blob: d7ccf900172983cc4ea334f45c53da148affd1ed [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2016 Freescale Semiconductor, Inc.
* Copyright 2018,2021-2025 NXP
*
* NXP System Timer Module:
*
* STM supports commonly required system and application software
* timing functions. STM includes a 32-bit count-up timer and four
* 32-bit compare channels with a separate interrupt source for each
* channel. The timer is driven by the STM module clock divided by an
* 8-bit prescale value (1 to 256). It has ability to stop the timer
* in Debug mode
*/
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/cpuhotplug.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/sched_clock.h>
#include <linux/units.h>
#define STM_CR(__base) (__base)
#define STM_CR_TEN BIT(0)
#define STM_CR_FRZ BIT(1)
#define STM_CR_CPS_OFFSET 8u
#define STM_CR_CPS_MASK GENMASK(15, STM_CR_CPS_OFFSET)
#define STM_CNT(__base) ((__base) + 0x04)
#define STM_CCR0(__base) ((__base) + 0x10)
#define STM_CCR1(__base) ((__base) + 0x20)
#define STM_CCR2(__base) ((__base) + 0x30)
#define STM_CCR3(__base) ((__base) + 0x40)
#define STM_CCR_CEN BIT(0)
#define STM_CIR0(__base) ((__base) + 0x14)
#define STM_CIR1(__base) ((__base) + 0x24)
#define STM_CIR2(__base) ((__base) + 0x34)
#define STM_CIR3(__base) ((__base) + 0x44)
#define STM_CIR_CIF BIT(0)
#define STM_CMP0(__base) ((__base) + 0x18)
#define STM_CMP1(__base) ((__base) + 0x28)
#define STM_CMP2(__base) ((__base) + 0x38)
#define STM_CMP3(__base) ((__base) + 0x48)
#define STM_ENABLE_MASK (STM_CR_FRZ | STM_CR_TEN)
struct stm_timer {
void __iomem *base;
unsigned long rate;
unsigned long delta;
unsigned long counter;
struct clock_event_device ced;
struct clocksource cs;
atomic_t refcnt;
};
static DEFINE_PER_CPU(struct stm_timer *, stm_timers);
static struct stm_timer *stm_sched_clock;
/*
* Global structure for multiple STMs initialization
*/
static int stm_instances;
/*
* This global lock is used to prevent race conditions with the
* stm_instances in case the driver is using the ASYNC option
*/
static DEFINE_MUTEX(stm_instances_lock);
DEFINE_GUARD(stm_instances, struct mutex *, mutex_lock(_T), mutex_unlock(_T))
static struct stm_timer *cs_to_stm(struct clocksource *cs)
{
return container_of(cs, struct stm_timer, cs);
}
static struct stm_timer *ced_to_stm(struct clock_event_device *ced)
{
return container_of(ced, struct stm_timer, ced);
}
static u64 notrace nxp_stm_read_sched_clock(void)
{
return readl(STM_CNT(stm_sched_clock->base));
}
static u32 nxp_stm_clocksource_getcnt(struct stm_timer *stm_timer)
{
return readl(STM_CNT(stm_timer->base));
}
static void nxp_stm_clocksource_setcnt(struct stm_timer *stm_timer, u32 cnt)
{
writel(cnt, STM_CNT(stm_timer->base));
}
static u64 nxp_stm_clocksource_read(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
return (u64)nxp_stm_clocksource_getcnt(stm_timer);
}
static void nxp_stm_module_enable(struct stm_timer *stm_timer)
{
u32 reg;
reg = readl(STM_CR(stm_timer->base));
reg |= STM_ENABLE_MASK;
writel(reg, STM_CR(stm_timer->base));
}
static void nxp_stm_module_disable(struct stm_timer *stm_timer)
{
u32 reg;
reg = readl(STM_CR(stm_timer->base));
reg &= ~STM_ENABLE_MASK;
writel(reg, STM_CR(stm_timer->base));
}
static void nxp_stm_module_put(struct stm_timer *stm_timer)
{
if (atomic_dec_and_test(&stm_timer->refcnt))
nxp_stm_module_disable(stm_timer);
}
static void nxp_stm_module_get(struct stm_timer *stm_timer)
{
if (atomic_inc_return(&stm_timer->refcnt) == 1)
nxp_stm_module_enable(stm_timer);
}
static int nxp_stm_clocksource_enable(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_module_get(stm_timer);
return 0;
}
static void nxp_stm_clocksource_disable(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_module_put(stm_timer);
}
static void nxp_stm_clocksource_suspend(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_clocksource_disable(cs);
stm_timer->counter = nxp_stm_clocksource_getcnt(stm_timer);
}
static void nxp_stm_clocksource_resume(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_clocksource_setcnt(stm_timer, stm_timer->counter);
nxp_stm_clocksource_enable(cs);
}
static void __init devm_clocksource_unregister(void *data)
{
struct stm_timer *stm_timer = data;
clocksource_unregister(&stm_timer->cs);
}
static int __init nxp_stm_clocksource_init(struct device *dev, struct stm_timer *stm_timer,
const char *name, void __iomem *base, struct clk *clk)
{
int ret;
stm_timer->base = base;
stm_timer->rate = clk_get_rate(clk);
stm_timer->cs.name = name;
stm_timer->cs.rating = 460;
stm_timer->cs.read = nxp_stm_clocksource_read;
stm_timer->cs.enable = nxp_stm_clocksource_enable;
stm_timer->cs.disable = nxp_stm_clocksource_disable;
stm_timer->cs.suspend = nxp_stm_clocksource_suspend;
stm_timer->cs.resume = nxp_stm_clocksource_resume;
stm_timer->cs.mask = CLOCKSOURCE_MASK(32);
stm_timer->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
ret = clocksource_register_hz(&stm_timer->cs, stm_timer->rate);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, devm_clocksource_unregister, stm_timer);
if (ret) {
clocksource_unregister(&stm_timer->cs);
return ret;
}
stm_sched_clock = stm_timer;
sched_clock_register(nxp_stm_read_sched_clock, 32, stm_timer->rate);
dev_dbg(dev, "Registered clocksource %s\n", name);
return 0;
}
static int nxp_stm_clockevent_read_counter(struct stm_timer *stm_timer)
{
return readl(STM_CNT(stm_timer->base));
}
static void nxp_stm_clockevent_disable(struct stm_timer *stm_timer)
{
writel(0, STM_CCR0(stm_timer->base));
}
static void nxp_stm_clockevent_enable(struct stm_timer *stm_timer)
{
writel(STM_CCR_CEN, STM_CCR0(stm_timer->base));
}
static int nxp_stm_clockevent_shutdown(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
nxp_stm_clockevent_disable(stm_timer);
return 0;
}
static int nxp_stm_clockevent_set_next_event(unsigned long delta, struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
u32 val;
nxp_stm_clockevent_disable(stm_timer);
stm_timer->delta = delta;
val = nxp_stm_clockevent_read_counter(stm_timer) + delta;
writel(val, STM_CMP0(stm_timer->base));
/*
* The counter is shared across the channels and can not be
* stopped while we are setting the next event. If the delta
* is very small it is possible the counter increases above
* the computed 'val'. The min_delta value specified when
* registering the clockevent will prevent that. The second
* case is if the counter wraps while we compute the 'val' and
* before writing the comparator register. We read the counter,
* check if we are back in time and abort the timer with -ETIME.
*/
if (val > nxp_stm_clockevent_read_counter(stm_timer) + delta)
return -ETIME;
nxp_stm_clockevent_enable(stm_timer);
return 0;
}
static int nxp_stm_clockevent_set_periodic(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
return nxp_stm_clockevent_set_next_event(stm_timer->rate, ced);
}
static void nxp_stm_clockevent_suspend(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
nxp_stm_module_put(stm_timer);
}
static void nxp_stm_clockevent_resume(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
nxp_stm_module_get(stm_timer);
}
static int __init nxp_stm_clockevent_per_cpu_init(struct device *dev, struct stm_timer *stm_timer,
const char *name, void __iomem *base, int irq,
struct clk *clk, int cpu)
{
stm_timer->base = base;
stm_timer->rate = clk_get_rate(clk);
stm_timer->ced.name = name;
stm_timer->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
stm_timer->ced.set_state_shutdown = nxp_stm_clockevent_shutdown;
stm_timer->ced.set_state_periodic = nxp_stm_clockevent_set_periodic;
stm_timer->ced.set_next_event = nxp_stm_clockevent_set_next_event;
stm_timer->ced.suspend = nxp_stm_clockevent_suspend;
stm_timer->ced.resume = nxp_stm_clockevent_resume;
stm_timer->ced.cpumask = cpumask_of(cpu);
stm_timer->ced.rating = 460;
stm_timer->ced.irq = irq;
per_cpu(stm_timers, cpu) = stm_timer;
nxp_stm_module_get(stm_timer);
dev_dbg(dev, "Initialized per cpu clockevent name=%s, irq=%d, cpu=%d\n", name, irq, cpu);
return 0;
}
static int nxp_stm_clockevent_starting_cpu(unsigned int cpu)
{
struct stm_timer *stm_timer = per_cpu(stm_timers, cpu);
int ret;
if (WARN_ON(!stm_timer))
return -EFAULT;
ret = irq_force_affinity(stm_timer->ced.irq, cpumask_of(cpu));
if (ret)
return ret;
/*
* The timings measurement show reading the counter register
* and writing to the comparator register takes as a maximum
* value 1100 ns at 133MHz rate frequency. The timer must be
* set above this value and to be secure we set the minimum
* value equal to 2000ns, so 2us.
*
* minimum ticks = (rate / MICRO) * 2
*/
clockevents_config_and_register(&stm_timer->ced, stm_timer->rate,
(stm_timer->rate / MICRO) * 2, ULONG_MAX);
return 0;
}
static irqreturn_t nxp_stm_module_interrupt(int irq, void *dev_id)
{
struct stm_timer *stm_timer = dev_id;
struct clock_event_device *ced = &stm_timer->ced;
u32 val;
/*
* The interrupt is shared across the channels in the
* module. But this one is configured to run only one channel,
* consequently it is pointless to test the interrupt flags
* before and we can directly reset the channel 0 irq flag
* register.
*/
writel(STM_CIR_CIF, STM_CIR0(stm_timer->base));
/*
* Update STM_CMP value using the counter value
*/
val = nxp_stm_clockevent_read_counter(stm_timer) + stm_timer->delta;
writel(val, STM_CMP0(stm_timer->base));
/*
* stm hardware doesn't support oneshot, it will generate an
* interrupt and start the counter again so software needs to
* disable the timer to stop the counter loop in ONESHOT mode.
*/
if (likely(clockevent_state_oneshot(ced)))
nxp_stm_clockevent_disable(stm_timer);
ced->event_handler(ced);
return IRQ_HANDLED;
}
static int __init nxp_stm_timer_probe(struct platform_device *pdev)
{
struct stm_timer *stm_timer;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
const char *name = of_node_full_name(np);
struct clk *clk;
void __iomem *base;
int irq, ret;
/*
* The device tree can have multiple STM nodes described, so
* it makes this driver a good candidate for the async probe.
* It is still unclear if the time framework correctly handles
* parallel loading of the timers but at least this driver is
* ready to support the option.
*/
guard(stm_instances)(&stm_instances_lock);
/*
* The S32Gx are SoCs featuring a diverse set of cores. Linux
* is expected to run on Cortex-A53 cores, while other
* software stacks will operate on Cortex-M cores. The number
* of STM instances has been sized to include at most one
* instance per core.
*
* As we need a clocksource and a clockevent per cpu, we
* simply initialize a clocksource per cpu along with the
* clockevent which makes the resulting code simpler.
*
* However if the device tree is describing more STM instances
* than the number of cores, then we ignore them.
*/
if (stm_instances >= num_possible_cpus())
return 0;
base = devm_of_iomap(dev, np, 0, NULL);
if (IS_ERR(base))
return dev_err_probe(dev, PTR_ERR(base), "Failed to iomap %pOFn\n", np);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return dev_err_probe(dev, irq, "Failed to get IRQ\n");
clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "Clock not found\n");
stm_timer = devm_kzalloc(dev, sizeof(*stm_timer), GFP_KERNEL);
if (!stm_timer)
return -ENOMEM;
ret = devm_request_irq(dev, irq, nxp_stm_module_interrupt,
IRQF_TIMER | IRQF_NOBALANCING, name, stm_timer);
if (ret)
return dev_err_probe(dev, ret, "Unable to allocate interrupt line\n");
ret = nxp_stm_clocksource_init(dev, stm_timer, name, base, clk);
if (ret)
return ret;
/*
* Next probed STM will be a per CPU clockevent, until we
* probe as many as we have CPUs available on the system, we
* do a partial initialization
*/
ret = nxp_stm_clockevent_per_cpu_init(dev, stm_timer, name,
base, irq, clk,
stm_instances);
if (ret)
return ret;
stm_instances++;
/*
* The number of probed STMs for per CPU clockevent is
* equal to the number of available CPUs on the
* system. We install the cpu hotplug to finish the
* initialization by registering the clockevents
*/
if (stm_instances == num_possible_cpus()) {
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "STM timer:starting",
nxp_stm_clockevent_starting_cpu, NULL);
if (ret < 0)
return ret;
}
return 0;
}
static const struct of_device_id nxp_stm_of_match[] = {
{ .compatible = "nxp,s32g2-stm" },
{ }
};
MODULE_DEVICE_TABLE(of, nxp_stm_of_match);
static struct platform_driver nxp_stm_probe = {
.probe = nxp_stm_timer_probe,
.driver = {
.name = "nxp-stm",
.of_match_table = nxp_stm_of_match,
},
};
module_platform_driver(nxp_stm_probe);
MODULE_DESCRIPTION("NXP System Timer Module driver");
MODULE_LICENSE("GPL");