| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <hyp/switch.h> |
| |
| #include <linux/arm-smccc.h> |
| #include <linux/kvm_host.h> |
| #include <linux/types.h> |
| #include <linux/jump_label.h> |
| #include <linux/percpu.h> |
| #include <uapi/linux/psci.h> |
| |
| #include <kvm/arm_psci.h> |
| |
| #include <asm/barrier.h> |
| #include <asm/cpufeature.h> |
| #include <asm/kprobes.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/fpsimd.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/processor.h> |
| #include <asm/thread_info.h> |
| #include <asm/vectors.h> |
| |
| /* VHE specific context */ |
| DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); |
| DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); |
| DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); |
| |
| /* |
| * HCR_EL2 bits that the NV guest can freely change (no RES0/RES1 |
| * semantics, irrespective of the configuration), but that cannot be |
| * applied to the actual HW as things would otherwise break badly. |
| * |
| * - TGE: we want the guest to use EL1, which is incompatible with |
| * this bit being set |
| * |
| * - API/APK: they are already accounted for by vcpu_load(), and can |
| * only take effect across a load/put cycle (such as ERET) |
| * |
| * - FIEN: no way we let a guest have access to the RAS "Common Fault |
| * Injection" thing, whatever that does |
| */ |
| #define NV_HCR_GUEST_EXCLUDE (HCR_TGE | HCR_API | HCR_APK | HCR_FIEN) |
| |
| static u64 __compute_hcr(struct kvm_vcpu *vcpu) |
| { |
| u64 guest_hcr, hcr = vcpu->arch.hcr_el2; |
| |
| if (!vcpu_has_nv(vcpu)) |
| return hcr; |
| |
| /* |
| * We rely on the invariant that a vcpu entered from HYP |
| * context must also exit in the same context, as only an ERET |
| * instruction can kick us out of it, and we obviously trap |
| * that sucker. PSTATE.M will get fixed-up on exit. |
| */ |
| if (is_hyp_ctxt(vcpu)) { |
| host_data_set_flag(VCPU_IN_HYP_CONTEXT); |
| |
| hcr |= HCR_NV | HCR_NV2 | HCR_AT | HCR_TTLB; |
| |
| if (!vcpu_el2_e2h_is_set(vcpu)) |
| hcr |= HCR_NV1; |
| |
| /* |
| * Nothing in HCR_EL2 should impact running in hypervisor |
| * context, apart from bits we have defined as RESx (E2H, |
| * HCD and co), or that cannot be set directly (the EXCLUDE |
| * bits). Given that we OR the guest's view with the host's, |
| * we can use the 0 value as the starting point, and only |
| * use the config-driven RES1 bits. |
| */ |
| guest_hcr = kvm_vcpu_apply_reg_masks(vcpu, HCR_EL2, 0); |
| |
| write_sysreg_s(vcpu->arch.ctxt.vncr_array, SYS_VNCR_EL2); |
| } else { |
| host_data_clear_flag(VCPU_IN_HYP_CONTEXT); |
| |
| guest_hcr = __vcpu_sys_reg(vcpu, HCR_EL2); |
| if (guest_hcr & HCR_NV) { |
| u64 va = __fix_to_virt(vncr_fixmap(smp_processor_id())); |
| |
| /* Inherit the low bits from the actual register */ |
| va |= __vcpu_sys_reg(vcpu, VNCR_EL2) & GENMASK(PAGE_SHIFT - 1, 0); |
| write_sysreg_s(va, SYS_VNCR_EL2); |
| |
| /* Force NV2 in case the guest is forgetful... */ |
| guest_hcr |= HCR_NV2; |
| } |
| } |
| |
| BUG_ON(host_data_test_flag(VCPU_IN_HYP_CONTEXT) && |
| host_data_test_flag(L1_VNCR_MAPPED)); |
| |
| return hcr | (guest_hcr & ~NV_HCR_GUEST_EXCLUDE); |
| } |
| |
| static void __activate_traps(struct kvm_vcpu *vcpu) |
| { |
| u64 val; |
| |
| ___activate_traps(vcpu, __compute_hcr(vcpu)); |
| |
| if (has_cntpoff()) { |
| struct timer_map map; |
| |
| get_timer_map(vcpu, &map); |
| |
| /* |
| * We're entrering the guest. Reload the correct |
| * values from memory now that TGE is clear. |
| */ |
| if (map.direct_ptimer == vcpu_ptimer(vcpu)) |
| val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); |
| if (map.direct_ptimer == vcpu_hptimer(vcpu)) |
| val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2); |
| |
| if (map.direct_ptimer) { |
| write_sysreg_el0(val, SYS_CNTP_CVAL); |
| isb(); |
| } |
| } |
| |
| __activate_cptr_traps(vcpu); |
| |
| write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1); |
| } |
| NOKPROBE_SYMBOL(__activate_traps); |
| |
| static void __deactivate_traps(struct kvm_vcpu *vcpu) |
| { |
| const char *host_vectors = vectors; |
| |
| ___deactivate_traps(vcpu); |
| |
| write_sysreg_hcr(HCR_HOST_VHE_FLAGS); |
| |
| if (has_cntpoff()) { |
| struct timer_map map; |
| u64 val, offset; |
| |
| get_timer_map(vcpu, &map); |
| |
| /* |
| * We're exiting the guest. Save the latest CVAL value |
| * to memory and apply the offset now that TGE is set. |
| */ |
| val = read_sysreg_el0(SYS_CNTP_CVAL); |
| if (map.direct_ptimer == vcpu_ptimer(vcpu)) |
| __vcpu_assign_sys_reg(vcpu, CNTP_CVAL_EL0, val); |
| if (map.direct_ptimer == vcpu_hptimer(vcpu)) |
| __vcpu_assign_sys_reg(vcpu, CNTHP_CVAL_EL2, val); |
| |
| offset = read_sysreg_s(SYS_CNTPOFF_EL2); |
| |
| if (map.direct_ptimer && offset) { |
| write_sysreg_el0(val + offset, SYS_CNTP_CVAL); |
| isb(); |
| } |
| } |
| |
| /* |
| * ARM errata 1165522 and 1530923 require the actual execution of the |
| * above before we can switch to the EL2/EL0 translation regime used by |
| * the host. |
| */ |
| asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); |
| |
| __deactivate_cptr_traps(vcpu); |
| |
| if (!arm64_kernel_unmapped_at_el0()) |
| host_vectors = __this_cpu_read(this_cpu_vector); |
| write_sysreg(host_vectors, vbar_el1); |
| } |
| NOKPROBE_SYMBOL(__deactivate_traps); |
| |
| /* |
| * Disable IRQs in __vcpu_{load,put}_{activate,deactivate}_traps() to |
| * prevent a race condition between context switching of PMUSERENR_EL0 |
| * in __{activate,deactivate}_traps_common() and IPIs that attempts to |
| * update PMUSERENR_EL0. See also kvm_set_pmuserenr(). |
| */ |
| static void __vcpu_load_activate_traps(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| __activate_traps_common(vcpu); |
| local_irq_restore(flags); |
| } |
| |
| static void __vcpu_put_deactivate_traps(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| __deactivate_traps_common(vcpu); |
| local_irq_restore(flags); |
| } |
| |
| void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu) |
| { |
| host_data_ptr(host_ctxt)->__hyp_running_vcpu = vcpu; |
| |
| __vcpu_load_switch_sysregs(vcpu); |
| __vcpu_load_activate_traps(vcpu); |
| __load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch); |
| } |
| |
| void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu) |
| { |
| __vcpu_put_deactivate_traps(vcpu); |
| __vcpu_put_switch_sysregs(vcpu); |
| |
| host_data_ptr(host_ctxt)->__hyp_running_vcpu = NULL; |
| } |
| |
| static u64 compute_emulated_cntx_ctl_el0(struct kvm_vcpu *vcpu, |
| enum vcpu_sysreg reg) |
| { |
| unsigned long ctl; |
| u64 cval, cnt; |
| bool stat; |
| |
| switch (reg) { |
| case CNTP_CTL_EL0: |
| cval = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); |
| ctl = __vcpu_sys_reg(vcpu, CNTP_CTL_EL0); |
| cnt = compute_counter_value(vcpu_ptimer(vcpu)); |
| break; |
| case CNTV_CTL_EL0: |
| cval = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0); |
| ctl = __vcpu_sys_reg(vcpu, CNTV_CTL_EL0); |
| cnt = compute_counter_value(vcpu_vtimer(vcpu)); |
| break; |
| default: |
| BUG(); |
| } |
| |
| stat = cval <= cnt; |
| __assign_bit(__ffs(ARCH_TIMER_CTRL_IT_STAT), &ctl, stat); |
| |
| return ctl; |
| } |
| |
| static bool kvm_hyp_handle_timer(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| u64 esr, val; |
| |
| /* |
| * Having FEAT_ECV allows for a better quality of timer emulation. |
| * However, this comes at a huge cost in terms of traps. Try and |
| * satisfy the reads from guest's hypervisor context without |
| * returning to the kernel if we can. |
| */ |
| if (!is_hyp_ctxt(vcpu)) |
| return false; |
| |
| esr = kvm_vcpu_get_esr(vcpu); |
| if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) != ESR_ELx_SYS64_ISS_DIR_READ) |
| return false; |
| |
| switch (esr_sys64_to_sysreg(esr)) { |
| case SYS_CNTP_CTL_EL02: |
| val = compute_emulated_cntx_ctl_el0(vcpu, CNTP_CTL_EL0); |
| break; |
| case SYS_CNTP_CTL_EL0: |
| if (vcpu_el2_e2h_is_set(vcpu)) |
| val = read_sysreg_el0(SYS_CNTP_CTL); |
| else |
| val = compute_emulated_cntx_ctl_el0(vcpu, CNTP_CTL_EL0); |
| break; |
| case SYS_CNTP_CVAL_EL02: |
| val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); |
| break; |
| case SYS_CNTP_CVAL_EL0: |
| if (vcpu_el2_e2h_is_set(vcpu)) { |
| val = read_sysreg_el0(SYS_CNTP_CVAL); |
| |
| if (!has_cntpoff()) |
| val -= timer_get_offset(vcpu_hptimer(vcpu)); |
| } else { |
| val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); |
| } |
| break; |
| case SYS_CNTPCT_EL0: |
| case SYS_CNTPCTSS_EL0: |
| val = compute_counter_value(vcpu_hptimer(vcpu)); |
| break; |
| case SYS_CNTV_CTL_EL02: |
| val = compute_emulated_cntx_ctl_el0(vcpu, CNTV_CTL_EL0); |
| break; |
| case SYS_CNTV_CTL_EL0: |
| if (vcpu_el2_e2h_is_set(vcpu)) |
| val = read_sysreg_el0(SYS_CNTV_CTL); |
| else |
| val = compute_emulated_cntx_ctl_el0(vcpu, CNTV_CTL_EL0); |
| break; |
| case SYS_CNTV_CVAL_EL02: |
| val = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0); |
| break; |
| case SYS_CNTV_CVAL_EL0: |
| if (vcpu_el2_e2h_is_set(vcpu)) |
| val = read_sysreg_el0(SYS_CNTV_CVAL); |
| else |
| val = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0); |
| break; |
| case SYS_CNTVCT_EL0: |
| case SYS_CNTVCTSS_EL0: |
| val = compute_counter_value(vcpu_hvtimer(vcpu)); |
| break; |
| default: |
| return false; |
| } |
| |
| vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val); |
| __kvm_skip_instr(vcpu); |
| |
| return true; |
| } |
| |
| static bool kvm_hyp_handle_eret(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| u64 esr = kvm_vcpu_get_esr(vcpu); |
| u64 spsr, elr, mode; |
| |
| /* |
| * Going through the whole put/load motions is a waste of time |
| * if this is a VHE guest hypervisor returning to its own |
| * userspace, or the hypervisor performing a local exception |
| * return. No need to save/restore registers, no need to |
| * switch S2 MMU. Just do the canonical ERET. |
| * |
| * Unless the trap has to be forwarded further down the line, |
| * of course... |
| */ |
| if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) || |
| (__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_ERET)) |
| return false; |
| |
| spsr = read_sysreg_el1(SYS_SPSR); |
| mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT); |
| |
| switch (mode) { |
| case PSR_MODE_EL0t: |
| if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu))) |
| return false; |
| break; |
| case PSR_MODE_EL2t: |
| mode = PSR_MODE_EL1t; |
| break; |
| case PSR_MODE_EL2h: |
| mode = PSR_MODE_EL1h; |
| break; |
| default: |
| return false; |
| } |
| |
| /* If ERETAx fails, take the slow path */ |
| if (esr_iss_is_eretax(esr)) { |
| if (!(vcpu_has_ptrauth(vcpu) && kvm_auth_eretax(vcpu, &elr))) |
| return false; |
| } else { |
| elr = read_sysreg_el1(SYS_ELR); |
| } |
| |
| spsr = (spsr & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode; |
| |
| write_sysreg_el2(spsr, SYS_SPSR); |
| write_sysreg_el2(elr, SYS_ELR); |
| |
| return true; |
| } |
| |
| static bool kvm_hyp_handle_tlbi_el2(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| int ret = -EINVAL; |
| u32 instr; |
| u64 val; |
| |
| /* |
| * Ideally, we would never trap on EL2 S1 TLB invalidations using |
| * the EL1 instructions when the guest's HCR_EL2.{E2H,TGE}=={1,1}. |
| * But "thanks" to FEAT_NV2, we don't trap writes to HCR_EL2, |
| * meaning that we can't track changes to the virtual TGE bit. So we |
| * have to leave HCR_EL2.TTLB set on the host. Oopsie... |
| * |
| * Try and handle these invalidation as quickly as possible, without |
| * fully exiting. Note that we don't need to consider any forwarding |
| * here, as having E2H+TGE set is the very definition of being |
| * InHost. |
| * |
| * For the lesser hypervisors out there that have failed to get on |
| * with the VHE program, we can also handle the nVHE style of EL2 |
| * invalidation. |
| */ |
| if (!(is_hyp_ctxt(vcpu))) |
| return false; |
| |
| instr = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); |
| val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); |
| |
| if ((kvm_supported_tlbi_s1e1_op(vcpu, instr) && |
| vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) || |
| kvm_supported_tlbi_s1e2_op (vcpu, instr)) |
| ret = __kvm_tlbi_s1e2(NULL, val, instr); |
| |
| if (ret) |
| return false; |
| |
| /* |
| * If we have to check for any VNCR mapping being invalidated, |
| * go back to the slow path for further processing. |
| */ |
| if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu) && |
| atomic_read(&vcpu->kvm->arch.vncr_map_count)) |
| return false; |
| |
| __kvm_skip_instr(vcpu); |
| |
| return true; |
| } |
| |
| static bool kvm_hyp_handle_cpacr_el1(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| u64 esr = kvm_vcpu_get_esr(vcpu); |
| int rt; |
| |
| if (!is_hyp_ctxt(vcpu) || esr_sys64_to_sysreg(esr) != SYS_CPACR_EL1) |
| return false; |
| |
| rt = kvm_vcpu_sys_get_rt(vcpu); |
| |
| if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ) { |
| vcpu_set_reg(vcpu, rt, __vcpu_sys_reg(vcpu, CPTR_EL2)); |
| } else { |
| vcpu_write_sys_reg(vcpu, vcpu_get_reg(vcpu, rt), CPTR_EL2); |
| __activate_cptr_traps(vcpu); |
| } |
| |
| __kvm_skip_instr(vcpu); |
| |
| return true; |
| } |
| |
| static bool kvm_hyp_handle_zcr_el2(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); |
| |
| if (!vcpu_has_nv(vcpu)) |
| return false; |
| |
| if (sysreg != SYS_ZCR_EL2) |
| return false; |
| |
| if (guest_owns_fp_regs()) |
| return false; |
| |
| /* |
| * ZCR_EL2 traps are handled in the slow path, with the expectation |
| * that the guest's FP context has already been loaded onto the CPU. |
| * |
| * Load the guest's FP context and unconditionally forward to the |
| * slow path for handling (i.e. return false). |
| */ |
| kvm_hyp_handle_fpsimd(vcpu, exit_code); |
| return false; |
| } |
| |
| static bool kvm_hyp_handle_sysreg_vhe(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| if (kvm_hyp_handle_tlbi_el2(vcpu, exit_code)) |
| return true; |
| |
| if (kvm_hyp_handle_timer(vcpu, exit_code)) |
| return true; |
| |
| if (kvm_hyp_handle_cpacr_el1(vcpu, exit_code)) |
| return true; |
| |
| if (kvm_hyp_handle_zcr_el2(vcpu, exit_code)) |
| return true; |
| |
| return kvm_hyp_handle_sysreg(vcpu, exit_code); |
| } |
| |
| static bool kvm_hyp_handle_impdef(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| u64 iss; |
| |
| if (!cpus_have_final_cap(ARM64_WORKAROUND_PMUV3_IMPDEF_TRAPS)) |
| return false; |
| |
| /* |
| * Compute a synthetic ESR for a sysreg trap. Conveniently, AFSR1_EL2 |
| * is populated with a correct ISS for a sysreg trap. These fruity |
| * parts are 64bit only, so unconditionally set IL. |
| */ |
| iss = ESR_ELx_ISS(read_sysreg_s(SYS_AFSR1_EL2)); |
| vcpu->arch.fault.esr_el2 = FIELD_PREP(ESR_ELx_EC_MASK, ESR_ELx_EC_SYS64) | |
| FIELD_PREP(ESR_ELx_ISS_MASK, iss) | |
| ESR_ELx_IL; |
| return false; |
| } |
| |
| static const exit_handler_fn hyp_exit_handlers[] = { |
| [0 ... ESR_ELx_EC_MAX] = NULL, |
| [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, |
| [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg_vhe, |
| [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, |
| [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, |
| [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, |
| [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, |
| [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, |
| [ESR_ELx_EC_ERET] = kvm_hyp_handle_eret, |
| [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, |
| |
| /* Apple shenanigans */ |
| [0x3F] = kvm_hyp_handle_impdef, |
| }; |
| |
| static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| synchronize_vcpu_pstate(vcpu, exit_code); |
| |
| /* |
| * If we were in HYP context on entry, adjust the PSTATE view |
| * so that the usual helpers work correctly. This enforces our |
| * invariant that the guest's HYP context status is preserved |
| * across a run. |
| */ |
| if (vcpu_has_nv(vcpu) && |
| unlikely(host_data_test_flag(VCPU_IN_HYP_CONTEXT))) { |
| u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT); |
| |
| switch (mode) { |
| case PSR_MODE_EL1t: |
| mode = PSR_MODE_EL2t; |
| break; |
| case PSR_MODE_EL1h: |
| mode = PSR_MODE_EL2h; |
| break; |
| } |
| |
| *vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT); |
| *vcpu_cpsr(vcpu) |= mode; |
| } |
| |
| /* Apply extreme paranoia! */ |
| BUG_ON(vcpu_has_nv(vcpu) && |
| !!host_data_test_flag(VCPU_IN_HYP_CONTEXT) != is_hyp_ctxt(vcpu)); |
| |
| return __fixup_guest_exit(vcpu, exit_code, hyp_exit_handlers); |
| } |
| |
| /* Switch to the guest for VHE systems running in EL2 */ |
| static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_cpu_context *guest_ctxt; |
| u64 exit_code; |
| |
| host_ctxt = host_data_ptr(host_ctxt); |
| guest_ctxt = &vcpu->arch.ctxt; |
| |
| fpsimd_lazy_switch_to_guest(vcpu); |
| |
| sysreg_save_host_state_vhe(host_ctxt); |
| |
| /* |
| * Note that ARM erratum 1165522 requires us to configure both stage 1 |
| * and stage 2 translation for the guest context before we clear |
| * HCR_EL2.TGE. The stage 1 and stage 2 guest context has already been |
| * loaded on the CPU in kvm_vcpu_load_vhe(). |
| */ |
| __activate_traps(vcpu); |
| |
| __kvm_adjust_pc(vcpu); |
| |
| sysreg_restore_guest_state_vhe(guest_ctxt); |
| __debug_switch_to_guest(vcpu); |
| |
| do { |
| /* Jump in the fire! */ |
| exit_code = __guest_enter(vcpu); |
| |
| /* And we're baaack! */ |
| } while (fixup_guest_exit(vcpu, &exit_code)); |
| |
| sysreg_save_guest_state_vhe(guest_ctxt); |
| |
| __deactivate_traps(vcpu); |
| |
| sysreg_restore_host_state_vhe(host_ctxt); |
| |
| __debug_switch_to_host(vcpu); |
| |
| /* |
| * Ensure that all system register writes above have taken effect |
| * before returning to the host. In VHE mode, CPTR traps for |
| * FPSIMD/SVE/SME also apply to EL2, so FPSIMD/SVE/SME state must be |
| * manipulated after the ISB. |
| */ |
| isb(); |
| |
| fpsimd_lazy_switch_to_host(vcpu); |
| |
| if (guest_owns_fp_regs()) |
| __fpsimd_save_fpexc32(vcpu); |
| |
| return exit_code; |
| } |
| NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe); |
| |
| int __kvm_vcpu_run(struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| |
| local_daif_mask(); |
| |
| /* |
| * Having IRQs masked via PMR when entering the guest means the GIC |
| * will not signal the CPU of interrupts of lower priority, and the |
| * only way to get out will be via guest exceptions. |
| * Naturally, we want to avoid this. |
| * |
| * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a |
| * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU. |
| */ |
| pmr_sync(); |
| |
| ret = __kvm_vcpu_run_vhe(vcpu); |
| |
| /* |
| * local_daif_restore() takes care to properly restore PSTATE.DAIF |
| * and the GIC PMR if the host is using IRQ priorities. |
| */ |
| local_daif_restore(DAIF_PROCCTX_NOIRQ); |
| |
| return ret; |
| } |
| |
| static void __noreturn __hyp_call_panic(u64 spsr, u64 elr, u64 par) |
| { |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_vcpu *vcpu; |
| |
| host_ctxt = host_data_ptr(host_ctxt); |
| vcpu = host_ctxt->__hyp_running_vcpu; |
| |
| __deactivate_traps(vcpu); |
| sysreg_restore_host_state_vhe(host_ctxt); |
| |
| panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n", |
| spsr, elr, |
| read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR), |
| read_sysreg(hpfar_el2), par, vcpu); |
| } |
| NOKPROBE_SYMBOL(__hyp_call_panic); |
| |
| void __noreturn hyp_panic(void) |
| { |
| u64 spsr = read_sysreg_el2(SYS_SPSR); |
| u64 elr = read_sysreg_el2(SYS_ELR); |
| u64 par = read_sysreg_par(); |
| |
| __hyp_call_panic(spsr, elr, par); |
| } |
| |
| asmlinkage void kvm_unexpected_el2_exception(void) |
| { |
| __kvm_unexpected_el2_exception(); |
| } |