  | static int find_exclusive_match(unsigned long mask, | 
|  | unsigned long excl_mask, | 
|  | enum lock_usage_bit *bitp, | 
|  | enum lock_usage_bit *excl_bitp) | 
|  | { | 
|  | int bit, excl, excl_read; | 
|  |  | 
|  | for_each_set_bit(bit, &mask, LOCK_USED) { | 
|  | /* | 
|  | * exclusive_bit() strips the read bit, however, | 
|  | * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need | 
|  | * to search excl | LOCK_USAGE_READ_MASK as well. | 
|  | */ | 
|  | excl = exclusive_bit(bit); | 
|  | excl_read = excl | LOCK_USAGE_READ_MASK; | 
|  | if (excl_mask & lock_flag(excl)) { | 
|  | *bitp = bit; | 
|  | *excl_bitp = excl; | 
|  | return 0; | 
|  | } else if (excl_mask & lock_flag(excl_read)) { | 
|  | *bitp = bit; | 
|  | *excl_bitp = excl_read; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prove that the new dependency does not connect a hardirq-safe(-read) | 
|  | * lock with a hardirq-unsafe lock - to achieve this we search | 
|  | * the backwards-subgraph starting at <prev>, and the | 
|  | * forwards-subgraph starting at <next>: | 
|  | */ | 
|  | static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, | 
|  | struct held_lock *next) | 
|  | { | 
|  | unsigned long usage_mask = 0, forward_mask, backward_mask; | 
|  | enum lock_usage_bit forward_bit = 0, backward_bit = 0; | 
|  | struct lock_list *target_entry1; | 
|  | struct lock_list *target_entry; | 
|  | struct lock_list this, that; | 
|  | enum bfs_result ret; | 
|  |  | 
|  | /* | 
|  | * Step 1: gather all hard/soft IRQs usages backward in an | 
|  | * accumulated usage mask. | 
|  | */ | 
|  | bfs_init_rootb(&this, prev); | 
|  |  | 
|  | ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); | 
|  | if (bfs_error(ret)) { | 
|  | print_bfs_bug(ret); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | usage_mask &= LOCKF_USED_IN_IRQ_ALL; | 
|  | if (!usage_mask) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Step 2: find exclusive uses forward that match the previous | 
|  | * backward accumulated mask. | 
|  | */ | 
|  | forward_mask = exclusive_mask(usage_mask); | 
|  |  | 
|  | bfs_init_root(&that, next); | 
|  |  | 
|  | ret = find_usage_forwards(&that, forward_mask, &target_entry1); | 
|  | if (bfs_error(ret)) { | 
|  | print_bfs_bug(ret); | 
|  | return 0; | 
|  | } | 
|  | if (ret == BFS_RNOMATCH) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Step 3: we found a bad match! Now retrieve a lock from the backward | 
|  | * list whose usage mask matches the exclusive usage mask from the | 
|  | * lock found on the forward list. | 
|  | * | 
|  | * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering | 
|  | * the follow case: | 
|  | * | 
|  | * When trying to add A -> B to the graph, we find that there is a | 
|  | * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, | 
|  | * that B -> ... -> M. However M is **softirq-safe**, if we use exact | 
|  | * invert bits of M's usage_mask, we will find another lock N that is | 
|  | * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not | 
|  | * cause a inversion deadlock. | 
|  | */ | 
|  | backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); | 
|  |  | 
|  | ret = find_usage_backwards(&this, backward_mask, &target_entry); | 
|  | if (bfs_error(ret)) { | 
|  | print_bfs_bug(ret); | 
|  | return 0; | 
|  | } | 
|  | if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Step 4: narrow down to a pair of incompatible usage bits | 
|  | * and report it. | 
|  | */ | 
|  | ret = find_exclusive_match(target_entry->class->usage_mask, | 
|  | target_entry1->class->usage_mask, | 
|  | &backward_bit, &forward_bit); | 
|  | if (DEBUG_LOCKS_WARN_ON(ret == -1)) | 
|  | return 1; | 
|  |  | 
|  | print_bad_irq_dependency(curr, &this, &that, | 
|  | target_entry, target_entry1, | 
|  | prev, next, | 
|  | backward_bit, forward_bit, | 
|  | state_name(backward_bit)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline int check_irq_usage(struct task_struct *curr, | 
|  | struct held_lock *prev, struct held_lock *next) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline bool usage_skip(struct lock_list *entry, void *mask) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_TRACE_IRQFLAGS */ | 
|  |  | 
|  | #ifdef CONFIG_LOCKDEP_SMALL | 
|  | /* | 
|  | * We are about to add A -> B into the dependency graph, and in __bfs() a | 
|  | * strong dependency path A -> .. -> B is found: hlock_class equals | 
|  | * entry->class. | 
|  | * | 
|  | * If A -> .. -> B can replace A -> B in any __bfs() search (means the former | 
|  | * is _stronger_ than or equal to the latter), we consider A -> B as redundant. | 
|  | * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A | 
|  | * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the | 
|  | * dependency graph, as any strong path ..-> A -> B ->.. we can get with | 
|  | * having dependency A -> B, we could already get a equivalent path ..-> A -> | 
|  | * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. | 
|  | * | 
|  | * We need to make sure both the start and the end of A -> .. -> B is not | 
|  | * weaker than A -> B. For the start part, please see the comment in | 
|  | * check_redundant(). For the end part, we need: | 
|  | * | 
|  | * Either | 
|  | * | 
|  | *     a) A -> B is -(*R)-> (everything is not weaker than that) | 
|  | * | 
|  | * or | 
|  | * | 
|  | *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this) | 
|  | * | 
|  | */ | 
|  | static inline bool hlock_equal(struct lock_list *entry, void *data) | 
|  | { | 
|  | struct held_lock *hlock = (struct held_lock *)data; | 
|  |  | 
|  | return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ | 
|  | (hlock->read == 2 ||  /* A -> B is -(*R)-> */ | 
|  | !entry->only_xr); /* A -> .. -> B is -(*N)-> */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the dependency graph starting at <src> can lead to | 
|  | * <target> or not. If it can, <src> -> <target> dependency is already | 
|  | * in the graph. | 
|  | * | 
|  | * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if | 
|  | * any error appears in the bfs search. | 
|  | */ | 
|  | static noinline enum bfs_result | 
|  | check_redundant(struct held_lock *src, struct held_lock *target) | 
|  | { | 
|  | enum bfs_result ret; | 
|  | struct lock_list *target_entry; | 
|  | struct lock_list src_entry; | 
|  |  | 
|  | bfs_init_root(&src_entry, src); | 
|  | /* | 
|  | * Special setup for check_redundant(). | 
|  | * | 
|  | * To report redundant, we need to find a strong dependency path that | 
|  | * is equal to or stronger than <src> -> <target>. So if <src> is E, | 
|  | * we need to let __bfs() only search for a path starting at a -(E*)->, | 
|  | * we achieve this by setting the initial node's ->only_xr to true in | 
|  | * that case. And if <prev> is S, we set initial ->only_xr to false | 
|  | * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. | 
|  | */ | 
|  | src_entry.only_xr = src->read == 0; | 
|  |  | 
|  | debug_atomic_inc(nr_redundant_checks); | 
|  |  | 
|  | /* | 
|  | * Note: we skip local_lock() for redundant check, because as the | 
|  | * comment in usage_skip(), A -> local_lock() -> B and A -> B are not | 
|  | * the same. | 
|  | */ | 
|  | ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); | 
|  |  | 
|  | if (ret == BFS_RMATCH) | 
|  | debug_atomic_inc(nr_redundant); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline enum bfs_result | 
|  | check_redundant(struct held_lock *src, struct held_lock *target) | 
|  | { | 
|  | return BFS_RNOMATCH; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void inc_chains(int irq_context) | 
|  | { | 
|  | if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) | 
|  | nr_hardirq_chains++; | 
|  | else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) | 
|  | nr_softirq_chains++; | 
|  | else | 
|  | nr_process_chains++; | 
|  | } | 
|  |  | 
|  | static void dec_chains(int irq_context) | 
|  | { | 
|  | if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) | 
|  | nr_hardirq_chains--; | 
|  | else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) | 
|  | nr_softirq_chains--; | 
|  | else | 
|  | nr_process_chains--; | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) | 
|  | { | 
|  | struct lock_class *next = hlock_class(nxt); | 
|  | struct lock_class *prev = hlock_class(prv); | 
|  |  | 
|  | printk(" Possible unsafe locking scenario:\n\n"); | 
|  | printk("       CPU0\n"); | 
|  | printk("       ----\n"); | 
|  | printk("  lock("); | 
|  | __print_lock_name(prv, prev); | 
|  | printk(KERN_CONT ");\n"); | 
|  | printk("  lock("); | 
|  | __print_lock_name(nxt, next); | 
|  | printk(KERN_CONT ");\n"); | 
|  | printk("\n *** DEADLOCK ***\n\n"); | 
|  | printk(" May be due to missing lock nesting notation\n\n"); | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, | 
|  | struct held_lock *next) | 
|  | { | 
|  | struct lock_class *class = hlock_class(prev); | 
|  |  | 
|  | if (!debug_locks_off_graph_unlock() || debug_locks_silent) | 
|  | return; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("============================================\n"); | 
|  | pr_warn("WARNING: possible recursive locking detected\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("--------------------------------------------\n"); | 
|  | pr_warn("%s/%d is trying to acquire lock:\n", | 
|  | curr->comm, task_pid_nr(curr)); | 
|  | print_lock(next); | 
|  | pr_warn("\nbut task is already holding lock:\n"); | 
|  | print_lock(prev); | 
|  |  | 
|  | if (class->cmp_fn) { | 
|  | pr_warn("and the lock comparison function returns %i:\n", | 
|  | class->cmp_fn(prev->instance, next->instance)); | 
|  | } | 
|  |  | 
|  | pr_warn("\nother info that might help us debug this:\n"); | 
|  | print_deadlock_scenario(next, prev); | 
|  | lockdep_print_held_locks(curr); | 
|  |  | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  |  | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether we are holding such a class already. | 
|  | * | 
|  | * (Note that this has to be done separately, because the graph cannot | 
|  | * detect such classes of deadlocks.) | 
|  | * | 
|  | * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same | 
|  | * lock class is held but nest_lock is also held, i.e. we rely on the | 
|  | * nest_lock to avoid the deadlock. | 
|  | */ | 
|  | static int | 
|  | check_deadlock(struct task_struct *curr, struct held_lock *next) | 
|  | { | 
|  | struct lock_class *class; | 
|  | struct held_lock *prev; | 
|  | struct held_lock *nest = NULL; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < curr->lockdep_depth; i++) { | 
|  | prev = curr->held_locks + i; | 
|  |  | 
|  | if (prev->instance == next->nest_lock) | 
|  | nest = prev; | 
|  |  | 
|  | if (hlock_class(prev) != hlock_class(next)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Allow read-after-read recursion of the same | 
|  | * lock class (i.e. read_lock(lock)+read_lock(lock)): | 
|  | */ | 
|  | if ((next->read == 2) && prev->read) | 
|  | continue; | 
|  |  | 
|  | class = hlock_class(prev); | 
|  |  | 
|  | if (class->cmp_fn && | 
|  | class->cmp_fn(prev->instance, next->instance) < 0) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * We're holding the nest_lock, which serializes this lock's | 
|  | * nesting behaviour. | 
|  | */ | 
|  | if (nest) | 
|  | return 2; | 
|  |  | 
|  | print_deadlock_bug(curr, prev, next); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There was a chain-cache miss, and we are about to add a new dependency | 
|  | * to a previous lock. We validate the following rules: | 
|  | * | 
|  | *  - would the adding of the <prev> -> <next> dependency create a | 
|  | *    circular dependency in the graph? [== circular deadlock] | 
|  | * | 
|  | *  - does the new prev->next dependency connect any hardirq-safe lock | 
|  | *    (in the full backwards-subgraph starting at <prev>) with any | 
|  | *    hardirq-unsafe lock (in the full forwards-subgraph starting at | 
|  | *    <next>)? [== illegal lock inversion with hardirq contexts] | 
|  | * | 
|  | *  - does the new prev->next dependency connect any softirq-safe lock | 
|  | *    (in the full backwards-subgraph starting at <prev>) with any | 
|  | *    softirq-unsafe lock (in the full forwards-subgraph starting at | 
|  | *    <next>)? [== illegal lock inversion with softirq contexts] | 
|  | * | 
|  | * any of these scenarios could lead to a deadlock. | 
|  | * | 
|  | * Then if all the validations pass, we add the forwards and backwards | 
|  | * dependency. | 
|  | */ | 
|  | static int | 
|  | check_prev_add(struct task_struct *curr, struct held_lock *prev, | 
|  | struct held_lock *next, u16 distance, | 
|  | struct lock_trace **const trace) | 
|  | { | 
|  | struct lock_list *entry; | 
|  | enum bfs_result ret; | 
|  |  | 
|  | if (!hlock_class(prev)->key || !hlock_class(next)->key) { | 
|  | /* | 
|  | * The warning statements below may trigger a use-after-free | 
|  | * of the class name. It is better to trigger a use-after free | 
|  | * and to have the class name most of the time instead of not | 
|  | * having the class name available. | 
|  | */ | 
|  | WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, | 
|  | "Detected use-after-free of lock class %px/%s\n", | 
|  | hlock_class(prev), | 
|  | hlock_class(prev)->name); | 
|  | WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, | 
|  | "Detected use-after-free of lock class %px/%s\n", | 
|  | hlock_class(next), | 
|  | hlock_class(next)->name); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | if (prev->class_idx == next->class_idx) { | 
|  | struct lock_class *class = hlock_class(prev); | 
|  |  | 
|  | if (class->cmp_fn && | 
|  | class->cmp_fn(prev->instance, next->instance) < 0) | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prove that the new <prev> -> <next> dependency would not | 
|  | * create a circular dependency in the graph. (We do this by | 
|  | * a breadth-first search into the graph starting at <next>, | 
|  | * and check whether we can reach <prev>.) | 
|  | * | 
|  | * The search is limited by the size of the circular queue (i.e., | 
|  | * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes | 
|  | * in the graph whose neighbours are to be checked. | 
|  | */ | 
|  | ret = check_noncircular(next, prev, trace); | 
|  | if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) | 
|  | return 0; | 
|  |  | 
|  | if (!check_irq_usage(curr, prev, next)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Is the <prev> -> <next> dependency already present? | 
|  | * | 
|  | * (this may occur even though this is a new chain: consider | 
|  | *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 | 
|  | *  chains - the second one will be new, but L1 already has | 
|  | *  L2 added to its dependency list, due to the first chain.) | 
|  | */ | 
|  | list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { | 
|  | if (entry->class == hlock_class(next)) { | 
|  | if (distance == 1) | 
|  | entry->distance = 1; | 
|  | entry->dep |= calc_dep(prev, next); | 
|  |  | 
|  | /* | 
|  | * Also, update the reverse dependency in @next's | 
|  | * ->locks_before list. | 
|  | * | 
|  | *  Here we reuse @entry as the cursor, which is fine | 
|  | *  because we won't go to the next iteration of the | 
|  | *  outer loop: | 
|  | * | 
|  | *  For normal cases, we return in the inner loop. | 
|  | * | 
|  | *  If we fail to return, we have inconsistency, i.e. | 
|  | *  <prev>::locks_after contains <next> while | 
|  | *  <next>::locks_before doesn't contain <prev>. In | 
|  | *  that case, we return after the inner and indicate | 
|  | *  something is wrong. | 
|  | */ | 
|  | list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { | 
|  | if (entry->class == hlock_class(prev)) { | 
|  | if (distance == 1) | 
|  | entry->distance = 1; | 
|  | entry->dep |= calc_depb(prev, next); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* <prev> is not found in <next>::locks_before */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is the <prev> -> <next> link redundant? | 
|  | */ | 
|  | ret = check_redundant(prev, next); | 
|  | if (bfs_error(ret)) | 
|  | return 0; | 
|  | else if (ret == BFS_RMATCH) | 
|  | return 2; | 
|  |  | 
|  | if (!*trace) { | 
|  | *trace = save_trace(); | 
|  | if (!*trace) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok, all validations passed, add the new lock | 
|  | * to the previous lock's dependency list: | 
|  | */ | 
|  | ret = add_lock_to_list(hlock_class(next), hlock_class(prev), | 
|  | &hlock_class(prev)->locks_after, distance, | 
|  | calc_dep(prev, next), *trace); | 
|  |  | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | ret = add_lock_to_list(hlock_class(prev), hlock_class(next), | 
|  | &hlock_class(next)->locks_before, distance, | 
|  | calc_depb(prev, next), *trace); | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add the dependency to all directly-previous locks that are 'relevant'. | 
|  | * The ones that are relevant are (in increasing distance from curr): | 
|  | * all consecutive trylock entries and the final non-trylock entry - or | 
|  | * the end of this context's lock-chain - whichever comes first. | 
|  | */ | 
|  | static int | 
|  | check_prevs_add(struct task_struct *curr, struct held_lock *next) | 
|  | { | 
|  | struct lock_trace *trace = NULL; | 
|  | int depth = curr->lockdep_depth; | 
|  | struct held_lock *hlock; | 
|  |  | 
|  | /* | 
|  | * Debugging checks. | 
|  | * | 
|  | * Depth must not be zero for a non-head lock: | 
|  | */ | 
|  | if (!depth) | 
|  | goto out_bug; | 
|  | /* | 
|  | * At least two relevant locks must exist for this | 
|  | * to be a head: | 
|  | */ | 
|  | if (curr->held_locks[depth].irq_context != | 
|  | curr->held_locks[depth-1].irq_context) | 
|  | goto out_bug; | 
|  |  | 
|  | for (;;) { | 
|  | u16 distance = curr->lockdep_depth - depth + 1; | 
|  | hlock = curr->held_locks + depth - 1; | 
|  |  | 
|  | if (hlock->check) { | 
|  | int ret = check_prev_add(curr, hlock, next, distance, &trace); | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Stop after the first non-trylock entry, | 
|  | * as non-trylock entries have added their | 
|  | * own direct dependencies already, so this | 
|  | * lock is connected to them indirectly: | 
|  | */ | 
|  | if (!hlock->trylock) | 
|  | break; | 
|  | } | 
|  |  | 
|  | depth--; | 
|  | /* | 
|  | * End of lock-stack? | 
|  | */ | 
|  | if (!depth) | 
|  | break; | 
|  | /* | 
|  | * Stop the search if we cross into another context: | 
|  | */ | 
|  | if (curr->held_locks[depth].irq_context != | 
|  | curr->held_locks[depth-1].irq_context) | 
|  | break; | 
|  | } | 
|  | return 1; | 
|  | out_bug: | 
|  | if (!debug_locks_off_graph_unlock()) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Clearly we all shouldn't be here, but since we made it we | 
|  | * can reliable say we messed up our state. See the above two | 
|  | * gotos for reasons why we could possibly end up here. | 
|  | */ | 
|  | WARN_ON(1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; | 
|  | static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); | 
|  | static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; | 
|  | unsigned long nr_zapped_lock_chains; | 
|  | unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */ | 
|  | unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */ | 
|  | unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */ | 
|  |  | 
|  | /* | 
|  | * The first 2 chain_hlocks entries in the chain block in the bucket | 
|  | * list contains the following meta data: | 
|  | * | 
|  | *   entry[0]: | 
|  | *     Bit    15 - always set to 1 (it is not a class index) | 
|  | *     Bits 0-14 - upper 15 bits of the next block index | 
|  | *   entry[1]    - lower 16 bits of next block index | 
|  | * | 
|  | * A next block index of all 1 bits means it is the end of the list. | 
|  | * | 
|  | * On the unsized bucket (bucket-0), the 3rd and 4th entries contain | 
|  | * the chain block size: | 
|  | * | 
|  | *   entry[2] - upper 16 bits of the chain block size | 
|  | *   entry[3] - lower 16 bits of the chain block size | 
|  | */ | 
|  | #define MAX_CHAIN_BUCKETS	16 | 
|  | #define CHAIN_BLK_FLAG		(1U << 15) | 
|  | #define CHAIN_BLK_LIST_END	0xFFFFU | 
|  |  | 
|  | static int chain_block_buckets[MAX_CHAIN_BUCKETS]; | 
|  |  | 
|  | static inline int size_to_bucket(int size) | 
|  | { | 
|  | if (size > MAX_CHAIN_BUCKETS) | 
|  | return 0; | 
|  |  | 
|  | return size - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iterate all the chain blocks in a bucket. | 
|  | */ | 
|  | #define for_each_chain_block(bucket, prev, curr)		\ | 
|  | for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\ | 
|  | (curr) >= 0;					\ | 
|  | (prev) = (curr), (curr) = chain_block_next(curr)) | 
|  |  | 
|  | /* | 
|  | * next block or -1 | 
|  | */ | 
|  | static inline int chain_block_next(int offset) | 
|  | { | 
|  | int next = chain_hlocks[offset]; | 
|  |  | 
|  | WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); | 
|  |  | 
|  | if (next == CHAIN_BLK_LIST_END) | 
|  | return -1; | 
|  |  | 
|  | next &= ~CHAIN_BLK_FLAG; | 
|  | next <<= 16; | 
|  | next |= chain_hlocks[offset + 1]; | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bucket-0 only | 
|  | */ | 
|  | static inline int chain_block_size(int offset) | 
|  | { | 
|  | return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; | 
|  | } | 
|  |  | 
|  | static inline void init_chain_block(int offset, int next, int bucket, int size) | 
|  | { | 
|  | chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; | 
|  | chain_hlocks[offset + 1] = (u16)next; | 
|  |  | 
|  | if (size && !bucket) { | 
|  | chain_hlocks[offset + 2] = size >> 16; | 
|  | chain_hlocks[offset + 3] = (u16)size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void add_chain_block(int offset, int size) | 
|  | { | 
|  | int bucket = size_to_bucket(size); | 
|  | int next = chain_block_buckets[bucket]; | 
|  | int prev, curr; | 
|  |  | 
|  | if (unlikely(size < 2)) { | 
|  | /* | 
|  | * We can't store single entries on the freelist. Leak them. | 
|  | * | 
|  | * One possible way out would be to uniquely mark them, other | 
|  | * than with CHAIN_BLK_FLAG, such that we can recover them when | 
|  | * the block before it is re-added. | 
|  | */ | 
|  | if (size) | 
|  | nr_lost_chain_hlocks++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | nr_free_chain_hlocks += size; | 
|  | if (!bucket) { | 
|  | nr_large_chain_blocks++; | 
|  |  | 
|  | /* | 
|  | * Variable sized, sort large to small. | 
|  | */ | 
|  | for_each_chain_block(0, prev, curr) { | 
|  | if (size >= chain_block_size(curr)) | 
|  | break; | 
|  | } | 
|  | init_chain_block(offset, curr, 0, size); | 
|  | if (prev < 0) | 
|  | chain_block_buckets[0] = offset; | 
|  | else | 
|  | init_chain_block(prev, offset, 0, 0); | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * Fixed size, add to head. | 
|  | */ | 
|  | init_chain_block(offset, next, bucket, size); | 
|  | chain_block_buckets[bucket] = offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only the first block in the list can be deleted. | 
|  | * | 
|  | * For the variable size bucket[0], the first block (the largest one) is | 
|  | * returned, broken up and put back into the pool. So if a chain block of | 
|  | * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be | 
|  | * queued up after the primordial chain block and never be used until the | 
|  | * hlock entries in the primordial chain block is almost used up. That | 
|  | * causes fragmentation and reduce allocation efficiency. That can be | 
|  | * monitored by looking at the "large chain blocks" number in lockdep_stats. | 
|  | */ | 
|  | static inline void del_chain_block(int bucket, int size, int next) | 
|  | { | 
|  | nr_free_chain_hlocks -= size; | 
|  | chain_block_buckets[bucket] = next; | 
|  |  | 
|  | if (!bucket) | 
|  | nr_large_chain_blocks--; | 
|  | } | 
|  |  | 
|  | static void init_chain_block_buckets(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_CHAIN_BUCKETS; i++) | 
|  | chain_block_buckets[i] = -1; | 
|  |  | 
|  | add_chain_block(0, ARRAY_SIZE(chain_hlocks)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return offset of a chain block of the right size or -1 if not found. | 
|  | * | 
|  | * Fairly simple worst-fit allocator with the addition of a number of size | 
|  | * specific free lists. | 
|  | */ | 
|  | static int alloc_chain_hlocks(int req) | 
|  | { | 
|  | int bucket, curr, size; | 
|  |  | 
|  | /* | 
|  | * We rely on the MSB to act as an escape bit to denote freelist | 
|  | * pointers. Make sure this bit isn't set in 'normal' class_idx usage. | 
|  | */ | 
|  | BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); | 
|  |  | 
|  | init_data_structures_once(); | 
|  |  | 
|  | if (nr_free_chain_hlocks < req) | 
|  | return -1; | 
|  |  | 
|  | /* | 
|  | * We require a minimum of 2 (u16) entries to encode a freelist | 
|  | * 'pointer'. | 
|  | */ | 
|  | req = max(req, 2); | 
|  | bucket = size_to_bucket(req); | 
|  | curr = chain_block_buckets[bucket]; | 
|  |  | 
|  | if (bucket) { | 
|  | if (curr >= 0) { | 
|  | del_chain_block(bucket, req, chain_block_next(curr)); | 
|  | return curr; | 
|  | } | 
|  | /* Try bucket 0 */ | 
|  | curr = chain_block_buckets[0]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The variable sized freelist is sorted by size; the first entry is | 
|  | * the largest. Use it if it fits. | 
|  | */ | 
|  | if (curr >= 0) { | 
|  | size = chain_block_size(curr); | 
|  | if (likely(size >= req)) { | 
|  | del_chain_block(0, size, chain_block_next(curr)); | 
|  | if (size > req) | 
|  | add_chain_block(curr + req, size - req); | 
|  | return curr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Last resort, split a block in a larger sized bucket. | 
|  | */ | 
|  | for (size = MAX_CHAIN_BUCKETS; size > req; size--) { | 
|  | bucket = size_to_bucket(size); | 
|  | curr = chain_block_buckets[bucket]; | 
|  | if (curr < 0) | 
|  | continue; | 
|  |  | 
|  | del_chain_block(bucket, size, chain_block_next(curr)); | 
|  | add_chain_block(curr + req, size - req); | 
|  | return curr; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline void free_chain_hlocks(int base, int size) | 
|  | { | 
|  | add_chain_block(base, max(size, 2)); | 
|  | } | 
|  |  | 
|  | struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) | 
|  | { | 
|  | u16 chain_hlock = chain_hlocks[chain->base + i]; | 
|  | unsigned int class_idx = chain_hlock_class_idx(chain_hlock); | 
|  |  | 
|  | return lock_classes + class_idx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the index of the first held_lock of the current chain | 
|  | */ | 
|  | static inline int get_first_held_lock(struct task_struct *curr, | 
|  | struct held_lock *hlock) | 
|  | { | 
|  | int i; | 
|  | struct held_lock *hlock_curr; | 
|  |  | 
|  | for (i = curr->lockdep_depth - 1; i >= 0; i--) { | 
|  | hlock_curr = curr->held_locks + i; | 
|  | if (hlock_curr->irq_context != hlock->irq_context) | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | return ++i; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_LOCKDEP | 
|  | /* | 
|  | * Returns the next chain_key iteration | 
|  | */ | 
|  | static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) | 
|  | { | 
|  | u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); | 
|  |  | 
|  | printk(" hlock_id:%d -> chain_key:%016Lx", | 
|  | (unsigned int)hlock_id, | 
|  | (unsigned long long)new_chain_key); | 
|  | return new_chain_key; | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) | 
|  | { | 
|  | struct held_lock *hlock; | 
|  | u64 chain_key = INITIAL_CHAIN_KEY; | 
|  | int depth = curr->lockdep_depth; | 
|  | int i = get_first_held_lock(curr, hlock_next); | 
|  |  | 
|  | printk("depth: %u (irq_context %u)\n", depth - i + 1, | 
|  | hlock_next->irq_context); | 
|  | for (; i < depth; i++) { | 
|  | hlock = curr->held_locks + i; | 
|  | chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); | 
|  |  | 
|  | print_lock(hlock); | 
|  | } | 
|  |  | 
|  | print_chain_key_iteration(hlock_id(hlock_next), chain_key); | 
|  | print_lock(hlock_next); | 
|  | } | 
|  |  | 
|  | static void print_chain_keys_chain(struct lock_chain *chain) | 
|  | { | 
|  | int i; | 
|  | u64 chain_key = INITIAL_CHAIN_KEY; | 
|  | u16 hlock_id; | 
|  |  | 
|  | printk("depth: %u\n", chain->depth); | 
|  | for (i = 0; i < chain->depth; i++) { | 
|  | hlock_id = chain_hlocks[chain->base + i]; | 
|  | chain_key = print_chain_key_iteration(hlock_id, chain_key); | 
|  |  | 
|  | print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id)); | 
|  | printk("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void print_collision(struct task_struct *curr, | 
|  | struct held_lock *hlock_next, | 
|  | struct lock_chain *chain) | 
|  | { | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("============================\n"); | 
|  | pr_warn("WARNING: chain_key collision\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("----------------------------\n"); | 
|  | pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); | 
|  | pr_warn("Hash chain already cached but the contents don't match!\n"); | 
|  |  | 
|  | pr_warn("Held locks:"); | 
|  | print_chain_keys_held_locks(curr, hlock_next); | 
|  |  | 
|  | pr_warn("Locks in cached chain:"); | 
|  | print_chain_keys_chain(chain); | 
|  |  | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  |  | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Checks whether the chain and the current held locks are consistent | 
|  | * in depth and also in content. If they are not it most likely means | 
|  | * that there was a collision during the calculation of the chain_key. | 
|  | * Returns: 0 not passed, 1 passed | 
|  | */ | 
|  | static int check_no_collision(struct task_struct *curr, | 
|  | struct held_lock *hlock, | 
|  | struct lock_chain *chain) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_LOCKDEP | 
|  | int i, j, id; | 
|  |  | 
|  | i = get_first_held_lock(curr, hlock); | 
|  |  | 
|  | if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { | 
|  | print_collision(curr, hlock, chain); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < chain->depth - 1; j++, i++) { | 
|  | id = hlock_id(&curr->held_locks[i]); | 
|  |  | 
|  | if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { | 
|  | print_collision(curr, hlock, chain); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given an index that is >= -1, return the index of the next lock chain. | 
|  | * Return -2 if there is no next lock chain. | 
|  | */ | 
|  | long lockdep_next_lockchain(long i) | 
|  | { | 
|  | i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); | 
|  | return i < ARRAY_SIZE(lock_chains) ? i : -2; | 
|  | } | 
|  |  | 
|  | unsigned long lock_chain_count(void) | 
|  | { | 
|  | return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); | 
|  | } | 
|  |  | 
|  | /* Must be called with the graph lock held. */ | 
|  | static struct lock_chain *alloc_lock_chain(void) | 
|  | { | 
|  | int idx = find_first_zero_bit(lock_chains_in_use, | 
|  | ARRAY_SIZE(lock_chains)); | 
|  |  | 
|  | if (unlikely(idx >= ARRAY_SIZE(lock_chains))) | 
|  | return NULL; | 
|  | __set_bit(idx, lock_chains_in_use); | 
|  | return lock_chains + idx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adds a dependency chain into chain hashtable. And must be called with | 
|  | * graph_lock held. | 
|  | * | 
|  | * Return 0 if fail, and graph_lock is released. | 
|  | * Return 1 if succeed, with graph_lock held. | 
|  | */ | 
|  | static inline int add_chain_cache(struct task_struct *curr, | 
|  | struct held_lock *hlock, | 
|  | u64 chain_key) | 
|  | { | 
|  | struct hlist_head *hash_head = chainhashentry(chain_key); | 
|  | struct lock_chain *chain; | 
|  | int i, j; | 
|  |  | 
|  | /* | 
|  | * The caller must hold the graph lock, ensure we've got IRQs | 
|  | * disabled to make this an IRQ-safe lock.. for recursion reasons | 
|  | * lockdep won't complain about its own locking errors. | 
|  | */ | 
|  | if (lockdep_assert_locked()) | 
|  | return 0; | 
|  |  | 
|  | chain = alloc_lock_chain(); | 
|  | if (!chain) { | 
|  | if (!debug_locks_off_graph_unlock()) | 
|  | return 0; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  | print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  | return 0; | 
|  | } | 
|  | chain->chain_key = chain_key; | 
|  | chain->irq_context = hlock->irq_context; | 
|  | i = get_first_held_lock(curr, hlock); | 
|  | chain->depth = curr->lockdep_depth + 1 - i; | 
|  |  | 
|  | BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); | 
|  | BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks)); | 
|  | BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); | 
|  |  | 
|  | j = alloc_chain_hlocks(chain->depth); | 
|  | if (j < 0) { | 
|  | if (!debug_locks_off_graph_unlock()) | 
|  | return 0; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  | print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | chain->base = j; | 
|  | for (j = 0; j < chain->depth - 1; j++, i++) { | 
|  | int lock_id = hlock_id(curr->held_locks + i); | 
|  |  | 
|  | chain_hlocks[chain->base + j] = lock_id; | 
|  | } | 
|  | chain_hlocks[chain->base + j] = hlock_id(hlock); | 
|  | hlist_add_head_rcu(&chain->entry, hash_head); | 
|  | debug_atomic_inc(chain_lookup_misses); | 
|  | inc_chains(chain->irq_context); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up a dependency chain. Must be called with either the graph lock or | 
|  | * the RCU read lock held. | 
|  | */ | 
|  | static inline struct lock_chain *lookup_chain_cache(u64 chain_key) | 
|  | { | 
|  | struct hlist_head *hash_head = chainhashentry(chain_key); | 
|  | struct lock_chain *chain; | 
|  |  | 
|  | hlist_for_each_entry_rcu(chain, hash_head, entry) { | 
|  | if (READ_ONCE(chain->chain_key) == chain_key) { | 
|  | debug_atomic_inc(chain_lookup_hits); | 
|  | return chain; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the key is not present yet in dependency chain cache then | 
|  | * add it and return 1 - in this case the new dependency chain is | 
|  | * validated. If the key is already hashed, return 0. | 
|  | * (On return with 1 graph_lock is held.) | 
|  | */ | 
|  | static inline int lookup_chain_cache_add(struct task_struct *curr, | 
|  | struct held_lock *hlock, | 
|  | u64 chain_key) | 
|  | { | 
|  | struct lock_class *class = hlock_class(hlock); | 
|  | struct lock_chain *chain = lookup_chain_cache(chain_key); | 
|  |  | 
|  | if (chain) { | 
|  | cache_hit: | 
|  | if (!check_no_collision(curr, hlock, chain)) | 
|  | return 0; | 
|  |  | 
|  | if (very_verbose(class)) { | 
|  | printk("\nhash chain already cached, key: " | 
|  | "%016Lx tail class: [%px] %s\n", | 
|  | (unsigned long long)chain_key, | 
|  | class->key, class->name); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (very_verbose(class)) { | 
|  | printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", | 
|  | (unsigned long long)chain_key, class->key, class->name); | 
|  | } | 
|  |  | 
|  | if (!graph_lock()) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We have to walk the chain again locked - to avoid duplicates: | 
|  | */ | 
|  | chain = lookup_chain_cache(chain_key); | 
|  | if (chain) { | 
|  | graph_unlock(); | 
|  | goto cache_hit; | 
|  | } | 
|  |  | 
|  | if (!add_chain_cache(curr, hlock, chain_key)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int validate_chain(struct task_struct *curr, | 
|  | struct held_lock *hlock, | 
|  | int chain_head, u64 chain_key) | 
|  | { | 
|  | /* | 
|  | * Trylock needs to maintain the stack of held locks, but it | 
|  | * does not add new dependencies, because trylock can be done | 
|  | * in any order. | 
|  | * | 
|  | * We look up the chain_key and do the O(N^2) check and update of | 
|  | * the dependencies only if this is a new dependency chain. | 
|  | * (If lookup_chain_cache_add() return with 1 it acquires | 
|  | * graph_lock for us) | 
|  | */ | 
|  | if (!hlock->trylock && hlock->check && | 
|  | lookup_chain_cache_add(curr, hlock, chain_key)) { | 
|  | /* | 
|  | * Check whether last held lock: | 
|  | * | 
|  | * - is irq-safe, if this lock is irq-unsafe | 
|  | * - is softirq-safe, if this lock is hardirq-unsafe | 
|  | * | 
|  | * And check whether the new lock's dependency graph | 
|  | * could lead back to the previous lock: | 
|  | * | 
|  | * - within the current held-lock stack | 
|  | * - across our accumulated lock dependency records | 
|  | * | 
|  | * any of these scenarios could lead to a deadlock. | 
|  | */ | 
|  | /* | 
|  | * The simple case: does the current hold the same lock | 
|  | * already? | 
|  | */ | 
|  | int ret = check_deadlock(curr, hlock); | 
|  |  | 
|  | if (!ret) | 
|  | return 0; | 
|  | /* | 
|  | * Add dependency only if this lock is not the head | 
|  | * of the chain, and if the new lock introduces no more | 
|  | * lock dependency (because we already hold a lock with the | 
|  | * same lock class) nor deadlock (because the nest_lock | 
|  | * serializes nesting locks), see the comments for | 
|  | * check_deadlock(). | 
|  | */ | 
|  | if (!chain_head && ret != 2) { | 
|  | if (!check_prevs_add(curr, hlock)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | graph_unlock(); | 
|  | } else { | 
|  | /* after lookup_chain_cache_add(): */ | 
|  | if (unlikely(!debug_locks)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | static inline int validate_chain(struct task_struct *curr, | 
|  | struct held_lock *hlock, | 
|  | int chain_head, u64 chain_key) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void init_chain_block_buckets(void)	{ } | 
|  | #endif /* CONFIG_PROVE_LOCKING */ | 
|  |  | 
|  | /* | 
|  | * We are building curr_chain_key incrementally, so double-check | 
|  | * it from scratch, to make sure that it's done correctly: | 
|  | */ | 
|  | static void check_chain_key(struct task_struct *curr) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_LOCKDEP | 
|  | struct held_lock *hlock, *prev_hlock = NULL; | 
|  | unsigned int i; | 
|  | u64 chain_key = INITIAL_CHAIN_KEY; | 
|  |  | 
|  | for (i = 0; i < curr->lockdep_depth; i++) { | 
|  | hlock = curr->held_locks + i; | 
|  | if (chain_key != hlock->prev_chain_key) { | 
|  | debug_locks_off(); | 
|  | /* | 
|  | * We got mighty confused, our chain keys don't match | 
|  | * with what we expect, someone trample on our task state? | 
|  | */ | 
|  | WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", | 
|  | curr->lockdep_depth, i, | 
|  | (unsigned long long)chain_key, | 
|  | (unsigned long long)hlock->prev_chain_key); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is | 
|  | * it registered lock class index? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) | 
|  | return; | 
|  |  | 
|  | if (prev_hlock && (prev_hlock->irq_context != | 
|  | hlock->irq_context)) | 
|  | chain_key = INITIAL_CHAIN_KEY; | 
|  | chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); | 
|  | prev_hlock = hlock; | 
|  | } | 
|  | if (chain_key != curr->curr_chain_key) { | 
|  | debug_locks_off(); | 
|  | /* | 
|  | * More smoking hash instead of calculating it, damn see these | 
|  | * numbers float.. I bet that a pink elephant stepped on my memory. | 
|  | */ | 
|  | WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", | 
|  | curr->lockdep_depth, i, | 
|  | (unsigned long long)chain_key, | 
|  | (unsigned long long)curr->curr_chain_key); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | static int mark_lock(struct task_struct *curr, struct held_lock *this, | 
|  | enum lock_usage_bit new_bit); | 
|  |  | 
|  | static void print_usage_bug_scenario(struct held_lock *lock) | 
|  | { | 
|  | struct lock_class *class = hlock_class(lock); | 
|  |  | 
|  | printk(" Possible unsafe locking scenario:\n\n"); | 
|  | printk("       CPU0\n"); | 
|  | printk("       ----\n"); | 
|  | printk("  lock("); | 
|  | __print_lock_name(lock, class); | 
|  | printk(KERN_CONT ");\n"); | 
|  | printk("  <Interrupt>\n"); | 
|  | printk("    lock("); | 
|  | __print_lock_name(lock, class); | 
|  | printk(KERN_CONT ");\n"); | 
|  | printk("\n *** DEADLOCK ***\n\n"); | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_usage_bug(struct task_struct *curr, struct held_lock *this, | 
|  | enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) | 
|  | { | 
|  | if (!debug_locks_off() || debug_locks_silent) | 
|  | return; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("================================\n"); | 
|  | pr_warn("WARNING: inconsistent lock state\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("--------------------------------\n"); | 
|  |  | 
|  | pr_warn("inconsistent {%s} -> {%s} usage.\n", | 
|  | usage_str[prev_bit], usage_str[new_bit]); | 
|  |  | 
|  | pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", | 
|  | curr->comm, task_pid_nr(curr), | 
|  | lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, | 
|  | lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, | 
|  | lockdep_hardirqs_enabled(), | 
|  | lockdep_softirqs_enabled(curr)); | 
|  | print_lock(this); | 
|  |  | 
|  | pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); | 
|  | print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); | 
|  |  | 
|  | print_irqtrace_events(curr); | 
|  | pr_warn("\nother info that might help us debug this:\n"); | 
|  | print_usage_bug_scenario(this); | 
|  |  | 
|  | lockdep_print_held_locks(curr); | 
|  |  | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  |  | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print out an error if an invalid bit is set: | 
|  | */ | 
|  | static inline int | 
|  | valid_state(struct task_struct *curr, struct held_lock *this, | 
|  | enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) | 
|  | { | 
|  | if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { | 
|  | graph_unlock(); | 
|  | print_usage_bug(curr, this, bad_bit, new_bit); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * print irq inversion bug: | 
|  | */ | 
|  | static void | 
|  | print_irq_inversion_bug(struct task_struct *curr, | 
|  | struct lock_list *root, struct lock_list *other, | 
|  | struct held_lock *this, int forwards, | 
|  | const char *irqclass) | 
|  | { | 
|  | struct lock_list *entry = other; | 
|  | struct lock_list *middle = NULL; | 
|  | int depth; | 
|  |  | 
|  | if (!debug_locks_off_graph_unlock() || debug_locks_silent) | 
|  | return; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("========================================================\n"); | 
|  | pr_warn("WARNING: possible irq lock inversion dependency detected\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("--------------------------------------------------------\n"); | 
|  | pr_warn("%s/%d just changed the state of lock:\n", | 
|  | curr->comm, task_pid_nr(curr)); | 
|  | print_lock(this); | 
|  | if (forwards) | 
|  | pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); | 
|  | else | 
|  | pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); | 
|  | print_lock_name(NULL, other->class); | 
|  | pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); | 
|  |  | 
|  | pr_warn("\nother info that might help us debug this:\n"); | 
|  |  | 
|  | /* Find a middle lock (if one exists) */ | 
|  | depth = get_lock_depth(other); | 
|  | do { | 
|  | if (depth == 0 && (entry != root)) { | 
|  | pr_warn("lockdep:%s bad path found in chain graph\n", __func__); | 
|  | break; | 
|  | } | 
|  | middle = entry; | 
|  | entry = get_lock_parent(entry); | 
|  | depth--; | 
|  | } while (entry && entry != root && (depth >= 0)); | 
|  | if (forwards) | 
|  | print_irq_lock_scenario(root, other, | 
|  | middle ? middle->class : root->class, other->class); | 
|  | else | 
|  | print_irq_lock_scenario(other, root, | 
|  | middle ? middle->class : other->class, root->class); | 
|  |  | 
|  | lockdep_print_held_locks(curr); | 
|  |  | 
|  | pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); | 
|  | root->trace = save_trace(); | 
|  | if (!root->trace) | 
|  | goto out; | 
|  | print_shortest_lock_dependencies(other, root); | 
|  |  | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  | out: | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prove that in the forwards-direction subgraph starting at <this> | 
|  | * there is no lock matching <mask>: | 
|  | */ | 
|  | static int | 
|  | check_usage_forwards(struct task_struct *curr, struct held_lock *this, | 
|  | enum lock_usage_bit bit) | 
|  | { | 
|  | enum bfs_result ret; | 
|  | struct lock_list root; | 
|  | struct lock_list *target_entry; | 
|  | enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; | 
|  | unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); | 
|  |  | 
|  | bfs_init_root(&root, this); | 
|  | ret = find_usage_forwards(&root, usage_mask, &target_entry); | 
|  | if (bfs_error(ret)) { | 
|  | print_bfs_bug(ret); | 
|  | return 0; | 
|  | } | 
|  | if (ret == BFS_RNOMATCH) | 
|  | return 1; | 
|  |  | 
|  | /* Check whether write or read usage is the match */ | 
|  | if (target_entry->class->usage_mask & lock_flag(bit)) { | 
|  | print_irq_inversion_bug(curr, &root, target_entry, | 
|  | this, 1, state_name(bit)); | 
|  | } else { | 
|  | print_irq_inversion_bug(curr, &root, target_entry, | 
|  | this, 1, state_name(read_bit)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prove that in the backwards-direction subgraph starting at <this> | 
|  | * there is no lock matching <mask>: | 
|  | */ | 
|  | static int | 
|  | check_usage_backwards(struct task_struct *curr, struct held_lock *this, | 
|  | enum lock_usage_bit bit) | 
|  | { | 
|  | enum bfs_result ret; | 
|  | struct lock_list root; | 
|  | struct lock_list *target_entry; | 
|  | enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; | 
|  | unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); | 
|  |  | 
|  | bfs_init_rootb(&root, this); | 
|  | ret = find_usage_backwards(&root, usage_mask, &target_entry); | 
|  | if (bfs_error(ret)) { | 
|  | print_bfs_bug(ret); | 
|  | return 0; | 
|  | } | 
|  | if (ret == BFS_RNOMATCH) | 
|  | return 1; | 
|  |  | 
|  | /* Check whether write or read usage is the match */ | 
|  | if (target_entry->class->usage_mask & lock_flag(bit)) { | 
|  | print_irq_inversion_bug(curr, &root, target_entry, | 
|  | this, 0, state_name(bit)); | 
|  | } else { | 
|  | print_irq_inversion_bug(curr, &root, target_entry, | 
|  | this, 0, state_name(read_bit)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void print_irqtrace_events(struct task_struct *curr) | 
|  | { | 
|  | const struct irqtrace_events *trace = &curr->irqtrace; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | printk("irq event stamp: %u\n", trace->irq_events); | 
|  | printk("hardirqs last  enabled at (%u): [<%px>] %pS\n", | 
|  | trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, | 
|  | (void *)trace->hardirq_enable_ip); | 
|  | printk("hardirqs last disabled at (%u): [<%px>] %pS\n", | 
|  | trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, | 
|  | (void *)trace->hardirq_disable_ip); | 
|  | printk("softirqs last  enabled at (%u): [<%px>] %pS\n", | 
|  | trace->softirq_enable_event, (void *)trace->softirq_enable_ip, | 
|  | (void *)trace->softirq_enable_ip); | 
|  | printk("softirqs last disabled at (%u): [<%px>] %pS\n", | 
|  | trace->softirq_disable_event, (void *)trace->softirq_disable_ip, | 
|  | (void *)trace->softirq_disable_ip); | 
|  |  | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | static int HARDIRQ_verbose(struct lock_class *class) | 
|  | { | 
|  | #if HARDIRQ_VERBOSE | 
|  | return class_filter(class); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int SOFTIRQ_verbose(struct lock_class *class) | 
|  | { | 
|  | #if SOFTIRQ_VERBOSE | 
|  | return class_filter(class); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int (*state_verbose_f[])(struct lock_class *class) = { | 
|  | #define LOCKDEP_STATE(__STATE) \ | 
|  | __STATE##_verbose, | 
|  | #include "lockdep_states.h" | 
|  | #undef LOCKDEP_STATE | 
|  | }; | 
|  |  | 
|  | static inline int state_verbose(enum lock_usage_bit bit, | 
|  | struct lock_class *class) | 
|  | { | 
|  | return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); | 
|  | } | 
|  |  | 
|  | typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, | 
|  | enum lock_usage_bit bit, const char *name); | 
|  |  | 
|  | static int | 
|  | mark_lock_irq(struct task_struct *curr, struct held_lock *this, | 
|  | enum lock_usage_bit new_bit) | 
|  | { | 
|  | int excl_bit = exclusive_bit(new_bit); | 
|  | int read = new_bit & LOCK_USAGE_READ_MASK; | 
|  | int dir = new_bit & LOCK_USAGE_DIR_MASK; | 
|  |  | 
|  | /* | 
|  | * Validate that this particular lock does not have conflicting | 
|  | * usage states. | 
|  | */ | 
|  | if (!valid_state(curr, this, new_bit, excl_bit)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Check for read in write conflicts | 
|  | */ | 
|  | if (!read && !valid_state(curr, this, new_bit, | 
|  | excl_bit + LOCK_USAGE_READ_MASK)) | 
|  | return 0; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Validate that the lock dependencies don't have conflicting usage | 
|  | * states. | 
|  | */ | 
|  | if (dir) { | 
|  | /* | 
|  | * mark ENABLED has to look backwards -- to ensure no dependee | 
|  | * has USED_IN state, which, again, would allow  recursion deadlocks. | 
|  | */ | 
|  | if (!check_usage_backwards(curr, this, excl_bit)) | 
|  | return 0; | 
|  | } else { | 
|  | /* | 
|  | * mark USED_IN has to look forwards -- to ensure no dependency | 
|  | * has ENABLED state, which would allow recursion deadlocks. | 
|  | */ | 
|  | if (!check_usage_forwards(curr, this, excl_bit)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (state_verbose(new_bit, hlock_class(this))) | 
|  | return 2; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark all held locks with a usage bit: | 
|  | */ | 
|  | static int | 
|  | mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) | 
|  | { | 
|  | struct held_lock *hlock; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < curr->lockdep_depth; i++) { | 
|  | enum lock_usage_bit hlock_bit = base_bit; | 
|  | hlock = curr->held_locks + i; | 
|  |  | 
|  | if (hlock->read) | 
|  | hlock_bit += LOCK_USAGE_READ_MASK; | 
|  |  | 
|  | BUG_ON(hlock_bit >= LOCK_USAGE_STATES); | 
|  |  | 
|  | if (!hlock->check) | 
|  | continue; | 
|  |  | 
|  | if (!mark_lock(curr, hlock, hlock_bit)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hardirqs will be enabled: | 
|  | */ | 
|  | static void __trace_hardirqs_on_caller(void) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  |  | 
|  | /* | 
|  | * We are going to turn hardirqs on, so set the | 
|  | * usage bit for all held locks: | 
|  | */ | 
|  | if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) | 
|  | return; | 
|  | /* | 
|  | * If we have softirqs enabled, then set the usage | 
|  | * bit for all held locks. (disabled hardirqs prevented | 
|  | * this bit from being set before) | 
|  | */ | 
|  | if (curr->softirqs_enabled) | 
|  | mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts | 
|  | * | 
|  | * Invoked before a possible transition to RCU idle from exit to user or | 
|  | * guest mode. This ensures that all RCU operations are done before RCU | 
|  | * stops watching. After the RCU transition lockdep_hardirqs_on() has to be | 
|  | * invoked to set the final state. | 
|  | */ | 
|  | void lockdep_hardirqs_on_prepare(void) | 
|  | { | 
|  | if (unlikely(!debug_locks)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * NMIs do not (and cannot) track lock dependencies, nothing to do. | 
|  | */ | 
|  | if (unlikely(in_nmi())) | 
|  | return; | 
|  |  | 
|  | if (unlikely(this_cpu_read(lockdep_recursion))) | 
|  | return; | 
|  |  | 
|  | if (unlikely(lockdep_hardirqs_enabled())) { | 
|  | /* | 
|  | * Neither irq nor preemption are disabled here | 
|  | * so this is racy by nature but losing one hit | 
|  | * in a stat is not a big deal. | 
|  | */ | 
|  | __debug_atomic_inc(redundant_hardirqs_on); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're enabling irqs and according to our state above irqs weren't | 
|  | * already enabled, yet we find the hardware thinks they are in fact | 
|  | * enabled.. someone messed up their IRQ state tracing. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * See the fine text that goes along with this variable definition. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Can't allow enabling interrupts while in an interrupt handler, | 
|  | * that's general bad form and such. Recursion, limited stack etc.. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) | 
|  | return; | 
|  |  | 
|  | current->hardirq_chain_key = current->curr_chain_key; | 
|  |  | 
|  | lockdep_recursion_inc(); | 
|  | __trace_hardirqs_on_caller(); | 
|  | lockdep_recursion_finish(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); | 
|  |  | 
|  | void noinstr lockdep_hardirqs_on(unsigned long ip) | 
|  | { | 
|  | struct irqtrace_events *trace = ¤t->irqtrace; | 
|  |  | 
|  | if (unlikely(!debug_locks)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * NMIs can happen in the middle of local_irq_{en,dis}able() where the | 
|  | * tracking state and hardware state are out of sync. | 
|  | * | 
|  | * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, | 
|  | * and not rely on hardware state like normal interrupts. | 
|  | */ | 
|  | if (unlikely(in_nmi())) { | 
|  | if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Skip: | 
|  | *  - recursion check, because NMI can hit lockdep; | 
|  | *  - hardware state check, because above; | 
|  | *  - chain_key check, see lockdep_hardirqs_on_prepare(). | 
|  | */ | 
|  | goto skip_checks; | 
|  | } | 
|  |  | 
|  | if (unlikely(this_cpu_read(lockdep_recursion))) | 
|  | return; | 
|  |  | 
|  | if (lockdep_hardirqs_enabled()) { | 
|  | /* | 
|  | * Neither irq nor preemption are disabled here | 
|  | * so this is racy by nature but losing one hit | 
|  | * in a stat is not a big deal. | 
|  | */ | 
|  | __debug_atomic_inc(redundant_hardirqs_on); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're enabling irqs and according to our state above irqs weren't | 
|  | * already enabled, yet we find the hardware thinks they are in fact | 
|  | * enabled.. someone messed up their IRQ state tracing. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Ensure the lock stack remained unchanged between | 
|  | * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). | 
|  | */ | 
|  | DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != | 
|  | current->curr_chain_key); | 
|  |  | 
|  | skip_checks: | 
|  | /* we'll do an OFF -> ON transition: */ | 
|  | __this_cpu_write(hardirqs_enabled, 1); | 
|  | trace->hardirq_enable_ip = ip; | 
|  | trace->hardirq_enable_event = ++trace->irq_events; | 
|  | debug_atomic_inc(hardirqs_on_events); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); | 
|  |  | 
|  | /* | 
|  | * Hardirqs were disabled: | 
|  | */ | 
|  | void noinstr lockdep_hardirqs_off(unsigned long ip) | 
|  | { | 
|  | if (unlikely(!debug_locks)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; | 
|  | * they will restore the software state. This ensures the software | 
|  | * state is consistent inside NMIs as well. | 
|  | */ | 
|  | if (in_nmi()) { | 
|  | if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) | 
|  | return; | 
|  | } else if (__this_cpu_read(lockdep_recursion)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * So we're supposed to get called after you mask local IRQs, but for | 
|  | * some reason the hardware doesn't quite think you did a proper job. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) | 
|  | return; | 
|  |  | 
|  | if (lockdep_hardirqs_enabled()) { | 
|  | struct irqtrace_events *trace = ¤t->irqtrace; | 
|  |  | 
|  | /* | 
|  | * We have done an ON -> OFF transition: | 
|  | */ | 
|  | __this_cpu_write(hardirqs_enabled, 0); | 
|  | trace->hardirq_disable_ip = ip; | 
|  | trace->hardirq_disable_event = ++trace->irq_events; | 
|  | debug_atomic_inc(hardirqs_off_events); | 
|  | } else { | 
|  | debug_atomic_inc(redundant_hardirqs_off); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); | 
|  |  | 
|  | /* | 
|  | * Softirqs will be enabled: | 
|  | */ | 
|  | void lockdep_softirqs_on(unsigned long ip) | 
|  | { | 
|  | struct irqtrace_events *trace = ¤t->irqtrace; | 
|  |  | 
|  | if (unlikely(!lockdep_enabled())) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We fancy IRQs being disabled here, see softirq.c, avoids | 
|  | * funny state and nesting things. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) | 
|  | return; | 
|  |  | 
|  | if (current->softirqs_enabled) { | 
|  | debug_atomic_inc(redundant_softirqs_on); | 
|  | return; | 
|  | } | 
|  |  | 
|  | lockdep_recursion_inc(); | 
|  | /* | 
|  | * We'll do an OFF -> ON transition: | 
|  | */ | 
|  | current->softirqs_enabled = 1; | 
|  | trace->softirq_enable_ip = ip; | 
|  | trace->softirq_enable_event = ++trace->irq_events; | 
|  | debug_atomic_inc(softirqs_on_events); | 
|  | /* | 
|  | * We are going to turn softirqs on, so set the | 
|  | * usage bit for all held locks, if hardirqs are | 
|  | * enabled too: | 
|  | */ | 
|  | if (lockdep_hardirqs_enabled()) | 
|  | mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); | 
|  | lockdep_recursion_finish(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Softirqs were disabled: | 
|  | */ | 
|  | void lockdep_softirqs_off(unsigned long ip) | 
|  | { | 
|  | if (unlikely(!lockdep_enabled())) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We fancy IRQs being disabled here, see softirq.c | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) | 
|  | return; | 
|  |  | 
|  | if (current->softirqs_enabled) { | 
|  | struct irqtrace_events *trace = ¤t->irqtrace; | 
|  |  | 
|  | /* | 
|  | * We have done an ON -> OFF transition: | 
|  | */ | 
|  | current->softirqs_enabled = 0; | 
|  | trace->softirq_disable_ip = ip; | 
|  | trace->softirq_disable_event = ++trace->irq_events; | 
|  | debug_atomic_inc(softirqs_off_events); | 
|  | /* | 
|  | * Whoops, we wanted softirqs off, so why aren't they? | 
|  | */ | 
|  | DEBUG_LOCKS_WARN_ON(!softirq_count()); | 
|  | } else | 
|  | debug_atomic_inc(redundant_softirqs_off); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped | 
|  | * | 
|  | * @cpu: index of offlined CPU | 
|  | * @idle: task pointer for offlined CPU's idle thread | 
|  | * | 
|  | * Invoked after the CPU is dead. Ensures that the tracing infrastructure | 
|  | * is left in a suitable state for the CPU to be subsequently brought | 
|  | * online again. | 
|  | */ | 
|  | void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle) | 
|  | { | 
|  | if (unlikely(!debug_locks)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(per_cpu(hardirqs_enabled, cpu))) { | 
|  | pr_warn("CPU %u left hardirqs enabled!", cpu); | 
|  | if (idle) | 
|  | print_irqtrace_events(idle); | 
|  | /* Clean it up for when the CPU comes online again. */ | 
|  | per_cpu(hardirqs_enabled, cpu) = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) | 
|  | { | 
|  | if (!check) | 
|  | goto lock_used; | 
|  |  | 
|  | /* | 
|  | * If non-trylock use in a hardirq or softirq context, then | 
|  | * mark the lock as used in these contexts: | 
|  | */ | 
|  | if (!hlock->trylock) { | 
|  | if (hlock->read) { | 
|  | if (lockdep_hardirq_context()) | 
|  | if (!mark_lock(curr, hlock, | 
|  | LOCK_USED_IN_HARDIRQ_READ)) | 
|  | return 0; | 
|  | if (curr->softirq_context) | 
|  | if (!mark_lock(curr, hlock, | 
|  | LOCK_USED_IN_SOFTIRQ_READ)) | 
|  | return 0; | 
|  | } else { | 
|  | if (lockdep_hardirq_context()) | 
|  | if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) | 
|  | return 0; | 
|  | if (curr->softirq_context) | 
|  | if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For lock_sync(), don't mark the ENABLED usage, since lock_sync() | 
|  | * creates no critical section and no extra dependency can be introduced | 
|  | * by interrupts | 
|  | */ | 
|  | if (!hlock->hardirqs_off && !hlock->sync) { | 
|  | if (hlock->read) { | 
|  | if (!mark_lock(curr, hlock, | 
|  | LOCK_ENABLED_HARDIRQ_READ)) | 
|  | return 0; | 
|  | if (curr->softirqs_enabled) | 
|  | if (!mark_lock(curr, hlock, | 
|  | LOCK_ENABLED_SOFTIRQ_READ)) | 
|  | return 0; | 
|  | } else { | 
|  | if (!mark_lock(curr, hlock, | 
|  | LOCK_ENABLED_HARDIRQ)) | 
|  | return 0; | 
|  | if (curr->softirqs_enabled) | 
|  | if (!mark_lock(curr, hlock, | 
|  | LOCK_ENABLED_SOFTIRQ)) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | lock_used: | 
|  | /* mark it as used: */ | 
|  | if (!mark_lock(curr, hlock, LOCK_USED)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline unsigned int task_irq_context(struct task_struct *task) | 
|  | { | 
|  | return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + | 
|  | LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; | 
|  | } | 
|  |  | 
|  | static int separate_irq_context(struct task_struct *curr, | 
|  | struct held_lock *hlock) | 
|  | { | 
|  | unsigned int depth = curr->lockdep_depth; | 
|  |  | 
|  | /* | 
|  | * Keep track of points where we cross into an interrupt context: | 
|  | */ | 
|  | if (depth) { | 
|  | struct held_lock *prev_hlock; | 
|  |  | 
|  | prev_hlock = curr->held_locks + depth-1; | 
|  | /* | 
|  | * If we cross into another context, reset the | 
|  | * hash key (this also prevents the checking and the | 
|  | * adding of the dependency to 'prev'): | 
|  | */ | 
|  | if (prev_hlock->irq_context != hlock->irq_context) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark a lock with a usage bit, and validate the state transition: | 
|  | */ | 
|  | static int mark_lock(struct task_struct *curr, struct held_lock *this, | 
|  | enum lock_usage_bit new_bit) | 
|  | { | 
|  | unsigned int new_mask, ret = 1; | 
|  |  | 
|  | if (new_bit >= LOCK_USAGE_STATES) { | 
|  | DEBUG_LOCKS_WARN_ON(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (new_bit == LOCK_USED && this->read) | 
|  | new_bit = LOCK_USED_READ; | 
|  |  | 
|  | new_mask = 1 << new_bit; | 
|  |  | 
|  | /* | 
|  | * If already set then do not dirty the cacheline, | 
|  | * nor do any checks: | 
|  | */ | 
|  | if (likely(hlock_class(this)->usage_mask & new_mask)) | 
|  | return 1; | 
|  |  | 
|  | if (!graph_lock()) | 
|  | return 0; | 
|  | /* | 
|  | * Make sure we didn't race: | 
|  | */ | 
|  | if (unlikely(hlock_class(this)->usage_mask & new_mask)) | 
|  | goto unlock; | 
|  |  | 
|  | if (!hlock_class(this)->usage_mask) | 
|  | debug_atomic_dec(nr_unused_locks); | 
|  |  | 
|  | hlock_class(this)->usage_mask |= new_mask; | 
|  |  | 
|  | if (new_bit < LOCK_TRACE_STATES) { | 
|  | if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (new_bit < LOCK_USED) { | 
|  | ret = mark_lock_irq(curr, this, new_bit); | 
|  | if (!ret) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unlock: | 
|  | graph_unlock(); | 
|  |  | 
|  | /* | 
|  | * We must printk outside of the graph_lock: | 
|  | */ | 
|  | if (ret == 2) { | 
|  | nbcon_cpu_emergency_enter(); | 
|  | printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); | 
|  | print_lock(this); | 
|  | print_irqtrace_events(curr); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline short task_wait_context(struct task_struct *curr) | 
|  | { | 
|  | /* | 
|  | * Set appropriate wait type for the context; for IRQs we have to take | 
|  | * into account force_irqthread as that is implied by PREEMPT_RT. | 
|  | */ | 
|  | if (lockdep_hardirq_context()) { | 
|  | /* | 
|  | * Check if force_irqthreads will run us threaded. | 
|  | */ | 
|  | if (curr->hardirq_threaded || curr->irq_config) | 
|  | return LD_WAIT_CONFIG; | 
|  |  | 
|  | return LD_WAIT_SPIN; | 
|  | } else if (curr->softirq_context) { | 
|  | /* | 
|  | * Softirqs are always threaded. | 
|  | */ | 
|  | return LD_WAIT_CONFIG; | 
|  | } | 
|  |  | 
|  | return LD_WAIT_MAX; | 
|  | } | 
|  |  | 
|  | static int | 
|  | print_lock_invalid_wait_context(struct task_struct *curr, | 
|  | struct held_lock *hlock) | 
|  | { | 
|  | short curr_inner; | 
|  |  | 
|  | if (!debug_locks_off()) | 
|  | return 0; | 
|  | if (debug_locks_silent) | 
|  | return 0; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("=============================\n"); | 
|  | pr_warn("[ BUG: Invalid wait context ]\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("-----------------------------\n"); | 
|  |  | 
|  | pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); | 
|  | print_lock(hlock); | 
|  |  | 
|  | pr_warn("other info that might help us debug this:\n"); | 
|  |  | 
|  | curr_inner = task_wait_context(curr); | 
|  | pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); | 
|  |  | 
|  | lockdep_print_held_locks(curr); | 
|  |  | 
|  | pr_warn("stack backtrace:\n"); | 
|  | dump_stack(); | 
|  |  | 
|  | nbcon_cpu_emergency_exit(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify the wait_type context. | 
|  | * | 
|  | * This check validates we take locks in the right wait-type order; that is it | 
|  | * ensures that we do not take mutexes inside spinlocks and do not attempt to | 
|  | * acquire spinlocks inside raw_spinlocks and the sort. | 
|  | * | 
|  | * The entire thing is slightly more complex because of RCU, RCU is a lock that | 
|  | * can be taken from (pretty much) any context but also has constraints. | 
|  | * However when taken in a stricter environment the RCU lock does not loosen | 
|  | * the constraints. | 
|  | * | 
|  | * Therefore we must look for the strictest environment in the lock stack and | 
|  | * compare that to the lock we're trying to acquire. | 
|  | */ | 
|  | static int check_wait_context(struct task_struct *curr, struct held_lock *next) | 
|  | { | 
|  | u8 next_inner = hlock_class(next)->wait_type_inner; | 
|  | u8 next_outer = hlock_class(next)->wait_type_outer; | 
|  | u8 curr_inner; | 
|  | int depth; | 
|  |  | 
|  | if (!next_inner || next->trylock) | 
|  | return 0; | 
|  |  | 
|  | if (!next_outer) | 
|  | next_outer = next_inner; | 
|  |  | 
|  | /* | 
|  | * Find start of current irq_context.. | 
|  | */ | 
|  | for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { | 
|  | struct held_lock *prev = curr->held_locks + depth; | 
|  | if (prev->irq_context != next->irq_context) | 
|  | break; | 
|  | } | 
|  | depth++; | 
|  |  | 
|  | curr_inner = task_wait_context(curr); | 
|  |  | 
|  | for (; depth < curr->lockdep_depth; depth++) { | 
|  | struct held_lock *prev = curr->held_locks + depth; | 
|  | struct lock_class *class = hlock_class(prev); | 
|  | u8 prev_inner = class->wait_type_inner; | 
|  |  | 
|  | if (prev_inner) { | 
|  | /* | 
|  | * We can have a bigger inner than a previous one | 
|  | * when outer is smaller than inner, as with RCU. | 
|  | * | 
|  | * Also due to trylocks. | 
|  | */ | 
|  | curr_inner = min(curr_inner, prev_inner); | 
|  |  | 
|  | /* | 
|  | * Allow override for annotations -- this is typically | 
|  | * only valid/needed for code that only exists when | 
|  | * CONFIG_PREEMPT_RT=n. | 
|  | */ | 
|  | if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE)) | 
|  | curr_inner = prev_inner; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (next_outer > curr_inner) | 
|  | return print_lock_invalid_wait_context(curr, next); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_PROVE_LOCKING */ | 
|  |  | 
|  | static inline int | 
|  | mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline unsigned int task_irq_context(struct task_struct *task) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int separate_irq_context(struct task_struct *curr, | 
|  | struct held_lock *hlock) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int check_wait_context(struct task_struct *curr, | 
|  | struct held_lock *next) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PROVE_LOCKING */ | 
|  |  | 
|  | /* | 
|  | * Initialize a lock instance's lock-class mapping info: | 
|  | */ | 
|  | void lockdep_init_map_type(struct lockdep_map *lock, const char *name, | 
|  | struct lock_class_key *key, int subclass, | 
|  | u8 inner, u8 outer, u8 lock_type) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) | 
|  | lock->class_cache[i] = NULL; | 
|  |  | 
|  | #ifdef CONFIG_LOCK_STAT | 
|  | lock->cpu = raw_smp_processor_id(); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Can't be having no nameless bastards around this place! | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!name)) { | 
|  | lock->name = "NULL"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | lock->name = name; | 
|  |  | 
|  | lock->wait_type_outer = outer; | 
|  | lock->wait_type_inner = inner; | 
|  | lock->lock_type = lock_type; | 
|  |  | 
|  | /* | 
|  | * No key, no joy, we need to hash something. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!key)) | 
|  | return; | 
|  | /* | 
|  | * Sanity check, the lock-class key must either have been allocated | 
|  | * statically or must have been registered as a dynamic key. | 
|  | */ | 
|  | if (!static_obj(key) && !is_dynamic_key(key)) { | 
|  | if (debug_locks) | 
|  | printk(KERN_ERR "BUG: key %px has not been registered!\n", key); | 
|  | DEBUG_LOCKS_WARN_ON(1); | 
|  | return; | 
|  | } | 
|  | lock->key = key; | 
|  |  | 
|  | if (unlikely(!debug_locks)) | 
|  | return; | 
|  |  | 
|  | if (subclass) { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_recursion_inc(); | 
|  | register_lock_class(lock, subclass, 1); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lockdep_init_map_type); | 
|  |  | 
|  | struct lock_class_key __lockdep_no_validate__; | 
|  | EXPORT_SYMBOL_GPL(__lockdep_no_validate__); | 
|  |  | 
|  | struct lock_class_key __lockdep_no_track__; | 
|  | EXPORT_SYMBOL_GPL(__lockdep_no_track__); | 
|  |  | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn, | 
|  | lock_print_fn print_fn) | 
|  | { | 
|  | struct lock_class *class = lock->class_cache[0]; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_recursion_inc(); | 
|  |  | 
|  | if (!class) | 
|  | class = register_lock_class(lock, 0, 0); | 
|  |  | 
|  | if (class) { | 
|  | WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn); | 
|  | WARN_ON(class->print_fn && class->print_fn != print_fn); | 
|  |  | 
|  | class->cmp_fn	= cmp_fn; | 
|  | class->print_fn = print_fn; | 
|  | } | 
|  |  | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn); | 
|  | #endif | 
|  |  | 
|  | static void | 
|  | print_lock_nested_lock_not_held(struct task_struct *curr, | 
|  | struct held_lock *hlock) | 
|  | { | 
|  | if (!debug_locks_off()) | 
|  | return; | 
|  | if (debug_locks_silent) | 
|  | return; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("==================================\n"); | 
|  | pr_warn("WARNING: Nested lock was not taken\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("----------------------------------\n"); | 
|  |  | 
|  | pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); | 
|  | print_lock(hlock); | 
|  |  | 
|  | pr_warn("\nbut this task is not holding:\n"); | 
|  | pr_warn("%s\n", hlock->nest_lock->name); | 
|  |  | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  |  | 
|  | pr_warn("\nother info that might help us debug this:\n"); | 
|  | lockdep_print_held_locks(curr); | 
|  |  | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  |  | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | static int __lock_is_held(const struct lockdep_map *lock, int read); | 
|  |  | 
|  | /* | 
|  | * This gets called for every mutex_lock*()/spin_lock*() operation. | 
|  | * We maintain the dependency maps and validate the locking attempt: | 
|  | * | 
|  | * The callers must make sure that IRQs are disabled before calling it, | 
|  | * otherwise we could get an interrupt which would want to take locks, | 
|  | * which would end up in lockdep again. | 
|  | */ | 
|  | static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, | 
|  | int trylock, int read, int check, int hardirqs_off, | 
|  | struct lockdep_map *nest_lock, unsigned long ip, | 
|  | int references, int pin_count, int sync) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | struct lock_class *class = NULL; | 
|  | struct held_lock *hlock; | 
|  | unsigned int depth; | 
|  | int chain_head = 0; | 
|  | int class_idx; | 
|  | u64 chain_key; | 
|  |  | 
|  | if (unlikely(!debug_locks)) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(lock->key == &__lockdep_no_track__)) | 
|  | return 0; | 
|  |  | 
|  | lockevent_inc(lockdep_acquire); | 
|  |  | 
|  | if (!prove_locking || lock->key == &__lockdep_no_validate__) { | 
|  | check = 0; | 
|  | lockevent_inc(lockdep_nocheck); | 
|  | } | 
|  |  | 
|  | if (DEBUG_LOCKS_WARN_ON(subclass >= MAX_LOCKDEP_SUBCLASSES)) | 
|  | return 0; | 
|  |  | 
|  | if (subclass < NR_LOCKDEP_CACHING_CLASSES) | 
|  | class = lock->class_cache[subclass]; | 
|  | /* | 
|  | * Not cached? | 
|  | */ | 
|  | if (unlikely(!class)) { | 
|  | class = register_lock_class(lock, subclass, 0); | 
|  | if (!class) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | debug_class_ops_inc(class); | 
|  |  | 
|  | if (very_verbose(class)) { | 
|  | nbcon_cpu_emergency_enter(); | 
|  | printk("\nacquire class [%px] %s", class->key, class->name); | 
|  | if (class->name_version > 1) | 
|  | printk(KERN_CONT "#%d", class->name_version); | 
|  | printk(KERN_CONT "\n"); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add the lock to the list of currently held locks. | 
|  | * (we dont increase the depth just yet, up until the | 
|  | * dependency checks are done) | 
|  | */ | 
|  | depth = curr->lockdep_depth; | 
|  | /* | 
|  | * Ran out of static storage for our per-task lock stack again have we? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) | 
|  | return 0; | 
|  |  | 
|  | class_idx = class - lock_classes; | 
|  |  | 
|  | if (depth && !sync) { | 
|  | /* we're holding locks and the new held lock is not a sync */ | 
|  | hlock = curr->held_locks + depth - 1; | 
|  | if (hlock->class_idx == class_idx && nest_lock) { | 
|  | if (!references) | 
|  | references++; | 
|  |  | 
|  | if (!hlock->references) | 
|  | hlock->references++; | 
|  |  | 
|  | hlock->references += references; | 
|  |  | 
|  | /* Overflow */ | 
|  | if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) | 
|  | return 0; | 
|  |  | 
|  | return 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | hlock = curr->held_locks + depth; | 
|  | /* | 
|  | * Plain impossible, we just registered it and checked it weren't no | 
|  | * NULL like.. I bet this mushroom I ate was good! | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!class)) | 
|  | return 0; | 
|  | hlock->class_idx = class_idx; | 
|  | hlock->acquire_ip = ip; | 
|  | hlock->instance = lock; | 
|  | hlock->nest_lock = nest_lock; | 
|  | hlock->irq_context = task_irq_context(curr); | 
|  | hlock->trylock = trylock; | 
|  | hlock->read = read; | 
|  | hlock->check = check; | 
|  | hlock->sync = !!sync; | 
|  | hlock->hardirqs_off = !!hardirqs_off; | 
|  | hlock->references = references; | 
|  | #ifdef CONFIG_LOCK_STAT | 
|  | hlock->waittime_stamp = 0; | 
|  | hlock->holdtime_stamp = lockstat_clock(); | 
|  | #endif | 
|  | hlock->pin_count = pin_count; | 
|  |  | 
|  | if (check_wait_context(curr, hlock)) | 
|  | return 0; | 
|  |  | 
|  | /* Initialize the lock usage bit */ | 
|  | if (!mark_usage(curr, hlock, check)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Calculate the chain hash: it's the combined hash of all the | 
|  | * lock keys along the dependency chain. We save the hash value | 
|  | * at every step so that we can get the current hash easily | 
|  | * after unlock. The chain hash is then used to cache dependency | 
|  | * results. | 
|  | * | 
|  | * The 'key ID' is what is the most compact key value to drive | 
|  | * the hash, not class->key. | 
|  | */ | 
|  | /* | 
|  | * Whoops, we did it again.. class_idx is invalid. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) | 
|  | return 0; | 
|  |  | 
|  | chain_key = curr->curr_chain_key; | 
|  | if (!depth) { | 
|  | /* | 
|  | * How can we have a chain hash when we ain't got no keys?! | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) | 
|  | return 0; | 
|  | chain_head = 1; | 
|  | } | 
|  |  | 
|  | hlock->prev_chain_key = chain_key; | 
|  | if (separate_irq_context(curr, hlock)) { | 
|  | chain_key = INITIAL_CHAIN_KEY; | 
|  | chain_head = 1; | 
|  | } | 
|  | chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); | 
|  |  | 
|  | if (nest_lock && !__lock_is_held(nest_lock, -1)) { | 
|  | print_lock_nested_lock_not_held(curr, hlock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!debug_locks_silent) { | 
|  | WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); | 
|  | WARN_ON_ONCE(!hlock_class(hlock)->key); | 
|  | } | 
|  |  | 
|  | if (!validate_chain(curr, hlock, chain_head, chain_key)) | 
|  | return 0; | 
|  |  | 
|  | /* For lock_sync(), we are done here since no actual critical section */ | 
|  | if (hlock->sync) | 
|  | return 1; | 
|  |  | 
|  | curr->curr_chain_key = chain_key; | 
|  | curr->lockdep_depth++; | 
|  | check_chain_key(curr); | 
|  | #ifdef CONFIG_DEBUG_LOCKDEP | 
|  | if (unlikely(!debug_locks)) | 
|  | return 0; | 
|  | #endif | 
|  | if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { | 
|  | debug_locks_off(); | 
|  | nbcon_cpu_emergency_enter(); | 
|  | print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); | 
|  | printk(KERN_DEBUG "depth: %i  max: %lu!\n", | 
|  | curr->lockdep_depth, MAX_LOCK_DEPTH); | 
|  |  | 
|  | lockdep_print_held_locks(current); | 
|  | debug_show_all_locks(); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(curr->lockdep_depth > max_lockdep_depth)) | 
|  | max_lockdep_depth = curr->lockdep_depth; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void print_unlock_imbalance_bug(struct task_struct *curr, | 
|  | struct lockdep_map *lock, | 
|  | unsigned long ip) | 
|  | { | 
|  | if (!debug_locks_off()) | 
|  | return; | 
|  | if (debug_locks_silent) | 
|  | return; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("=====================================\n"); | 
|  | pr_warn("WARNING: bad unlock balance detected!\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("-------------------------------------\n"); | 
|  | pr_warn("%s/%d is trying to release lock (", | 
|  | curr->comm, task_pid_nr(curr)); | 
|  | print_lockdep_cache(lock); | 
|  | pr_cont(") at:\n"); | 
|  | print_ip_sym(KERN_WARNING, ip); | 
|  | pr_warn("but there are no more locks to release!\n"); | 
|  | pr_warn("\nother info that might help us debug this:\n"); | 
|  | lockdep_print_held_locks(curr); | 
|  |  | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  |  | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | static noinstr int match_held_lock(const struct held_lock *hlock, | 
|  | const struct lockdep_map *lock) | 
|  | { | 
|  | if (hlock->instance == lock) | 
|  | return 1; | 
|  |  | 
|  | if (hlock->references) { | 
|  | const struct lock_class *class = lock->class_cache[0]; | 
|  |  | 
|  | if (!class) | 
|  | class = look_up_lock_class(lock, 0); | 
|  |  | 
|  | /* | 
|  | * If look_up_lock_class() failed to find a class, we're trying | 
|  | * to test if we hold a lock that has never yet been acquired. | 
|  | * Clearly if the lock hasn't been acquired _ever_, we're not | 
|  | * holding it either, so report failure. | 
|  | */ | 
|  | if (!class) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * References, but not a lock we're actually ref-counting? | 
|  | * State got messed up, follow the sites that change ->references | 
|  | * and try to make sense of it. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) | 
|  | return 0; | 
|  |  | 
|  | if (hlock->class_idx == class - lock_classes) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* @depth must not be zero */ | 
|  | static struct held_lock *find_held_lock(struct task_struct *curr, | 
|  | struct lockdep_map *lock, | 
|  | unsigned int depth, int *idx) | 
|  | { | 
|  | struct held_lock *ret, *hlock, *prev_hlock; | 
|  | int i; | 
|  |  | 
|  | i = depth - 1; | 
|  | hlock = curr->held_locks + i; | 
|  | ret = hlock; | 
|  | if (match_held_lock(hlock, lock)) | 
|  | goto out; | 
|  |  | 
|  | ret = NULL; | 
|  | for (i--, prev_hlock = hlock--; | 
|  | i >= 0; | 
|  | i--, prev_hlock = hlock--) { | 
|  | /* | 
|  | * We must not cross into another context: | 
|  | */ | 
|  | if (prev_hlock->irq_context != hlock->irq_context) { | 
|  | ret = NULL; | 
|  | break; | 
|  | } | 
|  | if (match_held_lock(hlock, lock)) { | 
|  | ret = hlock; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | *idx = i; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, | 
|  | int idx, unsigned int *merged) | 
|  | { | 
|  | struct held_lock *hlock; | 
|  | int first_idx = idx; | 
|  |  | 
|  | if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) | 
|  | return 0; | 
|  |  | 
|  | for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { | 
|  | switch (__lock_acquire(hlock->instance, | 
|  | hlock_class(hlock)->subclass, | 
|  | hlock->trylock, | 
|  | hlock->read, hlock->check, | 
|  | hlock->hardirqs_off, | 
|  | hlock->nest_lock, hlock->acquire_ip, | 
|  | hlock->references, hlock->pin_count, 0)) { | 
|  | case 0: | 
|  | return 1; | 
|  | case 1: | 
|  | break; | 
|  | case 2: | 
|  | *merged += (idx == first_idx); | 
|  | break; | 
|  | default: | 
|  | WARN_ON(1); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | __lock_set_class(struct lockdep_map *lock, const char *name, | 
|  | struct lock_class_key *key, unsigned int subclass, | 
|  | unsigned long ip) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | unsigned int depth, merged = 0; | 
|  | struct held_lock *hlock; | 
|  | struct lock_class *class; | 
|  | int i; | 
|  |  | 
|  | if (unlikely(!debug_locks)) | 
|  | return 0; | 
|  |  | 
|  | depth = curr->lockdep_depth; | 
|  | /* | 
|  | * This function is about (re)setting the class of a held lock, | 
|  | * yet we're not actually holding any locks. Naughty user! | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!depth)) | 
|  | return 0; | 
|  |  | 
|  | hlock = find_held_lock(curr, lock, depth, &i); | 
|  | if (!hlock) { | 
|  | print_unlock_imbalance_bug(curr, lock, ip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | lockdep_init_map_type(lock, name, key, 0, | 
|  | lock->wait_type_inner, | 
|  | lock->wait_type_outer, | 
|  | lock->lock_type); | 
|  | class = register_lock_class(lock, subclass, 0); | 
|  | hlock->class_idx = class - lock_classes; | 
|  |  | 
|  | curr->lockdep_depth = i; | 
|  | curr->curr_chain_key = hlock->prev_chain_key; | 
|  |  | 
|  | if (reacquire_held_locks(curr, depth, i, &merged)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * I took it apart and put it back together again, except now I have | 
|  | * these 'spare' parts.. where shall I put them. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | unsigned int depth, merged = 0; | 
|  | struct held_lock *hlock; | 
|  | int i; | 
|  |  | 
|  | if (unlikely(!debug_locks)) | 
|  | return 0; | 
|  |  | 
|  | depth = curr->lockdep_depth; | 
|  | /* | 
|  | * This function is about (re)setting the class of a held lock, | 
|  | * yet we're not actually holding any locks. Naughty user! | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!depth)) | 
|  | return 0; | 
|  |  | 
|  | hlock = find_held_lock(curr, lock, depth, &i); | 
|  | if (!hlock) { | 
|  | print_unlock_imbalance_bug(curr, lock, ip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | curr->lockdep_depth = i; | 
|  | curr->curr_chain_key = hlock->prev_chain_key; | 
|  |  | 
|  | WARN(hlock->read, "downgrading a read lock"); | 
|  | hlock->read = 1; | 
|  | hlock->acquire_ip = ip; | 
|  |  | 
|  | if (reacquire_held_locks(curr, depth, i, &merged)) | 
|  | return 0; | 
|  |  | 
|  | /* Merging can't happen with unchanged classes.. */ | 
|  | if (DEBUG_LOCKS_WARN_ON(merged)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * I took it apart and put it back together again, except now I have | 
|  | * these 'spare' parts.. where shall I put them. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove the lock from the list of currently held locks - this gets | 
|  | * called on mutex_unlock()/spin_unlock*() (or on a failed | 
|  | * mutex_lock_interruptible()). | 
|  | */ | 
|  | static int | 
|  | __lock_release(struct lockdep_map *lock, unsigned long ip) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | unsigned int depth, merged = 1; | 
|  | struct held_lock *hlock; | 
|  | int i; | 
|  |  | 
|  | if (unlikely(!debug_locks)) | 
|  | return 0; | 
|  |  | 
|  | depth = curr->lockdep_depth; | 
|  | /* | 
|  | * So we're all set to release this lock.. wait what lock? We don't | 
|  | * own any locks, you've been drinking again? | 
|  | */ | 
|  | if (depth <= 0) { | 
|  | print_unlock_imbalance_bug(curr, lock, ip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether the lock exists in the current stack | 
|  | * of held locks: | 
|  | */ | 
|  | hlock = find_held_lock(curr, lock, depth, &i); | 
|  | if (!hlock) { | 
|  | print_unlock_imbalance_bug(curr, lock, ip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (hlock->instance == lock) | 
|  | lock_release_holdtime(hlock); | 
|  |  | 
|  | WARN(hlock->pin_count, "releasing a pinned lock\n"); | 
|  |  | 
|  | if (hlock->references) { | 
|  | hlock->references--; | 
|  | if (hlock->references) { | 
|  | /* | 
|  | * We had, and after removing one, still have | 
|  | * references, the current lock stack is still | 
|  | * valid. We're done! | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have the right lock to unlock, 'hlock' points to it. | 
|  | * Now we remove it from the stack, and add back the other | 
|  | * entries (if any), recalculating the hash along the way: | 
|  | */ | 
|  |  | 
|  | curr->lockdep_depth = i; | 
|  | curr->curr_chain_key = hlock->prev_chain_key; | 
|  |  | 
|  | /* | 
|  | * The most likely case is when the unlock is on the innermost | 
|  | * lock. In this case, we are done! | 
|  | */ | 
|  | if (i == depth-1) | 
|  | return 1; | 
|  |  | 
|  | if (reacquire_held_locks(curr, depth, i + 1, &merged)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We had N bottles of beer on the wall, we drank one, but now | 
|  | * there's not N-1 bottles of beer left on the wall... | 
|  | * Pouring two of the bottles together is acceptable. | 
|  | */ | 
|  | DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); | 
|  |  | 
|  | /* | 
|  | * Since reacquire_held_locks() would have called check_chain_key() | 
|  | * indirectly via __lock_acquire(), we don't need to do it again | 
|  | * on return. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __always_inline | 
|  | int __lock_is_held(const struct lockdep_map *lock, int read) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < curr->lockdep_depth; i++) { | 
|  | struct held_lock *hlock = curr->held_locks + i; | 
|  |  | 
|  | if (match_held_lock(hlock, lock)) { | 
|  | if (read == -1 || !!hlock->read == read) | 
|  | return LOCK_STATE_HELD; | 
|  |  | 
|  | return LOCK_STATE_NOT_HELD; | 
|  | } | 
|  | } | 
|  |  | 
|  | return LOCK_STATE_NOT_HELD; | 
|  | } | 
|  |  | 
|  | static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) | 
|  | { | 
|  | struct pin_cookie cookie = NIL_COOKIE; | 
|  | struct task_struct *curr = current; | 
|  | int i; | 
|  |  | 
|  | if (unlikely(!debug_locks)) | 
|  | return cookie; | 
|  |  | 
|  | for (i = 0; i < curr->lockdep_depth; i++) { | 
|  | struct held_lock *hlock = curr->held_locks + i; | 
|  |  | 
|  | if (match_held_lock(hlock, lock)) { | 
|  | /* | 
|  | * Grab 16bits of randomness; this is sufficient to not | 
|  | * be guessable and still allows some pin nesting in | 
|  | * our u32 pin_count. | 
|  | */ | 
|  | cookie.val = 1 + (sched_clock() & 0xffff); | 
|  | hlock->pin_count += cookie.val; | 
|  | return cookie; | 
|  | } | 
|  | } | 
|  |  | 
|  | WARN(1, "pinning an unheld lock\n"); | 
|  | return cookie; | 
|  | } | 
|  |  | 
|  | static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | int i; | 
|  |  | 
|  | if (unlikely(!debug_locks)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < curr->lockdep_depth; i++) { | 
|  | struct held_lock *hlock = curr->held_locks + i; | 
|  |  | 
|  | if (match_held_lock(hlock, lock)) { | 
|  | hlock->pin_count += cookie.val; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | WARN(1, "pinning an unheld lock\n"); | 
|  | } | 
|  |  | 
|  | static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | int i; | 
|  |  | 
|  | if (unlikely(!debug_locks)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < curr->lockdep_depth; i++) { | 
|  | struct held_lock *hlock = curr->held_locks + i; | 
|  |  | 
|  | if (match_held_lock(hlock, lock)) { | 
|  | if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) | 
|  | return; | 
|  |  | 
|  | hlock->pin_count -= cookie.val; | 
|  |  | 
|  | if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) | 
|  | hlock->pin_count = 0; | 
|  |  | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | WARN(1, "unpinning an unheld lock\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether we follow the irq-flags state precisely: | 
|  | */ | 
|  | static noinstr void check_flags(unsigned long flags) | 
|  | { | 
|  | #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) | 
|  | if (!debug_locks) | 
|  | return; | 
|  |  | 
|  | /* Get the warning out..  */ | 
|  | instrumentation_begin(); | 
|  |  | 
|  | if (irqs_disabled_flags(flags)) { | 
|  | if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { | 
|  | printk("possible reason: unannotated irqs-off.\n"); | 
|  | } | 
|  | } else { | 
|  | if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { | 
|  | printk("possible reason: unannotated irqs-on.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_PREEMPT_RT | 
|  | /* | 
|  | * We dont accurately track softirq state in e.g. | 
|  | * hardirq contexts (such as on 4KSTACKS), so only | 
|  | * check if not in hardirq contexts: | 
|  | */ | 
|  | if (!hardirq_count()) { | 
|  | if (softirq_count()) { | 
|  | /* like the above, but with softirqs */ | 
|  | DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); | 
|  | } else { | 
|  | /* lick the above, does it taste good? */ | 
|  | DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!debug_locks) | 
|  | print_irqtrace_events(current); | 
|  |  | 
|  | instrumentation_end(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void lock_set_class(struct lockdep_map *lock, const char *name, | 
|  | struct lock_class_key *key, unsigned int subclass, | 
|  | unsigned long ip) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (unlikely(!lockdep_enabled())) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_recursion_inc(); | 
|  | check_flags(flags); | 
|  | if (__lock_set_class(lock, name, key, subclass, ip)) | 
|  | check_chain_key(current); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lock_set_class); | 
|  |  | 
|  | void lock_downgrade(struct lockdep_map *lock, unsigned long ip) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (unlikely(!lockdep_enabled())) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_recursion_inc(); | 
|  | check_flags(flags); | 
|  | if (__lock_downgrade(lock, ip)) | 
|  | check_chain_key(current); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lock_downgrade); | 
|  |  | 
|  | /* NMI context !!! */ | 
|  | static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) | 
|  | { | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | struct lock_class *class = look_up_lock_class(lock, subclass); | 
|  | unsigned long mask = LOCKF_USED; | 
|  |  | 
|  | /* if it doesn't have a class (yet), it certainly hasn't been used yet */ | 
|  | if (!class) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * READ locks only conflict with USED, such that if we only ever use | 
|  | * READ locks, there is no deadlock possible -- RCU. | 
|  | */ | 
|  | if (!hlock->read) | 
|  | mask |= LOCKF_USED_READ; | 
|  |  | 
|  | if (!(class->usage_mask & mask)) | 
|  | return; | 
|  |  | 
|  | hlock->class_idx = class - lock_classes; | 
|  |  | 
|  | print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static bool lockdep_nmi(void) | 
|  | { | 
|  | if (raw_cpu_read(lockdep_recursion)) | 
|  | return false; | 
|  |  | 
|  | if (!in_nmi()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * read_lock() is recursive if: | 
|  | * 1. We force lockdep think this way in selftests or | 
|  | * 2. The implementation is not queued read/write lock or | 
|  | * 3. The locker is at an in_interrupt() context. | 
|  | */ | 
|  | bool read_lock_is_recursive(void) | 
|  | { | 
|  | return force_read_lock_recursive || | 
|  | !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || | 
|  | in_interrupt(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(read_lock_is_recursive); | 
|  |  | 
|  | /* | 
|  | * We are not always called with irqs disabled - do that here, | 
|  | * and also avoid lockdep recursion: | 
|  | */ | 
|  | void lock_acquire(struct lockdep_map *lock, unsigned int subclass, | 
|  | int trylock, int read, int check, | 
|  | struct lockdep_map *nest_lock, unsigned long ip) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); | 
|  |  | 
|  | if (!debug_locks) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * As KASAN instrumentation is disabled and lock_acquire() is usually | 
|  | * the first lockdep call when a task tries to acquire a lock, add | 
|  | * kasan_check_byte() here to check for use-after-free and other | 
|  | * memory errors. | 
|  | */ | 
|  | kasan_check_byte(lock); | 
|  |  | 
|  | if (unlikely(!lockdep_enabled())) { | 
|  | /* XXX allow trylock from NMI ?!? */ | 
|  | if (lockdep_nmi() && !trylock) { | 
|  | struct held_lock hlock; | 
|  |  | 
|  | hlock.acquire_ip = ip; | 
|  | hlock.instance = lock; | 
|  | hlock.nest_lock = nest_lock; | 
|  | hlock.irq_context = 2; // XXX | 
|  | hlock.trylock = trylock; | 
|  | hlock.read = read; | 
|  | hlock.check = check; | 
|  | hlock.hardirqs_off = true; | 
|  | hlock.references = 0; | 
|  |  | 
|  | verify_lock_unused(lock, &hlock, subclass); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | check_flags(flags); | 
|  |  | 
|  | lockdep_recursion_inc(); | 
|  | __lock_acquire(lock, subclass, trylock, read, check, | 
|  | irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lock_acquire); | 
|  |  | 
|  | void lock_release(struct lockdep_map *lock, unsigned long ip) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | trace_lock_release(lock, ip); | 
|  |  | 
|  | if (unlikely(!lockdep_enabled() || | 
|  | lock->key == &__lockdep_no_track__)) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | check_flags(flags); | 
|  |  | 
|  | lockdep_recursion_inc(); | 
|  | if (__lock_release(lock, ip)) | 
|  | check_chain_key(current); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lock_release); | 
|  |  | 
|  | /* | 
|  | * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API. | 
|  | * | 
|  | * No actual critical section is created by the APIs annotated with this: these | 
|  | * APIs are used to wait for one or multiple critical sections (on other CPUs | 
|  | * or threads), and it means that calling these APIs inside these critical | 
|  | * sections is potential deadlock. | 
|  | */ | 
|  | void lock_sync(struct lockdep_map *lock, unsigned subclass, int read, | 
|  | int check, struct lockdep_map *nest_lock, unsigned long ip) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (unlikely(!lockdep_enabled())) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | check_flags(flags); | 
|  |  | 
|  | lockdep_recursion_inc(); | 
|  | __lock_acquire(lock, subclass, 0, read, check, | 
|  | irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1); | 
|  | check_chain_key(current); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lock_sync); | 
|  |  | 
|  | noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = LOCK_STATE_NOT_HELD; | 
|  |  | 
|  | /* | 
|  | * Avoid false negative lockdep_assert_held() and | 
|  | * lockdep_assert_not_held(). | 
|  | */ | 
|  | if (unlikely(!lockdep_enabled())) | 
|  | return LOCK_STATE_UNKNOWN; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | check_flags(flags); | 
|  |  | 
|  | lockdep_recursion_inc(); | 
|  | ret = __lock_is_held(lock, read); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lock_is_held_type); | 
|  | NOKPROBE_SYMBOL(lock_is_held_type); | 
|  |  | 
|  | struct pin_cookie lock_pin_lock(struct lockdep_map *lock) | 
|  | { | 
|  | struct pin_cookie cookie = NIL_COOKIE; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (unlikely(!lockdep_enabled())) | 
|  | return cookie; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | check_flags(flags); | 
|  |  | 
|  | lockdep_recursion_inc(); | 
|  | cookie = __lock_pin_lock(lock); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  |  | 
|  | return cookie; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lock_pin_lock); | 
|  |  | 
|  | void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (unlikely(!lockdep_enabled())) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | check_flags(flags); | 
|  |  | 
|  | lockdep_recursion_inc(); | 
|  | __lock_repin_lock(lock, cookie); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lock_repin_lock); | 
|  |  | 
|  | void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (unlikely(!lockdep_enabled())) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | check_flags(flags); | 
|  |  | 
|  | lockdep_recursion_inc(); | 
|  | __lock_unpin_lock(lock, cookie); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lock_unpin_lock); | 
|  |  | 
|  | #ifdef CONFIG_LOCK_STAT | 
|  | static void print_lock_contention_bug(struct task_struct *curr, | 
|  | struct lockdep_map *lock, | 
|  | unsigned long ip) | 
|  | { | 
|  | if (!debug_locks_off()) | 
|  | return; | 
|  | if (debug_locks_silent) | 
|  | return; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("=================================\n"); | 
|  | pr_warn("WARNING: bad contention detected!\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("---------------------------------\n"); | 
|  | pr_warn("%s/%d is trying to contend lock (", | 
|  | curr->comm, task_pid_nr(curr)); | 
|  | print_lockdep_cache(lock); | 
|  | pr_cont(") at:\n"); | 
|  | print_ip_sym(KERN_WARNING, ip); | 
|  | pr_warn("but there are no locks held!\n"); | 
|  | pr_warn("\nother info that might help us debug this:\n"); | 
|  | lockdep_print_held_locks(curr); | 
|  |  | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  |  | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __lock_contended(struct lockdep_map *lock, unsigned long ip) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | struct held_lock *hlock; | 
|  | struct lock_class_stats *stats; | 
|  | unsigned int depth; | 
|  | int i, contention_point, contending_point; | 
|  |  | 
|  | depth = curr->lockdep_depth; | 
|  | /* | 
|  | * Whee, we contended on this lock, except it seems we're not | 
|  | * actually trying to acquire anything much at all.. | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!depth)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(lock->key == &__lockdep_no_track__)) | 
|  | return; | 
|  |  | 
|  | hlock = find_held_lock(curr, lock, depth, &i); | 
|  | if (!hlock) { | 
|  | print_lock_contention_bug(curr, lock, ip); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (hlock->instance != lock) | 
|  | return; | 
|  |  | 
|  | hlock->waittime_stamp = lockstat_clock(); | 
|  |  | 
|  | contention_point = lock_point(hlock_class(hlock)->contention_point, ip); | 
|  | contending_point = lock_point(hlock_class(hlock)->contending_point, | 
|  | lock->ip); | 
|  |  | 
|  | stats = get_lock_stats(hlock_class(hlock)); | 
|  | if (contention_point < LOCKSTAT_POINTS) | 
|  | stats->contention_point[contention_point]++; | 
|  | if (contending_point < LOCKSTAT_POINTS) | 
|  | stats->contending_point[contending_point]++; | 
|  | if (lock->cpu != smp_processor_id()) | 
|  | stats->bounces[bounce_contended + !!hlock->read]++; | 
|  | } | 
|  |  | 
|  | static void | 
|  | __lock_acquired(struct lockdep_map *lock, unsigned long ip) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | struct held_lock *hlock; | 
|  | struct lock_class_stats *stats; | 
|  | unsigned int depth; | 
|  | u64 now, waittime = 0; | 
|  | int i, cpu; | 
|  |  | 
|  | depth = curr->lockdep_depth; | 
|  | /* | 
|  | * Yay, we acquired ownership of this lock we didn't try to | 
|  | * acquire, how the heck did that happen? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(!depth)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(lock->key == &__lockdep_no_track__)) | 
|  | return; | 
|  |  | 
|  | hlock = find_held_lock(curr, lock, depth, &i); | 
|  | if (!hlock) { | 
|  | print_lock_contention_bug(curr, lock, _RET_IP_); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (hlock->instance != lock) | 
|  | return; | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | if (hlock->waittime_stamp) { | 
|  | now = lockstat_clock(); | 
|  | waittime = now - hlock->waittime_stamp; | 
|  | hlock->holdtime_stamp = now; | 
|  | } | 
|  |  | 
|  | stats = get_lock_stats(hlock_class(hlock)); | 
|  | if (waittime) { | 
|  | if (hlock->read) | 
|  | lock_time_inc(&stats->read_waittime, waittime); | 
|  | else | 
|  | lock_time_inc(&stats->write_waittime, waittime); | 
|  | } | 
|  | if (lock->cpu != cpu) | 
|  | stats->bounces[bounce_acquired + !!hlock->read]++; | 
|  |  | 
|  | lock->cpu = cpu; | 
|  | lock->ip = ip; | 
|  | } | 
|  |  | 
|  | void lock_contended(struct lockdep_map *lock, unsigned long ip) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | trace_lock_contended(lock, ip); | 
|  |  | 
|  | if (unlikely(!lock_stat || !lockdep_enabled())) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | check_flags(flags); | 
|  | lockdep_recursion_inc(); | 
|  | __lock_contended(lock, ip); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lock_contended); | 
|  |  | 
|  | void lock_acquired(struct lockdep_map *lock, unsigned long ip) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | trace_lock_acquired(lock, ip); | 
|  |  | 
|  | if (unlikely(!lock_stat || !lockdep_enabled())) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | check_flags(flags); | 
|  | lockdep_recursion_inc(); | 
|  | __lock_acquired(lock, ip); | 
|  | lockdep_recursion_finish(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lock_acquired); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Used by the testsuite, sanitize the validator state | 
|  | * after a simulated failure: | 
|  | */ | 
|  |  | 
|  | void lockdep_reset(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_init_task(current); | 
|  | memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); | 
|  | nr_hardirq_chains = 0; | 
|  | nr_softirq_chains = 0; | 
|  | nr_process_chains = 0; | 
|  | debug_locks = 1; | 
|  | for (i = 0; i < CHAINHASH_SIZE; i++) | 
|  | INIT_HLIST_HEAD(chainhash_table + i); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* Remove a class from a lock chain. Must be called with the graph lock held. */ | 
|  | static void remove_class_from_lock_chain(struct pending_free *pf, | 
|  | struct lock_chain *chain, | 
|  | struct lock_class *class) | 
|  | { | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | int i; | 
|  |  | 
|  | for (i = chain->base; i < chain->base + chain->depth; i++) { | 
|  | if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) | 
|  | continue; | 
|  | /* | 
|  | * Each lock class occurs at most once in a lock chain so once | 
|  | * we found a match we can break out of this loop. | 
|  | */ | 
|  | goto free_lock_chain; | 
|  | } | 
|  | /* Since the chain has not been modified, return. */ | 
|  | return; | 
|  |  | 
|  | free_lock_chain: | 
|  | free_chain_hlocks(chain->base, chain->depth); | 
|  | /* Overwrite the chain key for concurrent RCU readers. */ | 
|  | WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); | 
|  | dec_chains(chain->irq_context); | 
|  |  | 
|  | /* | 
|  | * Note: calling hlist_del_rcu() from inside a | 
|  | * hlist_for_each_entry_rcu() loop is safe. | 
|  | */ | 
|  | hlist_del_rcu(&chain->entry); | 
|  | __set_bit(chain - lock_chains, pf->lock_chains_being_freed); | 
|  | nr_zapped_lock_chains++; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Must be called with the graph lock held. */ | 
|  | static void remove_class_from_lock_chains(struct pending_free *pf, | 
|  | struct lock_class *class) | 
|  | { | 
|  | struct lock_chain *chain; | 
|  | struct hlist_head *head; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { | 
|  | head = chainhash_table + i; | 
|  | hlist_for_each_entry_rcu(chain, head, entry) { | 
|  | remove_class_from_lock_chain(pf, chain, class); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove all references to a lock class. The caller must hold the graph lock. | 
|  | */ | 
|  | static void zap_class(struct pending_free *pf, struct lock_class *class) | 
|  | { | 
|  | struct lock_list *entry; | 
|  | int i; | 
|  |  | 
|  | WARN_ON_ONCE(!class->key); | 
|  |  | 
|  | /* | 
|  | * Remove all dependencies this lock is | 
|  | * involved in: | 
|  | */ | 
|  | for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { | 
|  | entry = list_entries + i; | 
|  | if (entry->class != class && entry->links_to != class) | 
|  | continue; | 
|  | __clear_bit(i, list_entries_in_use); | 
|  | nr_list_entries--; | 
|  | list_del_rcu(&entry->entry); | 
|  | } | 
|  | if (list_empty(&class->locks_after) && | 
|  | list_empty(&class->locks_before)) { | 
|  | list_move_tail(&class->lock_entry, &pf->zapped); | 
|  | hlist_del_rcu(&class->hash_entry); | 
|  | WRITE_ONCE(class->key, NULL); | 
|  | WRITE_ONCE(class->name, NULL); | 
|  | /* Class allocated but not used, -1 in nr_unused_locks */ | 
|  | if (class->usage_mask == 0) | 
|  | debug_atomic_dec(nr_unused_locks); | 
|  | nr_lock_classes--; | 
|  | __clear_bit(class - lock_classes, lock_classes_in_use); | 
|  | if (class - lock_classes == max_lock_class_idx) | 
|  | max_lock_class_idx--; | 
|  | } else { | 
|  | WARN_ONCE(true, "%s() failed for class %s\n", __func__, | 
|  | class->name); | 
|  | } | 
|  |  | 
|  | remove_class_from_lock_chains(pf, class); | 
|  | nr_zapped_classes++; | 
|  | } | 
|  |  | 
|  | static void reinit_class(struct lock_class *class) | 
|  | { | 
|  | WARN_ON_ONCE(!class->lock_entry.next); | 
|  | WARN_ON_ONCE(!list_empty(&class->locks_after)); | 
|  | WARN_ON_ONCE(!list_empty(&class->locks_before)); | 
|  | memset_startat(class, 0, key); | 
|  | WARN_ON_ONCE(!class->lock_entry.next); | 
|  | WARN_ON_ONCE(!list_empty(&class->locks_after)); | 
|  | WARN_ON_ONCE(!list_empty(&class->locks_before)); | 
|  | } | 
|  |  | 
|  | static inline int within(const void *addr, void *start, unsigned long size) | 
|  | { | 
|  | return addr >= start && addr < start + size; | 
|  | } | 
|  |  | 
|  | static bool inside_selftest(void) | 
|  | { | 
|  | return current == lockdep_selftest_task_struct; | 
|  | } | 
|  |  | 
|  | /* The caller must hold the graph lock. */ | 
|  | static struct pending_free *get_pending_free(void) | 
|  | { | 
|  | return delayed_free.pf + delayed_free.index; | 
|  | } | 
|  |  | 
|  | static void free_zapped_rcu(struct rcu_head *cb); | 
|  |  | 
|  | /* | 
|  | * See if we need to queue an RCU callback, must called with | 
|  | * the lockdep lock held, returns false if either we don't have | 
|  | * any pending free or the callback is already scheduled. | 
|  | * Otherwise, a call_rcu() must follow this function call. | 
|  | */ | 
|  | static bool prepare_call_rcu_zapped(struct pending_free *pf) | 
|  | { | 
|  | WARN_ON_ONCE(inside_selftest()); | 
|  |  | 
|  | if (list_empty(&pf->zapped)) | 
|  | return false; | 
|  |  | 
|  | if (delayed_free.scheduled) | 
|  | return false; | 
|  |  | 
|  | delayed_free.scheduled = true; | 
|  |  | 
|  | WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); | 
|  | delayed_free.index ^= 1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* The caller must hold the graph lock. May be called from RCU context. */ | 
|  | static void __free_zapped_classes(struct pending_free *pf) | 
|  | { | 
|  | struct lock_class *class; | 
|  |  | 
|  | check_data_structures(); | 
|  |  | 
|  | list_for_each_entry(class, &pf->zapped, lock_entry) | 
|  | reinit_class(class); | 
|  |  | 
|  | list_splice_init(&pf->zapped, &free_lock_classes); | 
|  |  | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | bitmap_andnot(lock_chains_in_use, lock_chains_in_use, | 
|  | pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); | 
|  | bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void free_zapped_rcu(struct rcu_head *ch) | 
|  | { | 
|  | struct pending_free *pf; | 
|  | unsigned long flags; | 
|  | bool need_callback; | 
|  |  | 
|  | if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_lock(); | 
|  |  | 
|  | /* closed head */ | 
|  | pf = delayed_free.pf + (delayed_free.index ^ 1); | 
|  | __free_zapped_classes(pf); | 
|  | delayed_free.scheduled = false; | 
|  | need_callback = | 
|  | prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index); | 
|  | lockdep_unlock(); | 
|  | raw_local_irq_restore(flags); | 
|  |  | 
|  | /* | 
|  | * If there's pending free and its callback has not been scheduled, | 
|  | * queue an RCU callback. | 
|  | */ | 
|  | if (need_callback) | 
|  | call_rcu(&delayed_free.rcu_head, free_zapped_rcu); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove all lock classes from the class hash table and from the | 
|  | * all_lock_classes list whose key or name is in the address range [start, | 
|  | * start + size). Move these lock classes to the zapped_classes list. Must | 
|  | * be called with the graph lock held. | 
|  | */ | 
|  | static void __lockdep_free_key_range(struct pending_free *pf, void *start, | 
|  | unsigned long size) | 
|  | { | 
|  | struct lock_class *class; | 
|  | struct hlist_head *head; | 
|  | int i; | 
|  |  | 
|  | /* Unhash all classes that were created by a module. */ | 
|  | for (i = 0; i < CLASSHASH_SIZE; i++) { | 
|  | head = classhash_table + i; | 
|  | hlist_for_each_entry_rcu(class, head, hash_entry) { | 
|  | if (!within(class->key, start, size) && | 
|  | !within(class->name, start, size)) | 
|  | continue; | 
|  | zap_class(pf, class); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used in module.c to remove lock classes from memory that is going to be | 
|  | * freed; and possibly re-used by other modules. | 
|  | * | 
|  | * We will have had one synchronize_rcu() before getting here, so we're | 
|  | * guaranteed nobody will look up these exact classes -- they're properly dead | 
|  | * but still allocated. | 
|  | */ | 
|  | static void lockdep_free_key_range_reg(void *start, unsigned long size) | 
|  | { | 
|  | struct pending_free *pf; | 
|  | unsigned long flags; | 
|  | bool need_callback; | 
|  |  | 
|  | init_data_structures_once(); | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_lock(); | 
|  | pf = get_pending_free(); | 
|  | __lockdep_free_key_range(pf, start, size); | 
|  | need_callback = prepare_call_rcu_zapped(pf); | 
|  | lockdep_unlock(); | 
|  | raw_local_irq_restore(flags); | 
|  | if (need_callback) | 
|  | call_rcu(&delayed_free.rcu_head, free_zapped_rcu); | 
|  | /* | 
|  | * Wait for any possible iterators from look_up_lock_class() to pass | 
|  | * before continuing to free the memory they refer to. | 
|  | */ | 
|  | synchronize_rcu(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free all lockdep keys in the range [start, start+size). Does not sleep. | 
|  | * Ignores debug_locks. Must only be used by the lockdep selftests. | 
|  | */ | 
|  | static void lockdep_free_key_range_imm(void *start, unsigned long size) | 
|  | { | 
|  | struct pending_free *pf = delayed_free.pf; | 
|  | unsigned long flags; | 
|  |  | 
|  | init_data_structures_once(); | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_lock(); | 
|  | __lockdep_free_key_range(pf, start, size); | 
|  | __free_zapped_classes(pf); | 
|  | lockdep_unlock(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | void lockdep_free_key_range(void *start, unsigned long size) | 
|  | { | 
|  | init_data_structures_once(); | 
|  |  | 
|  | if (inside_selftest()) | 
|  | lockdep_free_key_range_imm(start, size); | 
|  | else | 
|  | lockdep_free_key_range_reg(start, size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether any element of the @lock->class_cache[] array refers to a | 
|  | * registered lock class. The caller must hold either the graph lock or the | 
|  | * RCU read lock. | 
|  | */ | 
|  | static bool lock_class_cache_is_registered(struct lockdep_map *lock) | 
|  | { | 
|  | struct lock_class *class; | 
|  | struct hlist_head *head; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < CLASSHASH_SIZE; i++) { | 
|  | head = classhash_table + i; | 
|  | hlist_for_each_entry_rcu(class, head, hash_entry) { | 
|  | for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) | 
|  | if (lock->class_cache[j] == class) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* The caller must hold the graph lock. Does not sleep. */ | 
|  | static void __lockdep_reset_lock(struct pending_free *pf, | 
|  | struct lockdep_map *lock) | 
|  | { | 
|  | struct lock_class *class; | 
|  | int j; | 
|  |  | 
|  | /* | 
|  | * Remove all classes this lock might have: | 
|  | */ | 
|  | for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { | 
|  | /* | 
|  | * If the class exists we look it up and zap it: | 
|  | */ | 
|  | class = look_up_lock_class(lock, j); | 
|  | if (class) | 
|  | zap_class(pf, class); | 
|  | } | 
|  | /* | 
|  | * Debug check: in the end all mapped classes should | 
|  | * be gone. | 
|  | */ | 
|  | if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) | 
|  | debug_locks_off(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove all information lockdep has about a lock if debug_locks == 1. Free | 
|  | * released data structures from RCU context. | 
|  | */ | 
|  | static void lockdep_reset_lock_reg(struct lockdep_map *lock) | 
|  | { | 
|  | struct pending_free *pf; | 
|  | unsigned long flags; | 
|  | int locked; | 
|  | bool need_callback = false; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | locked = graph_lock(); | 
|  | if (!locked) | 
|  | goto out_irq; | 
|  |  | 
|  | pf = get_pending_free(); | 
|  | __lockdep_reset_lock(pf, lock); | 
|  | need_callback = prepare_call_rcu_zapped(pf); | 
|  |  | 
|  | graph_unlock(); | 
|  | out_irq: | 
|  | raw_local_irq_restore(flags); | 
|  | if (need_callback) | 
|  | call_rcu(&delayed_free.rcu_head, free_zapped_rcu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the | 
|  | * lockdep selftests. | 
|  | */ | 
|  | static void lockdep_reset_lock_imm(struct lockdep_map *lock) | 
|  | { | 
|  | struct pending_free *pf = delayed_free.pf; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_lock(); | 
|  | __lockdep_reset_lock(pf, lock); | 
|  | __free_zapped_classes(pf); | 
|  | lockdep_unlock(); | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | void lockdep_reset_lock(struct lockdep_map *lock) | 
|  | { | 
|  | init_data_structures_once(); | 
|  |  | 
|  | if (inside_selftest()) | 
|  | lockdep_reset_lock_imm(lock); | 
|  | else | 
|  | lockdep_reset_lock_reg(lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unregister a dynamically allocated key. | 
|  | * | 
|  | * Unlike lockdep_register_key(), a search is always done to find a matching | 
|  | * key irrespective of debug_locks to avoid potential invalid access to freed | 
|  | * memory in lock_class entry. | 
|  | */ | 
|  | void lockdep_unregister_key(struct lock_class_key *key) | 
|  | { | 
|  | struct hlist_head *hash_head = keyhashentry(key); | 
|  | struct lock_class_key *k; | 
|  | struct pending_free *pf; | 
|  | unsigned long flags; | 
|  | bool found = false; | 
|  | bool need_callback = false; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | if (WARN_ON_ONCE(static_obj(key))) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | lockdep_lock(); | 
|  |  | 
|  | hlist_for_each_entry_rcu(k, hash_head, hash_entry) { | 
|  | if (k == key) { | 
|  | hlist_del_rcu(&k->hash_entry); | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | WARN_ON_ONCE(!found && debug_locks); | 
|  | if (found) { | 
|  | pf = get_pending_free(); | 
|  | __lockdep_free_key_range(pf, key, 1); | 
|  | need_callback = prepare_call_rcu_zapped(pf); | 
|  | nr_dynamic_keys--; | 
|  | } | 
|  | lockdep_unlock(); | 
|  | raw_local_irq_restore(flags); | 
|  |  | 
|  | if (need_callback) | 
|  | call_rcu(&delayed_free.rcu_head, free_zapped_rcu); | 
|  |  | 
|  | /* | 
|  | * Wait until is_dynamic_key() has finished accessing k->hash_entry. | 
|  | * | 
|  | * Some operations like __qdisc_destroy() will call this in a debug | 
|  | * kernel, and the network traffic is disabled while waiting, hence | 
|  | * the delay of the wait matters in debugging cases. Currently use a | 
|  | * synchronize_rcu_expedited() to speed up the wait at the cost of | 
|  | * system IPIs. TODO: Replace RCU with hazptr for this. | 
|  | */ | 
|  | synchronize_rcu_expedited(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lockdep_unregister_key); | 
|  |  | 
|  | void __init lockdep_init(void) | 
|  | { | 
|  | pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); | 
|  |  | 
|  | pr_info("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES); | 
|  | pr_info("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH); | 
|  | pr_info("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS); | 
|  | pr_info("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE); | 
|  | pr_info("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES); | 
|  | pr_info("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS); | 
|  | pr_info("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE); | 
|  |  | 
|  | pr_info(" memory used by lock dependency info: %zu kB\n", | 
|  | (sizeof(lock_classes) + | 
|  | sizeof(lock_classes_in_use) + | 
|  | sizeof(classhash_table) + | 
|  | sizeof(list_entries) + | 
|  | sizeof(list_entries_in_use) + | 
|  | sizeof(chainhash_table) + | 
|  | sizeof(delayed_free) | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | + sizeof(lock_cq) | 
|  | + sizeof(lock_chains) | 
|  | + sizeof(lock_chains_in_use) | 
|  | + sizeof(chain_hlocks) | 
|  | #endif | 
|  | ) / 1024 | 
|  | ); | 
|  |  | 
|  | #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) | 
|  | pr_info(" memory used for stack traces: %zu kB\n", | 
|  | (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 | 
|  | ); | 
|  | #endif | 
|  |  | 
|  | pr_info(" per task-struct memory footprint: %zu bytes\n", | 
|  | sizeof(((struct task_struct *)NULL)->held_locks)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_freed_lock_bug(struct task_struct *curr, const void *mem_from, | 
|  | const void *mem_to, struct held_lock *hlock) | 
|  | { | 
|  | if (!debug_locks_off()) | 
|  | return; | 
|  | if (debug_locks_silent) | 
|  | return; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("=========================\n"); | 
|  | pr_warn("WARNING: held lock freed!\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("-------------------------\n"); | 
|  | pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", | 
|  | curr->comm, task_pid_nr(curr), mem_from, mem_to-1); | 
|  | print_lock(hlock); | 
|  | lockdep_print_held_locks(curr); | 
|  |  | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  |  | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | static inline int not_in_range(const void* mem_from, unsigned long mem_len, | 
|  | const void* lock_from, unsigned long lock_len) | 
|  | { | 
|  | return lock_from + lock_len <= mem_from || | 
|  | mem_from + mem_len <= lock_from; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when kernel memory is freed (or unmapped), or if a lock | 
|  | * is destroyed or reinitialized - this code checks whether there is | 
|  | * any held lock in the memory range of <from> to <to>: | 
|  | */ | 
|  | void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | struct held_lock *hlock; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | if (unlikely(!debug_locks)) | 
|  | return; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | for (i = 0; i < curr->lockdep_depth; i++) { | 
|  | hlock = curr->held_locks + i; | 
|  |  | 
|  | if (not_in_range(mem_from, mem_len, hlock->instance, | 
|  | sizeof(*hlock->instance))) | 
|  | continue; | 
|  |  | 
|  | print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); | 
|  | break; | 
|  | } | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); | 
|  |  | 
|  | static void print_held_locks_bug(void) | 
|  | { | 
|  | if (!debug_locks_off()) | 
|  | return; | 
|  | if (debug_locks_silent) | 
|  | return; | 
|  |  | 
|  | nbcon_cpu_emergency_enter(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("====================================\n"); | 
|  | pr_warn("WARNING: %s/%d still has locks held!\n", | 
|  | current->comm, task_pid_nr(current)); | 
|  | print_kernel_ident(); | 
|  | pr_warn("------------------------------------\n"); | 
|  | lockdep_print_held_locks(current); | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  |  | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | void debug_check_no_locks_held(void) | 
|  | { | 
|  | if (unlikely(current->lockdep_depth > 0)) | 
|  | print_held_locks_bug(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(debug_check_no_locks_held); | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  | void debug_show_all_locks(void) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  |  | 
|  | if (unlikely(!debug_locks)) { | 
|  | pr_warn("INFO: lockdep is turned off.\n"); | 
|  | return; | 
|  | } | 
|  | pr_warn("\nShowing all locks held in the system:\n"); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_process_thread(g, p) { | 
|  | if (!p->lockdep_depth) | 
|  | continue; | 
|  | lockdep_print_held_locks(p); | 
|  | touch_nmi_watchdog(); | 
|  | touch_all_softlockup_watchdogs(); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | pr_warn("\n"); | 
|  | pr_warn("=============================================\n\n"); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(debug_show_all_locks); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Careful: only use this function if you are sure that | 
|  | * the task cannot run in parallel! | 
|  | */ | 
|  | void debug_show_held_locks(struct task_struct *task) | 
|  | { | 
|  | if (unlikely(!debug_locks)) { | 
|  | printk("INFO: lockdep is turned off.\n"); | 
|  | return; | 
|  | } | 
|  | lockdep_print_held_locks(task); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(debug_show_held_locks); | 
|  |  | 
|  | asmlinkage __visible void lockdep_sys_exit(void) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  |  | 
|  | if (unlikely(curr->lockdep_depth)) { | 
|  | if (!debug_locks_off()) | 
|  | return; | 
|  | nbcon_cpu_emergency_enter(); | 
|  | pr_warn("\n"); | 
|  | pr_warn("================================================\n"); | 
|  | pr_warn("WARNING: lock held when returning to user space!\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("------------------------------------------------\n"); | 
|  | pr_warn("%s/%d is leaving the kernel with locks still held!\n", | 
|  | curr->comm, curr->pid); | 
|  | lockdep_print_held_locks(curr); | 
|  | nbcon_cpu_emergency_exit(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The lock history for each syscall should be independent. So wipe the | 
|  | * slate clean on return to userspace. | 
|  | */ | 
|  | lockdep_invariant_state(false); | 
|  | } | 
|  |  | 
|  | void lockdep_rcu_suspicious(const char *file, const int line, const char *s) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | int dl = READ_ONCE(debug_locks); | 
|  | bool rcu = warn_rcu_enter(); | 
|  |  | 
|  | /* Note: the following can be executed concurrently, so be careful. */ | 
|  | nbcon_cpu_emergency_enter(); | 
|  | pr_warn("\n"); | 
|  | pr_warn("=============================\n"); | 
|  | pr_warn("WARNING: suspicious RCU usage\n"); | 
|  | print_kernel_ident(); | 
|  | pr_warn("-----------------------------\n"); | 
|  | pr_warn("%s:%d %s!\n", file, line, s); | 
|  | pr_warn("\nother info that might help us debug this:\n\n"); | 
|  | pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", | 
|  | !rcu_lockdep_current_cpu_online() | 
|  | ? "RCU used illegally from offline CPU!\n" | 
|  | : "", | 
|  | rcu_scheduler_active, dl, | 
|  | dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); | 
|  |  | 
|  | /* | 
|  | * If a CPU is in the RCU-free window in idle (ie: in the section | 
|  | * between ct_idle_enter() and ct_idle_exit(), then RCU | 
|  | * considers that CPU to be in an "extended quiescent state", | 
|  | * which means that RCU will be completely ignoring that CPU. | 
|  | * Therefore, rcu_read_lock() and friends have absolutely no | 
|  | * effect on a CPU running in that state. In other words, even if | 
|  | * such an RCU-idle CPU has called rcu_read_lock(), RCU might well | 
|  | * delete data structures out from under it.  RCU really has no | 
|  | * choice here: we need to keep an RCU-free window in idle where | 
|  | * the CPU may possibly enter into low power mode. This way we can | 
|  | * notice an extended quiescent state to other CPUs that started a grace | 
|  | * period. Otherwise we would delay any grace period as long as we run | 
|  | * in the idle task. | 
|  | * | 
|  | * So complain bitterly if someone does call rcu_read_lock(), | 
|  | * rcu_read_lock_bh() and so on from extended quiescent states. | 
|  | */ | 
|  | if (!rcu_is_watching()) | 
|  | pr_warn("RCU used illegally from extended quiescent state!\n"); | 
|  |  | 
|  | lockdep_print_held_locks(curr); | 
|  | pr_warn("\nstack backtrace:\n"); | 
|  | dump_stack(); | 
|  | nbcon_cpu_emergency_exit(); | 
|  | warn_rcu_exit(rcu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); |