blob: 360c8bf3b190377a1b1455b13ea3e40d12984924 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Renesas RZ/G2L General PWM Timer (GPT) driver
*
* Copyright (C) 2025 Renesas Electronics Corporation
*
* Hardware manual for this IP can be found here
* https://www.renesas.com/eu/en/document/mah/rzg2l-group-rzg2lc-group-users-manual-hardware-0?language=en
*
* Limitations:
* - Counter must be stopped before modifying Mode and Prescaler.
* - When PWM is disabled, the output is driven to inactive.
* - While the hardware supports both polarities, the driver (for now)
* only handles normal polarity.
* - General PWM Timer (GPT) has 8 HW channels for PWM operations and
* each HW channel have 2 IOs.
* - Each IO is modelled as an independent PWM channel.
* - When both channels are used, disabling the channel on one stops the
* other.
* - When both channels are used, the period of both IOs in the HW channel
* must be same (for now).
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/limits.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/reset.h>
#include <linux/time.h>
#include <linux/units.h>
#define RZG2L_GET_CH(hwpwm) ((hwpwm) / 2)
#define RZG2L_GET_CH_OFFS(ch) (0x100 * (ch))
#define RZG2L_GTCR(ch) (0x2c + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTUDDTYC(ch) (0x30 + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTIOR(ch) (0x34 + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTBER(ch) (0x40 + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTCNT(ch) (0x48 + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTCCR(ch, sub_ch) (0x4c + RZG2L_GET_CH_OFFS(ch) + 4 * (sub_ch))
#define RZG2L_GTPR(ch) (0x64 + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTCR_CST BIT(0)
#define RZG2L_GTCR_MD GENMASK(18, 16)
#define RZG2L_GTCR_TPCS GENMASK(26, 24)
#define RZG2L_GTCR_MD_SAW_WAVE_PWM_MODE FIELD_PREP(RZG2L_GTCR_MD, 0)
#define RZG2L_GTUDDTYC_UP BIT(0)
#define RZG2L_GTUDDTYC_UDF BIT(1)
#define RZG2L_GTUDDTYC_UP_COUNTING (RZG2L_GTUDDTYC_UP | RZG2L_GTUDDTYC_UDF)
#define RZG2L_GTIOR_GTIOA GENMASK(4, 0)
#define RZG2L_GTIOR_GTIOB GENMASK(20, 16)
#define RZG2L_GTIOR_GTIOx(sub_ch) ((sub_ch) ? RZG2L_GTIOR_GTIOB : RZG2L_GTIOR_GTIOA)
#define RZG2L_GTIOR_OAE BIT(8)
#define RZG2L_GTIOR_OBE BIT(24)
#define RZG2L_GTIOR_OxE(sub_ch) ((sub_ch) ? RZG2L_GTIOR_OBE : RZG2L_GTIOR_OAE)
#define RZG2L_INIT_OUT_HI_OUT_HI_END_TOGGLE 0x1b
#define RZG2L_GTIOR_GTIOA_OUT_HI_END_TOGGLE_CMP_MATCH \
(RZG2L_INIT_OUT_HI_OUT_HI_END_TOGGLE | RZG2L_GTIOR_OAE)
#define RZG2L_GTIOR_GTIOB_OUT_HI_END_TOGGLE_CMP_MATCH \
(FIELD_PREP(RZG2L_GTIOR_GTIOB, RZG2L_INIT_OUT_HI_OUT_HI_END_TOGGLE) | RZG2L_GTIOR_OBE)
#define RZG2L_GTIOR_GTIOx_OUT_HI_END_TOGGLE_CMP_MATCH(sub_ch) \
((sub_ch) ? RZG2L_GTIOR_GTIOB_OUT_HI_END_TOGGLE_CMP_MATCH : \
RZG2L_GTIOR_GTIOA_OUT_HI_END_TOGGLE_CMP_MATCH)
#define RZG2L_MAX_HW_CHANNELS 8
#define RZG2L_CHANNELS_PER_IO 2
#define RZG2L_MAX_PWM_CHANNELS (RZG2L_MAX_HW_CHANNELS * RZG2L_CHANNELS_PER_IO)
#define RZG2L_MAX_SCALE_FACTOR 1024
#define RZG2L_MAX_TICKS ((u64)U32_MAX * RZG2L_MAX_SCALE_FACTOR)
struct rzg2l_gpt_chip {
void __iomem *mmio;
struct mutex lock; /* lock to protect shared channel resources */
unsigned long rate_khz;
u32 period_ticks[RZG2L_MAX_HW_CHANNELS];
u32 channel_request_count[RZG2L_MAX_HW_CHANNELS];
u32 channel_enable_count[RZG2L_MAX_HW_CHANNELS];
};
static inline struct rzg2l_gpt_chip *to_rzg2l_gpt_chip(struct pwm_chip *chip)
{
return pwmchip_get_drvdata(chip);
}
static inline unsigned int rzg2l_gpt_subchannel(unsigned int hwpwm)
{
return hwpwm & 0x1;
}
static void rzg2l_gpt_write(struct rzg2l_gpt_chip *rzg2l_gpt, u32 reg, u32 data)
{
writel(data, rzg2l_gpt->mmio + reg);
}
static u32 rzg2l_gpt_read(struct rzg2l_gpt_chip *rzg2l_gpt, u32 reg)
{
return readl(rzg2l_gpt->mmio + reg);
}
static void rzg2l_gpt_modify(struct rzg2l_gpt_chip *rzg2l_gpt, u32 reg, u32 clr,
u32 set)
{
rzg2l_gpt_write(rzg2l_gpt, reg,
(rzg2l_gpt_read(rzg2l_gpt, reg) & ~clr) | set);
}
static u8 rzg2l_gpt_calculate_prescale(struct rzg2l_gpt_chip *rzg2l_gpt,
u64 period_ticks)
{
u32 prescaled_period_ticks;
u8 prescale;
prescaled_period_ticks = period_ticks >> 32;
if (prescaled_period_ticks >= 256)
prescale = 5;
else
prescale = (fls(prescaled_period_ticks) + 1) / 2;
return prescale;
}
static int rzg2l_gpt_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip);
u32 ch = RZG2L_GET_CH(pwm->hwpwm);
guard(mutex)(&rzg2l_gpt->lock);
rzg2l_gpt->channel_request_count[ch]++;
return 0;
}
static void rzg2l_gpt_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip);
u32 ch = RZG2L_GET_CH(pwm->hwpwm);
guard(mutex)(&rzg2l_gpt->lock);
rzg2l_gpt->channel_request_count[ch]--;
}
static bool rzg2l_gpt_is_ch_enabled(struct rzg2l_gpt_chip *rzg2l_gpt, u8 hwpwm)
{
u8 ch = RZG2L_GET_CH(hwpwm);
u32 val;
val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTCR(ch));
if (!(val & RZG2L_GTCR_CST))
return false;
val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTIOR(ch));
return val & RZG2L_GTIOR_OxE(rzg2l_gpt_subchannel(hwpwm));
}
/* Caller holds the lock while calling rzg2l_gpt_enable() */
static void rzg2l_gpt_enable(struct rzg2l_gpt_chip *rzg2l_gpt,
struct pwm_device *pwm)
{
u8 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm);
u32 val = RZG2L_GTIOR_GTIOx(sub_ch) | RZG2L_GTIOR_OxE(sub_ch);
u8 ch = RZG2L_GET_CH(pwm->hwpwm);
/* Enable pin output */
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTIOR(ch), val,
RZG2L_GTIOR_GTIOx_OUT_HI_END_TOGGLE_CMP_MATCH(sub_ch));
if (!rzg2l_gpt->channel_enable_count[ch])
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), 0, RZG2L_GTCR_CST);
rzg2l_gpt->channel_enable_count[ch]++;
}
/* Caller holds the lock while calling rzg2l_gpt_disable() */
static void rzg2l_gpt_disable(struct rzg2l_gpt_chip *rzg2l_gpt,
struct pwm_device *pwm)
{
u8 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm);
u8 ch = RZG2L_GET_CH(pwm->hwpwm);
/* Stop count, Output low on GTIOCx pin when counting stops */
rzg2l_gpt->channel_enable_count[ch]--;
if (!rzg2l_gpt->channel_enable_count[ch])
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_CST, 0);
/* Disable pin output */
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTIOR(ch), RZG2L_GTIOR_OxE(sub_ch), 0);
}
static u64 rzg2l_gpt_calculate_period_or_duty(struct rzg2l_gpt_chip *rzg2l_gpt,
u32 val, u8 prescale)
{
u64 tmp;
/*
* The calculation doesn't overflow an u64 because prescale ≤ 5 and so
* tmp = val << (2 * prescale) * USEC_PER_SEC
* < 2^32 * 2^10 * 10^6
* < 2^32 * 2^10 * 2^20
* = 2^62
*/
tmp = (u64)val << (2 * prescale);
tmp *= USEC_PER_SEC;
return DIV64_U64_ROUND_UP(tmp, rzg2l_gpt->rate_khz);
}
static int rzg2l_gpt_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip);
state->enabled = rzg2l_gpt_is_ch_enabled(rzg2l_gpt, pwm->hwpwm);
if (state->enabled) {
u32 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm);
u32 ch = RZG2L_GET_CH(pwm->hwpwm);
u8 prescale;
u32 val;
val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTCR(ch));
prescale = FIELD_GET(RZG2L_GTCR_TPCS, val);
val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTPR(ch));
state->period = rzg2l_gpt_calculate_period_or_duty(rzg2l_gpt, val, prescale);
val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTCCR(ch, sub_ch));
state->duty_cycle = rzg2l_gpt_calculate_period_or_duty(rzg2l_gpt, val, prescale);
if (state->duty_cycle > state->period)
state->duty_cycle = state->period;
}
state->polarity = PWM_POLARITY_NORMAL;
return 0;
}
static u32 rzg2l_gpt_calculate_pv_or_dc(u64 period_or_duty_cycle, u8 prescale)
{
return min_t(u64, DIV_ROUND_DOWN_ULL(period_or_duty_cycle, 1 << (2 * prescale)),
U32_MAX);
}
/* Caller holds the lock while calling rzg2l_gpt_config() */
static int rzg2l_gpt_config(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip);
u8 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm);
u8 ch = RZG2L_GET_CH(pwm->hwpwm);
u64 period_ticks, duty_ticks;
unsigned long pv, dc;
u8 prescale;
/* Limit period/duty cycle to max value supported by the HW */
period_ticks = mul_u64_u64_div_u64(state->period, rzg2l_gpt->rate_khz, USEC_PER_SEC);
if (period_ticks > RZG2L_MAX_TICKS)
period_ticks = RZG2L_MAX_TICKS;
/*
* GPT counter is shared by the two IOs of a single channel, so
* prescale and period can NOT be modified when there are multiple IOs
* in use with different settings.
*/
if (rzg2l_gpt->channel_request_count[ch] > 1) {
if (period_ticks < rzg2l_gpt->period_ticks[ch])
return -EBUSY;
else
period_ticks = rzg2l_gpt->period_ticks[ch];
}
prescale = rzg2l_gpt_calculate_prescale(rzg2l_gpt, period_ticks);
pv = rzg2l_gpt_calculate_pv_or_dc(period_ticks, prescale);
duty_ticks = mul_u64_u64_div_u64(state->duty_cycle, rzg2l_gpt->rate_khz, USEC_PER_SEC);
if (duty_ticks > period_ticks)
duty_ticks = period_ticks;
dc = rzg2l_gpt_calculate_pv_or_dc(duty_ticks, prescale);
/*
* GPT counter is shared by multiple channels, we cache the period ticks
* from the first enabled channel and use the same value for both
* channels.
*/
rzg2l_gpt->period_ticks[ch] = period_ticks;
/*
* Counter must be stopped before modifying mode, prescaler, timer
* counter and buffer enable registers. These registers are shared
* between both channels. So allow updating these registers only for the
* first enabled channel.
*/
if (rzg2l_gpt->channel_enable_count[ch] <= 1) {
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_CST, 0);
/* GPT set operating mode (saw-wave up-counting) */
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_MD,
RZG2L_GTCR_MD_SAW_WAVE_PWM_MODE);
/* Set count direction */
rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTUDDTYC(ch), RZG2L_GTUDDTYC_UP_COUNTING);
/* Select count clock */
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_TPCS,
FIELD_PREP(RZG2L_GTCR_TPCS, prescale));
/* Set period */
rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTPR(ch), pv);
}
/* Set duty cycle */
rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTCCR(ch, sub_ch), dc);
if (rzg2l_gpt->channel_enable_count[ch] <= 1) {
/* Set initial value for counter */
rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTCNT(ch), 0);
/* Set no buffer operation */
rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTBER(ch), 0);
/* Restart the counter after updating the registers */
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch),
RZG2L_GTCR_CST, RZG2L_GTCR_CST);
}
return 0;
}
static int rzg2l_gpt_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip);
bool enabled = pwm->state.enabled;
int ret;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
guard(mutex)(&rzg2l_gpt->lock);
if (!state->enabled) {
if (enabled)
rzg2l_gpt_disable(rzg2l_gpt, pwm);
return 0;
}
ret = rzg2l_gpt_config(chip, pwm, state);
if (!ret && !enabled)
rzg2l_gpt_enable(rzg2l_gpt, pwm);
return ret;
}
static const struct pwm_ops rzg2l_gpt_ops = {
.request = rzg2l_gpt_request,
.free = rzg2l_gpt_free,
.get_state = rzg2l_gpt_get_state,
.apply = rzg2l_gpt_apply,
};
static int rzg2l_gpt_probe(struct platform_device *pdev)
{
struct rzg2l_gpt_chip *rzg2l_gpt;
struct device *dev = &pdev->dev;
struct reset_control *rstc;
struct pwm_chip *chip;
unsigned long rate;
struct clk *clk;
int ret;
chip = devm_pwmchip_alloc(dev, RZG2L_MAX_PWM_CHANNELS, sizeof(*rzg2l_gpt));
if (IS_ERR(chip))
return PTR_ERR(chip);
rzg2l_gpt = to_rzg2l_gpt_chip(chip);
rzg2l_gpt->mmio = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rzg2l_gpt->mmio))
return PTR_ERR(rzg2l_gpt->mmio);
rstc = devm_reset_control_get_exclusive_deasserted(dev, NULL);
if (IS_ERR(rstc))
return dev_err_probe(dev, PTR_ERR(rstc), "Cannot deassert reset control\n");
clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "Cannot get clock\n");
ret = devm_clk_rate_exclusive_get(dev, clk);
if (ret)
return ret;
rate = clk_get_rate(clk);
if (!rate)
return dev_err_probe(dev, -EINVAL, "The gpt clk rate is 0");
/*
* Refuse clk rates > 1 GHz to prevent overflow later for computing
* period and duty cycle.
*/
if (rate > NSEC_PER_SEC)
return dev_err_probe(dev, -EINVAL, "The gpt clk rate is > 1GHz");
/*
* Rate is in MHz and is always integer for peripheral clk
* 2^32 * 2^10 (prescalar) * 10^6 (rate_khz) < 2^64
* So make sure rate is multiple of 1000.
*/
rzg2l_gpt->rate_khz = rate / KILO;
if (rzg2l_gpt->rate_khz * KILO != rate)
return dev_err_probe(dev, -EINVAL, "Rate is not multiple of 1000");
mutex_init(&rzg2l_gpt->lock);
chip->ops = &rzg2l_gpt_ops;
ret = devm_pwmchip_add(dev, chip);
if (ret)
return dev_err_probe(dev, ret, "Failed to add PWM chip\n");
return 0;
}
static const struct of_device_id rzg2l_gpt_of_table[] = {
{ .compatible = "renesas,rzg2l-gpt", },
{ /* Sentinel */ }
};
MODULE_DEVICE_TABLE(of, rzg2l_gpt_of_table);
static struct platform_driver rzg2l_gpt_driver = {
.driver = {
.name = "pwm-rzg2l-gpt",
.of_match_table = rzg2l_gpt_of_table,
},
.probe = rzg2l_gpt_probe,
};
module_platform_driver(rzg2l_gpt_driver);
MODULE_AUTHOR("Biju Das <biju.das.jz@bp.renesas.com>");
MODULE_DESCRIPTION("Renesas RZ/G2L General PWM Timer (GPT) Driver");
MODULE_LICENSE("GPL");