| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * A V4L2 driver for ST VD56G3 (Mono) and VD66GY (RGB) global shutter cameras. |
| * Copyright (C) 2024, STMicroelectronics SA |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/i2c.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/unaligned.h> |
| #include <linux/units.h> |
| |
| #include <media/mipi-csi2.h> |
| #include <media/v4l2-async.h> |
| #include <media/v4l2-cci.h> |
| #include <media/v4l2-ctrls.h> |
| #include <media/v4l2-device.h> |
| #include <media/v4l2-fwnode.h> |
| #include <media/v4l2-subdev.h> |
| |
| /* Register Map */ |
| #define VD56G3_REG_MODEL_ID CCI_REG16_LE(0x0000) |
| #define VD56G3_MODEL_ID 0x5603 |
| #define VD56G3_REG_REVISION CCI_REG16_LE(0x0002) |
| #define VD56G3_REVISION_CUT3 0x31 |
| #define VD56G3_REG_OPTICAL_REVISION CCI_REG8(0x001a) |
| #define VD56G3_OPTICAL_REVISION_MONO 0 |
| #define VD56G3_OPTICAL_REVISION_BAYER 1 |
| #define VD56G3_REG_SYSTEM_FSM CCI_REG8(0x0028) |
| #define VD56G3_SYSTEM_FSM_READY_TO_BOOT 0x01 |
| #define VD56G3_SYSTEM_FSM_SW_STBY 0x02 |
| #define VD56G3_SYSTEM_FSM_STREAMING 0x03 |
| #define VD56G3_REG_APPLIED_COARSE_EXPOSURE CCI_REG16_LE(0x0064) |
| #define VD56G3_REG_APPLIED_ANALOG_GAIN CCI_REG8(0x0068) |
| #define VD56G3_REG_APPLIED_DIGITAL_GAIN CCI_REG16_LE(0x006a) |
| #define VD56G3_REG_BOOT CCI_REG8(0x0200) |
| #define VD56G3_CMD_ACK 0 |
| #define VD56G3_CMD_BOOT 1 |
| #define VD56G3_REG_STBY CCI_REG8(0x0201) |
| #define VD56G3_CMD_START_STREAM 1 |
| #define VD56G3_REG_STREAMING CCI_REG8(0x0202) |
| #define VD56G3_CMD_STOP_STREAM 1 |
| #define VD56G3_REG_EXT_CLOCK CCI_REG32_LE(0x0220) |
| #define VD56G3_REG_CLK_PLL_PREDIV CCI_REG8(0x0224) |
| #define VD56G3_REG_CLK_SYS_PLL_MULT CCI_REG8(0x0226) |
| #define VD56G3_REG_ORIENTATION CCI_REG8(0x0302) |
| #define VD56G3_REG_FORMAT_CTRL CCI_REG8(0x030a) |
| #define VD56G3_REG_OIF_CTRL CCI_REG16_LE(0x030c) |
| #define VD56G3_REG_OIF_IMG_CTRL CCI_REG8(0x030f) |
| #define VD56G3_REG_OIF_CSI_BITRATE CCI_REG16_LE(0x0312) |
| #define VD56G3_REG_DUSTER_CTRL CCI_REG8(0x0318) |
| #define VD56G3_DUSTER_DISABLE 0 |
| #define VD56G3_DUSTER_ENABLE_DEF_MODULES 0x13 |
| #define VD56G3_REG_ISL_ENABLE CCI_REG8(0x0333) |
| #define VD56G3_REG_DARKCAL_CTRL CCI_REG8(0x0340) |
| #define VD56G3_DARKCAL_ENABLE 1 |
| #define VD56G3_DARKCAL_DISABLE_DARKAVG 2 |
| #define VD56G3_REG_PATGEN_CTRL CCI_REG16_LE(0x0400) |
| #define VD56G3_PATGEN_ENABLE 1 |
| #define VD56G3_PATGEN_TYPE_SHIFT 4 |
| #define VD56G3_REG_AE_COLDSTART_COARSE_EXPOSURE CCI_REG16_LE(0x042a) |
| #define VD56G3_REG_AE_COLDSTART_ANALOG_GAIN CCI_REG8(0x042c) |
| #define VD56G3_REG_AE_COLDSTART_DIGITAL_GAIN CCI_REG16_LE(0x042e) |
| #define VD56G3_REG_AE_ROI_START_H CCI_REG16_LE(0x0432) |
| #define VD56G3_REG_AE_ROI_START_V CCI_REG16_LE(0x0434) |
| #define VD56G3_REG_AE_ROI_END_H CCI_REG16_LE(0x0436) |
| #define VD56G3_REG_AE_ROI_END_V CCI_REG16_LE(0x0438) |
| #define VD56G3_REG_AE_COMPENSATION CCI_REG16_LE(0x043a) |
| #define VD56G3_REG_EXP_MODE CCI_REG8(0x044c) |
| #define VD56G3_EXP_MODE_AUTO 0 |
| #define VD56G3_EXP_MODE_FREEZE 1 |
| #define VD56G3_EXP_MODE_MANUAL 2 |
| #define VD56G3_REG_MANUAL_ANALOG_GAIN CCI_REG8(0x044d) |
| #define VD56G3_REG_MANUAL_COARSE_EXPOSURE CCI_REG16_LE(0x044e) |
| #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH0 CCI_REG16_LE(0x0450) |
| #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH1 CCI_REG16_LE(0x0452) |
| #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH2 CCI_REG16_LE(0x0454) |
| #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH3 CCI_REG16_LE(0x0456) |
| #define VD56G3_REG_FRAME_LENGTH CCI_REG16_LE(0x0458) |
| #define VD56G3_REG_Y_START CCI_REG16_LE(0x045a) |
| #define VD56G3_REG_Y_END CCI_REG16_LE(0x045c) |
| #define VD56G3_REG_OUT_ROI_X_START CCI_REG16_LE(0x045e) |
| #define VD56G3_REG_OUT_ROI_X_END CCI_REG16_LE(0x0460) |
| #define VD56G3_REG_OUT_ROI_Y_START CCI_REG16_LE(0x0462) |
| #define VD56G3_REG_OUT_ROI_Y_END CCI_REG16_LE(0x0464) |
| #define VD56G3_REG_GPIO_0_CTRL CCI_REG8(0x0467) |
| #define VD56G3_GPIOX_GPIO_IN 0x01 |
| #define VD56G3_GPIOX_STROBE_MODE 0x02 |
| #define VD56G3_REG_READOUT_CTRL CCI_REG8(0x047e) |
| #define READOUT_NORMAL 0x00 |
| #define READOUT_DIGITAL_BINNING_X2 0x01 |
| |
| /* The VD56G3 is a portrait image sensor with native resolution of 1124x1364. */ |
| #define VD56G3_NATIVE_WIDTH 1124 |
| #define VD56G3_NATIVE_HEIGHT 1364 |
| #define VD56G3_DEFAULT_MODE 0 |
| |
| /* PLL settings */ |
| #define VD56G3_TARGET_PLL 804000000UL |
| #define VD56G3_VT_CLOCK_DIV 5 |
| |
| /* External clock must be in [6Mhz-27Mhz] */ |
| #define VD56G3_XCLK_FREQ_MIN (6 * HZ_PER_MHZ) |
| #define VD56G3_XCLK_FREQ_MAX (27 * HZ_PER_MHZ) |
| |
| /* Line length and Frame length (settings are for standard 10bits ADC mode) */ |
| #define VD56G3_LINE_LENGTH_MIN 1236 |
| #define VD56G3_VBLANK_MIN 110 |
| #define VD56G3_FRAME_LENGTH_DEF_60FPS 2168 |
| #define VD56G3_FRAME_LENGTH_MAX 0xffff |
| |
| /* Exposure settings */ |
| #define VD56G3_EXPOSURE_MARGIN 75 |
| #define VD56G3_EXPOSURE_MIN 5 |
| #define VD56G3_EXPOSURE_DEFAULT 1420 |
| |
| /* Output Interface settings */ |
| #define VD56G3_MAX_CSI_DATA_LANES 2 |
| #define VD56G3_LINK_FREQ_DEF_1LANE 750000000UL |
| #define VD56G3_LINK_FREQ_DEF_2LANES 402000000UL |
| |
| /* GPIOs */ |
| #define VD56G3_NB_GPIOS 8 |
| |
| /* regulator supplies */ |
| static const char *const vd56g3_supply_names[] = { |
| "vcore", |
| "vddio", |
| "vana", |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * Models (VD56G3: Mono, VD66GY: Bayer RGB), Modes and formats |
| */ |
| |
| enum vd56g3_models { |
| VD56G3_MODEL_VD56G3, |
| VD56G3_MODEL_VD66GY, |
| }; |
| |
| struct vd56g3_mode { |
| u32 width; |
| u32 height; |
| }; |
| |
| static const struct vd56g3_mode vd56g3_supported_modes[] = { |
| { |
| .width = VD56G3_NATIVE_WIDTH, |
| .height = VD56G3_NATIVE_HEIGHT, |
| }, |
| { |
| .width = 1120, |
| .height = 1360, |
| }, |
| { |
| .width = 1024, |
| .height = 1280, |
| }, |
| { |
| .width = 1024, |
| .height = 768, |
| }, |
| { |
| .width = 768, |
| .height = 1024, |
| }, |
| { |
| .width = 720, |
| .height = 1280, |
| }, |
| { |
| .width = 640, |
| .height = 480, |
| }, |
| { |
| .width = 480, |
| .height = 640, |
| }, |
| { |
| .width = 320, |
| .height = 240, |
| }, |
| }; |
| |
| /* |
| * Sensor support 8bits and 10bits output in both variants |
| * - Monochrome |
| * - RGB (with all H/V flip variations) |
| */ |
| static const unsigned int vd56g3_mbus_codes[2][5] = { |
| { |
| MEDIA_BUS_FMT_Y8_1X8, |
| MEDIA_BUS_FMT_SGRBG8_1X8, |
| MEDIA_BUS_FMT_SRGGB8_1X8, |
| MEDIA_BUS_FMT_SBGGR8_1X8, |
| MEDIA_BUS_FMT_SGBRG8_1X8, |
| }, |
| { |
| MEDIA_BUS_FMT_Y10_1X10, |
| MEDIA_BUS_FMT_SGRBG10_1X10, |
| MEDIA_BUS_FMT_SRGGB10_1X10, |
| MEDIA_BUS_FMT_SBGGR10_1X10, |
| MEDIA_BUS_FMT_SGBRG10_1X10, |
| }, |
| }; |
| |
| struct vd56g3 { |
| struct device *dev; |
| struct v4l2_subdev sd; |
| struct media_pad pad; |
| struct regulator_bulk_data supplies[ARRAY_SIZE(vd56g3_supply_names)]; |
| struct gpio_desc *reset_gpio; |
| struct clk *xclk; |
| struct regmap *regmap; |
| u32 xclk_freq; |
| u32 pll_prediv; |
| u32 pll_mult; |
| u32 pixel_clock; |
| u16 oif_ctrl; |
| u8 nb_of_lane; |
| u32 gpios[VD56G3_NB_GPIOS]; |
| unsigned long ext_leds_mask; |
| bool is_mono; |
| struct v4l2_ctrl_handler ctrl_handler; |
| struct v4l2_ctrl *hblank_ctrl; |
| struct v4l2_ctrl *vblank_ctrl; |
| struct { |
| struct v4l2_ctrl *hflip_ctrl; |
| struct v4l2_ctrl *vflip_ctrl; |
| }; |
| struct v4l2_ctrl *patgen_ctrl; |
| struct { |
| struct v4l2_ctrl *ae_ctrl; |
| struct v4l2_ctrl *expo_ctrl; |
| struct v4l2_ctrl *again_ctrl; |
| struct v4l2_ctrl *dgain_ctrl; |
| }; |
| struct v4l2_ctrl *ae_lock_ctrl; |
| struct v4l2_ctrl *ae_bias_ctrl; |
| struct v4l2_ctrl *led_ctrl; |
| }; |
| |
| static inline struct vd56g3 *to_vd56g3(struct v4l2_subdev *sd) |
| { |
| return container_of_const(sd, struct vd56g3, sd); |
| } |
| |
| static inline struct vd56g3 *ctrl_to_vd56g3(struct v4l2_ctrl *ctrl) |
| { |
| return container_of_const(ctrl->handler, struct vd56g3, ctrl_handler); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Additional i2c register helpers |
| */ |
| |
| static int vd56g3_poll_reg(struct vd56g3 *sensor, u32 reg, u8 poll_val, |
| int *err) |
| { |
| unsigned int val = 0; |
| int ret; |
| |
| if (err && *err) |
| return *err; |
| |
| /* |
| * Timeout must be higher than longuest frame duration. With current |
| * blanking constraints, frame duration can take up to 504ms. |
| */ |
| ret = regmap_read_poll_timeout(sensor->regmap, CCI_REG_ADDR(reg), val, |
| (val == poll_val), 2000, |
| 600 * USEC_PER_MSEC); |
| |
| if (ret && err) |
| *err = ret; |
| |
| return ret; |
| } |
| |
| static int vd56g3_wait_state(struct vd56g3 *sensor, int state, int *err) |
| { |
| return vd56g3_poll_reg(sensor, VD56G3_REG_SYSTEM_FSM, state, err); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Controls: definitions, helpers and handlers |
| */ |
| |
| static const char *const vd56g3_tp_menu[] = { "Disabled", |
| "Solid Color", |
| "Vertical Color Bars", |
| "Horizontal Gray Scale", |
| "Vertical Gray Scale", |
| "Diagonal Gray Scale", |
| "Pseudo Random" }; |
| |
| static const s64 vd56g3_ev_bias_qmenu[] = { -4000, -3500, -3000, -2500, -2000, |
| -1500, -1000, -500, 0, 500, |
| 1000, 1500, 2000, 2500, 3000, |
| 3500, 4000 }; |
| |
| static const s64 vd56g3_link_freq_1lane[] = { VD56G3_LINK_FREQ_DEF_1LANE }; |
| |
| static const s64 vd56g3_link_freq_2lanes[] = { VD56G3_LINK_FREQ_DEF_2LANES }; |
| |
| static u8 vd56g3_get_bpp(__u32 code) |
| { |
| switch (code) { |
| case MEDIA_BUS_FMT_Y8_1X8: |
| case MEDIA_BUS_FMT_SGRBG8_1X8: |
| case MEDIA_BUS_FMT_SRGGB8_1X8: |
| case MEDIA_BUS_FMT_SBGGR8_1X8: |
| case MEDIA_BUS_FMT_SGBRG8_1X8: |
| default: |
| return 8; |
| case MEDIA_BUS_FMT_Y10_1X10: |
| case MEDIA_BUS_FMT_SGRBG10_1X10: |
| case MEDIA_BUS_FMT_SRGGB10_1X10: |
| case MEDIA_BUS_FMT_SBGGR10_1X10: |
| case MEDIA_BUS_FMT_SGBRG10_1X10: |
| return 10; |
| } |
| } |
| |
| static u8 vd56g3_get_datatype(__u32 code) |
| { |
| switch (code) { |
| case MEDIA_BUS_FMT_Y8_1X8: |
| case MEDIA_BUS_FMT_SGRBG8_1X8: |
| case MEDIA_BUS_FMT_SRGGB8_1X8: |
| case MEDIA_BUS_FMT_SBGGR8_1X8: |
| case MEDIA_BUS_FMT_SGBRG8_1X8: |
| default: |
| return MIPI_CSI2_DT_RAW8; |
| case MEDIA_BUS_FMT_Y10_1X10: |
| case MEDIA_BUS_FMT_SGRBG10_1X10: |
| case MEDIA_BUS_FMT_SRGGB10_1X10: |
| case MEDIA_BUS_FMT_SBGGR10_1X10: |
| case MEDIA_BUS_FMT_SGBRG10_1X10: |
| return MIPI_CSI2_DT_RAW10; |
| } |
| } |
| |
| static int vd56g3_read_expo_cluster(struct vd56g3 *sensor, bool force_cur_val) |
| { |
| u64 exposure; |
| u64 again; |
| u64 dgain; |
| int ret = 0; |
| |
| /* |
| * When 'force_cur_val' is enabled, save the ctrl value in 'cur.val' |
| * instead of the normal 'val', this is used during poweroff to cache |
| * volatile ctrls and enable coldstart. |
| */ |
| cci_read(sensor->regmap, VD56G3_REG_APPLIED_COARSE_EXPOSURE, &exposure, |
| &ret); |
| cci_read(sensor->regmap, VD56G3_REG_APPLIED_ANALOG_GAIN, &again, &ret); |
| cci_read(sensor->regmap, VD56G3_REG_APPLIED_DIGITAL_GAIN, &dgain, &ret); |
| if (ret) |
| return ret; |
| |
| if (force_cur_val) { |
| sensor->expo_ctrl->cur.val = exposure; |
| sensor->again_ctrl->cur.val = again; |
| sensor->dgain_ctrl->cur.val = dgain; |
| } else { |
| sensor->expo_ctrl->val = exposure; |
| sensor->again_ctrl->val = again; |
| sensor->dgain_ctrl->val = dgain; |
| } |
| |
| return ret; |
| } |
| |
| static int vd56g3_update_patgen(struct vd56g3 *sensor, u32 patgen_index) |
| { |
| u32 pattern = patgen_index <= 2 ? patgen_index : patgen_index + 13; |
| u16 patgen = pattern << VD56G3_PATGEN_TYPE_SHIFT; |
| u8 duster = VD56G3_DUSTER_ENABLE_DEF_MODULES; |
| u8 darkcal = VD56G3_DARKCAL_ENABLE; |
| int ret = 0; |
| |
| if (patgen_index) { |
| patgen |= VD56G3_PATGEN_ENABLE; |
| duster = VD56G3_DUSTER_DISABLE; |
| darkcal = VD56G3_DARKCAL_DISABLE_DARKAVG; |
| } |
| |
| cci_write(sensor->regmap, VD56G3_REG_DUSTER_CTRL, duster, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_DARKCAL_CTRL, darkcal, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_PATGEN_CTRL, patgen, &ret); |
| |
| return ret; |
| } |
| |
| static int vd56g3_update_expo_cluster(struct vd56g3 *sensor, bool is_auto) |
| { |
| u8 expo_state = is_auto ? VD56G3_EXP_MODE_AUTO : VD56G3_EXP_MODE_MANUAL; |
| int ret = 0; |
| |
| if (sensor->ae_ctrl->is_new) |
| cci_write(sensor->regmap, VD56G3_REG_EXP_MODE, expo_state, |
| &ret); |
| |
| /* In Auto expo, set coldstart parameters */ |
| if (is_auto && sensor->ae_ctrl->is_new) { |
| cci_write(sensor->regmap, |
| VD56G3_REG_AE_COLDSTART_COARSE_EXPOSURE, |
| sensor->expo_ctrl->val, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_AE_COLDSTART_ANALOG_GAIN, |
| sensor->again_ctrl->val, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_AE_COLDSTART_DIGITAL_GAIN, |
| sensor->dgain_ctrl->val, &ret); |
| } |
| |
| /* In Manual expo, set exposure, analog and digital gains */ |
| if (!is_auto && sensor->expo_ctrl->is_new) |
| cci_write(sensor->regmap, VD56G3_REG_MANUAL_COARSE_EXPOSURE, |
| sensor->expo_ctrl->val, &ret); |
| |
| if (!is_auto && sensor->again_ctrl->is_new) |
| cci_write(sensor->regmap, VD56G3_REG_MANUAL_ANALOG_GAIN, |
| sensor->again_ctrl->val, &ret); |
| |
| if (!is_auto && sensor->dgain_ctrl->is_new) { |
| cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH0, |
| sensor->dgain_ctrl->val, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH1, |
| sensor->dgain_ctrl->val, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH2, |
| sensor->dgain_ctrl->val, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH3, |
| sensor->dgain_ctrl->val, &ret); |
| } |
| |
| return ret; |
| } |
| |
| static int vd56g3_lock_exposure(struct vd56g3 *sensor, u32 lock_val) |
| { |
| bool ae_lock = lock_val & V4L2_LOCK_EXPOSURE; |
| u8 expo_state = ae_lock ? VD56G3_EXP_MODE_FREEZE : VD56G3_EXP_MODE_AUTO; |
| |
| if (sensor->ae_ctrl->val == V4L2_EXPOSURE_AUTO) |
| return cci_write(sensor->regmap, VD56G3_REG_EXP_MODE, |
| expo_state, NULL); |
| |
| return 0; |
| } |
| |
| static int vd56g3_write_gpiox(struct vd56g3 *sensor, unsigned long gpio_mask) |
| { |
| unsigned long io; |
| u32 gpio_val; |
| int ret = 0; |
| |
| for_each_set_bit(io, &gpio_mask, VD56G3_NB_GPIOS) { |
| gpio_val = sensor->gpios[io]; |
| |
| if (gpio_val == VD56G3_GPIOX_STROBE_MODE && |
| sensor->led_ctrl->val == V4L2_FLASH_LED_MODE_NONE) |
| gpio_val = VD56G3_GPIOX_GPIO_IN; |
| |
| cci_write(sensor->regmap, VD56G3_REG_GPIO_0_CTRL + io, gpio_val, |
| &ret); |
| } |
| |
| return ret; |
| } |
| |
| static int vd56g3_g_volatile_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct vd56g3 *sensor = ctrl_to_vd56g3(ctrl); |
| int ret = 0; |
| |
| /* Interact with HW only when it is powered ON */ |
| if (!pm_runtime_get_if_in_use(sensor->dev)) |
| return 0; |
| |
| switch (ctrl->id) { |
| case V4L2_CID_EXPOSURE_AUTO: |
| ret = vd56g3_read_expo_cluster(sensor, false); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| pm_runtime_put_autosuspend(sensor->dev); |
| |
| return ret; |
| } |
| |
| static int vd56g3_s_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct vd56g3 *sensor = ctrl_to_vd56g3(ctrl); |
| struct v4l2_subdev_state *state; |
| const struct v4l2_rect *crop; |
| unsigned int frame_length = 0; |
| unsigned int expo_max; |
| unsigned int ae_compensation; |
| bool is_auto = false; |
| int ret = 0; |
| |
| state = v4l2_subdev_get_locked_active_state(&sensor->sd); |
| crop = v4l2_subdev_state_get_crop(state, 0); |
| |
| if (ctrl->flags & V4L2_CTRL_FLAG_READ_ONLY) |
| return 0; |
| |
| /* Update controls state, range, etc. whatever the state of the HW */ |
| switch (ctrl->id) { |
| case V4L2_CID_VBLANK: |
| frame_length = crop->height + ctrl->val; |
| expo_max = frame_length - VD56G3_EXPOSURE_MARGIN; |
| ret = __v4l2_ctrl_modify_range(sensor->expo_ctrl, |
| VD56G3_EXPOSURE_MIN, expo_max, 1, |
| min(VD56G3_EXPOSURE_DEFAULT, |
| expo_max)); |
| break; |
| case V4L2_CID_EXPOSURE_AUTO: |
| is_auto = (ctrl->val == V4L2_EXPOSURE_AUTO); |
| __v4l2_ctrl_grab(sensor->ae_lock_ctrl, !is_auto); |
| __v4l2_ctrl_grab(sensor->ae_bias_ctrl, !is_auto); |
| break; |
| default: |
| break; |
| } |
| |
| if (ret) |
| return ret; |
| |
| /* Interact with HW only when it is powered ON */ |
| if (!pm_runtime_get_if_in_use(sensor->dev)) |
| return 0; |
| |
| switch (ctrl->id) { |
| case V4L2_CID_HFLIP: |
| ret = cci_write(sensor->regmap, VD56G3_REG_ORIENTATION, |
| sensor->hflip_ctrl->val | |
| (sensor->vflip_ctrl->val << 1), |
| NULL); |
| break; |
| case V4L2_CID_TEST_PATTERN: |
| ret = vd56g3_update_patgen(sensor, ctrl->val); |
| break; |
| case V4L2_CID_EXPOSURE_AUTO: |
| ret = vd56g3_update_expo_cluster(sensor, is_auto); |
| break; |
| case V4L2_CID_3A_LOCK: |
| ret = vd56g3_lock_exposure(sensor, ctrl->val); |
| break; |
| case V4L2_CID_AUTO_EXPOSURE_BIAS: |
| ae_compensation = |
| DIV_ROUND_CLOSEST((int)vd56g3_ev_bias_qmenu[ctrl->val] * |
| 256, 1000); |
| ret = cci_write(sensor->regmap, VD56G3_REG_AE_COMPENSATION, |
| ae_compensation, NULL); |
| break; |
| case V4L2_CID_VBLANK: |
| ret = cci_write(sensor->regmap, VD56G3_REG_FRAME_LENGTH, |
| frame_length, NULL); |
| break; |
| case V4L2_CID_FLASH_LED_MODE: |
| ret = vd56g3_write_gpiox(sensor, sensor->ext_leds_mask); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| pm_runtime_put_autosuspend(sensor->dev); |
| |
| return ret; |
| } |
| |
| static const struct v4l2_ctrl_ops vd56g3_ctrl_ops = { |
| .g_volatile_ctrl = vd56g3_g_volatile_ctrl, |
| .s_ctrl = vd56g3_s_ctrl, |
| }; |
| |
| static int vd56g3_update_controls(struct vd56g3 *sensor) |
| { |
| struct v4l2_subdev_state *state; |
| const struct v4l2_rect *crop; |
| unsigned int hblank; |
| unsigned int vblank_min, vblank, vblank_max; |
| unsigned int frame_length; |
| unsigned int expo_max; |
| int ret; |
| |
| state = v4l2_subdev_get_locked_active_state(&sensor->sd); |
| crop = v4l2_subdev_state_get_crop(state, 0); |
| hblank = VD56G3_LINE_LENGTH_MIN - crop->width; |
| vblank_min = VD56G3_VBLANK_MIN; |
| vblank = VD56G3_FRAME_LENGTH_DEF_60FPS - crop->height; |
| vblank_max = VD56G3_FRAME_LENGTH_MAX - crop->height; |
| frame_length = crop->height + vblank; |
| expo_max = frame_length - VD56G3_EXPOSURE_MARGIN; |
| |
| /* Update blanking and exposure (ranges + values) */ |
| ret = __v4l2_ctrl_modify_range(sensor->hblank_ctrl, hblank, hblank, 1, |
| hblank); |
| if (ret) |
| return ret; |
| |
| ret = __v4l2_ctrl_modify_range(sensor->vblank_ctrl, vblank_min, |
| vblank_max, 1, vblank); |
| if (ret) |
| return ret; |
| |
| ret = __v4l2_ctrl_s_ctrl(sensor->vblank_ctrl, vblank); |
| if (ret) |
| return ret; |
| |
| ret = __v4l2_ctrl_modify_range(sensor->expo_ctrl, VD56G3_EXPOSURE_MIN, |
| expo_max, 1, VD56G3_EXPOSURE_DEFAULT); |
| if (ret) |
| return ret; |
| |
| return __v4l2_ctrl_s_ctrl(sensor->expo_ctrl, VD56G3_EXPOSURE_DEFAULT); |
| } |
| |
| static int vd56g3_init_controls(struct vd56g3 *sensor) |
| { |
| const struct v4l2_ctrl_ops *ops = &vd56g3_ctrl_ops; |
| struct v4l2_ctrl_handler *hdl = &sensor->ctrl_handler; |
| struct v4l2_fwnode_device_properties fwnode_props; |
| struct v4l2_ctrl *ctrl; |
| int ret; |
| |
| v4l2_ctrl_handler_init(hdl, 25); |
| |
| /* Horizontal & vertical flips modify bayer code on RGB variant */ |
| sensor->hflip_ctrl = |
| v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0); |
| if (sensor->hflip_ctrl) |
| sensor->hflip_ctrl->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT; |
| |
| sensor->vflip_ctrl = |
| v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0); |
| if (sensor->vflip_ctrl) |
| sensor->vflip_ctrl->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT; |
| |
| sensor->patgen_ctrl = |
| v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, |
| ARRAY_SIZE(vd56g3_tp_menu) - 1, 0, |
| 0, vd56g3_tp_menu); |
| |
| ctrl = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_LINK_FREQ, |
| ARRAY_SIZE(vd56g3_link_freq_1lane) - 1, 0, |
| (sensor->nb_of_lane == 2) ? |
| vd56g3_link_freq_2lanes : |
| vd56g3_link_freq_1lane); |
| if (ctrl) |
| ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; |
| |
| ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE, |
| sensor->pixel_clock, sensor->pixel_clock, 1, |
| sensor->pixel_clock); |
| if (ctrl) |
| ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; |
| |
| sensor->ae_ctrl = v4l2_ctrl_new_std_menu(hdl, ops, |
| V4L2_CID_EXPOSURE_AUTO, |
| V4L2_EXPOSURE_MANUAL, 0, |
| V4L2_EXPOSURE_AUTO); |
| |
| sensor->ae_lock_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_3A_LOCK, 0, |
| GENMASK(2, 0), 0, 0); |
| |
| sensor->ae_bias_ctrl = |
| v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_AUTO_EXPOSURE_BIAS, |
| ARRAY_SIZE(vd56g3_ev_bias_qmenu) - 1, |
| ARRAY_SIZE(vd56g3_ev_bias_qmenu) / 2, |
| vd56g3_ev_bias_qmenu); |
| |
| /* |
| * Analog gain [1, 8] is computed with the following logic : |
| * 32/(32 - again_reg), with again_reg in the range [0:28] |
| * Digital gain [1.00, 8.00] is coded as a Fixed Point 5.8 |
| */ |
| sensor->again_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN, |
| 0, 28, 1, 0); |
| sensor->dgain_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_DIGITAL_GAIN, |
| 0x100, 0x800, 1, 0x100); |
| |
| /* |
| * Set the exposure, horizontal and vertical blanking ctrls |
| * to hardcoded values, they will be updated in vd56g3_update_controls. |
| * Exposure being in an auto-cluster, set a significant value here. |
| */ |
| sensor->expo_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, |
| VD56G3_EXPOSURE_DEFAULT, |
| VD56G3_EXPOSURE_DEFAULT, 1, |
| VD56G3_EXPOSURE_DEFAULT); |
| sensor->hblank_ctrl = |
| v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK, 1, 1, 1, 1); |
| if (sensor->hblank_ctrl) |
| sensor->hblank_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; |
| sensor->vblank_ctrl = |
| v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK, 1, 1, 1, 1); |
| |
| /* Additional control based on device tree properties */ |
| if (sensor->ext_leds_mask) |
| sensor->led_ctrl = |
| v4l2_ctrl_new_std_menu(hdl, ops, |
| V4L2_CID_FLASH_LED_MODE, |
| V4L2_FLASH_LED_MODE_FLASH, 0, |
| V4L2_FLASH_LED_MODE_NONE); |
| |
| if (hdl->error) { |
| ret = hdl->error; |
| goto free_ctrls; |
| } |
| |
| v4l2_ctrl_cluster(2, &sensor->hflip_ctrl); |
| v4l2_ctrl_auto_cluster(4, &sensor->ae_ctrl, V4L2_EXPOSURE_MANUAL, true); |
| |
| /* Optional controls coming from fwnode (e.g. rotation, orientation). */ |
| ret = v4l2_fwnode_device_parse(sensor->dev, &fwnode_props); |
| if (ret) |
| goto free_ctrls; |
| |
| ret = v4l2_ctrl_new_fwnode_properties(hdl, ops, &fwnode_props); |
| if (ret) |
| goto free_ctrls; |
| |
| sensor->sd.ctrl_handler = hdl; |
| |
| return 0; |
| |
| free_ctrls: |
| v4l2_ctrl_handler_free(hdl); |
| |
| return ret; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Pad ops |
| */ |
| |
| /* Media bus code is dependent of : |
| * - 8bits or 10bits output |
| * - variant : Mono or RGB |
| * - H/V flips parameters in case of RGB |
| */ |
| static u32 vd56g3_get_mbus_code(struct vd56g3 *sensor, u32 code) |
| { |
| unsigned int i_bpp; |
| unsigned int j; |
| |
| for (i_bpp = 0; i_bpp < ARRAY_SIZE(vd56g3_mbus_codes); i_bpp++) { |
| for (j = 0; j < ARRAY_SIZE(vd56g3_mbus_codes[i_bpp]); j++) { |
| if (vd56g3_mbus_codes[i_bpp][j] == code) |
| goto endloops; |
| } |
| } |
| |
| endloops: |
| if (i_bpp >= ARRAY_SIZE(vd56g3_mbus_codes)) |
| i_bpp = 0; |
| |
| if (sensor->is_mono) |
| j = 0; |
| else |
| j = 1 + (sensor->hflip_ctrl->val ? 1 : 0) + |
| (sensor->vflip_ctrl->val ? 2 : 0); |
| |
| return vd56g3_mbus_codes[i_bpp][j]; |
| } |
| |
| static int vd56g3_enum_mbus_code(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_mbus_code_enum *code) |
| { |
| struct vd56g3 *sensor = to_vd56g3(sd); |
| |
| if (code->index >= ARRAY_SIZE(vd56g3_mbus_codes)) |
| return -EINVAL; |
| |
| code->code = |
| vd56g3_get_mbus_code(sensor, vd56g3_mbus_codes[code->index][0]); |
| |
| return 0; |
| } |
| |
| static int vd56g3_enum_frame_size(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_frame_size_enum *fse) |
| { |
| if (fse->index >= ARRAY_SIZE(vd56g3_supported_modes)) |
| return -EINVAL; |
| |
| fse->min_width = vd56g3_supported_modes[fse->index].width; |
| fse->max_width = fse->min_width; |
| fse->min_height = vd56g3_supported_modes[fse->index].height; |
| fse->max_height = fse->min_height; |
| |
| return 0; |
| } |
| |
| static void vd56g3_update_img_pad_format(struct vd56g3 *sensor, |
| const struct vd56g3_mode *mode, |
| u32 mbus_code, |
| struct v4l2_mbus_framefmt *mbus_fmt) |
| { |
| mbus_fmt->width = mode->width; |
| mbus_fmt->height = mode->height; |
| mbus_fmt->code = vd56g3_get_mbus_code(sensor, mbus_code); |
| mbus_fmt->colorspace = V4L2_COLORSPACE_RAW; |
| mbus_fmt->field = V4L2_FIELD_NONE; |
| mbus_fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; |
| mbus_fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; |
| mbus_fmt->xfer_func = V4L2_XFER_FUNC_NONE; |
| } |
| |
| static int vd56g3_set_pad_fmt(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_format *sd_fmt) |
| { |
| struct vd56g3 *sensor = to_vd56g3(sd); |
| const struct vd56g3_mode *new_mode; |
| struct v4l2_rect pad_crop; |
| unsigned int binning; |
| |
| new_mode = v4l2_find_nearest_size(vd56g3_supported_modes, |
| ARRAY_SIZE(vd56g3_supported_modes), |
| width, height, sd_fmt->format.width, |
| sd_fmt->format.height); |
| |
| vd56g3_update_img_pad_format(sensor, new_mode, sd_fmt->format.code, |
| &sd_fmt->format); |
| *v4l2_subdev_state_get_format(sd_state, sd_fmt->pad) = sd_fmt->format; |
| |
| /* Compute and update crop rectangle (maximized via binning) */ |
| binning = min(VD56G3_NATIVE_WIDTH / sd_fmt->format.width, |
| VD56G3_NATIVE_HEIGHT / sd_fmt->format.height); |
| binning = min(binning, 2U); |
| pad_crop.width = sd_fmt->format.width * binning; |
| pad_crop.height = sd_fmt->format.height * binning; |
| pad_crop.left = (VD56G3_NATIVE_WIDTH - pad_crop.width) / 2; |
| pad_crop.top = (VD56G3_NATIVE_HEIGHT - pad_crop.height) / 2; |
| *v4l2_subdev_state_get_crop(sd_state, sd_fmt->pad) = pad_crop; |
| |
| /* Update controls in case of active state */ |
| if (sd_fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) |
| return vd56g3_update_controls(sensor); |
| |
| return 0; |
| } |
| |
| static int vd56g3_get_selection(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_selection *sel) |
| { |
| switch (sel->target) { |
| case V4L2_SEL_TGT_CROP: |
| sel->r = *v4l2_subdev_state_get_crop(sd_state, 0); |
| break; |
| case V4L2_SEL_TGT_NATIVE_SIZE: |
| case V4L2_SEL_TGT_CROP_DEFAULT: |
| case V4L2_SEL_TGT_CROP_BOUNDS: |
| sel->r.top = 0; |
| sel->r.left = 0; |
| sel->r.width = VD56G3_NATIVE_WIDTH; |
| sel->r.height = VD56G3_NATIVE_HEIGHT; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int vd56g3_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad, |
| struct v4l2_mbus_frame_desc *fd) |
| { |
| struct v4l2_subdev_state *state; |
| const struct v4l2_mbus_framefmt *format; |
| |
| state = v4l2_subdev_lock_and_get_active_state(sd); |
| format = v4l2_subdev_state_get_format(state, pad); |
| v4l2_subdev_unlock_state(state); |
| |
| fd->type = V4L2_MBUS_FRAME_DESC_TYPE_CSI2; |
| fd->num_entries = 1; |
| fd->entry[0].pixelcode = format->code; |
| fd->entry[0].stream = 0; |
| fd->entry[0].bus.csi2.vc = 0; |
| fd->entry[0].bus.csi2.dt = vd56g3_get_datatype(format->code); |
| |
| return 0; |
| } |
| |
| static int vd56g3_enable_streams(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *state, u32 pad, |
| u64 streams_mask) |
| { |
| struct vd56g3 *sensor = to_vd56g3(sd); |
| const struct v4l2_mbus_framefmt *format = |
| v4l2_subdev_state_get_format(state, 0); |
| const struct v4l2_rect *crop = v4l2_subdev_state_get_crop(state, 0); |
| unsigned int csi_mbps = ((sensor->nb_of_lane == 2) ? |
| VD56G3_LINK_FREQ_DEF_2LANES : |
| VD56G3_LINK_FREQ_DEF_1LANE) * |
| 2 / MEGA; |
| unsigned int binning; |
| int ret; |
| |
| ret = pm_runtime_resume_and_get(sensor->dev); |
| if (ret < 0) |
| return ret; |
| |
| /* configure clocks */ |
| cci_write(sensor->regmap, VD56G3_REG_EXT_CLOCK, sensor->xclk_freq, |
| &ret); |
| cci_write(sensor->regmap, VD56G3_REG_CLK_PLL_PREDIV, sensor->pll_prediv, |
| &ret); |
| cci_write(sensor->regmap, VD56G3_REG_CLK_SYS_PLL_MULT, sensor->pll_mult, |
| &ret); |
| |
| /* configure output */ |
| cci_write(sensor->regmap, VD56G3_REG_FORMAT_CTRL, |
| vd56g3_get_bpp(format->code), &ret); |
| cci_write(sensor->regmap, VD56G3_REG_OIF_CTRL, sensor->oif_ctrl, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_OIF_CSI_BITRATE, csi_mbps, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_OIF_IMG_CTRL, |
| vd56g3_get_datatype(format->code), &ret); |
| cci_write(sensor->regmap, VD56G3_REG_ISL_ENABLE, 0, &ret); |
| |
| /* configure binning mode */ |
| switch (crop->width / format->width) { |
| case 1: |
| default: |
| binning = READOUT_NORMAL; |
| break; |
| case 2: |
| binning = READOUT_DIGITAL_BINNING_X2; |
| break; |
| } |
| cci_write(sensor->regmap, VD56G3_REG_READOUT_CTRL, binning, &ret); |
| |
| /* configure ROIs */ |
| cci_write(sensor->regmap, VD56G3_REG_Y_START, crop->top, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_Y_END, |
| crop->top + crop->height - 1, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_X_START, crop->left, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_X_END, |
| crop->left + crop->width - 1, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_Y_START, 0, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_Y_END, crop->height - 1, |
| &ret); |
| cci_write(sensor->regmap, VD56G3_REG_AE_ROI_START_H, crop->left, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_AE_ROI_END_H, |
| crop->left + crop->width - 1, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_AE_ROI_START_V, 0, &ret); |
| cci_write(sensor->regmap, VD56G3_REG_AE_ROI_END_V, crop->height - 1, |
| &ret); |
| if (ret) |
| goto rpm_put; |
| |
| /* Setup default GPIO values; could be overridden by V4L2 ctrl setup */ |
| ret = vd56g3_write_gpiox(sensor, GENMASK(VD56G3_NB_GPIOS - 1, 0)); |
| if (ret) |
| goto rpm_put; |
| |
| /* Apply settings from V4L2 ctrls */ |
| ret = __v4l2_ctrl_handler_setup(&sensor->ctrl_handler); |
| if (ret) |
| goto rpm_put; |
| |
| /* start streaming */ |
| cci_write(sensor->regmap, VD56G3_REG_STBY, VD56G3_CMD_START_STREAM, |
| &ret); |
| vd56g3_poll_reg(sensor, VD56G3_REG_STBY, VD56G3_CMD_ACK, &ret); |
| vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_STREAMING, &ret); |
| if (ret) |
| goto rpm_put; |
| |
| /* some controls are locked during streaming */ |
| __v4l2_ctrl_grab(sensor->hflip_ctrl, true); |
| __v4l2_ctrl_grab(sensor->vflip_ctrl, true); |
| __v4l2_ctrl_grab(sensor->patgen_ctrl, true); |
| |
| return ret; |
| |
| rpm_put: |
| dev_err(sensor->dev, "Failed to start streaming\n"); |
| pm_runtime_put_sync(sensor->dev); |
| |
| return ret; |
| } |
| |
| static int vd56g3_disable_streams(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *state, u32 pad, |
| u64 streams_mask) |
| { |
| struct vd56g3 *sensor = to_vd56g3(sd); |
| int ret; |
| |
| /* Retrieve Expo cluster to enable coldstart of AE */ |
| ret = vd56g3_read_expo_cluster(sensor, true); |
| |
| cci_write(sensor->regmap, VD56G3_REG_STREAMING, VD56G3_CMD_STOP_STREAM, |
| &ret); |
| vd56g3_poll_reg(sensor, VD56G3_REG_STREAMING, VD56G3_CMD_ACK, &ret); |
| vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_SW_STBY, &ret); |
| |
| /* locked controls must be unlocked */ |
| __v4l2_ctrl_grab(sensor->hflip_ctrl, false); |
| __v4l2_ctrl_grab(sensor->vflip_ctrl, false); |
| __v4l2_ctrl_grab(sensor->patgen_ctrl, false); |
| |
| pm_runtime_put_autosuspend(sensor->dev); |
| |
| return ret; |
| } |
| |
| static int vd56g3_init_state(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *sd_state) |
| { |
| unsigned int def_mode = VD56G3_DEFAULT_MODE; |
| struct v4l2_subdev_format fmt = { |
| .which = V4L2_SUBDEV_FORMAT_TRY, |
| .pad = 0, |
| .format = { |
| .code = vd56g3_mbus_codes[0][0], |
| .width = vd56g3_supported_modes[def_mode].width, |
| .height = vd56g3_supported_modes[def_mode].height, |
| }, |
| }; |
| |
| return vd56g3_set_pad_fmt(sd, sd_state, &fmt); |
| } |
| |
| static const struct v4l2_subdev_video_ops vd56g3_video_ops = { |
| .s_stream = v4l2_subdev_s_stream_helper, |
| }; |
| |
| static const struct v4l2_subdev_pad_ops vd56g3_pad_ops = { |
| .enum_mbus_code = vd56g3_enum_mbus_code, |
| .enum_frame_size = vd56g3_enum_frame_size, |
| .get_fmt = v4l2_subdev_get_fmt, |
| .set_fmt = vd56g3_set_pad_fmt, |
| .get_selection = vd56g3_get_selection, |
| .get_frame_desc = vd56g3_get_frame_desc, |
| .enable_streams = vd56g3_enable_streams, |
| .disable_streams = vd56g3_disable_streams, |
| }; |
| |
| static const struct v4l2_subdev_ops vd56g3_subdev_ops = { |
| .video = &vd56g3_video_ops, |
| .pad = &vd56g3_pad_ops, |
| }; |
| |
| static const struct media_entity_operations vd56g3_subdev_entity_ops = { |
| .link_validate = v4l2_subdev_link_validate, |
| }; |
| |
| static const struct v4l2_subdev_internal_ops vd56g3_internal_ops = { |
| .init_state = vd56g3_init_state, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * Power management |
| */ |
| |
| static int vd56g3_power_on(struct device *dev) |
| { |
| struct v4l2_subdev *sd = dev_get_drvdata(dev); |
| struct vd56g3 *sensor = to_vd56g3(sd); |
| int ret; |
| |
| /* power on */ |
| ret = regulator_bulk_enable(ARRAY_SIZE(sensor->supplies), |
| sensor->supplies); |
| if (ret) { |
| dev_err(dev, "Failed to enable regulators: %d\n", ret); |
| return ret; |
| } |
| |
| ret = clk_prepare_enable(sensor->xclk); |
| if (ret) { |
| dev_err(dev, "Failed to enable clock: %d\n", ret); |
| goto disable_reg; |
| } |
| |
| gpiod_set_value_cansleep(sensor->reset_gpio, 0); |
| usleep_range(3500, 4000); |
| ret = vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_READY_TO_BOOT, NULL); |
| if (ret) { |
| dev_err(dev, "Sensor reset failed: %d\n", ret); |
| goto disable_clock; |
| } |
| |
| /* boot sensor */ |
| cci_write(sensor->regmap, VD56G3_REG_BOOT, VD56G3_CMD_BOOT, &ret); |
| vd56g3_poll_reg(sensor, VD56G3_REG_BOOT, VD56G3_CMD_ACK, &ret); |
| vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_SW_STBY, &ret); |
| if (ret) { |
| dev_err(dev, "Sensor boot failed: %d\n", ret); |
| goto disable_clock; |
| } |
| |
| return 0; |
| |
| disable_clock: |
| gpiod_set_value_cansleep(sensor->reset_gpio, 1); |
| clk_disable_unprepare(sensor->xclk); |
| disable_reg: |
| regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies); |
| |
| return ret; |
| } |
| |
| static int vd56g3_power_off(struct device *dev) |
| { |
| struct v4l2_subdev *sd = dev_get_drvdata(dev); |
| struct vd56g3 *sensor = to_vd56g3(sd); |
| |
| gpiod_set_value_cansleep(sensor->reset_gpio, 1); |
| clk_disable_unprepare(sensor->xclk); |
| regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops vd56g3_pm_ops = { |
| SET_RUNTIME_PM_OPS(vd56g3_power_off, vd56g3_power_on, NULL) |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * Probe and initialization |
| */ |
| |
| static int vd56g3_check_csi_conf(struct vd56g3 *sensor, |
| struct fwnode_handle *endpoint) |
| { |
| struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY }; |
| u32 phy_data_lanes[VD56G3_MAX_CSI_DATA_LANES] = { ~0, ~0 }; |
| u8 n_lanes; |
| u64 frequency; |
| int p, l; |
| int ret = 0; |
| |
| ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &ep); |
| if (ret) |
| return -EINVAL; |
| |
| /* Check lanes number */ |
| n_lanes = ep.bus.mipi_csi2.num_data_lanes; |
| if (n_lanes != 1 && n_lanes != 2) { |
| dev_err(sensor->dev, "Invalid data lane number: %d\n", n_lanes); |
| ret = -EINVAL; |
| goto done; |
| } |
| sensor->nb_of_lane = n_lanes; |
| |
| /* Clock lane must be first */ |
| if (ep.bus.mipi_csi2.clock_lane != 0) { |
| dev_err(sensor->dev, "Clock lane must be mapped to lane 0\n"); |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| /* |
| * Prepare Output Interface conf based on lane settings |
| * logical to physical lane conversion (+ pad remaining slots) |
| */ |
| for (l = 0; l < n_lanes; l++) |
| phy_data_lanes[ep.bus.mipi_csi2.data_lanes[l] - 1] = l; |
| for (p = 0; p < VD56G3_MAX_CSI_DATA_LANES; p++) { |
| if (phy_data_lanes[p] != ~0) |
| continue; |
| phy_data_lanes[p] = l; |
| l++; |
| } |
| sensor->oif_ctrl = n_lanes | |
| (ep.bus.mipi_csi2.lane_polarities[0] << 3) | |
| ((phy_data_lanes[0]) << 4) | |
| (ep.bus.mipi_csi2.lane_polarities[1] << 6) | |
| ((phy_data_lanes[1]) << 7) | |
| (ep.bus.mipi_csi2.lane_polarities[2] << 9); |
| |
| /* Check link frequency */ |
| if (!ep.nr_of_link_frequencies) { |
| dev_err(sensor->dev, "link-frequency not found in DT\n"); |
| ret = -EINVAL; |
| goto done; |
| } |
| frequency = (n_lanes == 2) ? VD56G3_LINK_FREQ_DEF_2LANES : |
| VD56G3_LINK_FREQ_DEF_1LANE; |
| if (ep.nr_of_link_frequencies != 1 || |
| ep.link_frequencies[0] != frequency) { |
| dev_err(sensor->dev, "Link frequency not supported: %lld\n", |
| ep.link_frequencies[0]); |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| done: |
| v4l2_fwnode_endpoint_free(&ep); |
| |
| return ret; |
| } |
| |
| static int vd56g3_parse_dt_gpios_array(struct vd56g3 *sensor, char *prop_name, |
| u32 *array, unsigned int *nb) |
| { |
| struct device *dev = sensor->dev; |
| unsigned int i; |
| int ret; |
| |
| if (!device_property_present(dev, prop_name)) { |
| *nb = 0; |
| return 0; |
| } |
| |
| ret = device_property_count_u32(dev, prop_name); |
| if (ret < 0) { |
| dev_err(dev, "Failed to read %s count\n", prop_name); |
| return ret; |
| } |
| |
| *nb = ret; |
| ret = device_property_read_u32_array(dev, prop_name, array, *nb); |
| if (ret) { |
| dev_err(dev, "Failed to read %s prop\n", prop_name); |
| return ret; |
| } |
| |
| for (i = 0; i < *nb; i++) { |
| if (array[i] >= VD56G3_NB_GPIOS) { |
| dev_err(dev, "Invalid GPIO: %d\n", array[i]); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vd56g3_parse_dt_gpios(struct vd56g3 *sensor) |
| { |
| u32 led_gpios[VD56G3_NB_GPIOS]; |
| unsigned int nb_gpios_leds; |
| unsigned int i; |
| int ret; |
| |
| /* Initialize GPIOs to default */ |
| for (i = 0; i < VD56G3_NB_GPIOS; i++) |
| sensor->gpios[i] = VD56G3_GPIOX_GPIO_IN; |
| sensor->ext_leds_mask = 0; |
| |
| /* Take into account optional 'st,leds' output for GPIOs */ |
| ret = vd56g3_parse_dt_gpios_array(sensor, "st,leds", led_gpios, |
| &nb_gpios_leds); |
| if (ret) |
| return ret; |
| for (i = 0; i < nb_gpios_leds; i++) { |
| sensor->gpios[led_gpios[i]] = VD56G3_GPIOX_STROBE_MODE; |
| set_bit(led_gpios[i], &sensor->ext_leds_mask); |
| } |
| |
| return 0; |
| } |
| |
| static int vd56g3_parse_dt(struct vd56g3 *sensor) |
| { |
| struct fwnode_handle *endpoint; |
| int ret; |
| |
| endpoint = fwnode_graph_get_endpoint_by_id(dev_fwnode(sensor->dev), 0, |
| 0, 0); |
| if (!endpoint) { |
| dev_err(sensor->dev, "Endpoint node not found\n"); |
| return -EINVAL; |
| } |
| |
| ret = vd56g3_check_csi_conf(sensor, endpoint); |
| fwnode_handle_put(endpoint); |
| if (ret) |
| return ret; |
| |
| return vd56g3_parse_dt_gpios(sensor); |
| } |
| |
| static int vd56g3_get_regulators(struct vd56g3 *sensor) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(sensor->supplies); i++) |
| sensor->supplies[i].supply = vd56g3_supply_names[i]; |
| |
| return devm_regulator_bulk_get(sensor->dev, |
| ARRAY_SIZE(sensor->supplies), |
| sensor->supplies); |
| } |
| |
| static int vd56g3_prepare_clock_tree(struct vd56g3 *sensor) |
| { |
| const unsigned int predivs[] = { 1, 2, 4 }; |
| u32 pll_out; |
| int i; |
| |
| /* External clock must be in [6Mhz-27Mhz] */ |
| if (sensor->xclk_freq < VD56G3_XCLK_FREQ_MIN || |
| sensor->xclk_freq > VD56G3_XCLK_FREQ_MAX) { |
| dev_err(sensor->dev, |
| "Only 6Mhz-27Mhz clock range supported. Provided %lu MHz\n", |
| sensor->xclk_freq / HZ_PER_MHZ); |
| return -EINVAL; |
| } |
| |
| /* PLL input should be in [6Mhz-12Mhz[ */ |
| for (i = 0; i < ARRAY_SIZE(predivs); i++) { |
| sensor->pll_prediv = predivs[i]; |
| if (sensor->xclk_freq / sensor->pll_prediv < 12 * HZ_PER_MHZ) |
| break; |
| } |
| |
| /* PLL output clock must be as close as possible to 804Mhz */ |
| sensor->pll_mult = (VD56G3_TARGET_PLL * sensor->pll_prediv + |
| sensor->xclk_freq / 2) / |
| sensor->xclk_freq; |
| pll_out = sensor->xclk_freq * sensor->pll_mult / sensor->pll_prediv; |
| |
| /* Target Pixel Clock for standard 10bit ADC mode : 160.8Mhz */ |
| sensor->pixel_clock = pll_out / VD56G3_VT_CLOCK_DIV; |
| |
| return 0; |
| } |
| |
| static int vd56g3_detect(struct vd56g3 *sensor) |
| { |
| struct device *dev = sensor->dev; |
| unsigned int model; |
| u64 model_id; |
| u64 device_revision; |
| u64 optical_revision; |
| int ret = 0; |
| |
| model = (uintptr_t)device_get_match_data(dev); |
| |
| ret = cci_read(sensor->regmap, VD56G3_REG_MODEL_ID, &model_id, NULL); |
| if (ret) |
| return ret; |
| |
| if (model_id != VD56G3_MODEL_ID) { |
| dev_err(dev, "Unsupported sensor id: %x\n", (u16)model_id); |
| return -ENODEV; |
| } |
| |
| ret = cci_read(sensor->regmap, VD56G3_REG_REVISION, &device_revision, |
| NULL); |
| if (ret) |
| return ret; |
| |
| if ((device_revision >> 8) != VD56G3_REVISION_CUT3) { |
| dev_err(dev, "Unsupported version: %x\n", (u16)device_revision); |
| return -ENODEV; |
| } |
| |
| ret = cci_read(sensor->regmap, VD56G3_REG_OPTICAL_REVISION, |
| &optical_revision, NULL); |
| if (ret) |
| return ret; |
| |
| sensor->is_mono = |
| ((optical_revision & 1) == VD56G3_OPTICAL_REVISION_MONO); |
| if ((sensor->is_mono && model == VD56G3_MODEL_VD66GY) || |
| (!sensor->is_mono && model == VD56G3_MODEL_VD56G3)) { |
| dev_err(dev, "Found %s sensor, while %s model is defined in DT\n", |
| (sensor->is_mono) ? "Mono" : "Bayer", |
| (model == VD56G3_MODEL_VD56G3) ? "vd56g3" : "vd66gy"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static int vd56g3_subdev_init(struct vd56g3 *sensor) |
| { |
| struct v4l2_subdev_state *state; |
| int ret; |
| |
| /* Init remaining sub device ops */ |
| sensor->sd.internal_ops = &vd56g3_internal_ops; |
| sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; |
| sensor->sd.entity.ops = &vd56g3_subdev_entity_ops; |
| |
| /* Init source pad */ |
| sensor->pad.flags = MEDIA_PAD_FL_SOURCE; |
| sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; |
| ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); |
| if (ret) { |
| dev_err(sensor->dev, "Failed to init media entity: %d\n", ret); |
| return ret; |
| } |
| |
| /* Init controls */ |
| ret = vd56g3_init_controls(sensor); |
| if (ret) { |
| dev_err(sensor->dev, "Controls initialization failed: %d\n", |
| ret); |
| goto err_media; |
| } |
| |
| /* Init vd56g3 struct : default resolution + raw8 */ |
| sensor->sd.state_lock = sensor->ctrl_handler.lock; |
| ret = v4l2_subdev_init_finalize(&sensor->sd); |
| if (ret) { |
| dev_err(sensor->dev, "Subdev init failed: %d\n", ret); |
| goto err_ctrls; |
| } |
| |
| /* Update controls according to the resolution set */ |
| state = v4l2_subdev_lock_and_get_active_state(&sensor->sd); |
| ret = vd56g3_update_controls(sensor); |
| v4l2_subdev_unlock_state(state); |
| if (ret) { |
| dev_err(sensor->dev, "Controls update failed: %d\n", ret); |
| goto err_ctrls; |
| } |
| |
| return 0; |
| |
| err_ctrls: |
| v4l2_ctrl_handler_free(sensor->sd.ctrl_handler); |
| |
| err_media: |
| media_entity_cleanup(&sensor->sd.entity); |
| |
| return ret; |
| } |
| |
| static void vd56g3_subdev_cleanup(struct vd56g3 *sensor) |
| { |
| v4l2_async_unregister_subdev(&sensor->sd); |
| v4l2_subdev_cleanup(&sensor->sd); |
| media_entity_cleanup(&sensor->sd.entity); |
| v4l2_ctrl_handler_free(sensor->sd.ctrl_handler); |
| } |
| |
| static int vd56g3_probe(struct i2c_client *client) |
| { |
| struct device *dev = &client->dev; |
| struct vd56g3 *sensor; |
| int ret; |
| |
| sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); |
| if (!sensor) |
| return -ENOMEM; |
| |
| v4l2_i2c_subdev_init(&sensor->sd, client, &vd56g3_subdev_ops); |
| sensor->dev = dev; |
| |
| ret = vd56g3_parse_dt(sensor); |
| if (ret) |
| return dev_err_probe(dev, ret, "Failed to parse Device Tree\n"); |
| |
| /* Get (and check) resources : power regs, ext clock, reset gpio */ |
| ret = vd56g3_get_regulators(sensor); |
| if (ret) |
| return dev_err_probe(dev, ret, "Failed to get regulators\n"); |
| |
| sensor->xclk = devm_clk_get(dev, NULL); |
| if (IS_ERR(sensor->xclk)) |
| return dev_err_probe(dev, PTR_ERR(sensor->xclk), |
| "Failed to get xclk\n"); |
| sensor->xclk_freq = clk_get_rate(sensor->xclk); |
| ret = vd56g3_prepare_clock_tree(sensor); |
| if (ret) |
| return ret; |
| |
| sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", |
| GPIOD_OUT_HIGH); |
| if (IS_ERR(sensor->reset_gpio)) |
| return dev_err_probe(dev, PTR_ERR(sensor->reset_gpio), |
| "Failed to get reset gpio\n"); |
| |
| sensor->regmap = devm_cci_regmap_init_i2c(client, 16); |
| if (IS_ERR(sensor->regmap)) |
| return dev_err_probe(dev, PTR_ERR(sensor->regmap), |
| "Failed to init regmap\n"); |
| |
| /* Power ON */ |
| ret = vd56g3_power_on(dev); |
| if (ret) |
| return dev_err_probe(dev, ret, "Sensor power on failed\n"); |
| |
| /* Enable PM runtime with autosuspend (sensor being ON, set active) */ |
| pm_runtime_set_active(dev); |
| pm_runtime_get_noresume(dev); |
| pm_runtime_enable(dev); |
| pm_runtime_set_autosuspend_delay(dev, 1000); |
| pm_runtime_use_autosuspend(dev); |
| |
| /* Check HW model/version */ |
| ret = vd56g3_detect(sensor); |
| if (ret) { |
| dev_err(dev, "Sensor detect failed: %d\n", ret); |
| goto err_power_off; |
| } |
| |
| /* Initialize & register subdev (v4l2_i2c subdev already initialized) */ |
| ret = vd56g3_subdev_init(sensor); |
| if (ret) { |
| dev_err(dev, "V4l2 init failed: %d\n", ret); |
| goto err_power_off; |
| } |
| |
| ret = v4l2_async_register_subdev(&sensor->sd); |
| if (ret) { |
| dev_err(dev, "Async subdev register failed: %d\n", ret); |
| goto err_subdev; |
| } |
| |
| /* Sensor could now be powered off (after the autosuspend delay) */ |
| pm_runtime_put_autosuspend(dev); |
| |
| dev_dbg(dev, "Successfully probe %s sensor\n", |
| (sensor->is_mono) ? "vd56g3" : "vd66gy"); |
| |
| return 0; |
| |
| err_subdev: |
| vd56g3_subdev_cleanup(sensor); |
| err_power_off: |
| pm_runtime_disable(dev); |
| pm_runtime_put_noidle(dev); |
| pm_runtime_dont_use_autosuspend(dev); |
| vd56g3_power_off(dev); |
| |
| return ret; |
| } |
| |
| static void vd56g3_remove(struct i2c_client *client) |
| { |
| struct v4l2_subdev *sd = i2c_get_clientdata(client); |
| struct vd56g3 *sensor = to_vd56g3(sd); |
| |
| vd56g3_subdev_cleanup(sensor); |
| |
| pm_runtime_disable(sensor->dev); |
| if (!pm_runtime_status_suspended(sensor->dev)) |
| vd56g3_power_off(sensor->dev); |
| pm_runtime_set_suspended(sensor->dev); |
| pm_runtime_dont_use_autosuspend(sensor->dev); |
| } |
| |
| static const struct of_device_id vd56g3_dt_ids[] = { |
| { .compatible = "st,vd56g3", .data = (void *)VD56G3_MODEL_VD56G3 }, |
| { .compatible = "st,vd66gy", .data = (void *)VD56G3_MODEL_VD66GY }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, vd56g3_dt_ids); |
| |
| static struct i2c_driver vd56g3_i2c_driver = { |
| .driver = { |
| .name = "vd56g3", |
| .of_match_table = vd56g3_dt_ids, |
| .pm = &vd56g3_pm_ops, |
| }, |
| .probe = vd56g3_probe, |
| .remove = vd56g3_remove, |
| }; |
| |
| module_i2c_driver(vd56g3_i2c_driver); |
| |
| MODULE_AUTHOR("Benjamin Mugnier <benjamin.mugnier@foss.st.com>"); |
| MODULE_AUTHOR("Mickael Guene <mickael.guene@st.com>"); |
| MODULE_AUTHOR("Sylvain Petinot <sylvain.petinot@foss.st.com>"); |
| MODULE_DESCRIPTION("ST VD56G3 sensor driver"); |
| MODULE_LICENSE("GPL"); |