| /* CPU control. | 
 |  * (C) 2001, 2002, 2003, 2004 Rusty Russell | 
 |  * | 
 |  * This code is licenced under the GPL. | 
 |  */ | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/init.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/sched/hotplug.h> | 
 | #include <linux/sched/isolation.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/sched/smt.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/export.h> | 
 | #include <linux/bug.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/lockdep.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/smpboot.h> | 
 | #include <linux/relay.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/scs.h> | 
 | #include <linux/percpu-rwsem.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/random.h> | 
 | #include <linux/cc_platform.h> | 
 |  | 
 | #include <trace/events/power.h> | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/cpuhp.h> | 
 |  | 
 | #include "smpboot.h" | 
 |  | 
 | /** | 
 |  * struct cpuhp_cpu_state - Per cpu hotplug state storage | 
 |  * @state:	The current cpu state | 
 |  * @target:	The target state | 
 |  * @fail:	Current CPU hotplug callback state | 
 |  * @thread:	Pointer to the hotplug thread | 
 |  * @should_run:	Thread should execute | 
 |  * @rollback:	Perform a rollback | 
 |  * @single:	Single callback invocation | 
 |  * @bringup:	Single callback bringup or teardown selector | 
 |  * @node:	Remote CPU node; for multi-instance, do a | 
 |  *		single entry callback for install/remove | 
 |  * @last:	For multi-instance rollback, remember how far we got | 
 |  * @cb_state:	The state for a single callback (install/uninstall) | 
 |  * @result:	Result of the operation | 
 |  * @ap_sync_state:	State for AP synchronization | 
 |  * @done_up:	Signal completion to the issuer of the task for cpu-up | 
 |  * @done_down:	Signal completion to the issuer of the task for cpu-down | 
 |  */ | 
 | struct cpuhp_cpu_state { | 
 | 	enum cpuhp_state	state; | 
 | 	enum cpuhp_state	target; | 
 | 	enum cpuhp_state	fail; | 
 | #ifdef CONFIG_SMP | 
 | 	struct task_struct	*thread; | 
 | 	bool			should_run; | 
 | 	bool			rollback; | 
 | 	bool			single; | 
 | 	bool			bringup; | 
 | 	struct hlist_node	*node; | 
 | 	struct hlist_node	*last; | 
 | 	enum cpuhp_state	cb_state; | 
 | 	int			result; | 
 | 	atomic_t		ap_sync_state; | 
 | 	struct completion	done_up; | 
 | 	struct completion	done_down; | 
 | #endif | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { | 
 | 	.fail = CPUHP_INVALID, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | cpumask_t cpus_booted_once_mask; | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) | 
 | static struct lockdep_map cpuhp_state_up_map = | 
 | 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); | 
 | static struct lockdep_map cpuhp_state_down_map = | 
 | 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); | 
 |  | 
 |  | 
 | static inline void cpuhp_lock_acquire(bool bringup) | 
 | { | 
 | 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); | 
 | } | 
 |  | 
 | static inline void cpuhp_lock_release(bool bringup) | 
 | { | 
 | 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); | 
 | } | 
 | #else | 
 |  | 
 | static inline void cpuhp_lock_acquire(bool bringup) { } | 
 | static inline void cpuhp_lock_release(bool bringup) { } | 
 |  | 
 | #endif | 
 |  | 
 | /** | 
 |  * struct cpuhp_step - Hotplug state machine step | 
 |  * @name:	Name of the step | 
 |  * @startup:	Startup function of the step | 
 |  * @teardown:	Teardown function of the step | 
 |  * @cant_stop:	Bringup/teardown can't be stopped at this step | 
 |  * @multi_instance:	State has multiple instances which get added afterwards | 
 |  */ | 
 | struct cpuhp_step { | 
 | 	const char		*name; | 
 | 	union { | 
 | 		int		(*single)(unsigned int cpu); | 
 | 		int		(*multi)(unsigned int cpu, | 
 | 					 struct hlist_node *node); | 
 | 	} startup; | 
 | 	union { | 
 | 		int		(*single)(unsigned int cpu); | 
 | 		int		(*multi)(unsigned int cpu, | 
 | 					 struct hlist_node *node); | 
 | 	} teardown; | 
 | 	/* private: */ | 
 | 	struct hlist_head	list; | 
 | 	/* public: */ | 
 | 	bool			cant_stop; | 
 | 	bool			multi_instance; | 
 | }; | 
 |  | 
 | static DEFINE_MUTEX(cpuhp_state_mutex); | 
 | static struct cpuhp_step cpuhp_hp_states[]; | 
 |  | 
 | static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) | 
 | { | 
 | 	return cpuhp_hp_states + state; | 
 | } | 
 |  | 
 | static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) | 
 | { | 
 | 	return bringup ? !step->startup.single : !step->teardown.single; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuhp_invoke_callback - Invoke the callbacks for a given state | 
 |  * @cpu:	The cpu for which the callback should be invoked | 
 |  * @state:	The state to do callbacks for | 
 |  * @bringup:	True if the bringup callback should be invoked | 
 |  * @node:	For multi-instance, do a single entry callback for install/remove | 
 |  * @lastp:	For multi-instance rollback, remember how far we got | 
 |  * | 
 |  * Called from cpu hotplug and from the state register machinery. | 
 |  * | 
 |  * Return: %0 on success or a negative errno code | 
 |  */ | 
 | static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, | 
 | 				 bool bringup, struct hlist_node *node, | 
 | 				 struct hlist_node **lastp) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 	struct cpuhp_step *step = cpuhp_get_step(state); | 
 | 	int (*cbm)(unsigned int cpu, struct hlist_node *node); | 
 | 	int (*cb)(unsigned int cpu); | 
 | 	int ret, cnt; | 
 |  | 
 | 	if (st->fail == state) { | 
 | 		st->fail = CPUHP_INVALID; | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	if (cpuhp_step_empty(bringup, step)) { | 
 | 		WARN_ON_ONCE(1); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!step->multi_instance) { | 
 | 		WARN_ON_ONCE(lastp && *lastp); | 
 | 		cb = bringup ? step->startup.single : step->teardown.single; | 
 |  | 
 | 		trace_cpuhp_enter(cpu, st->target, state, cb); | 
 | 		ret = cb(cpu); | 
 | 		trace_cpuhp_exit(cpu, st->state, state, ret); | 
 | 		return ret; | 
 | 	} | 
 | 	cbm = bringup ? step->startup.multi : step->teardown.multi; | 
 |  | 
 | 	/* Single invocation for instance add/remove */ | 
 | 	if (node) { | 
 | 		WARN_ON_ONCE(lastp && *lastp); | 
 | 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); | 
 | 		ret = cbm(cpu, node); | 
 | 		trace_cpuhp_exit(cpu, st->state, state, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* State transition. Invoke on all instances */ | 
 | 	cnt = 0; | 
 | 	hlist_for_each(node, &step->list) { | 
 | 		if (lastp && node == *lastp) | 
 | 			break; | 
 |  | 
 | 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); | 
 | 		ret = cbm(cpu, node); | 
 | 		trace_cpuhp_exit(cpu, st->state, state, ret); | 
 | 		if (ret) { | 
 | 			if (!lastp) | 
 | 				goto err; | 
 |  | 
 | 			*lastp = node; | 
 | 			return ret; | 
 | 		} | 
 | 		cnt++; | 
 | 	} | 
 | 	if (lastp) | 
 | 		*lastp = NULL; | 
 | 	return 0; | 
 | err: | 
 | 	/* Rollback the instances if one failed */ | 
 | 	cbm = !bringup ? step->startup.multi : step->teardown.multi; | 
 | 	if (!cbm) | 
 | 		return ret; | 
 |  | 
 | 	hlist_for_each(node, &step->list) { | 
 | 		if (!cnt--) | 
 | 			break; | 
 |  | 
 | 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); | 
 | 		ret = cbm(cpu, node); | 
 | 		trace_cpuhp_exit(cpu, st->state, state, ret); | 
 | 		/* | 
 | 		 * Rollback must not fail, | 
 | 		 */ | 
 | 		WARN_ON_ONCE(ret); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static bool cpuhp_is_ap_state(enum cpuhp_state state) | 
 | { | 
 | 	/* | 
 | 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation | 
 | 	 * purposes as that state is handled explicitly in cpu_down. | 
 | 	 */ | 
 | 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; | 
 | } | 
 |  | 
 | static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) | 
 | { | 
 | 	struct completion *done = bringup ? &st->done_up : &st->done_down; | 
 | 	wait_for_completion(done); | 
 | } | 
 |  | 
 | static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) | 
 | { | 
 | 	struct completion *done = bringup ? &st->done_up : &st->done_down; | 
 | 	complete(done); | 
 | } | 
 |  | 
 | /* | 
 |  * The former STARTING/DYING states, ran with IRQs disabled and must not fail. | 
 |  */ | 
 | static bool cpuhp_is_atomic_state(enum cpuhp_state state) | 
 | { | 
 | 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; | 
 | } | 
 |  | 
 | /* Synchronization state management */ | 
 | enum cpuhp_sync_state { | 
 | 	SYNC_STATE_DEAD, | 
 | 	SYNC_STATE_KICKED, | 
 | 	SYNC_STATE_SHOULD_DIE, | 
 | 	SYNC_STATE_ALIVE, | 
 | 	SYNC_STATE_SHOULD_ONLINE, | 
 | 	SYNC_STATE_ONLINE, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CORE_SYNC | 
 | /** | 
 |  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown | 
 |  * @state:	The synchronization state to set | 
 |  * | 
 |  * No synchronization point. Just update of the synchronization state, but implies | 
 |  * a full barrier so that the AP changes are visible before the control CPU proceeds. | 
 |  */ | 
 | static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) | 
 | { | 
 | 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); | 
 |  | 
 | 	(void)atomic_xchg(st, state); | 
 | } | 
 |  | 
 | void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } | 
 |  | 
 | static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, | 
 | 				      enum cpuhp_sync_state next_state) | 
 | { | 
 | 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); | 
 | 	ktime_t now, end, start = ktime_get(); | 
 | 	int sync; | 
 |  | 
 | 	end = start + 10ULL * NSEC_PER_SEC; | 
 |  | 
 | 	sync = atomic_read(st); | 
 | 	while (1) { | 
 | 		if (sync == state) { | 
 | 			if (!atomic_try_cmpxchg(st, &sync, next_state)) | 
 | 				continue; | 
 | 			return true; | 
 | 		} | 
 |  | 
 | 		now = ktime_get(); | 
 | 		if (now > end) { | 
 | 			/* Timeout. Leave the state unchanged */ | 
 | 			return false; | 
 | 		} else if (now - start < NSEC_PER_MSEC) { | 
 | 			/* Poll for one millisecond */ | 
 | 			arch_cpuhp_sync_state_poll(); | 
 | 		} else { | 
 | 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); | 
 | 		} | 
 | 		sync = atomic_read(st); | 
 | 	} | 
 | 	return true; | 
 | } | 
 | #else  /* CONFIG_HOTPLUG_CORE_SYNC */ | 
 | static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } | 
 | #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD | 
 | /** | 
 |  * cpuhp_ap_report_dead - Update synchronization state to DEAD | 
 |  * | 
 |  * No synchronization point. Just update of the synchronization state. | 
 |  */ | 
 | void cpuhp_ap_report_dead(void) | 
 | { | 
 | 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); | 
 | } | 
 |  | 
 | void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } | 
 |  | 
 | /* | 
 |  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down | 
 |  * because the AP cannot issue complete() at this stage. | 
 |  */ | 
 | static void cpuhp_bp_sync_dead(unsigned int cpu) | 
 | { | 
 | 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); | 
 | 	int sync = atomic_read(st); | 
 |  | 
 | 	do { | 
 | 		/* CPU can have reported dead already. Don't overwrite that! */ | 
 | 		if (sync == SYNC_STATE_DEAD) | 
 | 			break; | 
 | 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); | 
 |  | 
 | 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { | 
 | 		/* CPU reached dead state. Invoke the cleanup function */ | 
 | 		arch_cpuhp_cleanup_dead_cpu(cpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* No further action possible. Emit message and give up. */ | 
 | 	pr_err("CPU%u failed to report dead state\n", cpu); | 
 | } | 
 | #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ | 
 | static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } | 
 | #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL | 
 | /** | 
 |  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive | 
 |  * | 
 |  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits | 
 |  * for the BP to release it. | 
 |  */ | 
 | void cpuhp_ap_sync_alive(void) | 
 | { | 
 | 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); | 
 |  | 
 | 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); | 
 |  | 
 | 	/* Wait for the control CPU to release it. */ | 
 | 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) | 
 | 		cpu_relax(); | 
 | } | 
 |  | 
 | static bool cpuhp_can_boot_ap(unsigned int cpu) | 
 | { | 
 | 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); | 
 | 	int sync = atomic_read(st); | 
 |  | 
 | again: | 
 | 	switch (sync) { | 
 | 	case SYNC_STATE_DEAD: | 
 | 		/* CPU is properly dead */ | 
 | 		break; | 
 | 	case SYNC_STATE_KICKED: | 
 | 		/* CPU did not come up in previous attempt */ | 
 | 		break; | 
 | 	case SYNC_STATE_ALIVE: | 
 | 		/* CPU is stuck cpuhp_ap_sync_alive(). */ | 
 | 		break; | 
 | 	default: | 
 | 		/* CPU failed to report online or dead and is in limbo state. */ | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* Prepare for booting */ | 
 | 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) | 
 | 		goto again; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } | 
 |  | 
 | /* | 
 |  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up | 
 |  * because the AP cannot issue complete() so early in the bringup. | 
 |  */ | 
 | static int cpuhp_bp_sync_alive(unsigned int cpu) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) | 
 | 		return 0; | 
 |  | 
 | 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { | 
 | 		pr_err("CPU%u failed to report alive state\n", cpu); | 
 | 		ret = -EIO; | 
 | 	} | 
 |  | 
 | 	/* Let the architecture cleanup the kick alive mechanics. */ | 
 | 	arch_cpuhp_cleanup_kick_cpu(cpu); | 
 | 	return ret; | 
 | } | 
 | #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ | 
 | static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } | 
 | static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } | 
 | #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ | 
 |  | 
 | /* Serializes the updates to cpu_online_mask, cpu_present_mask */ | 
 | static DEFINE_MUTEX(cpu_add_remove_lock); | 
 | bool cpuhp_tasks_frozen; | 
 | EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); | 
 |  | 
 | /* | 
 |  * The following two APIs (cpu_maps_update_begin/done) must be used when | 
 |  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. | 
 |  */ | 
 | void cpu_maps_update_begin(void) | 
 | { | 
 | 	mutex_lock(&cpu_add_remove_lock); | 
 | } | 
 |  | 
 | void cpu_maps_update_done(void) | 
 | { | 
 | 	mutex_unlock(&cpu_add_remove_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * If set, cpu_up and cpu_down will return -EBUSY and do nothing. | 
 |  * Should always be manipulated under cpu_add_remove_lock | 
 |  */ | 
 | static int cpu_hotplug_disabled; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 |  | 
 | DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); | 
 |  | 
 | static bool cpu_hotplug_offline_disabled __ro_after_init; | 
 |  | 
 | void cpus_read_lock(void) | 
 | { | 
 | 	percpu_down_read(&cpu_hotplug_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(cpus_read_lock); | 
 |  | 
 | int cpus_read_trylock(void) | 
 | { | 
 | 	return percpu_down_read_trylock(&cpu_hotplug_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(cpus_read_trylock); | 
 |  | 
 | void cpus_read_unlock(void) | 
 | { | 
 | 	percpu_up_read(&cpu_hotplug_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(cpus_read_unlock); | 
 |  | 
 | void cpus_write_lock(void) | 
 | { | 
 | 	percpu_down_write(&cpu_hotplug_lock); | 
 | } | 
 |  | 
 | void cpus_write_unlock(void) | 
 | { | 
 | 	percpu_up_write(&cpu_hotplug_lock); | 
 | } | 
 |  | 
 | void lockdep_assert_cpus_held(void) | 
 | { | 
 | 	/* | 
 | 	 * We can't have hotplug operations before userspace starts running, | 
 | 	 * and some init codepaths will knowingly not take the hotplug lock. | 
 | 	 * This is all valid, so mute lockdep until it makes sense to report | 
 | 	 * unheld locks. | 
 | 	 */ | 
 | 	if (system_state < SYSTEM_RUNNING) | 
 | 		return; | 
 |  | 
 | 	percpu_rwsem_assert_held(&cpu_hotplug_lock); | 
 | } | 
 |  | 
 | #ifdef CONFIG_LOCKDEP | 
 | int lockdep_is_cpus_held(void) | 
 | { | 
 | 	return percpu_rwsem_is_held(&cpu_hotplug_lock); | 
 | } | 
 | #endif | 
 |  | 
 | static void lockdep_acquire_cpus_lock(void) | 
 | { | 
 | 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); | 
 | } | 
 |  | 
 | static void lockdep_release_cpus_lock(void) | 
 | { | 
 | 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); | 
 | } | 
 |  | 
 | /* Declare CPU offlining not supported */ | 
 | void cpu_hotplug_disable_offlining(void) | 
 | { | 
 | 	cpu_maps_update_begin(); | 
 | 	cpu_hotplug_offline_disabled = true; | 
 | 	cpu_maps_update_done(); | 
 | } | 
 |  | 
 | /* | 
 |  * Wait for currently running CPU hotplug operations to complete (if any) and | 
 |  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects | 
 |  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the | 
 |  * hotplug path before performing hotplug operations. So acquiring that lock | 
 |  * guarantees mutual exclusion from any currently running hotplug operations. | 
 |  */ | 
 | void cpu_hotplug_disable(void) | 
 | { | 
 | 	cpu_maps_update_begin(); | 
 | 	cpu_hotplug_disabled++; | 
 | 	cpu_maps_update_done(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(cpu_hotplug_disable); | 
 |  | 
 | static void __cpu_hotplug_enable(void) | 
 | { | 
 | 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) | 
 | 		return; | 
 | 	cpu_hotplug_disabled--; | 
 | } | 
 |  | 
 | void cpu_hotplug_enable(void) | 
 | { | 
 | 	cpu_maps_update_begin(); | 
 | 	__cpu_hotplug_enable(); | 
 | 	cpu_maps_update_done(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(cpu_hotplug_enable); | 
 |  | 
 | #else | 
 |  | 
 | static void lockdep_acquire_cpus_lock(void) | 
 | { | 
 | } | 
 |  | 
 | static void lockdep_release_cpus_lock(void) | 
 | { | 
 | } | 
 |  | 
 | #endif	/* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | /* | 
 |  * Architectures that need SMT-specific errata handling during SMT hotplug | 
 |  * should override this. | 
 |  */ | 
 | void __weak arch_smt_update(void) { } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_SMT | 
 |  | 
 | enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; | 
 | static unsigned int cpu_smt_max_threads __ro_after_init; | 
 | unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; | 
 |  | 
 | void __init cpu_smt_disable(bool force) | 
 | { | 
 | 	if (!cpu_smt_possible()) | 
 | 		return; | 
 |  | 
 | 	if (force) { | 
 | 		pr_info("SMT: Force disabled\n"); | 
 | 		cpu_smt_control = CPU_SMT_FORCE_DISABLED; | 
 | 	} else { | 
 | 		pr_info("SMT: disabled\n"); | 
 | 		cpu_smt_control = CPU_SMT_DISABLED; | 
 | 	} | 
 | 	cpu_smt_num_threads = 1; | 
 | } | 
 |  | 
 | /* | 
 |  * The decision whether SMT is supported can only be done after the full | 
 |  * CPU identification. Called from architecture code. | 
 |  */ | 
 | void __init cpu_smt_set_num_threads(unsigned int num_threads, | 
 | 				    unsigned int max_threads) | 
 | { | 
 | 	WARN_ON(!num_threads || (num_threads > max_threads)); | 
 |  | 
 | 	if (max_threads == 1) | 
 | 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED; | 
 |  | 
 | 	cpu_smt_max_threads = max_threads; | 
 |  | 
 | 	/* | 
 | 	 * If SMT has been disabled via the kernel command line or SMT is | 
 | 	 * not supported, set cpu_smt_num_threads to 1 for consistency. | 
 | 	 * If enabled, take the architecture requested number of threads | 
 | 	 * to bring up into account. | 
 | 	 */ | 
 | 	if (cpu_smt_control != CPU_SMT_ENABLED) | 
 | 		cpu_smt_num_threads = 1; | 
 | 	else if (num_threads < cpu_smt_num_threads) | 
 | 		cpu_smt_num_threads = num_threads; | 
 | } | 
 |  | 
 | static int __init smt_cmdline_disable(char *str) | 
 | { | 
 | 	cpu_smt_disable(str && !strcmp(str, "force")); | 
 | 	return 0; | 
 | } | 
 | early_param("nosmt", smt_cmdline_disable); | 
 |  | 
 | /* | 
 |  * For Archicture supporting partial SMT states check if the thread is allowed. | 
 |  * Otherwise this has already been checked through cpu_smt_max_threads when | 
 |  * setting the SMT level. | 
 |  */ | 
 | static inline bool cpu_smt_thread_allowed(unsigned int cpu) | 
 | { | 
 | #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC | 
 | 	return topology_smt_thread_allowed(cpu); | 
 | #else | 
 | 	return true; | 
 | #endif | 
 | } | 
 |  | 
 | static inline bool cpu_bootable(unsigned int cpu) | 
 | { | 
 | 	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) | 
 | 		return true; | 
 |  | 
 | 	/* All CPUs are bootable if controls are not configured */ | 
 | 	if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) | 
 | 		return true; | 
 |  | 
 | 	/* All CPUs are bootable if CPU is not SMT capable */ | 
 | 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) | 
 | 		return true; | 
 |  | 
 | 	if (topology_is_primary_thread(cpu)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * On x86 it's required to boot all logical CPUs at least once so | 
 | 	 * that the init code can get a chance to set CR4.MCE on each | 
 | 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any | 
 | 	 * core will shutdown the machine. | 
 | 	 */ | 
 | 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); | 
 | } | 
 |  | 
 | /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ | 
 | bool cpu_smt_possible(void) | 
 | { | 
 | 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED && | 
 | 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED; | 
 | } | 
 | EXPORT_SYMBOL_GPL(cpu_smt_possible); | 
 |  | 
 | #else | 
 | static inline bool cpu_bootable(unsigned int cpu) { return true; } | 
 | #endif | 
 |  | 
 | static inline enum cpuhp_state | 
 | cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) | 
 | { | 
 | 	enum cpuhp_state prev_state = st->state; | 
 | 	bool bringup = st->state < target; | 
 |  | 
 | 	st->rollback = false; | 
 | 	st->last = NULL; | 
 |  | 
 | 	st->target = target; | 
 | 	st->single = false; | 
 | 	st->bringup = bringup; | 
 | 	if (cpu_dying(cpu) != !bringup) | 
 | 		set_cpu_dying(cpu, !bringup); | 
 |  | 
 | 	return prev_state; | 
 | } | 
 |  | 
 | static inline void | 
 | cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, | 
 | 		  enum cpuhp_state prev_state) | 
 | { | 
 | 	bool bringup = !st->bringup; | 
 |  | 
 | 	st->target = prev_state; | 
 |  | 
 | 	/* | 
 | 	 * Already rolling back. No need invert the bringup value or to change | 
 | 	 * the current state. | 
 | 	 */ | 
 | 	if (st->rollback) | 
 | 		return; | 
 |  | 
 | 	st->rollback = true; | 
 |  | 
 | 	/* | 
 | 	 * If we have st->last we need to undo partial multi_instance of this | 
 | 	 * state first. Otherwise start undo at the previous state. | 
 | 	 */ | 
 | 	if (!st->last) { | 
 | 		if (st->bringup) | 
 | 			st->state--; | 
 | 		else | 
 | 			st->state++; | 
 | 	} | 
 |  | 
 | 	st->bringup = bringup; | 
 | 	if (cpu_dying(cpu) != !bringup) | 
 | 		set_cpu_dying(cpu, !bringup); | 
 | } | 
 |  | 
 | /* Regular hotplug invocation of the AP hotplug thread */ | 
 | static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) | 
 | { | 
 | 	if (!st->single && st->state == st->target) | 
 | 		return; | 
 |  | 
 | 	st->result = 0; | 
 | 	/* | 
 | 	 * Make sure the above stores are visible before should_run becomes | 
 | 	 * true. Paired with the mb() above in cpuhp_thread_fun() | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	st->should_run = true; | 
 | 	wake_up_process(st->thread); | 
 | 	wait_for_ap_thread(st, st->bringup); | 
 | } | 
 |  | 
 | static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, | 
 | 			 enum cpuhp_state target) | 
 | { | 
 | 	enum cpuhp_state prev_state; | 
 | 	int ret; | 
 |  | 
 | 	prev_state = cpuhp_set_state(cpu, st, target); | 
 | 	__cpuhp_kick_ap(st); | 
 | 	if ((ret = st->result)) { | 
 | 		cpuhp_reset_state(cpu, st, prev_state); | 
 | 		__cpuhp_kick_ap(st); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int bringup_wait_for_ap_online(unsigned int cpu) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 |  | 
 | 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ | 
 | 	wait_for_ap_thread(st, true); | 
 | 	if (WARN_ON_ONCE((!cpu_online(cpu)))) | 
 | 		return -ECANCELED; | 
 |  | 
 | 	/* Unpark the hotplug thread of the target cpu */ | 
 | 	kthread_unpark(st->thread); | 
 |  | 
 | 	/* | 
 | 	 * SMT soft disabling on X86 requires to bring the CPU out of the | 
 | 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The | 
 | 	 * CPU marked itself as booted_once in notify_cpu_starting() so the | 
 | 	 * cpu_bootable() check will now return false if this is not the | 
 | 	 * primary sibling. | 
 | 	 */ | 
 | 	if (!cpu_bootable(cpu)) | 
 | 		return -ECANCELED; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP | 
 | static int cpuhp_kick_ap_alive(unsigned int cpu) | 
 | { | 
 | 	if (!cpuhp_can_boot_ap(cpu)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); | 
 | } | 
 |  | 
 | static int cpuhp_bringup_ap(unsigned int cpu) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Some architectures have to walk the irq descriptors to | 
 | 	 * setup the vector space for the cpu which comes online. | 
 | 	 * Prevent irq alloc/free across the bringup. | 
 | 	 */ | 
 | 	irq_lock_sparse(); | 
 |  | 
 | 	ret = cpuhp_bp_sync_alive(cpu); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = bringup_wait_for_ap_online(cpu); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	irq_unlock_sparse(); | 
 |  | 
 | 	if (st->target <= CPUHP_AP_ONLINE_IDLE) | 
 | 		return 0; | 
 |  | 
 | 	return cpuhp_kick_ap(cpu, st, st->target); | 
 |  | 
 | out_unlock: | 
 | 	irq_unlock_sparse(); | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static int bringup_cpu(unsigned int cpu) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 	struct task_struct *idle = idle_thread_get(cpu); | 
 | 	int ret; | 
 |  | 
 | 	if (!cpuhp_can_boot_ap(cpu)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	/* | 
 | 	 * Some architectures have to walk the irq descriptors to | 
 | 	 * setup the vector space for the cpu which comes online. | 
 | 	 * | 
 | 	 * Prevent irq alloc/free across the bringup by acquiring the | 
 | 	 * sparse irq lock. Hold it until the upcoming CPU completes the | 
 | 	 * startup in cpuhp_online_idle() which allows to avoid | 
 | 	 * intermediate synchronization points in the architecture code. | 
 | 	 */ | 
 | 	irq_lock_sparse(); | 
 |  | 
 | 	ret = __cpu_up(cpu, idle); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = cpuhp_bp_sync_alive(cpu); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = bringup_wait_for_ap_online(cpu); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	irq_unlock_sparse(); | 
 |  | 
 | 	if (st->target <= CPUHP_AP_ONLINE_IDLE) | 
 | 		return 0; | 
 |  | 
 | 	return cpuhp_kick_ap(cpu, st, st->target); | 
 |  | 
 | out_unlock: | 
 | 	irq_unlock_sparse(); | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | static int finish_cpu(unsigned int cpu) | 
 | { | 
 | 	struct task_struct *idle = idle_thread_get(cpu); | 
 | 	struct mm_struct *mm = idle->active_mm; | 
 |  | 
 | 	/* | 
 | 	 * idle_task_exit() will have switched to &init_mm, now | 
 | 	 * clean up any remaining active_mm state. | 
 | 	 */ | 
 | 	if (mm != &init_mm) | 
 | 		idle->active_mm = &init_mm; | 
 | 	mmdrop_lazy_tlb(mm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Hotplug state machine related functions | 
 |  */ | 
 |  | 
 | /* | 
 |  * Get the next state to run. Empty ones will be skipped. Returns true if a | 
 |  * state must be run. | 
 |  * | 
 |  * st->state will be modified ahead of time, to match state_to_run, as if it | 
 |  * has already ran. | 
 |  */ | 
 | static bool cpuhp_next_state(bool bringup, | 
 | 			     enum cpuhp_state *state_to_run, | 
 | 			     struct cpuhp_cpu_state *st, | 
 | 			     enum cpuhp_state target) | 
 | { | 
 | 	do { | 
 | 		if (bringup) { | 
 | 			if (st->state >= target) | 
 | 				return false; | 
 |  | 
 | 			*state_to_run = ++st->state; | 
 | 		} else { | 
 | 			if (st->state <= target) | 
 | 				return false; | 
 |  | 
 | 			*state_to_run = st->state--; | 
 | 		} | 
 |  | 
 | 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) | 
 | 			break; | 
 | 	} while (true); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int __cpuhp_invoke_callback_range(bool bringup, | 
 | 					 unsigned int cpu, | 
 | 					 struct cpuhp_cpu_state *st, | 
 | 					 enum cpuhp_state target, | 
 | 					 bool nofail) | 
 | { | 
 | 	enum cpuhp_state state; | 
 | 	int ret = 0; | 
 |  | 
 | 	while (cpuhp_next_state(bringup, &state, st, target)) { | 
 | 		int err; | 
 |  | 
 | 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); | 
 | 		if (!err) | 
 | 			continue; | 
 |  | 
 | 		if (nofail) { | 
 | 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n", | 
 | 				cpu, bringup ? "UP" : "DOWN", | 
 | 				cpuhp_get_step(st->state)->name, | 
 | 				st->state, err); | 
 | 			ret = -1; | 
 | 		} else { | 
 | 			ret = err; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int cpuhp_invoke_callback_range(bool bringup, | 
 | 					      unsigned int cpu, | 
 | 					      struct cpuhp_cpu_state *st, | 
 | 					      enum cpuhp_state target) | 
 | { | 
 | 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); | 
 | } | 
 |  | 
 | static inline void cpuhp_invoke_callback_range_nofail(bool bringup, | 
 | 						      unsigned int cpu, | 
 | 						      struct cpuhp_cpu_state *st, | 
 | 						      enum cpuhp_state target) | 
 | { | 
 | 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true); | 
 | } | 
 |  | 
 | static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) | 
 | 		return true; | 
 | 	/* | 
 | 	 * When CPU hotplug is disabled, then taking the CPU down is not | 
 | 	 * possible because takedown_cpu() and the architecture and | 
 | 	 * subsystem specific mechanisms are not available. So the CPU | 
 | 	 * which would be completely unplugged again needs to stay around | 
 | 	 * in the current state. | 
 | 	 */ | 
 | 	return st->state <= CPUHP_BRINGUP_CPU; | 
 | } | 
 |  | 
 | static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, | 
 | 			      enum cpuhp_state target) | 
 | { | 
 | 	enum cpuhp_state prev_state = st->state; | 
 | 	int ret = 0; | 
 |  | 
 | 	ret = cpuhp_invoke_callback_range(true, cpu, st, target); | 
 | 	if (ret) { | 
 | 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", | 
 | 			 ret, cpu, cpuhp_get_step(st->state)->name, | 
 | 			 st->state); | 
 |  | 
 | 		cpuhp_reset_state(cpu, st, prev_state); | 
 | 		if (can_rollback_cpu(st)) | 
 | 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, | 
 | 							    prev_state)); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * The cpu hotplug threads manage the bringup and teardown of the cpus | 
 |  */ | 
 | static int cpuhp_should_run(unsigned int cpu) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | 
 |  | 
 | 	return st->should_run; | 
 | } | 
 |  | 
 | /* | 
 |  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke | 
 |  * callbacks when a state gets [un]installed at runtime. | 
 |  * | 
 |  * Each invocation of this function by the smpboot thread does a single AP | 
 |  * state callback. | 
 |  * | 
 |  * It has 3 modes of operation: | 
 |  *  - single: runs st->cb_state | 
 |  *  - up:     runs ++st->state, while st->state < st->target | 
 |  *  - down:   runs st->state--, while st->state > st->target | 
 |  * | 
 |  * When complete or on error, should_run is cleared and the completion is fired. | 
 |  */ | 
 | static void cpuhp_thread_fun(unsigned int cpu) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | 
 | 	bool bringup = st->bringup; | 
 | 	enum cpuhp_state state; | 
 |  | 
 | 	if (WARN_ON_ONCE(!st->should_run)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures | 
 | 	 * that if we see ->should_run we also see the rest of the state. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* | 
 | 	 * The BP holds the hotplug lock, but we're now running on the AP, | 
 | 	 * ensure that anybody asserting the lock is held, will actually find | 
 | 	 * it so. | 
 | 	 */ | 
 | 	lockdep_acquire_cpus_lock(); | 
 | 	cpuhp_lock_acquire(bringup); | 
 |  | 
 | 	if (st->single) { | 
 | 		state = st->cb_state; | 
 | 		st->should_run = false; | 
 | 	} else { | 
 | 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target); | 
 | 		if (!st->should_run) | 
 | 			goto end; | 
 | 	} | 
 |  | 
 | 	WARN_ON_ONCE(!cpuhp_is_ap_state(state)); | 
 |  | 
 | 	if (cpuhp_is_atomic_state(state)) { | 
 | 		local_irq_disable(); | 
 | 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); | 
 | 		local_irq_enable(); | 
 |  | 
 | 		/* | 
 | 		 * STARTING/DYING must not fail! | 
 | 		 */ | 
 | 		WARN_ON_ONCE(st->result); | 
 | 	} else { | 
 | 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); | 
 | 	} | 
 |  | 
 | 	if (st->result) { | 
 | 		/* | 
 | 		 * If we fail on a rollback, we're up a creek without no | 
 | 		 * paddle, no way forward, no way back. We loose, thanks for | 
 | 		 * playing. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(st->rollback); | 
 | 		st->should_run = false; | 
 | 	} | 
 |  | 
 | end: | 
 | 	cpuhp_lock_release(bringup); | 
 | 	lockdep_release_cpus_lock(); | 
 |  | 
 | 	if (!st->should_run) | 
 | 		complete_ap_thread(st, bringup); | 
 | } | 
 |  | 
 | /* Invoke a single callback on a remote cpu */ | 
 | static int | 
 | cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, | 
 | 			 struct hlist_node *node) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 	int ret; | 
 |  | 
 | 	if (!cpu_online(cpu)) | 
 | 		return 0; | 
 |  | 
 | 	cpuhp_lock_acquire(false); | 
 | 	cpuhp_lock_release(false); | 
 |  | 
 | 	cpuhp_lock_acquire(true); | 
 | 	cpuhp_lock_release(true); | 
 |  | 
 | 	/* | 
 | 	 * If we are up and running, use the hotplug thread. For early calls | 
 | 	 * we invoke the thread function directly. | 
 | 	 */ | 
 | 	if (!st->thread) | 
 | 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); | 
 |  | 
 | 	st->rollback = false; | 
 | 	st->last = NULL; | 
 |  | 
 | 	st->node = node; | 
 | 	st->bringup = bringup; | 
 | 	st->cb_state = state; | 
 | 	st->single = true; | 
 |  | 
 | 	__cpuhp_kick_ap(st); | 
 |  | 
 | 	/* | 
 | 	 * If we failed and did a partial, do a rollback. | 
 | 	 */ | 
 | 	if ((ret = st->result) && st->last) { | 
 | 		st->rollback = true; | 
 | 		st->bringup = !bringup; | 
 |  | 
 | 		__cpuhp_kick_ap(st); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Clean up the leftovers so the next hotplug operation wont use stale | 
 | 	 * data. | 
 | 	 */ | 
 | 	st->node = st->last = NULL; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int cpuhp_kick_ap_work(unsigned int cpu) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 	enum cpuhp_state prev_state = st->state; | 
 | 	int ret; | 
 |  | 
 | 	cpuhp_lock_acquire(false); | 
 | 	cpuhp_lock_release(false); | 
 |  | 
 | 	cpuhp_lock_acquire(true); | 
 | 	cpuhp_lock_release(true); | 
 |  | 
 | 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); | 
 | 	ret = cpuhp_kick_ap(cpu, st, st->target); | 
 | 	trace_cpuhp_exit(cpu, st->state, prev_state, ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct smp_hotplug_thread cpuhp_threads = { | 
 | 	.store			= &cpuhp_state.thread, | 
 | 	.thread_should_run	= cpuhp_should_run, | 
 | 	.thread_fn		= cpuhp_thread_fun, | 
 | 	.thread_comm		= "cpuhp/%u", | 
 | 	.selfparking		= true, | 
 | }; | 
 |  | 
 | static __init void cpuhp_init_state(void) | 
 | { | 
 | 	struct cpuhp_cpu_state *st; | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 		init_completion(&st->done_up); | 
 | 		init_completion(&st->done_down); | 
 | 	} | 
 | } | 
 |  | 
 | void __init cpuhp_threads_init(void) | 
 | { | 
 | 	cpuhp_init_state(); | 
 | 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); | 
 | 	kthread_unpark(this_cpu_read(cpuhp_state.thread)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | #ifndef arch_clear_mm_cpumask_cpu | 
 | #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) | 
 | #endif | 
 |  | 
 | /** | 
 |  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU | 
 |  * @cpu: a CPU id | 
 |  * | 
 |  * This function walks all processes, finds a valid mm struct for each one and | 
 |  * then clears a corresponding bit in mm's cpumask.  While this all sounds | 
 |  * trivial, there are various non-obvious corner cases, which this function | 
 |  * tries to solve in a safe manner. | 
 |  * | 
 |  * Also note that the function uses a somewhat relaxed locking scheme, so it may | 
 |  * be called only for an already offlined CPU. | 
 |  */ | 
 | void clear_tasks_mm_cpumask(int cpu) | 
 | { | 
 | 	struct task_struct *p; | 
 |  | 
 | 	/* | 
 | 	 * This function is called after the cpu is taken down and marked | 
 | 	 * offline, so its not like new tasks will ever get this cpu set in | 
 | 	 * their mm mask. -- Peter Zijlstra | 
 | 	 * Thus, we may use rcu_read_lock() here, instead of grabbing | 
 | 	 * full-fledged tasklist_lock. | 
 | 	 */ | 
 | 	WARN_ON(cpu_online(cpu)); | 
 | 	rcu_read_lock(); | 
 | 	for_each_process(p) { | 
 | 		struct task_struct *t; | 
 |  | 
 | 		/* | 
 | 		 * Main thread might exit, but other threads may still have | 
 | 		 * a valid mm. Find one. | 
 | 		 */ | 
 | 		t = find_lock_task_mm(p); | 
 | 		if (!t) | 
 | 			continue; | 
 | 		arch_clear_mm_cpumask_cpu(cpu, t->mm); | 
 | 		task_unlock(t); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* Take this CPU down. */ | 
 | static int take_cpu_down(void *_param) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | 
 | 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); | 
 | 	int err, cpu = smp_processor_id(); | 
 |  | 
 | 	/* Ensure this CPU doesn't handle any more interrupts. */ | 
 | 	err = __cpu_disable(); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	/* | 
 | 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going | 
 | 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. | 
 | 	 */ | 
 | 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); | 
 |  | 
 | 	/* | 
 | 	 * Invoke the former CPU_DYING callbacks. DYING must not fail! | 
 | 	 */ | 
 | 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target); | 
 |  | 
 | 	/* Park the stopper thread */ | 
 | 	stop_machine_park(cpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int takedown_cpu(unsigned int cpu) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 	int err; | 
 |  | 
 | 	/* Park the smpboot threads */ | 
 | 	kthread_park(st->thread); | 
 |  | 
 | 	/* | 
 | 	 * Prevent irq alloc/free while the dying cpu reorganizes the | 
 | 	 * interrupt affinities. | 
 | 	 */ | 
 | 	irq_lock_sparse(); | 
 |  | 
 | 	/* | 
 | 	 * So now all preempt/rcu users must observe !cpu_active(). | 
 | 	 */ | 
 | 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); | 
 | 	if (err) { | 
 | 		/* CPU refused to die */ | 
 | 		irq_unlock_sparse(); | 
 | 		/* Unpark the hotplug thread so we can rollback there */ | 
 | 		kthread_unpark(st->thread); | 
 | 		return err; | 
 | 	} | 
 | 	BUG_ON(cpu_online(cpu)); | 
 |  | 
 | 	/* | 
 | 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed | 
 | 	 * all runnable tasks from the CPU, there's only the idle task left now | 
 | 	 * that the migration thread is done doing the stop_machine thing. | 
 | 	 * | 
 | 	 * Wait for the stop thread to go away. | 
 | 	 */ | 
 | 	wait_for_ap_thread(st, false); | 
 | 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); | 
 |  | 
 | 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */ | 
 | 	irq_unlock_sparse(); | 
 |  | 
 | 	hotplug_cpu__broadcast_tick_pull(cpu); | 
 | 	/* This actually kills the CPU. */ | 
 | 	__cpu_die(cpu); | 
 |  | 
 | 	cpuhp_bp_sync_dead(cpu); | 
 |  | 
 | 	tick_cleanup_dead_cpu(cpu); | 
 |  | 
 | 	/* | 
 | 	 * Callbacks must be re-integrated right away to the RCU state machine. | 
 | 	 * Otherwise an RCU callback could block a further teardown function | 
 | 	 * waiting for its completion. | 
 | 	 */ | 
 | 	rcutree_migrate_callbacks(cpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cpuhp_complete_idle_dead(void *arg) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = arg; | 
 |  | 
 | 	complete_ap_thread(st, false); | 
 | } | 
 |  | 
 | void cpuhp_report_idle_dead(void) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | 
 |  | 
 | 	BUG_ON(st->state != CPUHP_AP_OFFLINE); | 
 | 	tick_assert_timekeeping_handover(); | 
 | 	rcutree_report_cpu_dead(); | 
 | 	st->state = CPUHP_AP_IDLE_DEAD; | 
 | 	/* | 
 | 	 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it | 
 | 	 * to an online cpu. | 
 | 	 */ | 
 | 	smp_call_function_single(cpumask_first(cpu_online_mask), | 
 | 				 cpuhp_complete_idle_dead, st, 0); | 
 | } | 
 |  | 
 | static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, | 
 | 				enum cpuhp_state target) | 
 | { | 
 | 	enum cpuhp_state prev_state = st->state; | 
 | 	int ret = 0; | 
 |  | 
 | 	ret = cpuhp_invoke_callback_range(false, cpu, st, target); | 
 | 	if (ret) { | 
 | 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", | 
 | 			 ret, cpu, cpuhp_get_step(st->state)->name, | 
 | 			 st->state); | 
 |  | 
 | 		cpuhp_reset_state(cpu, st, prev_state); | 
 |  | 
 | 		if (st->state < prev_state) | 
 | 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, | 
 | 							    prev_state)); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Requires cpu_add_remove_lock to be held */ | 
 | static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, | 
 | 			   enum cpuhp_state target) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 	int prev_state, ret = 0; | 
 |  | 
 | 	if (num_online_cpus() == 1) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!cpu_present(cpu)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	cpus_write_lock(); | 
 |  | 
 | 	cpuhp_tasks_frozen = tasks_frozen; | 
 |  | 
 | 	prev_state = cpuhp_set_state(cpu, st, target); | 
 | 	/* | 
 | 	 * If the current CPU state is in the range of the AP hotplug thread, | 
 | 	 * then we need to kick the thread. | 
 | 	 */ | 
 | 	if (st->state > CPUHP_TEARDOWN_CPU) { | 
 | 		st->target = max((int)target, CPUHP_TEARDOWN_CPU); | 
 | 		ret = cpuhp_kick_ap_work(cpu); | 
 | 		/* | 
 | 		 * The AP side has done the error rollback already. Just | 
 | 		 * return the error code.. | 
 | 		 */ | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * We might have stopped still in the range of the AP hotplug | 
 | 		 * thread. Nothing to do anymore. | 
 | 		 */ | 
 | 		if (st->state > CPUHP_TEARDOWN_CPU) | 
 | 			goto out; | 
 |  | 
 | 		st->target = target; | 
 | 	} | 
 | 	/* | 
 | 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need | 
 | 	 * to do the further cleanups. | 
 | 	 */ | 
 | 	ret = cpuhp_down_callbacks(cpu, st, target); | 
 | 	if (ret && st->state < prev_state) { | 
 | 		if (st->state == CPUHP_TEARDOWN_CPU) { | 
 | 			cpuhp_reset_state(cpu, st, prev_state); | 
 | 			__cpuhp_kick_ap(st); | 
 | 		} else { | 
 | 			WARN(1, "DEAD callback error for CPU%d", cpu); | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	cpus_write_unlock(); | 
 | 	/* | 
 | 	 * Do post unplug cleanup. This is still protected against | 
 | 	 * concurrent CPU hotplug via cpu_add_remove_lock. | 
 | 	 */ | 
 | 	lockup_detector_cleanup(); | 
 | 	arch_smt_update(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct cpu_down_work { | 
 | 	unsigned int		cpu; | 
 | 	enum cpuhp_state	target; | 
 | }; | 
 |  | 
 | static long __cpu_down_maps_locked(void *arg) | 
 | { | 
 | 	struct cpu_down_work *work = arg; | 
 |  | 
 | 	return _cpu_down(work->cpu, 0, work->target); | 
 | } | 
 |  | 
 | static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) | 
 | { | 
 | 	struct cpu_down_work work = { .cpu = cpu, .target = target, }; | 
 |  | 
 | 	/* | 
 | 	 * If the platform does not support hotplug, report it explicitly to | 
 | 	 * differentiate it from a transient offlining failure. | 
 | 	 */ | 
 | 	if (cpu_hotplug_offline_disabled) | 
 | 		return -EOPNOTSUPP; | 
 | 	if (cpu_hotplug_disabled) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* | 
 | 	 * Ensure that the control task does not run on the to be offlined | 
 | 	 * CPU to prevent a deadlock against cfs_b->period_timer. | 
 | 	 * Also keep at least one housekeeping cpu onlined to avoid generating | 
 | 	 * an empty sched_domain span. | 
 | 	 */ | 
 | 	for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { | 
 | 		if (cpu != work.cpu) | 
 | 			return work_on_cpu(cpu, __cpu_down_maps_locked, &work); | 
 | 	} | 
 | 	return -EBUSY; | 
 | } | 
 |  | 
 | static int cpu_down(unsigned int cpu, enum cpuhp_state target) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	cpu_maps_update_begin(); | 
 | 	err = cpu_down_maps_locked(cpu, target); | 
 | 	cpu_maps_update_done(); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * cpu_device_down - Bring down a cpu device | 
 |  * @dev: Pointer to the cpu device to offline | 
 |  * | 
 |  * This function is meant to be used by device core cpu subsystem only. | 
 |  * | 
 |  * Other subsystems should use remove_cpu() instead. | 
 |  * | 
 |  * Return: %0 on success or a negative errno code | 
 |  */ | 
 | int cpu_device_down(struct device *dev) | 
 | { | 
 | 	return cpu_down(dev->id, CPUHP_OFFLINE); | 
 | } | 
 |  | 
 | int remove_cpu(unsigned int cpu) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	lock_device_hotplug(); | 
 | 	ret = device_offline(get_cpu_device(cpu)); | 
 | 	unlock_device_hotplug(); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(remove_cpu); | 
 |  | 
 | void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) | 
 | { | 
 | 	unsigned int cpu; | 
 | 	int error; | 
 |  | 
 | 	cpu_maps_update_begin(); | 
 |  | 
 | 	/* | 
 | 	 * Make certain the cpu I'm about to reboot on is online. | 
 | 	 * | 
 | 	 * This is inline to what migrate_to_reboot_cpu() already do. | 
 | 	 */ | 
 | 	if (!cpu_online(primary_cpu)) | 
 | 		primary_cpu = cpumask_first(cpu_online_mask); | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		if (cpu == primary_cpu) | 
 | 			continue; | 
 |  | 
 | 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); | 
 | 		if (error) { | 
 | 			pr_err("Failed to offline CPU%d - error=%d", | 
 | 				cpu, error); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ensure all but the reboot CPU are offline. | 
 | 	 */ | 
 | 	BUG_ON(num_online_cpus() > 1); | 
 |  | 
 | 	/* | 
 | 	 * Make sure the CPUs won't be enabled by someone else after this | 
 | 	 * point. Kexec will reboot to a new kernel shortly resetting | 
 | 	 * everything along the way. | 
 | 	 */ | 
 | 	cpu_hotplug_disabled++; | 
 |  | 
 | 	cpu_maps_update_done(); | 
 | } | 
 |  | 
 | #else | 
 | #define takedown_cpu		NULL | 
 | #endif /*CONFIG_HOTPLUG_CPU*/ | 
 |  | 
 | /** | 
 |  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU | 
 |  * @cpu: cpu that just started | 
 |  * | 
 |  * It must be called by the arch code on the new cpu, before the new cpu | 
 |  * enables interrupts and before the "boot" cpu returns from __cpu_up(). | 
 |  */ | 
 | void notify_cpu_starting(unsigned int cpu) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); | 
 |  | 
 | 	rcutree_report_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */ | 
 | 	cpumask_set_cpu(cpu, &cpus_booted_once_mask); | 
 |  | 
 | 	/* | 
 | 	 * STARTING must not fail! | 
 | 	 */ | 
 | 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target); | 
 | } | 
 |  | 
 | /* | 
 |  * Called from the idle task. Wake up the controlling task which brings the | 
 |  * hotplug thread of the upcoming CPU up and then delegates the rest of the | 
 |  * online bringup to the hotplug thread. | 
 |  */ | 
 | void cpuhp_online_idle(enum cpuhp_state state) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | 
 |  | 
 | 	/* Happens for the boot cpu */ | 
 | 	if (state != CPUHP_AP_ONLINE_IDLE) | 
 | 		return; | 
 |  | 
 | 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); | 
 |  | 
 | 	/* | 
 | 	 * Unpark the stopper thread before we start the idle loop (and start | 
 | 	 * scheduling); this ensures the stopper task is always available. | 
 | 	 */ | 
 | 	stop_machine_unpark(smp_processor_id()); | 
 |  | 
 | 	st->state = CPUHP_AP_ONLINE_IDLE; | 
 | 	complete_ap_thread(st, true); | 
 | } | 
 |  | 
 | /* Requires cpu_add_remove_lock to be held */ | 
 | static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 	struct task_struct *idle; | 
 | 	int ret = 0; | 
 |  | 
 | 	cpus_write_lock(); | 
 |  | 
 | 	if (!cpu_present(cpu)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The caller of cpu_up() might have raced with another | 
 | 	 * caller. Nothing to do. | 
 | 	 */ | 
 | 	if (st->state >= target) | 
 | 		goto out; | 
 |  | 
 | 	if (st->state == CPUHP_OFFLINE) { | 
 | 		/* Let it fail before we try to bring the cpu up */ | 
 | 		idle = idle_thread_get(cpu); | 
 | 		if (IS_ERR(idle)) { | 
 | 			ret = PTR_ERR(idle); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Reset stale stack state from the last time this CPU was online. | 
 | 		 */ | 
 | 		scs_task_reset(idle); | 
 | 		kasan_unpoison_task_stack(idle); | 
 | 	} | 
 |  | 
 | 	cpuhp_tasks_frozen = tasks_frozen; | 
 |  | 
 | 	cpuhp_set_state(cpu, st, target); | 
 | 	/* | 
 | 	 * If the current CPU state is in the range of the AP hotplug thread, | 
 | 	 * then we need to kick the thread once more. | 
 | 	 */ | 
 | 	if (st->state > CPUHP_BRINGUP_CPU) { | 
 | 		ret = cpuhp_kick_ap_work(cpu); | 
 | 		/* | 
 | 		 * The AP side has done the error rollback already. Just | 
 | 		 * return the error code.. | 
 | 		 */ | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Try to reach the target state. We max out on the BP at | 
 | 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is | 
 | 	 * responsible for bringing it up to the target state. | 
 | 	 */ | 
 | 	target = min((int)target, CPUHP_BRINGUP_CPU); | 
 | 	ret = cpuhp_up_callbacks(cpu, st, target); | 
 | out: | 
 | 	cpus_write_unlock(); | 
 | 	arch_smt_update(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int cpu_up(unsigned int cpu, enum cpuhp_state target) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	if (!cpu_possible(cpu)) { | 
 | 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", | 
 | 		       cpu); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	err = try_online_node(cpu_to_node(cpu)); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	cpu_maps_update_begin(); | 
 |  | 
 | 	if (cpu_hotplug_disabled) { | 
 | 		err = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 | 	if (!cpu_bootable(cpu)) { | 
 | 		err = -EPERM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = _cpu_up(cpu, 0, target); | 
 | out: | 
 | 	cpu_maps_update_done(); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * cpu_device_up - Bring up a cpu device | 
 |  * @dev: Pointer to the cpu device to online | 
 |  * | 
 |  * This function is meant to be used by device core cpu subsystem only. | 
 |  * | 
 |  * Other subsystems should use add_cpu() instead. | 
 |  * | 
 |  * Return: %0 on success or a negative errno code | 
 |  */ | 
 | int cpu_device_up(struct device *dev) | 
 | { | 
 | 	return cpu_up(dev->id, CPUHP_ONLINE); | 
 | } | 
 |  | 
 | int add_cpu(unsigned int cpu) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	lock_device_hotplug(); | 
 | 	ret = device_online(get_cpu_device(cpu)); | 
 | 	unlock_device_hotplug(); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(add_cpu); | 
 |  | 
 | /** | 
 |  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on | 
 |  * @sleep_cpu: The cpu we hibernated on and should be brought up. | 
 |  * | 
 |  * On some architectures like arm64, we can hibernate on any CPU, but on | 
 |  * wake up the CPU we hibernated on might be offline as a side effect of | 
 |  * using maxcpus= for example. | 
 |  * | 
 |  * Return: %0 on success or a negative errno code | 
 |  */ | 
 | int bringup_hibernate_cpu(unsigned int sleep_cpu) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!cpu_online(sleep_cpu)) { | 
 | 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); | 
 | 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE); | 
 | 		if (ret) { | 
 | 			pr_err("Failed to bring hibernate-CPU up!\n"); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, | 
 | 				      enum cpuhp_state target) | 
 | { | 
 | 	unsigned int cpu; | 
 |  | 
 | 	for_each_cpu(cpu, mask) { | 
 | 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 |  | 
 | 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) { | 
 | 			/* | 
 | 			 * If this failed then cpu_up() might have only | 
 | 			 * rolled back to CPUHP_BP_KICK_AP for the final | 
 | 			 * online. Clean it up. NOOP if already rolled back. | 
 | 			 */ | 
 | 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); | 
 | 		} | 
 |  | 
 | 		if (!--ncpus) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_PARALLEL | 
 | static bool __cpuhp_parallel_bringup __ro_after_init = true; | 
 |  | 
 | static int __init parallel_bringup_parse_param(char *arg) | 
 | { | 
 | 	return kstrtobool(arg, &__cpuhp_parallel_bringup); | 
 | } | 
 | early_param("cpuhp.parallel", parallel_bringup_parse_param); | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_SMT | 
 | static inline bool cpuhp_smt_aware(void) | 
 | { | 
 | 	return cpu_smt_max_threads > 1; | 
 | } | 
 |  | 
 | static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) | 
 | { | 
 | 	return cpu_primary_thread_mask; | 
 | } | 
 | #else | 
 | static inline bool cpuhp_smt_aware(void) | 
 | { | 
 | 	return false; | 
 | } | 
 | static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) | 
 | { | 
 | 	return cpu_none_mask; | 
 | } | 
 | #endif | 
 |  | 
 | bool __weak arch_cpuhp_init_parallel_bringup(void) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * On architectures which have enabled parallel bringup this invokes all BP | 
 |  * prepare states for each of the to be onlined APs first. The last state | 
 |  * sends the startup IPI to the APs. The APs proceed through the low level | 
 |  * bringup code in parallel and then wait for the control CPU to release | 
 |  * them one by one for the final onlining procedure. | 
 |  * | 
 |  * This avoids waiting for each AP to respond to the startup IPI in | 
 |  * CPUHP_BRINGUP_CPU. | 
 |  */ | 
 | static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) | 
 | { | 
 | 	const struct cpumask *mask = cpu_present_mask; | 
 |  | 
 | 	if (__cpuhp_parallel_bringup) | 
 | 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); | 
 | 	if (!__cpuhp_parallel_bringup) | 
 | 		return false; | 
 |  | 
 | 	if (cpuhp_smt_aware()) { | 
 | 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); | 
 | 		static struct cpumask tmp_mask __initdata; | 
 |  | 
 | 		/* | 
 | 		 * X86 requires to prevent that SMT siblings stopped while | 
 | 		 * the primary thread does a microcode update for various | 
 | 		 * reasons. Bring the primary threads up first. | 
 | 		 */ | 
 | 		cpumask_and(&tmp_mask, mask, pmask); | 
 | 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); | 
 | 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); | 
 | 		/* Account for the online CPUs */ | 
 | 		ncpus -= num_online_cpus(); | 
 | 		if (!ncpus) | 
 | 			return true; | 
 | 		/* Create the mask for secondary CPUs */ | 
 | 		cpumask_andnot(&tmp_mask, mask, pmask); | 
 | 		mask = &tmp_mask; | 
 | 	} | 
 |  | 
 | 	/* Bring the not-yet started CPUs up */ | 
 | 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); | 
 | 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); | 
 | 	return true; | 
 | } | 
 | #else | 
 | static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } | 
 | #endif /* CONFIG_HOTPLUG_PARALLEL */ | 
 |  | 
 | void __init bringup_nonboot_cpus(unsigned int max_cpus) | 
 | { | 
 | 	if (!max_cpus) | 
 | 		return; | 
 |  | 
 | 	/* Try parallel bringup optimization if enabled */ | 
 | 	if (cpuhp_bringup_cpus_parallel(max_cpus)) | 
 | 		return; | 
 |  | 
 | 	/* Full per CPU serialized bringup */ | 
 | 	cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP_SMP | 
 | static cpumask_var_t frozen_cpus; | 
 |  | 
 | int freeze_secondary_cpus(int primary) | 
 | { | 
 | 	int cpu, error = 0; | 
 |  | 
 | 	cpu_maps_update_begin(); | 
 | 	if (primary == -1) { | 
 | 		primary = cpumask_first(cpu_online_mask); | 
 | 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) | 
 | 			primary = housekeeping_any_cpu(HK_TYPE_TIMER); | 
 | 	} else { | 
 | 		if (!cpu_online(primary)) | 
 | 			primary = cpumask_first(cpu_online_mask); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We take down all of the non-boot CPUs in one shot to avoid races | 
 | 	 * with the userspace trying to use the CPU hotplug at the same time | 
 | 	 */ | 
 | 	cpumask_clear(frozen_cpus); | 
 |  | 
 | 	pr_info("Disabling non-boot CPUs ...\n"); | 
 | 	for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { | 
 | 		if (!cpu_online(cpu) || cpu == primary) | 
 | 			continue; | 
 |  | 
 | 		if (pm_wakeup_pending()) { | 
 | 			pr_info("Wakeup pending. Abort CPU freeze\n"); | 
 | 			error = -EBUSY; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true); | 
 | 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE); | 
 | 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false); | 
 | 		if (!error) | 
 | 			cpumask_set_cpu(cpu, frozen_cpus); | 
 | 		else { | 
 | 			pr_err("Error taking CPU%d down: %d\n", cpu, error); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!error) | 
 | 		BUG_ON(num_online_cpus() > 1); | 
 | 	else | 
 | 		pr_err("Non-boot CPUs are not disabled\n"); | 
 |  | 
 | 	/* | 
 | 	 * Make sure the CPUs won't be enabled by someone else. We need to do | 
 | 	 * this even in case of failure as all freeze_secondary_cpus() users are | 
 | 	 * supposed to do thaw_secondary_cpus() on the failure path. | 
 | 	 */ | 
 | 	cpu_hotplug_disabled++; | 
 |  | 
 | 	cpu_maps_update_done(); | 
 | 	return error; | 
 | } | 
 |  | 
 | void __weak arch_thaw_secondary_cpus_begin(void) | 
 | { | 
 | } | 
 |  | 
 | void __weak arch_thaw_secondary_cpus_end(void) | 
 | { | 
 | } | 
 |  | 
 | void thaw_secondary_cpus(void) | 
 | { | 
 | 	int cpu, error; | 
 |  | 
 | 	/* Allow everyone to use the CPU hotplug again */ | 
 | 	cpu_maps_update_begin(); | 
 | 	__cpu_hotplug_enable(); | 
 | 	if (cpumask_empty(frozen_cpus)) | 
 | 		goto out; | 
 |  | 
 | 	pr_info("Enabling non-boot CPUs ...\n"); | 
 |  | 
 | 	arch_thaw_secondary_cpus_begin(); | 
 |  | 
 | 	for_each_cpu(cpu, frozen_cpus) { | 
 | 		trace_suspend_resume(TPS("CPU_ON"), cpu, true); | 
 | 		error = _cpu_up(cpu, 1, CPUHP_ONLINE); | 
 | 		trace_suspend_resume(TPS("CPU_ON"), cpu, false); | 
 | 		if (!error) { | 
 | 			pr_info("CPU%d is up\n", cpu); | 
 | 			continue; | 
 | 		} | 
 | 		pr_warn("Error taking CPU%d up: %d\n", cpu, error); | 
 | 	} | 
 |  | 
 | 	arch_thaw_secondary_cpus_end(); | 
 |  | 
 | 	cpumask_clear(frozen_cpus); | 
 | out: | 
 | 	cpu_maps_update_done(); | 
 | } | 
 |  | 
 | static int __init alloc_frozen_cpus(void) | 
 | { | 
 | 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 | core_initcall(alloc_frozen_cpus); | 
 |  | 
 | /* | 
 |  * When callbacks for CPU hotplug notifications are being executed, we must | 
 |  * ensure that the state of the system with respect to the tasks being frozen | 
 |  * or not, as reported by the notification, remains unchanged *throughout the | 
 |  * duration* of the execution of the callbacks. | 
 |  * Hence we need to prevent the freezer from racing with regular CPU hotplug. | 
 |  * | 
 |  * This synchronization is implemented by mutually excluding regular CPU | 
 |  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ | 
 |  * Hibernate notifications. | 
 |  */ | 
 | static int | 
 | cpu_hotplug_pm_callback(struct notifier_block *nb, | 
 | 			unsigned long action, void *ptr) | 
 | { | 
 | 	switch (action) { | 
 |  | 
 | 	case PM_SUSPEND_PREPARE: | 
 | 	case PM_HIBERNATION_PREPARE: | 
 | 		cpu_hotplug_disable(); | 
 | 		break; | 
 |  | 
 | 	case PM_POST_SUSPEND: | 
 | 	case PM_POST_HIBERNATION: | 
 | 		cpu_hotplug_enable(); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 |  | 
 | static int __init cpu_hotplug_pm_sync_init(void) | 
 | { | 
 | 	/* | 
 | 	 * cpu_hotplug_pm_callback has higher priority than x86 | 
 | 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback | 
 | 	 * to disable cpu hotplug to avoid cpu hotplug race. | 
 | 	 */ | 
 | 	pm_notifier(cpu_hotplug_pm_callback, 0); | 
 | 	return 0; | 
 | } | 
 | core_initcall(cpu_hotplug_pm_sync_init); | 
 |  | 
 | #endif /* CONFIG_PM_SLEEP_SMP */ | 
 |  | 
 | int __boot_cpu_id; | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* Boot processor state steps */ | 
 | static struct cpuhp_step cpuhp_hp_states[] = { | 
 | 	[CPUHP_OFFLINE] = { | 
 | 		.name			= "offline", | 
 | 		.startup.single		= NULL, | 
 | 		.teardown.single	= NULL, | 
 | 	}, | 
 | #ifdef CONFIG_SMP | 
 | 	[CPUHP_CREATE_THREADS]= { | 
 | 		.name			= "threads:prepare", | 
 | 		.startup.single		= smpboot_create_threads, | 
 | 		.teardown.single	= NULL, | 
 | 		.cant_stop		= true, | 
 | 	}, | 
 | 	[CPUHP_PERF_PREPARE] = { | 
 | 		.name			= "perf:prepare", | 
 | 		.startup.single		= perf_event_init_cpu, | 
 | 		.teardown.single	= perf_event_exit_cpu, | 
 | 	}, | 
 | 	[CPUHP_RANDOM_PREPARE] = { | 
 | 		.name			= "random:prepare", | 
 | 		.startup.single		= random_prepare_cpu, | 
 | 		.teardown.single	= NULL, | 
 | 	}, | 
 | 	[CPUHP_WORKQUEUE_PREP] = { | 
 | 		.name			= "workqueue:prepare", | 
 | 		.startup.single		= workqueue_prepare_cpu, | 
 | 		.teardown.single	= NULL, | 
 | 	}, | 
 | 	[CPUHP_HRTIMERS_PREPARE] = { | 
 | 		.name			= "hrtimers:prepare", | 
 | 		.startup.single		= hrtimers_prepare_cpu, | 
 | 		.teardown.single	= NULL, | 
 | 	}, | 
 | 	[CPUHP_SMPCFD_PREPARE] = { | 
 | 		.name			= "smpcfd:prepare", | 
 | 		.startup.single		= smpcfd_prepare_cpu, | 
 | 		.teardown.single	= smpcfd_dead_cpu, | 
 | 	}, | 
 | 	[CPUHP_RELAY_PREPARE] = { | 
 | 		.name			= "relay:prepare", | 
 | 		.startup.single		= relay_prepare_cpu, | 
 | 		.teardown.single	= NULL, | 
 | 	}, | 
 | 	[CPUHP_RCUTREE_PREP] = { | 
 | 		.name			= "RCU/tree:prepare", | 
 | 		.startup.single		= rcutree_prepare_cpu, | 
 | 		.teardown.single	= rcutree_dead_cpu, | 
 | 	}, | 
 | 	/* | 
 | 	 * On the tear-down path, timers_dead_cpu() must be invoked | 
 | 	 * before blk_mq_queue_reinit_notify() from notify_dead(), | 
 | 	 * otherwise a RCU stall occurs. | 
 | 	 */ | 
 | 	[CPUHP_TIMERS_PREPARE] = { | 
 | 		.name			= "timers:prepare", | 
 | 		.startup.single		= timers_prepare_cpu, | 
 | 		.teardown.single	= timers_dead_cpu, | 
 | 	}, | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP | 
 | 	/* | 
 | 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until | 
 | 	 * the next step will release it. | 
 | 	 */ | 
 | 	[CPUHP_BP_KICK_AP] = { | 
 | 		.name			= "cpu:kick_ap", | 
 | 		.startup.single		= cpuhp_kick_ap_alive, | 
 | 	}, | 
 |  | 
 | 	/* | 
 | 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then | 
 | 	 * releases it for the complete bringup. | 
 | 	 */ | 
 | 	[CPUHP_BRINGUP_CPU] = { | 
 | 		.name			= "cpu:bringup", | 
 | 		.startup.single		= cpuhp_bringup_ap, | 
 | 		.teardown.single	= finish_cpu, | 
 | 		.cant_stop		= true, | 
 | 	}, | 
 | #else | 
 | 	/* | 
 | 	 * All-in-one CPU bringup state which includes the kick alive. | 
 | 	 */ | 
 | 	[CPUHP_BRINGUP_CPU] = { | 
 | 		.name			= "cpu:bringup", | 
 | 		.startup.single		= bringup_cpu, | 
 | 		.teardown.single	= finish_cpu, | 
 | 		.cant_stop		= true, | 
 | 	}, | 
 | #endif | 
 | 	/* Final state before CPU kills itself */ | 
 | 	[CPUHP_AP_IDLE_DEAD] = { | 
 | 		.name			= "idle:dead", | 
 | 	}, | 
 | 	/* | 
 | 	 * Last state before CPU enters the idle loop to die. Transient state | 
 | 	 * for synchronization. | 
 | 	 */ | 
 | 	[CPUHP_AP_OFFLINE] = { | 
 | 		.name			= "ap:offline", | 
 | 		.cant_stop		= true, | 
 | 	}, | 
 | 	/* First state is scheduler control. Interrupts are disabled */ | 
 | 	[CPUHP_AP_SCHED_STARTING] = { | 
 | 		.name			= "sched:starting", | 
 | 		.startup.single		= sched_cpu_starting, | 
 | 		.teardown.single	= sched_cpu_dying, | 
 | 	}, | 
 | 	[CPUHP_AP_RCUTREE_DYING] = { | 
 | 		.name			= "RCU/tree:dying", | 
 | 		.startup.single		= NULL, | 
 | 		.teardown.single	= rcutree_dying_cpu, | 
 | 	}, | 
 | 	[CPUHP_AP_SMPCFD_DYING] = { | 
 | 		.name			= "smpcfd:dying", | 
 | 		.startup.single		= NULL, | 
 | 		.teardown.single	= smpcfd_dying_cpu, | 
 | 	}, | 
 | 	[CPUHP_AP_HRTIMERS_DYING] = { | 
 | 		.name			= "hrtimers:dying", | 
 | 		.startup.single		= NULL, | 
 | 		.teardown.single	= hrtimers_cpu_dying, | 
 | 	}, | 
 | 	[CPUHP_AP_TICK_DYING] = { | 
 | 		.name			= "tick:dying", | 
 | 		.startup.single		= NULL, | 
 | 		.teardown.single	= tick_cpu_dying, | 
 | 	}, | 
 | 	/* Entry state on starting. Interrupts enabled from here on. Transient | 
 | 	 * state for synchronsization */ | 
 | 	[CPUHP_AP_ONLINE] = { | 
 | 		.name			= "ap:online", | 
 | 	}, | 
 | 	/* | 
 | 	 * Handled on control processor until the plugged processor manages | 
 | 	 * this itself. | 
 | 	 */ | 
 | 	[CPUHP_TEARDOWN_CPU] = { | 
 | 		.name			= "cpu:teardown", | 
 | 		.startup.single		= NULL, | 
 | 		.teardown.single	= takedown_cpu, | 
 | 		.cant_stop		= true, | 
 | 	}, | 
 |  | 
 | 	[CPUHP_AP_SCHED_WAIT_EMPTY] = { | 
 | 		.name			= "sched:waitempty", | 
 | 		.startup.single		= NULL, | 
 | 		.teardown.single	= sched_cpu_wait_empty, | 
 | 	}, | 
 |  | 
 | 	/* Handle smpboot threads park/unpark */ | 
 | 	[CPUHP_AP_SMPBOOT_THREADS] = { | 
 | 		.name			= "smpboot/threads:online", | 
 | 		.startup.single		= smpboot_unpark_threads, | 
 | 		.teardown.single	= smpboot_park_threads, | 
 | 	}, | 
 | 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = { | 
 | 		.name			= "irq/affinity:online", | 
 | 		.startup.single		= irq_affinity_online_cpu, | 
 | 		.teardown.single	= NULL, | 
 | 	}, | 
 | 	[CPUHP_AP_PERF_ONLINE] = { | 
 | 		.name			= "perf:online", | 
 | 		.startup.single		= perf_event_init_cpu, | 
 | 		.teardown.single	= perf_event_exit_cpu, | 
 | 	}, | 
 | 	[CPUHP_AP_WATCHDOG_ONLINE] = { | 
 | 		.name			= "lockup_detector:online", | 
 | 		.startup.single		= lockup_detector_online_cpu, | 
 | 		.teardown.single	= lockup_detector_offline_cpu, | 
 | 	}, | 
 | 	[CPUHP_AP_WORKQUEUE_ONLINE] = { | 
 | 		.name			= "workqueue:online", | 
 | 		.startup.single		= workqueue_online_cpu, | 
 | 		.teardown.single	= workqueue_offline_cpu, | 
 | 	}, | 
 | 	[CPUHP_AP_RANDOM_ONLINE] = { | 
 | 		.name			= "random:online", | 
 | 		.startup.single		= random_online_cpu, | 
 | 		.teardown.single	= NULL, | 
 | 	}, | 
 | 	[CPUHP_AP_RCUTREE_ONLINE] = { | 
 | 		.name			= "RCU/tree:online", | 
 | 		.startup.single		= rcutree_online_cpu, | 
 | 		.teardown.single	= rcutree_offline_cpu, | 
 | 	}, | 
 | #endif | 
 | 	/* | 
 | 	 * The dynamically registered state space is here | 
 | 	 */ | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* Last state is scheduler control setting the cpu active */ | 
 | 	[CPUHP_AP_ACTIVE] = { | 
 | 		.name			= "sched:active", | 
 | 		.startup.single		= sched_cpu_activate, | 
 | 		.teardown.single	= sched_cpu_deactivate, | 
 | 	}, | 
 | #endif | 
 |  | 
 | 	/* CPU is fully up and running. */ | 
 | 	[CPUHP_ONLINE] = { | 
 | 		.name			= "online", | 
 | 		.startup.single		= NULL, | 
 | 		.teardown.single	= NULL, | 
 | 	}, | 
 | }; | 
 |  | 
 | /* Sanity check for callbacks */ | 
 | static int cpuhp_cb_check(enum cpuhp_state state) | 
 | { | 
 | 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) | 
 | 		return -EINVAL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns a free for dynamic slot assignment of the Online state. The states | 
 |  * are protected by the cpuhp_slot_states mutex and an empty slot is identified | 
 |  * by having no name assigned. | 
 |  */ | 
 | static int cpuhp_reserve_state(enum cpuhp_state state) | 
 | { | 
 | 	enum cpuhp_state i, end; | 
 | 	struct cpuhp_step *step; | 
 |  | 
 | 	switch (state) { | 
 | 	case CPUHP_AP_ONLINE_DYN: | 
 | 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; | 
 | 		end = CPUHP_AP_ONLINE_DYN_END; | 
 | 		break; | 
 | 	case CPUHP_BP_PREPARE_DYN: | 
 | 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; | 
 | 		end = CPUHP_BP_PREPARE_DYN_END; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	for (i = state; i <= end; i++, step++) { | 
 | 		if (!step->name) | 
 | 			return i; | 
 | 	} | 
 | 	WARN(1, "No more dynamic states available for CPU hotplug\n"); | 
 | 	return -ENOSPC; | 
 | } | 
 |  | 
 | static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, | 
 | 				 int (*startup)(unsigned int cpu), | 
 | 				 int (*teardown)(unsigned int cpu), | 
 | 				 bool multi_instance) | 
 | { | 
 | 	/* (Un)Install the callbacks for further cpu hotplug operations */ | 
 | 	struct cpuhp_step *sp; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If name is NULL, then the state gets removed. | 
 | 	 * | 
 | 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on | 
 | 	 * the first allocation from these dynamic ranges, so the removal | 
 | 	 * would trigger a new allocation and clear the wrong (already | 
 | 	 * empty) state, leaving the callbacks of the to be cleared state | 
 | 	 * dangling, which causes wreckage on the next hotplug operation. | 
 | 	 */ | 
 | 	if (name && (state == CPUHP_AP_ONLINE_DYN || | 
 | 		     state == CPUHP_BP_PREPARE_DYN)) { | 
 | 		ret = cpuhp_reserve_state(state); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		state = ret; | 
 | 	} | 
 | 	sp = cpuhp_get_step(state); | 
 | 	if (name && sp->name) | 
 | 		return -EBUSY; | 
 |  | 
 | 	sp->startup.single = startup; | 
 | 	sp->teardown.single = teardown; | 
 | 	sp->name = name; | 
 | 	sp->multi_instance = multi_instance; | 
 | 	INIT_HLIST_HEAD(&sp->list); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void *cpuhp_get_teardown_cb(enum cpuhp_state state) | 
 | { | 
 | 	return cpuhp_get_step(state)->teardown.single; | 
 | } | 
 |  | 
 | /* | 
 |  * Call the startup/teardown function for a step either on the AP or | 
 |  * on the current CPU. | 
 |  */ | 
 | static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, | 
 | 			    struct hlist_node *node) | 
 | { | 
 | 	struct cpuhp_step *sp = cpuhp_get_step(state); | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * If there's nothing to do, we done. | 
 | 	 * Relies on the union for multi_instance. | 
 | 	 */ | 
 | 	if (cpuhp_step_empty(bringup, sp)) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * The non AP bound callbacks can fail on bringup. On teardown | 
 | 	 * e.g. module removal we crash for now. | 
 | 	 */ | 
 | #ifdef CONFIG_SMP | 
 | 	if (cpuhp_is_ap_state(state)) | 
 | 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); | 
 | 	else | 
 | 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); | 
 | #else | 
 | 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); | 
 | #endif | 
 | 	BUG_ON(ret && !bringup); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Called from __cpuhp_setup_state on a recoverable failure. | 
 |  * | 
 |  * Note: The teardown callbacks for rollback are not allowed to fail! | 
 |  */ | 
 | static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, | 
 | 				   struct hlist_node *node) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	/* Roll back the already executed steps on the other cpus */ | 
 | 	for_each_present_cpu(cpu) { | 
 | 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 		int cpustate = st->state; | 
 |  | 
 | 		if (cpu >= failedcpu) | 
 | 			break; | 
 |  | 
 | 		/* Did we invoke the startup call on that cpu ? */ | 
 | 		if (cpustate >= state) | 
 | 			cpuhp_issue_call(cpu, state, false, node); | 
 | 	} | 
 | } | 
 |  | 
 | int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, | 
 | 					  struct hlist_node *node, | 
 | 					  bool invoke) | 
 | { | 
 | 	struct cpuhp_step *sp; | 
 | 	int cpu; | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_cpus_held(); | 
 |  | 
 | 	sp = cpuhp_get_step(state); | 
 | 	if (sp->multi_instance == false) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&cpuhp_state_mutex); | 
 |  | 
 | 	if (!invoke || !sp->startup.multi) | 
 | 		goto add_node; | 
 |  | 
 | 	/* | 
 | 	 * Try to call the startup callback for each present cpu | 
 | 	 * depending on the hotplug state of the cpu. | 
 | 	 */ | 
 | 	for_each_present_cpu(cpu) { | 
 | 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 		int cpustate = st->state; | 
 |  | 
 | 		if (cpustate < state) | 
 | 			continue; | 
 |  | 
 | 		ret = cpuhp_issue_call(cpu, state, true, node); | 
 | 		if (ret) { | 
 | 			if (sp->teardown.multi) | 
 | 				cpuhp_rollback_install(cpu, state, node); | 
 | 			goto unlock; | 
 | 		} | 
 | 	} | 
 | add_node: | 
 | 	ret = 0; | 
 | 	hlist_add_head(node, &sp->list); | 
 | unlock: | 
 | 	mutex_unlock(&cpuhp_state_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, | 
 | 			       bool invoke) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	cpus_read_lock(); | 
 | 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); | 
 | 	cpus_read_unlock(); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); | 
 |  | 
 | /** | 
 |  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state | 
 |  * @state:		The state to setup | 
 |  * @name:		Name of the step | 
 |  * @invoke:		If true, the startup function is invoked for cpus where | 
 |  *			cpu state >= @state | 
 |  * @startup:		startup callback function | 
 |  * @teardown:		teardown callback function | 
 |  * @multi_instance:	State is set up for multiple instances which get | 
 |  *			added afterwards. | 
 |  * | 
 |  * The caller needs to hold cpus read locked while calling this function. | 
 |  * Return: | 
 |  *   On success: | 
 |  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; | 
 |  *      0 for all other states | 
 |  *   On failure: proper (negative) error code | 
 |  */ | 
 | int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, | 
 | 				   const char *name, bool invoke, | 
 | 				   int (*startup)(unsigned int cpu), | 
 | 				   int (*teardown)(unsigned int cpu), | 
 | 				   bool multi_instance) | 
 | { | 
 | 	int cpu, ret = 0; | 
 | 	bool dynstate; | 
 |  | 
 | 	lockdep_assert_cpus_held(); | 
 |  | 
 | 	if (cpuhp_cb_check(state) || !name) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&cpuhp_state_mutex); | 
 |  | 
 | 	ret = cpuhp_store_callbacks(state, name, startup, teardown, | 
 | 				    multi_instance); | 
 |  | 
 | 	dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; | 
 | 	if (ret > 0 && dynstate) { | 
 | 		state = ret; | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	if (ret || !invoke || !startup) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Try to call the startup callback for each present cpu | 
 | 	 * depending on the hotplug state of the cpu. | 
 | 	 */ | 
 | 	for_each_present_cpu(cpu) { | 
 | 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 		int cpustate = st->state; | 
 |  | 
 | 		if (cpustate < state) | 
 | 			continue; | 
 |  | 
 | 		ret = cpuhp_issue_call(cpu, state, true, NULL); | 
 | 		if (ret) { | 
 | 			if (teardown) | 
 | 				cpuhp_rollback_install(cpu, state, NULL); | 
 | 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&cpuhp_state_mutex); | 
 | 	/* | 
 | 	 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, | 
 | 	 * return the dynamically allocated state in case of success. | 
 | 	 */ | 
 | 	if (!ret && dynstate) | 
 | 		return state; | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); | 
 |  | 
 | int __cpuhp_setup_state(enum cpuhp_state state, | 
 | 			const char *name, bool invoke, | 
 | 			int (*startup)(unsigned int cpu), | 
 | 			int (*teardown)(unsigned int cpu), | 
 | 			bool multi_instance) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	cpus_read_lock(); | 
 | 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, | 
 | 					     teardown, multi_instance); | 
 | 	cpus_read_unlock(); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(__cpuhp_setup_state); | 
 |  | 
 | int __cpuhp_state_remove_instance(enum cpuhp_state state, | 
 | 				  struct hlist_node *node, bool invoke) | 
 | { | 
 | 	struct cpuhp_step *sp = cpuhp_get_step(state); | 
 | 	int cpu; | 
 |  | 
 | 	BUG_ON(cpuhp_cb_check(state)); | 
 |  | 
 | 	if (!sp->multi_instance) | 
 | 		return -EINVAL; | 
 |  | 
 | 	cpus_read_lock(); | 
 | 	mutex_lock(&cpuhp_state_mutex); | 
 |  | 
 | 	if (!invoke || !cpuhp_get_teardown_cb(state)) | 
 | 		goto remove; | 
 | 	/* | 
 | 	 * Call the teardown callback for each present cpu depending | 
 | 	 * on the hotplug state of the cpu. This function is not | 
 | 	 * allowed to fail currently! | 
 | 	 */ | 
 | 	for_each_present_cpu(cpu) { | 
 | 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 		int cpustate = st->state; | 
 |  | 
 | 		if (cpustate >= state) | 
 | 			cpuhp_issue_call(cpu, state, false, node); | 
 | 	} | 
 |  | 
 | remove: | 
 | 	hlist_del(node); | 
 | 	mutex_unlock(&cpuhp_state_mutex); | 
 | 	cpus_read_unlock(); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); | 
 |  | 
 | /** | 
 |  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state | 
 |  * @state:	The state to remove | 
 |  * @invoke:	If true, the teardown function is invoked for cpus where | 
 |  *		cpu state >= @state | 
 |  * | 
 |  * The caller needs to hold cpus read locked while calling this function. | 
 |  * The teardown callback is currently not allowed to fail. Think | 
 |  * about module removal! | 
 |  */ | 
 | void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) | 
 | { | 
 | 	struct cpuhp_step *sp = cpuhp_get_step(state); | 
 | 	int cpu; | 
 |  | 
 | 	BUG_ON(cpuhp_cb_check(state)); | 
 |  | 
 | 	lockdep_assert_cpus_held(); | 
 |  | 
 | 	mutex_lock(&cpuhp_state_mutex); | 
 | 	if (sp->multi_instance) { | 
 | 		WARN(!hlist_empty(&sp->list), | 
 | 		     "Error: Removing state %d which has instances left.\n", | 
 | 		     state); | 
 | 		goto remove; | 
 | 	} | 
 |  | 
 | 	if (!invoke || !cpuhp_get_teardown_cb(state)) | 
 | 		goto remove; | 
 |  | 
 | 	/* | 
 | 	 * Call the teardown callback for each present cpu depending | 
 | 	 * on the hotplug state of the cpu. This function is not | 
 | 	 * allowed to fail currently! | 
 | 	 */ | 
 | 	for_each_present_cpu(cpu) { | 
 | 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
 | 		int cpustate = st->state; | 
 |  | 
 | 		if (cpustate >= state) | 
 | 			cpuhp_issue_call(cpu, state, false, NULL); | 
 | 	} | 
 | remove: | 
 | 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false); | 
 | 	mutex_unlock(&cpuhp_state_mutex); | 
 | } | 
 | EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); | 
 |  | 
 | void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) | 
 | { | 
 | 	cpus_read_lock(); | 
 | 	__cpuhp_remove_state_cpuslocked(state, invoke); | 
 | 	cpus_read_unlock(); | 
 | } | 
 | EXPORT_SYMBOL(__cpuhp_remove_state); | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_SMT | 
 | static void cpuhp_offline_cpu_device(unsigned int cpu) | 
 | { | 
 | 	struct device *dev = get_cpu_device(cpu); | 
 |  | 
 | 	dev->offline = true; | 
 | 	/* Tell user space about the state change */ | 
 | 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE); | 
 | } | 
 |  | 
 | static void cpuhp_online_cpu_device(unsigned int cpu) | 
 | { | 
 | 	struct device *dev = get_cpu_device(cpu); | 
 |  | 
 | 	dev->offline = false; | 
 | 	/* Tell user space about the state change */ | 
 | 	kobject_uevent(&dev->kobj, KOBJ_ONLINE); | 
 | } | 
 |  | 
 | int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) | 
 | { | 
 | 	int cpu, ret = 0; | 
 |  | 
 | 	cpu_maps_update_begin(); | 
 | 	for_each_online_cpu(cpu) { | 
 | 		if (topology_is_primary_thread(cpu)) | 
 | 			continue; | 
 | 		/* | 
 | 		 * Disable can be called with CPU_SMT_ENABLED when changing | 
 | 		 * from a higher to lower number of SMT threads per core. | 
 | 		 */ | 
 | 		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) | 
 | 			continue; | 
 | 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); | 
 | 		if (ret) | 
 | 			break; | 
 | 		/* | 
 | 		 * As this needs to hold the cpu maps lock it's impossible | 
 | 		 * to call device_offline() because that ends up calling | 
 | 		 * cpu_down() which takes cpu maps lock. cpu maps lock | 
 | 		 * needs to be held as this might race against in kernel | 
 | 		 * abusers of the hotplug machinery (thermal management). | 
 | 		 * | 
 | 		 * So nothing would update device:offline state. That would | 
 | 		 * leave the sysfs entry stale and prevent onlining after | 
 | 		 * smt control has been changed to 'off' again. This is | 
 | 		 * called under the sysfs hotplug lock, so it is properly | 
 | 		 * serialized against the regular offline usage. | 
 | 		 */ | 
 | 		cpuhp_offline_cpu_device(cpu); | 
 | 	} | 
 | 	if (!ret) | 
 | 		cpu_smt_control = ctrlval; | 
 | 	cpu_maps_update_done(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Check if the core a CPU belongs to is online */ | 
 | #if !defined(topology_is_core_online) | 
 | static inline bool topology_is_core_online(unsigned int cpu) | 
 | { | 
 | 	return true; | 
 | } | 
 | #endif | 
 |  | 
 | int cpuhp_smt_enable(void) | 
 | { | 
 | 	int cpu, ret = 0; | 
 |  | 
 | 	cpu_maps_update_begin(); | 
 | 	cpu_smt_control = CPU_SMT_ENABLED; | 
 | 	for_each_present_cpu(cpu) { | 
 | 		/* Skip online CPUs and CPUs on offline nodes */ | 
 | 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) | 
 | 			continue; | 
 | 		if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu)) | 
 | 			continue; | 
 | 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE); | 
 | 		if (ret) | 
 | 			break; | 
 | 		/* See comment in cpuhp_smt_disable() */ | 
 | 		cpuhp_online_cpu_device(cpu); | 
 | 	} | 
 | 	cpu_maps_update_done(); | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) | 
 | static ssize_t state_show(struct device *dev, | 
 | 			  struct device_attribute *attr, char *buf) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | 
 |  | 
 | 	return sprintf(buf, "%d\n", st->state); | 
 | } | 
 | static DEVICE_ATTR_RO(state); | 
 |  | 
 | static ssize_t target_store(struct device *dev, struct device_attribute *attr, | 
 | 			    const char *buf, size_t count) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | 
 | 	struct cpuhp_step *sp; | 
 | 	int target, ret; | 
 |  | 
 | 	ret = kstrtoint(buf, 10, &target); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL | 
 | 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) | 
 | 		return -EINVAL; | 
 | #else | 
 | 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) | 
 | 		return -EINVAL; | 
 | #endif | 
 |  | 
 | 	ret = lock_device_hotplug_sysfs(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	mutex_lock(&cpuhp_state_mutex); | 
 | 	sp = cpuhp_get_step(target); | 
 | 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0; | 
 | 	mutex_unlock(&cpuhp_state_mutex); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (st->state < target) | 
 | 		ret = cpu_up(dev->id, target); | 
 | 	else if (st->state > target) | 
 | 		ret = cpu_down(dev->id, target); | 
 | 	else if (WARN_ON(st->target != target)) | 
 | 		st->target = target; | 
 | out: | 
 | 	unlock_device_hotplug(); | 
 | 	return ret ? ret : count; | 
 | } | 
 |  | 
 | static ssize_t target_show(struct device *dev, | 
 | 			   struct device_attribute *attr, char *buf) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | 
 |  | 
 | 	return sprintf(buf, "%d\n", st->target); | 
 | } | 
 | static DEVICE_ATTR_RW(target); | 
 |  | 
 | static ssize_t fail_store(struct device *dev, struct device_attribute *attr, | 
 | 			  const char *buf, size_t count) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | 
 | 	struct cpuhp_step *sp; | 
 | 	int fail, ret; | 
 |  | 
 | 	ret = kstrtoint(buf, 10, &fail); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (fail == CPUHP_INVALID) { | 
 | 		st->fail = fail; | 
 | 		return count; | 
 | 	} | 
 |  | 
 | 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Cannot fail STARTING/DYING callbacks. | 
 | 	 */ | 
 | 	if (cpuhp_is_atomic_state(fail)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * DEAD callbacks cannot fail... | 
 | 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter | 
 | 	 * triggering STARTING callbacks, a failure in this state would | 
 | 	 * hinder rollback. | 
 | 	 */ | 
 | 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Cannot fail anything that doesn't have callbacks. | 
 | 	 */ | 
 | 	mutex_lock(&cpuhp_state_mutex); | 
 | 	sp = cpuhp_get_step(fail); | 
 | 	if (!sp->startup.single && !sp->teardown.single) | 
 | 		ret = -EINVAL; | 
 | 	mutex_unlock(&cpuhp_state_mutex); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	st->fail = fail; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t fail_show(struct device *dev, | 
 | 			 struct device_attribute *attr, char *buf) | 
 | { | 
 | 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | 
 |  | 
 | 	return sprintf(buf, "%d\n", st->fail); | 
 | } | 
 |  | 
 | static DEVICE_ATTR_RW(fail); | 
 |  | 
 | static struct attribute *cpuhp_cpu_attrs[] = { | 
 | 	&dev_attr_state.attr, | 
 | 	&dev_attr_target.attr, | 
 | 	&dev_attr_fail.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static const struct attribute_group cpuhp_cpu_attr_group = { | 
 | 	.attrs = cpuhp_cpu_attrs, | 
 | 	.name = "hotplug", | 
 | 	NULL | 
 | }; | 
 |  | 
 | static ssize_t states_show(struct device *dev, | 
 | 				 struct device_attribute *attr, char *buf) | 
 | { | 
 | 	ssize_t cur, res = 0; | 
 | 	int i; | 
 |  | 
 | 	mutex_lock(&cpuhp_state_mutex); | 
 | 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { | 
 | 		struct cpuhp_step *sp = cpuhp_get_step(i); | 
 |  | 
 | 		if (sp->name) { | 
 | 			cur = sprintf(buf, "%3d: %s\n", i, sp->name); | 
 | 			buf += cur; | 
 | 			res += cur; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&cpuhp_state_mutex); | 
 | 	return res; | 
 | } | 
 | static DEVICE_ATTR_RO(states); | 
 |  | 
 | static struct attribute *cpuhp_cpu_root_attrs[] = { | 
 | 	&dev_attr_states.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static const struct attribute_group cpuhp_cpu_root_attr_group = { | 
 | 	.attrs = cpuhp_cpu_root_attrs, | 
 | 	.name = "hotplug", | 
 | 	NULL | 
 | }; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_SMT | 
 |  | 
 | static bool cpu_smt_num_threads_valid(unsigned int threads) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) | 
 | 		return threads >= 1 && threads <= cpu_smt_max_threads; | 
 | 	return threads == 1 || threads == cpu_smt_max_threads; | 
 | } | 
 |  | 
 | static ssize_t | 
 | __store_smt_control(struct device *dev, struct device_attribute *attr, | 
 | 		    const char *buf, size_t count) | 
 | { | 
 | 	int ctrlval, ret, num_threads, orig_threads; | 
 | 	bool force_off; | 
 |  | 
 | 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (sysfs_streq(buf, "on")) { | 
 | 		ctrlval = CPU_SMT_ENABLED; | 
 | 		num_threads = cpu_smt_max_threads; | 
 | 	} else if (sysfs_streq(buf, "off")) { | 
 | 		ctrlval = CPU_SMT_DISABLED; | 
 | 		num_threads = 1; | 
 | 	} else if (sysfs_streq(buf, "forceoff")) { | 
 | 		ctrlval = CPU_SMT_FORCE_DISABLED; | 
 | 		num_threads = 1; | 
 | 	} else if (kstrtoint(buf, 10, &num_threads) == 0) { | 
 | 		if (num_threads == 1) | 
 | 			ctrlval = CPU_SMT_DISABLED; | 
 | 		else if (cpu_smt_num_threads_valid(num_threads)) | 
 | 			ctrlval = CPU_SMT_ENABLED; | 
 | 		else | 
 | 			return -EINVAL; | 
 | 	} else { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ret = lock_device_hotplug_sysfs(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	orig_threads = cpu_smt_num_threads; | 
 | 	cpu_smt_num_threads = num_threads; | 
 |  | 
 | 	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; | 
 |  | 
 | 	if (num_threads > orig_threads) | 
 | 		ret = cpuhp_smt_enable(); | 
 | 	else if (num_threads < orig_threads || force_off) | 
 | 		ret = cpuhp_smt_disable(ctrlval); | 
 |  | 
 | 	unlock_device_hotplug(); | 
 | 	return ret ? ret : count; | 
 | } | 
 |  | 
 | #else /* !CONFIG_HOTPLUG_SMT */ | 
 | static ssize_t | 
 | __store_smt_control(struct device *dev, struct device_attribute *attr, | 
 | 		    const char *buf, size_t count) | 
 | { | 
 | 	return -ENODEV; | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_SMT */ | 
 |  | 
 | static const char *smt_states[] = { | 
 | 	[CPU_SMT_ENABLED]		= "on", | 
 | 	[CPU_SMT_DISABLED]		= "off", | 
 | 	[CPU_SMT_FORCE_DISABLED]	= "forceoff", | 
 | 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported", | 
 | 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented", | 
 | }; | 
 |  | 
 | static ssize_t control_show(struct device *dev, | 
 | 			    struct device_attribute *attr, char *buf) | 
 | { | 
 | 	const char *state = smt_states[cpu_smt_control]; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_SMT | 
 | 	/* | 
 | 	 * If SMT is enabled but not all threads are enabled then show the | 
 | 	 * number of threads. If all threads are enabled show "on". Otherwise | 
 | 	 * show the state name. | 
 | 	 */ | 
 | 	if (cpu_smt_control == CPU_SMT_ENABLED && | 
 | 	    cpu_smt_num_threads != cpu_smt_max_threads) | 
 | 		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); | 
 | #endif | 
 |  | 
 | 	return sysfs_emit(buf, "%s\n", state); | 
 | } | 
 |  | 
 | static ssize_t control_store(struct device *dev, struct device_attribute *attr, | 
 | 			     const char *buf, size_t count) | 
 | { | 
 | 	return __store_smt_control(dev, attr, buf, count); | 
 | } | 
 | static DEVICE_ATTR_RW(control); | 
 |  | 
 | static ssize_t active_show(struct device *dev, | 
 | 			   struct device_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", sched_smt_active()); | 
 | } | 
 | static DEVICE_ATTR_RO(active); | 
 |  | 
 | static struct attribute *cpuhp_smt_attrs[] = { | 
 | 	&dev_attr_control.attr, | 
 | 	&dev_attr_active.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static const struct attribute_group cpuhp_smt_attr_group = { | 
 | 	.attrs = cpuhp_smt_attrs, | 
 | 	.name = "smt", | 
 | 	NULL | 
 | }; | 
 |  | 
 | static int __init cpu_smt_sysfs_init(void) | 
 | { | 
 | 	struct device *dev_root; | 
 | 	int ret = -ENODEV; | 
 |  | 
 | 	dev_root = bus_get_dev_root(&cpu_subsys); | 
 | 	if (dev_root) { | 
 | 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); | 
 | 		put_device(dev_root); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __init cpuhp_sysfs_init(void) | 
 | { | 
 | 	struct device *dev_root; | 
 | 	int cpu, ret; | 
 |  | 
 | 	ret = cpu_smt_sysfs_init(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	dev_root = bus_get_dev_root(&cpu_subsys); | 
 | 	if (dev_root) { | 
 | 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); | 
 | 		put_device(dev_root); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct device *dev = get_cpu_device(cpu); | 
 |  | 
 | 		if (!dev) | 
 | 			continue; | 
 | 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | device_initcall(cpuhp_sysfs_init); | 
 | #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | /* | 
 |  * cpu_bit_bitmap[] is a special, "compressed" data structure that | 
 |  * represents all NR_CPUS bits binary values of 1<<nr. | 
 |  * | 
 |  * It is used by cpumask_of() to get a constant address to a CPU | 
 |  * mask value that has a single bit set only. | 
 |  */ | 
 |  | 
 | /* cpu_bit_bitmap[0] is empty - so we can back into it */ | 
 | #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x)) | 
 | #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) | 
 | #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) | 
 | #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) | 
 |  | 
 | const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { | 
 |  | 
 | 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8), | 
 | 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24), | 
 | #if BITS_PER_LONG > 32 | 
 | 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40), | 
 | 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56), | 
 | #endif | 
 | }; | 
 | EXPORT_SYMBOL_GPL(cpu_bit_bitmap); | 
 |  | 
 | const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; | 
 | EXPORT_SYMBOL(cpu_all_bits); | 
 |  | 
 | #ifdef CONFIG_INIT_ALL_POSSIBLE | 
 | struct cpumask __cpu_possible_mask __ro_after_init | 
 | 	= {CPU_BITS_ALL}; | 
 | #else | 
 | struct cpumask __cpu_possible_mask __ro_after_init; | 
 | #endif | 
 | EXPORT_SYMBOL(__cpu_possible_mask); | 
 |  | 
 | struct cpumask __cpu_online_mask __read_mostly; | 
 | EXPORT_SYMBOL(__cpu_online_mask); | 
 |  | 
 | struct cpumask __cpu_enabled_mask __read_mostly; | 
 | EXPORT_SYMBOL(__cpu_enabled_mask); | 
 |  | 
 | struct cpumask __cpu_present_mask __read_mostly; | 
 | EXPORT_SYMBOL(__cpu_present_mask); | 
 |  | 
 | struct cpumask __cpu_active_mask __read_mostly; | 
 | EXPORT_SYMBOL(__cpu_active_mask); | 
 |  | 
 | struct cpumask __cpu_dying_mask __read_mostly; | 
 | EXPORT_SYMBOL(__cpu_dying_mask); | 
 |  | 
 | atomic_t __num_online_cpus __read_mostly; | 
 | EXPORT_SYMBOL(__num_online_cpus); | 
 |  | 
 | void init_cpu_present(const struct cpumask *src) | 
 | { | 
 | 	cpumask_copy(&__cpu_present_mask, src); | 
 | } | 
 |  | 
 | void init_cpu_possible(const struct cpumask *src) | 
 | { | 
 | 	cpumask_copy(&__cpu_possible_mask, src); | 
 | } | 
 |  | 
 | void init_cpu_online(const struct cpumask *src) | 
 | { | 
 | 	cpumask_copy(&__cpu_online_mask, src); | 
 | } | 
 |  | 
 | void set_cpu_online(unsigned int cpu, bool online) | 
 | { | 
 | 	/* | 
 | 	 * atomic_inc/dec() is required to handle the horrid abuse of this | 
 | 	 * function by the reboot and kexec code which invoke it from | 
 | 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from | 
 | 	 * regular CPU hotplug is properly serialized. | 
 | 	 * | 
 | 	 * Note, that the fact that __num_online_cpus is of type atomic_t | 
 | 	 * does not protect readers which are not serialized against | 
 | 	 * concurrent hotplug operations. | 
 | 	 */ | 
 | 	if (online) { | 
 | 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) | 
 | 			atomic_inc(&__num_online_cpus); | 
 | 	} else { | 
 | 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) | 
 | 			atomic_dec(&__num_online_cpus); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Activate the first processor. | 
 |  */ | 
 | void __init boot_cpu_init(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */ | 
 | 	set_cpu_online(cpu, true); | 
 | 	set_cpu_active(cpu, true); | 
 | 	set_cpu_present(cpu, true); | 
 | 	set_cpu_possible(cpu, true); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	__boot_cpu_id = cpu; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called _AFTER_ setting up the per_cpu areas | 
 |  */ | 
 | void __init boot_cpu_hotplug_init(void) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); | 
 | 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); | 
 | #endif | 
 | 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); | 
 | 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CPU_MITIGATIONS | 
 | /* | 
 |  * These are used for a global "mitigations=" cmdline option for toggling | 
 |  * optional CPU mitigations. | 
 |  */ | 
 | enum cpu_mitigations { | 
 | 	CPU_MITIGATIONS_OFF, | 
 | 	CPU_MITIGATIONS_AUTO, | 
 | 	CPU_MITIGATIONS_AUTO_NOSMT, | 
 | }; | 
 |  | 
 | static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; | 
 |  | 
 | static int __init mitigations_parse_cmdline(char *arg) | 
 | { | 
 | 	if (!strcmp(arg, "off")) | 
 | 		cpu_mitigations = CPU_MITIGATIONS_OFF; | 
 | 	else if (!strcmp(arg, "auto")) | 
 | 		cpu_mitigations = CPU_MITIGATIONS_AUTO; | 
 | 	else if (!strcmp(arg, "auto,nosmt")) | 
 | 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; | 
 | 	else | 
 | 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", | 
 | 			arg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* mitigations=off */ | 
 | bool cpu_mitigations_off(void) | 
 | { | 
 | 	return cpu_mitigations == CPU_MITIGATIONS_OFF; | 
 | } | 
 | EXPORT_SYMBOL_GPL(cpu_mitigations_off); | 
 |  | 
 | /* mitigations=auto,nosmt */ | 
 | bool cpu_mitigations_auto_nosmt(void) | 
 | { | 
 | 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; | 
 | } | 
 | EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); | 
 | #else | 
 | static int __init mitigations_parse_cmdline(char *arg) | 
 | { | 
 | 	pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n"); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 | early_param("mitigations", mitigations_parse_cmdline); |