blob: 3b449fdaafee03ea12a440088540fe56463871b3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Timer present on EcoNet EN75xx MIPS based SoCs.
*
* Copyright (C) 2025 by Caleb James DeLisle <cjd@cjdns.fr>
*/
#include <linux/io.h>
#include <linux/cpumask.h>
#include <linux/interrupt.h>
#include <linux/clockchips.h>
#include <linux/sched_clock.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/cpuhotplug.h>
#include <linux/clk.h>
#define ECONET_BITS 32
#define ECONET_MIN_DELTA 0x00001000
#define ECONET_MAX_DELTA GENMASK(ECONET_BITS - 2, 0)
/* 34Kc hardware has 1 block and 1004Kc has 2. */
#define ECONET_NUM_BLOCKS DIV_ROUND_UP(NR_CPUS, 2)
static struct {
void __iomem *membase[ECONET_NUM_BLOCKS];
u32 freq_hz;
} econet_timer __ro_after_init;
static DEFINE_PER_CPU(struct clock_event_device, econet_timer_pcpu);
/* Each memory block has 2 timers, the order of registers is:
* CTL, CMR0, CNT0, CMR1, CNT1
*/
static inline void __iomem *reg_ctl(u32 timer_n)
{
return econet_timer.membase[timer_n >> 1];
}
static inline void __iomem *reg_compare(u32 timer_n)
{
return econet_timer.membase[timer_n >> 1] + (timer_n & 1) * 0x08 + 0x04;
}
static inline void __iomem *reg_count(u32 timer_n)
{
return econet_timer.membase[timer_n >> 1] + (timer_n & 1) * 0x08 + 0x08;
}
static inline u32 ctl_bit_enabled(u32 timer_n)
{
return 1U << (timer_n & 1);
}
static inline u32 ctl_bit_pending(u32 timer_n)
{
return 1U << ((timer_n & 1) + 16);
}
static bool cevt_is_pending(int cpu_id)
{
return ioread32(reg_ctl(cpu_id)) & ctl_bit_pending(cpu_id);
}
static irqreturn_t cevt_interrupt(int irq, void *dev_id)
{
struct clock_event_device *dev = this_cpu_ptr(&econet_timer_pcpu);
int cpu = cpumask_first(dev->cpumask);
/* Each VPE has its own events,
* so this will only happen on spurious interrupt.
*/
if (!cevt_is_pending(cpu))
return IRQ_NONE;
iowrite32(ioread32(reg_count(cpu)), reg_compare(cpu));
dev->event_handler(dev);
return IRQ_HANDLED;
}
static int cevt_set_next_event(ulong delta, struct clock_event_device *dev)
{
u32 next;
int cpu;
cpu = cpumask_first(dev->cpumask);
next = ioread32(reg_count(cpu)) + delta;
iowrite32(next, reg_compare(cpu));
if ((s32)(next - ioread32(reg_count(cpu))) < ECONET_MIN_DELTA / 2)
return -ETIME;
return 0;
}
static int cevt_init_cpu(uint cpu)
{
struct clock_event_device *cd = &per_cpu(econet_timer_pcpu, cpu);
u32 reg;
pr_debug("%s: Setting up clockevent for CPU %d\n", cd->name, cpu);
reg = ioread32(reg_ctl(cpu)) | ctl_bit_enabled(cpu);
iowrite32(reg, reg_ctl(cpu));
enable_percpu_irq(cd->irq, IRQ_TYPE_NONE);
/* Do this last because it synchronously configures the timer */
clockevents_config_and_register(cd, econet_timer.freq_hz,
ECONET_MIN_DELTA, ECONET_MAX_DELTA);
return 0;
}
static u64 notrace sched_clock_read(void)
{
/* Always read from clock zero no matter the CPU */
return (u64)ioread32(reg_count(0));
}
/* Init */
static void __init cevt_dev_init(uint cpu)
{
iowrite32(0, reg_count(cpu));
iowrite32(U32_MAX, reg_compare(cpu));
}
static int __init cevt_init(struct device_node *np)
{
int i, irq, ret;
irq = irq_of_parse_and_map(np, 0);
if (irq <= 0) {
pr_err("%pOFn: irq_of_parse_and_map failed", np);
return -EINVAL;
}
ret = request_percpu_irq(irq, cevt_interrupt, np->name, &econet_timer_pcpu);
if (ret < 0) {
pr_err("%pOFn: IRQ %d setup failed (%d)\n", np, irq, ret);
goto err_unmap_irq;
}
for_each_possible_cpu(i) {
struct clock_event_device *cd = &per_cpu(econet_timer_pcpu, i);
cd->rating = 310,
cd->features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_C3STOP |
CLOCK_EVT_FEAT_PERCPU;
cd->set_next_event = cevt_set_next_event;
cd->irq = irq;
cd->cpumask = cpumask_of(i);
cd->name = np->name;
cevt_dev_init(i);
}
cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
"clockevents/econet/timer:starting",
cevt_init_cpu, NULL);
return 0;
err_unmap_irq:
irq_dispose_mapping(irq);
return ret;
}
static int __init timer_init(struct device_node *np)
{
int num_blocks = DIV_ROUND_UP(num_possible_cpus(), 2);
struct clk *clk;
int ret;
clk = of_clk_get(np, 0);
if (IS_ERR(clk)) {
pr_err("%pOFn: Failed to get CPU clock from DT %ld\n", np, PTR_ERR(clk));
return PTR_ERR(clk);
}
econet_timer.freq_hz = clk_get_rate(clk);
for (int i = 0; i < num_blocks; i++) {
econet_timer.membase[i] = of_iomap(np, i);
if (!econet_timer.membase[i]) {
pr_err("%pOFn: failed to map register [%d]\n", np, i);
return -ENXIO;
}
}
/* For clocksource purposes always read clock zero, whatever the CPU */
ret = clocksource_mmio_init(reg_count(0), np->name,
econet_timer.freq_hz, 301, ECONET_BITS,
clocksource_mmio_readl_up);
if (ret) {
pr_err("%pOFn: clocksource_mmio_init failed: %d", np, ret);
return ret;
}
ret = cevt_init(np);
if (ret < 0)
return ret;
sched_clock_register(sched_clock_read, ECONET_BITS,
econet_timer.freq_hz);
pr_info("%pOFn: using %u.%03u MHz high precision timer\n", np,
econet_timer.freq_hz / 1000000,
(econet_timer.freq_hz / 1000) % 1000);
return 0;
}
TIMER_OF_DECLARE(econet_timer_hpt, "econet,en751221-timer", timer_init);