|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright © 2006-2014 Intel Corporation. | 
|  | * | 
|  | * Authors: David Woodhouse <dwmw2@infradead.org>, | 
|  | *          Ashok Raj <ashok.raj@intel.com>, | 
|  | *          Shaohua Li <shaohua.li@intel.com>, | 
|  | *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, | 
|  | *          Fenghua Yu <fenghua.yu@intel.com> | 
|  | *          Joerg Roedel <jroedel@suse.de> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt)     "DMAR: " fmt | 
|  | #define dev_fmt(fmt)    pr_fmt(fmt) | 
|  |  | 
|  | #include <linux/crash_dump.h> | 
|  | #include <linux/dma-direct.h> | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pci-ats.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <linux/tboot.h> | 
|  | #include <uapi/linux/iommufd.h> | 
|  |  | 
|  | #include "iommu.h" | 
|  | #include "../dma-iommu.h" | 
|  | #include "../irq_remapping.h" | 
|  | #include "../iommu-pages.h" | 
|  | #include "pasid.h" | 
|  | #include "perfmon.h" | 
|  |  | 
|  | #define ROOT_SIZE		VTD_PAGE_SIZE | 
|  | #define CONTEXT_SIZE		VTD_PAGE_SIZE | 
|  |  | 
|  | #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) | 
|  | #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) | 
|  | #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) | 
|  | #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) | 
|  |  | 
|  | #define IOAPIC_RANGE_START	(0xfee00000) | 
|  | #define IOAPIC_RANGE_END	(0xfeefffff) | 
|  | #define IOVA_START_ADDR		(0x1000) | 
|  |  | 
|  | #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57 | 
|  |  | 
|  | #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1) | 
|  | #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1) | 
|  |  | 
|  | /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR | 
|  | to match. That way, we can use 'unsigned long' for PFNs with impunity. */ | 
|  | #define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \ | 
|  | __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) | 
|  | #define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) | 
|  |  | 
|  | static void __init check_tylersburg_isoch(void); | 
|  | static int rwbf_quirk; | 
|  |  | 
|  | /* | 
|  | * set to 1 to panic kernel if can't successfully enable VT-d | 
|  | * (used when kernel is launched w/ TXT) | 
|  | */ | 
|  | static int force_on = 0; | 
|  | static int intel_iommu_tboot_noforce; | 
|  | static int no_platform_optin; | 
|  |  | 
|  | #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) | 
|  |  | 
|  | /* | 
|  | * Take a root_entry and return the Lower Context Table Pointer (LCTP) | 
|  | * if marked present. | 
|  | */ | 
|  | static phys_addr_t root_entry_lctp(struct root_entry *re) | 
|  | { | 
|  | if (!(re->lo & 1)) | 
|  | return 0; | 
|  |  | 
|  | return re->lo & VTD_PAGE_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take a root_entry and return the Upper Context Table Pointer (UCTP) | 
|  | * if marked present. | 
|  | */ | 
|  | static phys_addr_t root_entry_uctp(struct root_entry *re) | 
|  | { | 
|  | if (!(re->hi & 1)) | 
|  | return 0; | 
|  |  | 
|  | return re->hi & VTD_PAGE_MASK; | 
|  | } | 
|  |  | 
|  | static int device_rid_cmp_key(const void *key, const struct rb_node *node) | 
|  | { | 
|  | struct device_domain_info *info = | 
|  | rb_entry(node, struct device_domain_info, node); | 
|  | const u16 *rid_lhs = key; | 
|  |  | 
|  | if (*rid_lhs < PCI_DEVID(info->bus, info->devfn)) | 
|  | return -1; | 
|  |  | 
|  | if (*rid_lhs > PCI_DEVID(info->bus, info->devfn)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int device_rid_cmp(struct rb_node *lhs, const struct rb_node *rhs) | 
|  | { | 
|  | struct device_domain_info *info = | 
|  | rb_entry(lhs, struct device_domain_info, node); | 
|  | u16 key = PCI_DEVID(info->bus, info->devfn); | 
|  |  | 
|  | return device_rid_cmp_key(&key, rhs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Looks up an IOMMU-probed device using its source ID. | 
|  | * | 
|  | * Returns the pointer to the device if there is a match. Otherwise, | 
|  | * returns NULL. | 
|  | * | 
|  | * Note that this helper doesn't guarantee that the device won't be | 
|  | * released by the iommu subsystem after being returned. The caller | 
|  | * should use its own synchronization mechanism to avoid the device | 
|  | * being released during its use if its possibly the case. | 
|  | */ | 
|  | struct device *device_rbtree_find(struct intel_iommu *iommu, u16 rid) | 
|  | { | 
|  | struct device_domain_info *info = NULL; | 
|  | struct rb_node *node; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->device_rbtree_lock, flags); | 
|  | node = rb_find(&rid, &iommu->device_rbtree, device_rid_cmp_key); | 
|  | if (node) | 
|  | info = rb_entry(node, struct device_domain_info, node); | 
|  | spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags); | 
|  |  | 
|  | return info ? info->dev : NULL; | 
|  | } | 
|  |  | 
|  | static int device_rbtree_insert(struct intel_iommu *iommu, | 
|  | struct device_domain_info *info) | 
|  | { | 
|  | struct rb_node *curr; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->device_rbtree_lock, flags); | 
|  | curr = rb_find_add(&info->node, &iommu->device_rbtree, device_rid_cmp); | 
|  | spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags); | 
|  | if (WARN_ON(curr)) | 
|  | return -EEXIST; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void device_rbtree_remove(struct device_domain_info *info) | 
|  | { | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->device_rbtree_lock, flags); | 
|  | rb_erase(&info->node, &iommu->device_rbtree); | 
|  | spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags); | 
|  | } | 
|  |  | 
|  | struct dmar_rmrr_unit { | 
|  | struct list_head list;		/* list of rmrr units	*/ | 
|  | struct acpi_dmar_header *hdr;	/* ACPI header		*/ | 
|  | u64	base_address;		/* reserved base address*/ | 
|  | u64	end_address;		/* reserved end address */ | 
|  | struct dmar_dev_scope *devices;	/* target devices */ | 
|  | int	devices_cnt;		/* target device count */ | 
|  | }; | 
|  |  | 
|  | struct dmar_atsr_unit { | 
|  | struct list_head list;		/* list of ATSR units */ | 
|  | struct acpi_dmar_header *hdr;	/* ACPI header */ | 
|  | struct dmar_dev_scope *devices;	/* target devices */ | 
|  | int devices_cnt;		/* target device count */ | 
|  | u8 include_all:1;		/* include all ports */ | 
|  | }; | 
|  |  | 
|  | struct dmar_satc_unit { | 
|  | struct list_head list;		/* list of SATC units */ | 
|  | struct acpi_dmar_header *hdr;	/* ACPI header */ | 
|  | struct dmar_dev_scope *devices;	/* target devices */ | 
|  | struct intel_iommu *iommu;	/* the corresponding iommu */ | 
|  | int devices_cnt;		/* target device count */ | 
|  | u8 atc_required:1;		/* ATS is required */ | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(dmar_atsr_units); | 
|  | static LIST_HEAD(dmar_rmrr_units); | 
|  | static LIST_HEAD(dmar_satc_units); | 
|  |  | 
|  | #define for_each_rmrr_units(rmrr) \ | 
|  | list_for_each_entry(rmrr, &dmar_rmrr_units, list) | 
|  |  | 
|  | static void intel_iommu_domain_free(struct iommu_domain *domain); | 
|  |  | 
|  | int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON); | 
|  | int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON); | 
|  |  | 
|  | int intel_iommu_enabled = 0; | 
|  | EXPORT_SYMBOL_GPL(intel_iommu_enabled); | 
|  |  | 
|  | static int intel_iommu_superpage = 1; | 
|  | static int iommu_identity_mapping; | 
|  | static int iommu_skip_te_disable; | 
|  | static int disable_igfx_iommu; | 
|  |  | 
|  | #define IDENTMAP_AZALIA		4 | 
|  |  | 
|  | const struct iommu_ops intel_iommu_ops; | 
|  | static const struct iommu_dirty_ops intel_dirty_ops; | 
|  |  | 
|  | static bool translation_pre_enabled(struct intel_iommu *iommu) | 
|  | { | 
|  | return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); | 
|  | } | 
|  |  | 
|  | static void clear_translation_pre_enabled(struct intel_iommu *iommu) | 
|  | { | 
|  | iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; | 
|  | } | 
|  |  | 
|  | static void init_translation_status(struct intel_iommu *iommu) | 
|  | { | 
|  | u32 gsts; | 
|  |  | 
|  | gsts = readl(iommu->reg + DMAR_GSTS_REG); | 
|  | if (gsts & DMA_GSTS_TES) | 
|  | iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; | 
|  | } | 
|  |  | 
|  | static int __init intel_iommu_setup(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return -EINVAL; | 
|  |  | 
|  | while (*str) { | 
|  | if (!strncmp(str, "on", 2)) { | 
|  | dmar_disabled = 0; | 
|  | pr_info("IOMMU enabled\n"); | 
|  | } else if (!strncmp(str, "off", 3)) { | 
|  | dmar_disabled = 1; | 
|  | no_platform_optin = 1; | 
|  | pr_info("IOMMU disabled\n"); | 
|  | } else if (!strncmp(str, "igfx_off", 8)) { | 
|  | disable_igfx_iommu = 1; | 
|  | pr_info("Disable GFX device mapping\n"); | 
|  | } else if (!strncmp(str, "forcedac", 8)) { | 
|  | pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n"); | 
|  | iommu_dma_forcedac = true; | 
|  | } else if (!strncmp(str, "strict", 6)) { | 
|  | pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n"); | 
|  | iommu_set_dma_strict(); | 
|  | } else if (!strncmp(str, "sp_off", 6)) { | 
|  | pr_info("Disable supported super page\n"); | 
|  | intel_iommu_superpage = 0; | 
|  | } else if (!strncmp(str, "sm_on", 5)) { | 
|  | pr_info("Enable scalable mode if hardware supports\n"); | 
|  | intel_iommu_sm = 1; | 
|  | } else if (!strncmp(str, "sm_off", 6)) { | 
|  | pr_info("Scalable mode is disallowed\n"); | 
|  | intel_iommu_sm = 0; | 
|  | } else if (!strncmp(str, "tboot_noforce", 13)) { | 
|  | pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n"); | 
|  | intel_iommu_tboot_noforce = 1; | 
|  | } else { | 
|  | pr_notice("Unknown option - '%s'\n", str); | 
|  | } | 
|  |  | 
|  | str += strcspn(str, ","); | 
|  | while (*str == ',') | 
|  | str++; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("intel_iommu=", intel_iommu_setup); | 
|  |  | 
|  | static int domain_pfn_supported(struct dmar_domain *domain, unsigned long pfn) | 
|  | { | 
|  | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | 
|  |  | 
|  | return !(addr_width < BITS_PER_LONG && pfn >> addr_width); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the Supported Adjusted Guest Address Widths of an IOMMU. | 
|  | * Refer to 11.4.2 of the VT-d spec for the encoding of each bit of | 
|  | * the returned SAGAW. | 
|  | */ | 
|  | static unsigned long __iommu_calculate_sagaw(struct intel_iommu *iommu) | 
|  | { | 
|  | unsigned long fl_sagaw, sl_sagaw; | 
|  |  | 
|  | fl_sagaw = BIT(2) | (cap_fl5lp_support(iommu->cap) ? BIT(3) : 0); | 
|  | sl_sagaw = cap_sagaw(iommu->cap); | 
|  |  | 
|  | /* Second level only. */ | 
|  | if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) | 
|  | return sl_sagaw; | 
|  |  | 
|  | /* First level only. */ | 
|  | if (!ecap_slts(iommu->ecap)) | 
|  | return fl_sagaw; | 
|  |  | 
|  | return fl_sagaw & sl_sagaw; | 
|  | } | 
|  |  | 
|  | static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) | 
|  | { | 
|  | unsigned long sagaw; | 
|  | int agaw; | 
|  |  | 
|  | sagaw = __iommu_calculate_sagaw(iommu); | 
|  | for (agaw = width_to_agaw(max_gaw); agaw >= 0; agaw--) { | 
|  | if (test_bit(agaw, &sagaw)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return agaw; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate max SAGAW for each iommu. | 
|  | */ | 
|  | int iommu_calculate_max_sagaw(struct intel_iommu *iommu) | 
|  | { | 
|  | return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate agaw for each iommu. | 
|  | * "SAGAW" may be different across iommus, use a default agaw, and | 
|  | * get a supported less agaw for iommus that don't support the default agaw. | 
|  | */ | 
|  | int iommu_calculate_agaw(struct intel_iommu *iommu) | 
|  | { | 
|  | return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); | 
|  | } | 
|  |  | 
|  | static bool iommu_paging_structure_coherency(struct intel_iommu *iommu) | 
|  | { | 
|  | return sm_supported(iommu) ? | 
|  | ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap); | 
|  | } | 
|  |  | 
|  | /* Return the super pagesize bitmap if supported. */ | 
|  | static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain) | 
|  | { | 
|  | unsigned long bitmap = 0; | 
|  |  | 
|  | /* | 
|  | * 1-level super page supports page size of 2MiB, 2-level super page | 
|  | * supports page size of both 2MiB and 1GiB. | 
|  | */ | 
|  | if (domain->iommu_superpage == 1) | 
|  | bitmap |= SZ_2M; | 
|  | else if (domain->iommu_superpage == 2) | 
|  | bitmap |= SZ_2M | SZ_1G; | 
|  |  | 
|  | return bitmap; | 
|  | } | 
|  |  | 
|  | struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus, | 
|  | u8 devfn, int alloc) | 
|  | { | 
|  | struct root_entry *root = &iommu->root_entry[bus]; | 
|  | struct context_entry *context; | 
|  | u64 *entry; | 
|  |  | 
|  | /* | 
|  | * Except that the caller requested to allocate a new entry, | 
|  | * returning a copied context entry makes no sense. | 
|  | */ | 
|  | if (!alloc && context_copied(iommu, bus, devfn)) | 
|  | return NULL; | 
|  |  | 
|  | entry = &root->lo; | 
|  | if (sm_supported(iommu)) { | 
|  | if (devfn >= 0x80) { | 
|  | devfn -= 0x80; | 
|  | entry = &root->hi; | 
|  | } | 
|  | devfn *= 2; | 
|  | } | 
|  | if (*entry & 1) | 
|  | context = phys_to_virt(*entry & VTD_PAGE_MASK); | 
|  | else { | 
|  | unsigned long phy_addr; | 
|  | if (!alloc) | 
|  | return NULL; | 
|  |  | 
|  | context = iommu_alloc_page_node(iommu->node, GFP_ATOMIC); | 
|  | if (!context) | 
|  | return NULL; | 
|  |  | 
|  | __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); | 
|  | phy_addr = virt_to_phys((void *)context); | 
|  | *entry = phy_addr | 1; | 
|  | __iommu_flush_cache(iommu, entry, sizeof(*entry)); | 
|  | } | 
|  | return &context[devfn]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_downstream_to_pci_bridge - test if a device belongs to the PCI | 
|  | *				 sub-hierarchy of a candidate PCI-PCI bridge | 
|  | * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy | 
|  | * @bridge: the candidate PCI-PCI bridge | 
|  | * | 
|  | * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false. | 
|  | */ | 
|  | static bool | 
|  | is_downstream_to_pci_bridge(struct device *dev, struct device *bridge) | 
|  | { | 
|  | struct pci_dev *pdev, *pbridge; | 
|  |  | 
|  | if (!dev_is_pci(dev) || !dev_is_pci(bridge)) | 
|  | return false; | 
|  |  | 
|  | pdev = to_pci_dev(dev); | 
|  | pbridge = to_pci_dev(bridge); | 
|  |  | 
|  | if (pbridge->subordinate && | 
|  | pbridge->subordinate->number <= pdev->bus->number && | 
|  | pbridge->subordinate->busn_res.end >= pdev->bus->number) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | u32 vtbar; | 
|  | int rc; | 
|  |  | 
|  | /* We know that this device on this chipset has its own IOMMU. | 
|  | * If we find it under a different IOMMU, then the BIOS is lying | 
|  | * to us. Hope that the IOMMU for this device is actually | 
|  | * disabled, and it needs no translation... | 
|  | */ | 
|  | rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); | 
|  | if (rc) { | 
|  | /* "can't" happen */ | 
|  | dev_info(&pdev->dev, "failed to run vt-d quirk\n"); | 
|  | return false; | 
|  | } | 
|  | vtbar &= 0xffff0000; | 
|  |  | 
|  | /* we know that the this iommu should be at offset 0xa000 from vtbar */ | 
|  | drhd = dmar_find_matched_drhd_unit(pdev); | 
|  | if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) { | 
|  | pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"); | 
|  | add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev) | 
|  | { | 
|  | if (!iommu || iommu->drhd->ignored) | 
|  | return true; | 
|  |  | 
|  | if (dev_is_pci(dev)) { | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  |  | 
|  | if (pdev->vendor == PCI_VENDOR_ID_INTEL && | 
|  | pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB && | 
|  | quirk_ioat_snb_local_iommu(pdev)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static struct intel_iommu *device_lookup_iommu(struct device *dev, u8 *bus, u8 *devfn) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd = NULL; | 
|  | struct pci_dev *pdev = NULL; | 
|  | struct intel_iommu *iommu; | 
|  | struct device *tmp; | 
|  | u16 segment = 0; | 
|  | int i; | 
|  |  | 
|  | if (!dev) | 
|  | return NULL; | 
|  |  | 
|  | if (dev_is_pci(dev)) { | 
|  | struct pci_dev *pf_pdev; | 
|  |  | 
|  | pdev = pci_real_dma_dev(to_pci_dev(dev)); | 
|  |  | 
|  | /* VFs aren't listed in scope tables; we need to look up | 
|  | * the PF instead to find the IOMMU. */ | 
|  | pf_pdev = pci_physfn(pdev); | 
|  | dev = &pf_pdev->dev; | 
|  | segment = pci_domain_nr(pdev->bus); | 
|  | } else if (has_acpi_companion(dev)) | 
|  | dev = &ACPI_COMPANION(dev)->dev; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_iommu(iommu, drhd) { | 
|  | if (pdev && segment != drhd->segment) | 
|  | continue; | 
|  |  | 
|  | for_each_active_dev_scope(drhd->devices, | 
|  | drhd->devices_cnt, i, tmp) { | 
|  | if (tmp == dev) { | 
|  | /* For a VF use its original BDF# not that of the PF | 
|  | * which we used for the IOMMU lookup. Strictly speaking | 
|  | * we could do this for all PCI devices; we only need to | 
|  | * get the BDF# from the scope table for ACPI matches. */ | 
|  | if (pdev && pdev->is_virtfn) | 
|  | goto got_pdev; | 
|  |  | 
|  | if (bus && devfn) { | 
|  | *bus = drhd->devices[i].bus; | 
|  | *devfn = drhd->devices[i].devfn; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (is_downstream_to_pci_bridge(dev, tmp)) | 
|  | goto got_pdev; | 
|  | } | 
|  |  | 
|  | if (pdev && drhd->include_all) { | 
|  | got_pdev: | 
|  | if (bus && devfn) { | 
|  | *bus = pdev->bus->number; | 
|  | *devfn = pdev->devfn; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | iommu = NULL; | 
|  | out: | 
|  | if (iommu_is_dummy(iommu, dev)) | 
|  | iommu = NULL; | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return iommu; | 
|  | } | 
|  |  | 
|  | static void domain_flush_cache(struct dmar_domain *domain, | 
|  | void *addr, int size) | 
|  | { | 
|  | if (!domain->iommu_coherency) | 
|  | clflush_cache_range(addr, size); | 
|  | } | 
|  |  | 
|  | static void free_context_table(struct intel_iommu *iommu) | 
|  | { | 
|  | struct context_entry *context; | 
|  | int i; | 
|  |  | 
|  | if (!iommu->root_entry) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < ROOT_ENTRY_NR; i++) { | 
|  | context = iommu_context_addr(iommu, i, 0, 0); | 
|  | if (context) | 
|  | iommu_free_page(context); | 
|  |  | 
|  | if (!sm_supported(iommu)) | 
|  | continue; | 
|  |  | 
|  | context = iommu_context_addr(iommu, i, 0x80, 0); | 
|  | if (context) | 
|  | iommu_free_page(context); | 
|  | } | 
|  |  | 
|  | iommu_free_page(iommu->root_entry); | 
|  | iommu->root_entry = NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DMAR_DEBUG | 
|  | static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn, | 
|  | u8 bus, u8 devfn, struct dma_pte *parent, int level) | 
|  | { | 
|  | struct dma_pte *pte; | 
|  | int offset; | 
|  |  | 
|  | while (1) { | 
|  | offset = pfn_level_offset(pfn, level); | 
|  | pte = &parent[offset]; | 
|  |  | 
|  | pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val); | 
|  |  | 
|  | if (!dma_pte_present(pte)) { | 
|  | pr_info("page table not present at level %d\n", level - 1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (level == 1 || dma_pte_superpage(pte)) | 
|  | break; | 
|  |  | 
|  | parent = phys_to_virt(dma_pte_addr(pte)); | 
|  | level--; | 
|  | } | 
|  | } | 
|  |  | 
|  | void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id, | 
|  | unsigned long long addr, u32 pasid) | 
|  | { | 
|  | struct pasid_dir_entry *dir, *pde; | 
|  | struct pasid_entry *entries, *pte; | 
|  | struct context_entry *ctx_entry; | 
|  | struct root_entry *rt_entry; | 
|  | int i, dir_index, index, level; | 
|  | u8 devfn = source_id & 0xff; | 
|  | u8 bus = source_id >> 8; | 
|  | struct dma_pte *pgtable; | 
|  |  | 
|  | pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr); | 
|  |  | 
|  | /* root entry dump */ | 
|  | if (!iommu->root_entry) { | 
|  | pr_info("root table is not present\n"); | 
|  | return; | 
|  | } | 
|  | rt_entry = &iommu->root_entry[bus]; | 
|  |  | 
|  | if (sm_supported(iommu)) | 
|  | pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n", | 
|  | rt_entry->hi, rt_entry->lo); | 
|  | else | 
|  | pr_info("root entry: 0x%016llx", rt_entry->lo); | 
|  |  | 
|  | /* context entry dump */ | 
|  | ctx_entry = iommu_context_addr(iommu, bus, devfn, 0); | 
|  | if (!ctx_entry) { | 
|  | pr_info("context table is not present\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pr_info("context entry: hi 0x%016llx, low 0x%016llx\n", | 
|  | ctx_entry->hi, ctx_entry->lo); | 
|  |  | 
|  | /* legacy mode does not require PASID entries */ | 
|  | if (!sm_supported(iommu)) { | 
|  | if (!context_present(ctx_entry)) { | 
|  | pr_info("legacy mode page table is not present\n"); | 
|  | return; | 
|  | } | 
|  | level = agaw_to_level(ctx_entry->hi & 7); | 
|  | pgtable = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK); | 
|  | goto pgtable_walk; | 
|  | } | 
|  |  | 
|  | if (!context_present(ctx_entry)) { | 
|  | pr_info("pasid directory table is not present\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* get the pointer to pasid directory entry */ | 
|  | dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK); | 
|  |  | 
|  | /* For request-without-pasid, get the pasid from context entry */ | 
|  | if (intel_iommu_sm && pasid == IOMMU_PASID_INVALID) | 
|  | pasid = IOMMU_NO_PASID; | 
|  |  | 
|  | dir_index = pasid >> PASID_PDE_SHIFT; | 
|  | pde = &dir[dir_index]; | 
|  | pr_info("pasid dir entry: 0x%016llx\n", pde->val); | 
|  |  | 
|  | /* get the pointer to the pasid table entry */ | 
|  | entries = get_pasid_table_from_pde(pde); | 
|  | if (!entries) { | 
|  | pr_info("pasid table is not present\n"); | 
|  | return; | 
|  | } | 
|  | index = pasid & PASID_PTE_MASK; | 
|  | pte = &entries[index]; | 
|  | for (i = 0; i < ARRAY_SIZE(pte->val); i++) | 
|  | pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]); | 
|  |  | 
|  | if (!pasid_pte_is_present(pte)) { | 
|  | pr_info("scalable mode page table is not present\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (pasid_pte_get_pgtt(pte) == PASID_ENTRY_PGTT_FL_ONLY) { | 
|  | level = pte->val[2] & BIT_ULL(2) ? 5 : 4; | 
|  | pgtable = phys_to_virt(pte->val[2] & VTD_PAGE_MASK); | 
|  | } else { | 
|  | level = agaw_to_level((pte->val[0] >> 2) & 0x7); | 
|  | pgtable = phys_to_virt(pte->val[0] & VTD_PAGE_MASK); | 
|  | } | 
|  |  | 
|  | pgtable_walk: | 
|  | pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn, pgtable, level); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, | 
|  | unsigned long pfn, int *target_level, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct dma_pte *parent, *pte; | 
|  | int level = agaw_to_level(domain->agaw); | 
|  | int offset; | 
|  |  | 
|  | if (!domain_pfn_supported(domain, pfn)) | 
|  | /* Address beyond IOMMU's addressing capabilities. */ | 
|  | return NULL; | 
|  |  | 
|  | parent = domain->pgd; | 
|  |  | 
|  | while (1) { | 
|  | void *tmp_page; | 
|  |  | 
|  | offset = pfn_level_offset(pfn, level); | 
|  | pte = &parent[offset]; | 
|  | if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) | 
|  | break; | 
|  | if (level == *target_level) | 
|  | break; | 
|  |  | 
|  | if (!dma_pte_present(pte)) { | 
|  | uint64_t pteval, tmp; | 
|  |  | 
|  | tmp_page = iommu_alloc_page_node(domain->nid, gfp); | 
|  |  | 
|  | if (!tmp_page) | 
|  | return NULL; | 
|  |  | 
|  | domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); | 
|  | pteval = virt_to_phys(tmp_page) | DMA_PTE_READ | | 
|  | DMA_PTE_WRITE; | 
|  | if (domain->use_first_level) | 
|  | pteval |= DMA_FL_PTE_US | DMA_FL_PTE_ACCESS; | 
|  |  | 
|  | tmp = 0ULL; | 
|  | if (!try_cmpxchg64(&pte->val, &tmp, pteval)) | 
|  | /* Someone else set it while we were thinking; use theirs. */ | 
|  | iommu_free_page(tmp_page); | 
|  | else | 
|  | domain_flush_cache(domain, pte, sizeof(*pte)); | 
|  | } | 
|  | if (level == 1) | 
|  | break; | 
|  |  | 
|  | parent = phys_to_virt(dma_pte_addr(pte)); | 
|  | level--; | 
|  | } | 
|  |  | 
|  | if (!*target_level) | 
|  | *target_level = level; | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* return address's pte at specific level */ | 
|  | static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, | 
|  | unsigned long pfn, | 
|  | int level, int *large_page) | 
|  | { | 
|  | struct dma_pte *parent, *pte; | 
|  | int total = agaw_to_level(domain->agaw); | 
|  | int offset; | 
|  |  | 
|  | parent = domain->pgd; | 
|  | while (level <= total) { | 
|  | offset = pfn_level_offset(pfn, total); | 
|  | pte = &parent[offset]; | 
|  | if (level == total) | 
|  | return pte; | 
|  |  | 
|  | if (!dma_pte_present(pte)) { | 
|  | *large_page = total; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (dma_pte_superpage(pte)) { | 
|  | *large_page = total; | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | parent = phys_to_virt(dma_pte_addr(pte)); | 
|  | total--; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* clear last level pte, a tlb flush should be followed */ | 
|  | static void dma_pte_clear_range(struct dmar_domain *domain, | 
|  | unsigned long start_pfn, | 
|  | unsigned long last_pfn) | 
|  | { | 
|  | unsigned int large_page; | 
|  | struct dma_pte *first_pte, *pte; | 
|  |  | 
|  | if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) || | 
|  | WARN_ON(start_pfn > last_pfn)) | 
|  | return; | 
|  |  | 
|  | /* we don't need lock here; nobody else touches the iova range */ | 
|  | do { | 
|  | large_page = 1; | 
|  | first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); | 
|  | if (!pte) { | 
|  | start_pfn = align_to_level(start_pfn + 1, large_page + 1); | 
|  | continue; | 
|  | } | 
|  | do { | 
|  | dma_clear_pte(pte); | 
|  | start_pfn += lvl_to_nr_pages(large_page); | 
|  | pte++; | 
|  | } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); | 
|  |  | 
|  | domain_flush_cache(domain, first_pte, | 
|  | (void *)pte - (void *)first_pte); | 
|  |  | 
|  | } while (start_pfn && start_pfn <= last_pfn); | 
|  | } | 
|  |  | 
|  | static void dma_pte_free_level(struct dmar_domain *domain, int level, | 
|  | int retain_level, struct dma_pte *pte, | 
|  | unsigned long pfn, unsigned long start_pfn, | 
|  | unsigned long last_pfn) | 
|  | { | 
|  | pfn = max(start_pfn, pfn); | 
|  | pte = &pte[pfn_level_offset(pfn, level)]; | 
|  |  | 
|  | do { | 
|  | unsigned long level_pfn; | 
|  | struct dma_pte *level_pte; | 
|  |  | 
|  | if (!dma_pte_present(pte) || dma_pte_superpage(pte)) | 
|  | goto next; | 
|  |  | 
|  | level_pfn = pfn & level_mask(level); | 
|  | level_pte = phys_to_virt(dma_pte_addr(pte)); | 
|  |  | 
|  | if (level > 2) { | 
|  | dma_pte_free_level(domain, level - 1, retain_level, | 
|  | level_pte, level_pfn, start_pfn, | 
|  | last_pfn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the page table if we're below the level we want to | 
|  | * retain and the range covers the entire table. | 
|  | */ | 
|  | if (level < retain_level && !(start_pfn > level_pfn || | 
|  | last_pfn < level_pfn + level_size(level) - 1)) { | 
|  | dma_clear_pte(pte); | 
|  | domain_flush_cache(domain, pte, sizeof(*pte)); | 
|  | iommu_free_page(level_pte); | 
|  | } | 
|  | next: | 
|  | pfn += level_size(level); | 
|  | } while (!first_pte_in_page(++pte) && pfn <= last_pfn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * clear last level (leaf) ptes and free page table pages below the | 
|  | * level we wish to keep intact. | 
|  | */ | 
|  | static void dma_pte_free_pagetable(struct dmar_domain *domain, | 
|  | unsigned long start_pfn, | 
|  | unsigned long last_pfn, | 
|  | int retain_level) | 
|  | { | 
|  | dma_pte_clear_range(domain, start_pfn, last_pfn); | 
|  |  | 
|  | /* We don't need lock here; nobody else touches the iova range */ | 
|  | dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level, | 
|  | domain->pgd, 0, start_pfn, last_pfn); | 
|  |  | 
|  | /* free pgd */ | 
|  | if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { | 
|  | iommu_free_page(domain->pgd); | 
|  | domain->pgd = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* When a page at a given level is being unlinked from its parent, we don't | 
|  | need to *modify* it at all. All we need to do is make a list of all the | 
|  | pages which can be freed just as soon as we've flushed the IOTLB and we | 
|  | know the hardware page-walk will no longer touch them. | 
|  | The 'pte' argument is the *parent* PTE, pointing to the page that is to | 
|  | be freed. */ | 
|  | static void dma_pte_list_pagetables(struct dmar_domain *domain, | 
|  | int level, struct dma_pte *pte, | 
|  | struct list_head *freelist) | 
|  | { | 
|  | struct page *pg; | 
|  |  | 
|  | pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); | 
|  | list_add_tail(&pg->lru, freelist); | 
|  |  | 
|  | if (level == 1) | 
|  | return; | 
|  |  | 
|  | pte = page_address(pg); | 
|  | do { | 
|  | if (dma_pte_present(pte) && !dma_pte_superpage(pte)) | 
|  | dma_pte_list_pagetables(domain, level - 1, pte, freelist); | 
|  | pte++; | 
|  | } while (!first_pte_in_page(pte)); | 
|  | } | 
|  |  | 
|  | static void dma_pte_clear_level(struct dmar_domain *domain, int level, | 
|  | struct dma_pte *pte, unsigned long pfn, | 
|  | unsigned long start_pfn, unsigned long last_pfn, | 
|  | struct list_head *freelist) | 
|  | { | 
|  | struct dma_pte *first_pte = NULL, *last_pte = NULL; | 
|  |  | 
|  | pfn = max(start_pfn, pfn); | 
|  | pte = &pte[pfn_level_offset(pfn, level)]; | 
|  |  | 
|  | do { | 
|  | unsigned long level_pfn = pfn & level_mask(level); | 
|  |  | 
|  | if (!dma_pte_present(pte)) | 
|  | goto next; | 
|  |  | 
|  | /* If range covers entire pagetable, free it */ | 
|  | if (start_pfn <= level_pfn && | 
|  | last_pfn >= level_pfn + level_size(level) - 1) { | 
|  | /* These suborbinate page tables are going away entirely. Don't | 
|  | bother to clear them; we're just going to *free* them. */ | 
|  | if (level > 1 && !dma_pte_superpage(pte)) | 
|  | dma_pte_list_pagetables(domain, level - 1, pte, freelist); | 
|  |  | 
|  | dma_clear_pte(pte); | 
|  | if (!first_pte) | 
|  | first_pte = pte; | 
|  | last_pte = pte; | 
|  | } else if (level > 1) { | 
|  | /* Recurse down into a level that isn't *entirely* obsolete */ | 
|  | dma_pte_clear_level(domain, level - 1, | 
|  | phys_to_virt(dma_pte_addr(pte)), | 
|  | level_pfn, start_pfn, last_pfn, | 
|  | freelist); | 
|  | } | 
|  | next: | 
|  | pfn = level_pfn + level_size(level); | 
|  | } while (!first_pte_in_page(++pte) && pfn <= last_pfn); | 
|  |  | 
|  | if (first_pte) | 
|  | domain_flush_cache(domain, first_pte, | 
|  | (void *)++last_pte - (void *)first_pte); | 
|  | } | 
|  |  | 
|  | /* We can't just free the pages because the IOMMU may still be walking | 
|  | the page tables, and may have cached the intermediate levels. The | 
|  | pages can only be freed after the IOTLB flush has been done. */ | 
|  | static void domain_unmap(struct dmar_domain *domain, unsigned long start_pfn, | 
|  | unsigned long last_pfn, struct list_head *freelist) | 
|  | { | 
|  | if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) || | 
|  | WARN_ON(start_pfn > last_pfn)) | 
|  | return; | 
|  |  | 
|  | /* we don't need lock here; nobody else touches the iova range */ | 
|  | dma_pte_clear_level(domain, agaw_to_level(domain->agaw), | 
|  | domain->pgd, 0, start_pfn, last_pfn, freelist); | 
|  |  | 
|  | /* free pgd */ | 
|  | if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { | 
|  | struct page *pgd_page = virt_to_page(domain->pgd); | 
|  | list_add_tail(&pgd_page->lru, freelist); | 
|  | domain->pgd = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* iommu handling */ | 
|  | static int iommu_alloc_root_entry(struct intel_iommu *iommu) | 
|  | { | 
|  | struct root_entry *root; | 
|  |  | 
|  | root = iommu_alloc_page_node(iommu->node, GFP_ATOMIC); | 
|  | if (!root) { | 
|  | pr_err("Allocating root entry for %s failed\n", | 
|  | iommu->name); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | __iommu_flush_cache(iommu, root, ROOT_SIZE); | 
|  | iommu->root_entry = root; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void iommu_set_root_entry(struct intel_iommu *iommu) | 
|  | { | 
|  | u64 addr; | 
|  | u32 sts; | 
|  | unsigned long flag; | 
|  |  | 
|  | addr = virt_to_phys(iommu->root_entry); | 
|  | if (sm_supported(iommu)) | 
|  | addr |= DMA_RTADDR_SMT; | 
|  |  | 
|  | raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
|  | dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); | 
|  |  | 
|  | writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
|  | readl, (sts & DMA_GSTS_RTPS), sts); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  |  | 
|  | /* | 
|  | * Hardware invalidates all DMA remapping hardware translation | 
|  | * caches as part of SRTP flow. | 
|  | */ | 
|  | if (cap_esrtps(iommu->cap)) | 
|  | return; | 
|  |  | 
|  | iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); | 
|  | if (sm_supported(iommu)) | 
|  | qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0); | 
|  | iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); | 
|  | } | 
|  |  | 
|  | void iommu_flush_write_buffer(struct intel_iommu *iommu) | 
|  | { | 
|  | u32 val; | 
|  | unsigned long flag; | 
|  |  | 
|  | if (!rwbf_quirk && !cap_rwbf(iommu->cap)) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
|  | writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
|  | readl, (!(val & DMA_GSTS_WBFS)), val); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  | } | 
|  |  | 
|  | /* return value determine if we need a write buffer flush */ | 
|  | static void __iommu_flush_context(struct intel_iommu *iommu, | 
|  | u16 did, u16 source_id, u8 function_mask, | 
|  | u64 type) | 
|  | { | 
|  | u64 val = 0; | 
|  | unsigned long flag; | 
|  |  | 
|  | switch (type) { | 
|  | case DMA_CCMD_GLOBAL_INVL: | 
|  | val = DMA_CCMD_GLOBAL_INVL; | 
|  | break; | 
|  | case DMA_CCMD_DOMAIN_INVL: | 
|  | val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); | 
|  | break; | 
|  | case DMA_CCMD_DEVICE_INVL: | 
|  | val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) | 
|  | | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); | 
|  | break; | 
|  | default: | 
|  | pr_warn("%s: Unexpected context-cache invalidation type 0x%llx\n", | 
|  | iommu->name, type); | 
|  | return; | 
|  | } | 
|  | val |= DMA_CCMD_ICC; | 
|  |  | 
|  | raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
|  | dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, | 
|  | dmar_readq, (!(val & DMA_CCMD_ICC)), val); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  | } | 
|  |  | 
|  | void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, | 
|  | unsigned int size_order, u64 type) | 
|  | { | 
|  | int tlb_offset = ecap_iotlb_offset(iommu->ecap); | 
|  | u64 val = 0, val_iva = 0; | 
|  | unsigned long flag; | 
|  |  | 
|  | switch (type) { | 
|  | case DMA_TLB_GLOBAL_FLUSH: | 
|  | /* global flush doesn't need set IVA_REG */ | 
|  | val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; | 
|  | break; | 
|  | case DMA_TLB_DSI_FLUSH: | 
|  | val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | 
|  | break; | 
|  | case DMA_TLB_PSI_FLUSH: | 
|  | val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | 
|  | /* IH bit is passed in as part of address */ | 
|  | val_iva = size_order | addr; | 
|  | break; | 
|  | default: | 
|  | pr_warn("%s: Unexpected iotlb invalidation type 0x%llx\n", | 
|  | iommu->name, type); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cap_write_drain(iommu->cap)) | 
|  | val |= DMA_TLB_WRITE_DRAIN; | 
|  |  | 
|  | raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
|  | /* Note: Only uses first TLB reg currently */ | 
|  | if (val_iva) | 
|  | dmar_writeq(iommu->reg + tlb_offset, val_iva); | 
|  | dmar_writeq(iommu->reg + tlb_offset + 8, val); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, tlb_offset + 8, | 
|  | dmar_readq, (!(val & DMA_TLB_IVT)), val); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  |  | 
|  | /* check IOTLB invalidation granularity */ | 
|  | if (DMA_TLB_IAIG(val) == 0) | 
|  | pr_err("Flush IOTLB failed\n"); | 
|  | if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) | 
|  | pr_debug("TLB flush request %Lx, actual %Lx\n", | 
|  | (unsigned long long)DMA_TLB_IIRG(type), | 
|  | (unsigned long long)DMA_TLB_IAIG(val)); | 
|  | } | 
|  |  | 
|  | static struct device_domain_info * | 
|  | domain_lookup_dev_info(struct dmar_domain *domain, | 
|  | struct intel_iommu *iommu, u8 bus, u8 devfn) | 
|  | { | 
|  | struct device_domain_info *info; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&domain->lock, flags); | 
|  | list_for_each_entry(info, &domain->devices, link) { | 
|  | if (info->iommu == iommu && info->bus == bus && | 
|  | info->devfn == devfn) { | 
|  | spin_unlock_irqrestore(&domain->lock, flags); | 
|  | return info; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&domain->lock, flags); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The extra devTLB flush quirk impacts those QAT devices with PCI device | 
|  | * IDs ranging from 0x4940 to 0x4943. It is exempted from risky_device() | 
|  | * check because it applies only to the built-in QAT devices and it doesn't | 
|  | * grant additional privileges. | 
|  | */ | 
|  | #define BUGGY_QAT_DEVID_MASK 0x4940 | 
|  | static bool dev_needs_extra_dtlb_flush(struct pci_dev *pdev) | 
|  | { | 
|  | if (pdev->vendor != PCI_VENDOR_ID_INTEL) | 
|  | return false; | 
|  |  | 
|  | if ((pdev->device & 0xfffc) != BUGGY_QAT_DEVID_MASK) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void iommu_enable_pci_ats(struct device_domain_info *info) | 
|  | { | 
|  | struct pci_dev *pdev; | 
|  |  | 
|  | if (!info->ats_supported) | 
|  | return; | 
|  |  | 
|  | pdev = to_pci_dev(info->dev); | 
|  | if (!pci_ats_page_aligned(pdev)) | 
|  | return; | 
|  |  | 
|  | if (!pci_enable_ats(pdev, VTD_PAGE_SHIFT)) | 
|  | info->ats_enabled = 1; | 
|  | } | 
|  |  | 
|  | static void iommu_disable_pci_ats(struct device_domain_info *info) | 
|  | { | 
|  | if (!info->ats_enabled) | 
|  | return; | 
|  |  | 
|  | pci_disable_ats(to_pci_dev(info->dev)); | 
|  | info->ats_enabled = 0; | 
|  | } | 
|  |  | 
|  | static void iommu_enable_pci_pri(struct device_domain_info *info) | 
|  | { | 
|  | struct pci_dev *pdev; | 
|  |  | 
|  | if (!info->ats_enabled || !info->pri_supported) | 
|  | return; | 
|  |  | 
|  | pdev = to_pci_dev(info->dev); | 
|  | /* PASID is required in PRG Response Message. */ | 
|  | if (info->pasid_enabled && !pci_prg_resp_pasid_required(pdev)) | 
|  | return; | 
|  |  | 
|  | if (pci_reset_pri(pdev)) | 
|  | return; | 
|  |  | 
|  | if (!pci_enable_pri(pdev, PRQ_DEPTH)) | 
|  | info->pri_enabled = 1; | 
|  | } | 
|  |  | 
|  | static void iommu_disable_pci_pri(struct device_domain_info *info) | 
|  | { | 
|  | if (!info->pri_enabled) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON(info->iopf_refcount)) | 
|  | iopf_queue_remove_device(info->iommu->iopf_queue, info->dev); | 
|  |  | 
|  | pci_disable_pri(to_pci_dev(info->dev)); | 
|  | info->pri_enabled = 0; | 
|  | } | 
|  |  | 
|  | static void intel_flush_iotlb_all(struct iommu_domain *domain) | 
|  | { | 
|  | cache_tag_flush_all(to_dmar_domain(domain)); | 
|  | } | 
|  |  | 
|  | static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) | 
|  | { | 
|  | u32 pmen; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap)) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irqsave(&iommu->register_lock, flags); | 
|  | pmen = readl(iommu->reg + DMAR_PMEN_REG); | 
|  | pmen &= ~DMA_PMEN_EPM; | 
|  | writel(pmen, iommu->reg + DMAR_PMEN_REG); | 
|  |  | 
|  | /* wait for the protected region status bit to clear */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, | 
|  | readl, !(pmen & DMA_PMEN_PRS), pmen); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); | 
|  | } | 
|  |  | 
|  | static void iommu_enable_translation(struct intel_iommu *iommu) | 
|  | { | 
|  | u32 sts; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&iommu->register_lock, flags); | 
|  | iommu->gcmd |= DMA_GCMD_TE; | 
|  | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
|  | readl, (sts & DMA_GSTS_TES), sts); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); | 
|  | } | 
|  |  | 
|  | static void iommu_disable_translation(struct intel_iommu *iommu) | 
|  | { | 
|  | u32 sts; | 
|  | unsigned long flag; | 
|  |  | 
|  | if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated && | 
|  | (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap))) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
|  | iommu->gcmd &= ~DMA_GCMD_TE; | 
|  | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
|  | readl, (!(sts & DMA_GSTS_TES)), sts); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  | } | 
|  |  | 
|  | static int iommu_init_domains(struct intel_iommu *iommu) | 
|  | { | 
|  | u32 ndomains; | 
|  |  | 
|  | ndomains = cap_ndoms(iommu->cap); | 
|  | pr_debug("%s: Number of Domains supported <%d>\n", | 
|  | iommu->name, ndomains); | 
|  |  | 
|  | spin_lock_init(&iommu->lock); | 
|  |  | 
|  | iommu->domain_ids = bitmap_zalloc(ndomains, GFP_KERNEL); | 
|  | if (!iommu->domain_ids) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * If Caching mode is set, then invalid translations are tagged | 
|  | * with domain-id 0, hence we need to pre-allocate it. We also | 
|  | * use domain-id 0 as a marker for non-allocated domain-id, so | 
|  | * make sure it is not used for a real domain. | 
|  | */ | 
|  | set_bit(0, iommu->domain_ids); | 
|  |  | 
|  | /* | 
|  | * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid | 
|  | * entry for first-level or pass-through translation modes should | 
|  | * be programmed with a domain id different from those used for | 
|  | * second-level or nested translation. We reserve a domain id for | 
|  | * this purpose. This domain id is also used for identity domain | 
|  | * in legacy mode. | 
|  | */ | 
|  | set_bit(FLPT_DEFAULT_DID, iommu->domain_ids); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void disable_dmar_iommu(struct intel_iommu *iommu) | 
|  | { | 
|  | if (!iommu->domain_ids) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * All iommu domains must have been detached from the devices, | 
|  | * hence there should be no domain IDs in use. | 
|  | */ | 
|  | if (WARN_ON(bitmap_weight(iommu->domain_ids, cap_ndoms(iommu->cap)) | 
|  | > NUM_RESERVED_DID)) | 
|  | return; | 
|  |  | 
|  | if (iommu->gcmd & DMA_GCMD_TE) | 
|  | iommu_disable_translation(iommu); | 
|  | } | 
|  |  | 
|  | static void free_dmar_iommu(struct intel_iommu *iommu) | 
|  | { | 
|  | if (iommu->domain_ids) { | 
|  | bitmap_free(iommu->domain_ids); | 
|  | iommu->domain_ids = NULL; | 
|  | } | 
|  |  | 
|  | if (iommu->copied_tables) { | 
|  | bitmap_free(iommu->copied_tables); | 
|  | iommu->copied_tables = NULL; | 
|  | } | 
|  |  | 
|  | /* free context mapping */ | 
|  | free_context_table(iommu); | 
|  |  | 
|  | if (ecap_prs(iommu->ecap)) | 
|  | intel_iommu_finish_prq(iommu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check and return whether first level is used by default for | 
|  | * DMA translation. | 
|  | */ | 
|  | static bool first_level_by_default(struct intel_iommu *iommu) | 
|  | { | 
|  | /* Only SL is available in legacy mode */ | 
|  | if (!sm_supported(iommu)) | 
|  | return false; | 
|  |  | 
|  | /* Only level (either FL or SL) is available, just use it */ | 
|  | if (ecap_flts(iommu->ecap) ^ ecap_slts(iommu->ecap)) | 
|  | return ecap_flts(iommu->ecap); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int domain_attach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu) | 
|  | { | 
|  | struct iommu_domain_info *info, *curr; | 
|  | unsigned long ndomains; | 
|  | int num, ret = -ENOSPC; | 
|  |  | 
|  | if (domain->domain.type == IOMMU_DOMAIN_SVA) | 
|  | return 0; | 
|  |  | 
|  | info = kzalloc(sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&iommu->lock); | 
|  | curr = xa_load(&domain->iommu_array, iommu->seq_id); | 
|  | if (curr) { | 
|  | curr->refcnt++; | 
|  | spin_unlock(&iommu->lock); | 
|  | kfree(info); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ndomains = cap_ndoms(iommu->cap); | 
|  | num = find_first_zero_bit(iommu->domain_ids, ndomains); | 
|  | if (num >= ndomains) { | 
|  | pr_err("%s: No free domain ids\n", iommu->name); | 
|  | goto err_unlock; | 
|  | } | 
|  |  | 
|  | set_bit(num, iommu->domain_ids); | 
|  | info->refcnt	= 1; | 
|  | info->did	= num; | 
|  | info->iommu	= iommu; | 
|  | curr = xa_cmpxchg(&domain->iommu_array, iommu->seq_id, | 
|  | NULL, info, GFP_ATOMIC); | 
|  | if (curr) { | 
|  | ret = xa_err(curr) ? : -EBUSY; | 
|  | goto err_clear; | 
|  | } | 
|  |  | 
|  | spin_unlock(&iommu->lock); | 
|  | return 0; | 
|  |  | 
|  | err_clear: | 
|  | clear_bit(info->did, iommu->domain_ids); | 
|  | err_unlock: | 
|  | spin_unlock(&iommu->lock); | 
|  | kfree(info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void domain_detach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu) | 
|  | { | 
|  | struct iommu_domain_info *info; | 
|  |  | 
|  | if (domain->domain.type == IOMMU_DOMAIN_SVA) | 
|  | return; | 
|  |  | 
|  | spin_lock(&iommu->lock); | 
|  | info = xa_load(&domain->iommu_array, iommu->seq_id); | 
|  | if (--info->refcnt == 0) { | 
|  | clear_bit(info->did, iommu->domain_ids); | 
|  | xa_erase(&domain->iommu_array, iommu->seq_id); | 
|  | domain->nid = NUMA_NO_NODE; | 
|  | kfree(info); | 
|  | } | 
|  | spin_unlock(&iommu->lock); | 
|  | } | 
|  |  | 
|  | static void domain_exit(struct dmar_domain *domain) | 
|  | { | 
|  | if (domain->pgd) { | 
|  | LIST_HEAD(freelist); | 
|  |  | 
|  | domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw), &freelist); | 
|  | iommu_put_pages_list(&freelist); | 
|  | } | 
|  |  | 
|  | if (WARN_ON(!list_empty(&domain->devices))) | 
|  | return; | 
|  |  | 
|  | kfree(domain->qi_batch); | 
|  | kfree(domain); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For kdump cases, old valid entries may be cached due to the | 
|  | * in-flight DMA and copied pgtable, but there is no unmapping | 
|  | * behaviour for them, thus we need an explicit cache flush for | 
|  | * the newly-mapped device. For kdump, at this point, the device | 
|  | * is supposed to finish reset at its driver probe stage, so no | 
|  | * in-flight DMA will exist, and we don't need to worry anymore | 
|  | * hereafter. | 
|  | */ | 
|  | static void copied_context_tear_down(struct intel_iommu *iommu, | 
|  | struct context_entry *context, | 
|  | u8 bus, u8 devfn) | 
|  | { | 
|  | u16 did_old; | 
|  |  | 
|  | if (!context_copied(iommu, bus, devfn)) | 
|  | return; | 
|  |  | 
|  | assert_spin_locked(&iommu->lock); | 
|  |  | 
|  | did_old = context_domain_id(context); | 
|  | context_clear_entry(context); | 
|  |  | 
|  | if (did_old < cap_ndoms(iommu->cap)) { | 
|  | iommu->flush.flush_context(iommu, did_old, | 
|  | PCI_DEVID(bus, devfn), | 
|  | DMA_CCMD_MASK_NOBIT, | 
|  | DMA_CCMD_DEVICE_INVL); | 
|  | iommu->flush.flush_iotlb(iommu, did_old, 0, 0, | 
|  | DMA_TLB_DSI_FLUSH); | 
|  | } | 
|  |  | 
|  | clear_context_copied(iommu, bus, devfn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's a non-present to present mapping. If hardware doesn't cache | 
|  | * non-present entry we only need to flush the write-buffer. If the | 
|  | * _does_ cache non-present entries, then it does so in the special | 
|  | * domain #0, which we have to flush: | 
|  | */ | 
|  | static void context_present_cache_flush(struct intel_iommu *iommu, u16 did, | 
|  | u8 bus, u8 devfn) | 
|  | { | 
|  | if (cap_caching_mode(iommu->cap)) { | 
|  | iommu->flush.flush_context(iommu, 0, | 
|  | PCI_DEVID(bus, devfn), | 
|  | DMA_CCMD_MASK_NOBIT, | 
|  | DMA_CCMD_DEVICE_INVL); | 
|  | iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); | 
|  | } else { | 
|  | iommu_flush_write_buffer(iommu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int domain_context_mapping_one(struct dmar_domain *domain, | 
|  | struct intel_iommu *iommu, | 
|  | u8 bus, u8 devfn) | 
|  | { | 
|  | struct device_domain_info *info = | 
|  | domain_lookup_dev_info(domain, iommu, bus, devfn); | 
|  | u16 did = domain_id_iommu(domain, iommu); | 
|  | int translation = CONTEXT_TT_MULTI_LEVEL; | 
|  | struct dma_pte *pgd = domain->pgd; | 
|  | struct context_entry *context; | 
|  | int ret; | 
|  |  | 
|  | pr_debug("Set context mapping for %02x:%02x.%d\n", | 
|  | bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); | 
|  |  | 
|  | spin_lock(&iommu->lock); | 
|  | ret = -ENOMEM; | 
|  | context = iommu_context_addr(iommu, bus, devfn, 1); | 
|  | if (!context) | 
|  | goto out_unlock; | 
|  |  | 
|  | ret = 0; | 
|  | if (context_present(context) && !context_copied(iommu, bus, devfn)) | 
|  | goto out_unlock; | 
|  |  | 
|  | copied_context_tear_down(iommu, context, bus, devfn); | 
|  | context_clear_entry(context); | 
|  | context_set_domain_id(context, did); | 
|  |  | 
|  | if (info && info->ats_supported) | 
|  | translation = CONTEXT_TT_DEV_IOTLB; | 
|  | else | 
|  | translation = CONTEXT_TT_MULTI_LEVEL; | 
|  |  | 
|  | context_set_address_root(context, virt_to_phys(pgd)); | 
|  | context_set_address_width(context, domain->agaw); | 
|  | context_set_translation_type(context, translation); | 
|  | context_set_fault_enable(context); | 
|  | context_set_present(context); | 
|  | if (!ecap_coherent(iommu->ecap)) | 
|  | clflush_cache_range(context, sizeof(*context)); | 
|  | context_present_cache_flush(iommu, did, bus, devfn); | 
|  | ret = 0; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&iommu->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int domain_context_mapping_cb(struct pci_dev *pdev, | 
|  | u16 alias, void *opaque) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(&pdev->dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | struct dmar_domain *domain = opaque; | 
|  |  | 
|  | return domain_context_mapping_one(domain, iommu, | 
|  | PCI_BUS_NUM(alias), alias & 0xff); | 
|  | } | 
|  |  | 
|  | static int | 
|  | domain_context_mapping(struct dmar_domain *domain, struct device *dev) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | u8 bus = info->bus, devfn = info->devfn; | 
|  | int ret; | 
|  |  | 
|  | if (!dev_is_pci(dev)) | 
|  | return domain_context_mapping_one(domain, iommu, bus, devfn); | 
|  |  | 
|  | ret = pci_for_each_dma_alias(to_pci_dev(dev), | 
|  | domain_context_mapping_cb, domain); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | iommu_enable_pci_ats(info); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return largest possible superpage level for a given mapping */ | 
|  | static int hardware_largepage_caps(struct dmar_domain *domain, unsigned long iov_pfn, | 
|  | unsigned long phy_pfn, unsigned long pages) | 
|  | { | 
|  | int support, level = 1; | 
|  | unsigned long pfnmerge; | 
|  |  | 
|  | support = domain->iommu_superpage; | 
|  |  | 
|  | /* To use a large page, the virtual *and* physical addresses | 
|  | must be aligned to 2MiB/1GiB/etc. Lower bits set in either | 
|  | of them will mean we have to use smaller pages. So just | 
|  | merge them and check both at once. */ | 
|  | pfnmerge = iov_pfn | phy_pfn; | 
|  |  | 
|  | while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { | 
|  | pages >>= VTD_STRIDE_SHIFT; | 
|  | if (!pages) | 
|  | break; | 
|  | pfnmerge >>= VTD_STRIDE_SHIFT; | 
|  | level++; | 
|  | support--; | 
|  | } | 
|  | return level; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that old small page tables are removed to make room for superpage(s). | 
|  | * We're going to add new large pages, so make sure we don't remove their parent | 
|  | * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared. | 
|  | */ | 
|  | static void switch_to_super_page(struct dmar_domain *domain, | 
|  | unsigned long start_pfn, | 
|  | unsigned long end_pfn, int level) | 
|  | { | 
|  | unsigned long lvl_pages = lvl_to_nr_pages(level); | 
|  | struct dma_pte *pte = NULL; | 
|  |  | 
|  | while (start_pfn <= end_pfn) { | 
|  | if (!pte) | 
|  | pte = pfn_to_dma_pte(domain, start_pfn, &level, | 
|  | GFP_ATOMIC); | 
|  |  | 
|  | if (dma_pte_present(pte)) { | 
|  | dma_pte_free_pagetable(domain, start_pfn, | 
|  | start_pfn + lvl_pages - 1, | 
|  | level + 1); | 
|  |  | 
|  | cache_tag_flush_range(domain, start_pfn << VTD_PAGE_SHIFT, | 
|  | end_pfn << VTD_PAGE_SHIFT, 0); | 
|  | } | 
|  |  | 
|  | pte++; | 
|  | start_pfn += lvl_pages; | 
|  | if (first_pte_in_page(pte)) | 
|  | pte = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | 
|  | unsigned long phys_pfn, unsigned long nr_pages, int prot, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct dma_pte *first_pte = NULL, *pte = NULL; | 
|  | unsigned int largepage_lvl = 0; | 
|  | unsigned long lvl_pages = 0; | 
|  | phys_addr_t pteval; | 
|  | u64 attr; | 
|  |  | 
|  | if (unlikely(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!(prot & DMA_PTE_WRITE) && domain->nested_parent) { | 
|  | pr_err_ratelimited("Read-only mapping is disallowed on the domain which serves as the parent in a nested configuration, due to HW errata (ERRATA_772415_SPR17)\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP); | 
|  | attr |= DMA_FL_PTE_PRESENT; | 
|  | if (domain->use_first_level) { | 
|  | attr |= DMA_FL_PTE_US | DMA_FL_PTE_ACCESS; | 
|  | if (prot & DMA_PTE_WRITE) | 
|  | attr |= DMA_FL_PTE_DIRTY; | 
|  | } | 
|  |  | 
|  | domain->has_mappings = true; | 
|  |  | 
|  | pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr; | 
|  |  | 
|  | while (nr_pages > 0) { | 
|  | uint64_t tmp; | 
|  |  | 
|  | if (!pte) { | 
|  | largepage_lvl = hardware_largepage_caps(domain, iov_pfn, | 
|  | phys_pfn, nr_pages); | 
|  |  | 
|  | pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl, | 
|  | gfp); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | first_pte = pte; | 
|  |  | 
|  | lvl_pages = lvl_to_nr_pages(largepage_lvl); | 
|  |  | 
|  | /* It is large page*/ | 
|  | if (largepage_lvl > 1) { | 
|  | unsigned long end_pfn; | 
|  | unsigned long pages_to_remove; | 
|  |  | 
|  | pteval |= DMA_PTE_LARGE_PAGE; | 
|  | pages_to_remove = min_t(unsigned long, nr_pages, | 
|  | nr_pte_to_next_page(pte) * lvl_pages); | 
|  | end_pfn = iov_pfn + pages_to_remove - 1; | 
|  | switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl); | 
|  | } else { | 
|  | pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; | 
|  | } | 
|  |  | 
|  | } | 
|  | /* We don't need lock here, nobody else | 
|  | * touches the iova range | 
|  | */ | 
|  | tmp = 0ULL; | 
|  | if (!try_cmpxchg64_local(&pte->val, &tmp, pteval)) { | 
|  | static int dumps = 5; | 
|  | pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", | 
|  | iov_pfn, tmp, (unsigned long long)pteval); | 
|  | if (dumps) { | 
|  | dumps--; | 
|  | debug_dma_dump_mappings(NULL); | 
|  | } | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | nr_pages -= lvl_pages; | 
|  | iov_pfn += lvl_pages; | 
|  | phys_pfn += lvl_pages; | 
|  | pteval += lvl_pages * VTD_PAGE_SIZE; | 
|  |  | 
|  | /* If the next PTE would be the first in a new page, then we | 
|  | * need to flush the cache on the entries we've just written. | 
|  | * And then we'll need to recalculate 'pte', so clear it and | 
|  | * let it get set again in the if (!pte) block above. | 
|  | * | 
|  | * If we're done (!nr_pages) we need to flush the cache too. | 
|  | * | 
|  | * Also if we've been setting superpages, we may need to | 
|  | * recalculate 'pte' and switch back to smaller pages for the | 
|  | * end of the mapping, if the trailing size is not enough to | 
|  | * use another superpage (i.e. nr_pages < lvl_pages). | 
|  | */ | 
|  | pte++; | 
|  | if (!nr_pages || first_pte_in_page(pte) || | 
|  | (largepage_lvl > 1 && nr_pages < lvl_pages)) { | 
|  | domain_flush_cache(domain, first_pte, | 
|  | (void *)pte - (void *)first_pte); | 
|  | pte = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn) | 
|  | { | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | struct context_entry *context; | 
|  | u16 did; | 
|  |  | 
|  | spin_lock(&iommu->lock); | 
|  | context = iommu_context_addr(iommu, bus, devfn, 0); | 
|  | if (!context) { | 
|  | spin_unlock(&iommu->lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | did = context_domain_id(context); | 
|  | context_clear_entry(context); | 
|  | __iommu_flush_cache(iommu, context, sizeof(*context)); | 
|  | spin_unlock(&iommu->lock); | 
|  | intel_context_flush_no_pasid(info, context, did); | 
|  | } | 
|  |  | 
|  | int __domain_setup_first_level(struct intel_iommu *iommu, | 
|  | struct device *dev, ioasid_t pasid, | 
|  | u16 did, pgd_t *pgd, int flags, | 
|  | struct iommu_domain *old) | 
|  | { | 
|  | if (!old) | 
|  | return intel_pasid_setup_first_level(iommu, dev, pgd, | 
|  | pasid, did, flags); | 
|  | return intel_pasid_replace_first_level(iommu, dev, pgd, pasid, did, | 
|  | iommu_domain_did(old, iommu), | 
|  | flags); | 
|  | } | 
|  |  | 
|  | static int domain_setup_second_level(struct intel_iommu *iommu, | 
|  | struct dmar_domain *domain, | 
|  | struct device *dev, ioasid_t pasid, | 
|  | struct iommu_domain *old) | 
|  | { | 
|  | if (!old) | 
|  | return intel_pasid_setup_second_level(iommu, domain, | 
|  | dev, pasid); | 
|  | return intel_pasid_replace_second_level(iommu, domain, dev, | 
|  | iommu_domain_did(old, iommu), | 
|  | pasid); | 
|  | } | 
|  |  | 
|  | static int domain_setup_passthrough(struct intel_iommu *iommu, | 
|  | struct device *dev, ioasid_t pasid, | 
|  | struct iommu_domain *old) | 
|  | { | 
|  | if (!old) | 
|  | return intel_pasid_setup_pass_through(iommu, dev, pasid); | 
|  | return intel_pasid_replace_pass_through(iommu, dev, | 
|  | iommu_domain_did(old, iommu), | 
|  | pasid); | 
|  | } | 
|  |  | 
|  | static int domain_setup_first_level(struct intel_iommu *iommu, | 
|  | struct dmar_domain *domain, | 
|  | struct device *dev, | 
|  | u32 pasid, struct iommu_domain *old) | 
|  | { | 
|  | struct dma_pte *pgd = domain->pgd; | 
|  | int level, flags = 0; | 
|  |  | 
|  | level = agaw_to_level(domain->agaw); | 
|  | if (level != 4 && level != 5) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (level == 5) | 
|  | flags |= PASID_FLAG_FL5LP; | 
|  |  | 
|  | if (domain->force_snooping) | 
|  | flags |= PASID_FLAG_PAGE_SNOOP; | 
|  |  | 
|  | return __domain_setup_first_level(iommu, dev, pasid, | 
|  | domain_id_iommu(domain, iommu), | 
|  | (pgd_t *)pgd, flags, old); | 
|  | } | 
|  |  | 
|  | static int dmar_domain_attach_device(struct dmar_domain *domain, | 
|  | struct device *dev) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | ret = domain_attach_iommu(domain, iommu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | info->domain = domain; | 
|  | spin_lock_irqsave(&domain->lock, flags); | 
|  | list_add(&info->link, &domain->devices); | 
|  | spin_unlock_irqrestore(&domain->lock, flags); | 
|  |  | 
|  | if (dev_is_real_dma_subdevice(dev)) | 
|  | return 0; | 
|  |  | 
|  | if (!sm_supported(iommu)) | 
|  | ret = domain_context_mapping(domain, dev); | 
|  | else if (domain->use_first_level) | 
|  | ret = domain_setup_first_level(iommu, domain, dev, | 
|  | IOMMU_NO_PASID, NULL); | 
|  | else | 
|  | ret = domain_setup_second_level(iommu, domain, dev, | 
|  | IOMMU_NO_PASID, NULL); | 
|  |  | 
|  | if (ret) | 
|  | goto out_block_translation; | 
|  |  | 
|  | ret = cache_tag_assign_domain(domain, dev, IOMMU_NO_PASID); | 
|  | if (ret) | 
|  | goto out_block_translation; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_block_translation: | 
|  | device_block_translation(dev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * device_rmrr_is_relaxable - Test whether the RMRR of this device | 
|  | * is relaxable (ie. is allowed to be not enforced under some conditions) | 
|  | * @dev: device handle | 
|  | * | 
|  | * We assume that PCI USB devices with RMRRs have them largely | 
|  | * for historical reasons and that the RMRR space is not actively used post | 
|  | * boot.  This exclusion may change if vendors begin to abuse it. | 
|  | * | 
|  | * The same exception is made for graphics devices, with the requirement that | 
|  | * any use of the RMRR regions will be torn down before assigning the device | 
|  | * to a guest. | 
|  | * | 
|  | * Return: true if the RMRR is relaxable, false otherwise | 
|  | */ | 
|  | static bool device_rmrr_is_relaxable(struct device *dev) | 
|  | { | 
|  | struct pci_dev *pdev; | 
|  |  | 
|  | if (!dev_is_pci(dev)) | 
|  | return false; | 
|  |  | 
|  | pdev = to_pci_dev(dev); | 
|  | if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int device_def_domain_type(struct device *dev) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  |  | 
|  | /* | 
|  | * Hardware does not support the passthrough translation mode. | 
|  | * Always use a dynamaic mapping domain. | 
|  | */ | 
|  | if (!ecap_pass_through(iommu->ecap)) | 
|  | return IOMMU_DOMAIN_DMA; | 
|  |  | 
|  | if (dev_is_pci(dev)) { | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  |  | 
|  | if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) | 
|  | return IOMMU_DOMAIN_IDENTITY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_iommu_init_qi(struct intel_iommu *iommu) | 
|  | { | 
|  | /* | 
|  | * Start from the sane iommu hardware state. | 
|  | * If the queued invalidation is already initialized by us | 
|  | * (for example, while enabling interrupt-remapping) then | 
|  | * we got the things already rolling from a sane state. | 
|  | */ | 
|  | if (!iommu->qi) { | 
|  | /* | 
|  | * Clear any previous faults. | 
|  | */ | 
|  | dmar_fault(-1, iommu); | 
|  | /* | 
|  | * Disable queued invalidation if supported and already enabled | 
|  | * before OS handover. | 
|  | */ | 
|  | dmar_disable_qi(iommu); | 
|  | } | 
|  |  | 
|  | if (dmar_enable_qi(iommu)) { | 
|  | /* | 
|  | * Queued Invalidate not enabled, use Register Based Invalidate | 
|  | */ | 
|  | iommu->flush.flush_context = __iommu_flush_context; | 
|  | iommu->flush.flush_iotlb = __iommu_flush_iotlb; | 
|  | pr_info("%s: Using Register based invalidation\n", | 
|  | iommu->name); | 
|  | } else { | 
|  | iommu->flush.flush_context = qi_flush_context; | 
|  | iommu->flush.flush_iotlb = qi_flush_iotlb; | 
|  | pr_info("%s: Using Queued invalidation\n", iommu->name); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int copy_context_table(struct intel_iommu *iommu, | 
|  | struct root_entry *old_re, | 
|  | struct context_entry **tbl, | 
|  | int bus, bool ext) | 
|  | { | 
|  | int tbl_idx, pos = 0, idx, devfn, ret = 0, did; | 
|  | struct context_entry *new_ce = NULL, ce; | 
|  | struct context_entry *old_ce = NULL; | 
|  | struct root_entry re; | 
|  | phys_addr_t old_ce_phys; | 
|  |  | 
|  | tbl_idx = ext ? bus * 2 : bus; | 
|  | memcpy(&re, old_re, sizeof(re)); | 
|  |  | 
|  | for (devfn = 0; devfn < 256; devfn++) { | 
|  | /* First calculate the correct index */ | 
|  | idx = (ext ? devfn * 2 : devfn) % 256; | 
|  |  | 
|  | if (idx == 0) { | 
|  | /* First save what we may have and clean up */ | 
|  | if (new_ce) { | 
|  | tbl[tbl_idx] = new_ce; | 
|  | __iommu_flush_cache(iommu, new_ce, | 
|  | VTD_PAGE_SIZE); | 
|  | pos = 1; | 
|  | } | 
|  |  | 
|  | if (old_ce) | 
|  | memunmap(old_ce); | 
|  |  | 
|  | ret = 0; | 
|  | if (devfn < 0x80) | 
|  | old_ce_phys = root_entry_lctp(&re); | 
|  | else | 
|  | old_ce_phys = root_entry_uctp(&re); | 
|  |  | 
|  | if (!old_ce_phys) { | 
|  | if (ext && devfn == 0) { | 
|  | /* No LCTP, try UCTP */ | 
|  | devfn = 0x7f; | 
|  | continue; | 
|  | } else { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | old_ce = memremap(old_ce_phys, PAGE_SIZE, | 
|  | MEMREMAP_WB); | 
|  | if (!old_ce) | 
|  | goto out; | 
|  |  | 
|  | new_ce = iommu_alloc_page_node(iommu->node, GFP_KERNEL); | 
|  | if (!new_ce) | 
|  | goto out_unmap; | 
|  |  | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | /* Now copy the context entry */ | 
|  | memcpy(&ce, old_ce + idx, sizeof(ce)); | 
|  |  | 
|  | if (!context_present(&ce)) | 
|  | continue; | 
|  |  | 
|  | did = context_domain_id(&ce); | 
|  | if (did >= 0 && did < cap_ndoms(iommu->cap)) | 
|  | set_bit(did, iommu->domain_ids); | 
|  |  | 
|  | set_context_copied(iommu, bus, devfn); | 
|  | new_ce[idx] = ce; | 
|  | } | 
|  |  | 
|  | tbl[tbl_idx + pos] = new_ce; | 
|  |  | 
|  | __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE); | 
|  |  | 
|  | out_unmap: | 
|  | memunmap(old_ce); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int copy_translation_tables(struct intel_iommu *iommu) | 
|  | { | 
|  | struct context_entry **ctxt_tbls; | 
|  | struct root_entry *old_rt; | 
|  | phys_addr_t old_rt_phys; | 
|  | int ctxt_table_entries; | 
|  | u64 rtaddr_reg; | 
|  | int bus, ret; | 
|  | bool new_ext, ext; | 
|  |  | 
|  | rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG); | 
|  | ext        = !!(rtaddr_reg & DMA_RTADDR_SMT); | 
|  | new_ext    = !!sm_supported(iommu); | 
|  |  | 
|  | /* | 
|  | * The RTT bit can only be changed when translation is disabled, | 
|  | * but disabling translation means to open a window for data | 
|  | * corruption. So bail out and don't copy anything if we would | 
|  | * have to change the bit. | 
|  | */ | 
|  | if (new_ext != ext) | 
|  | return -EINVAL; | 
|  |  | 
|  | iommu->copied_tables = bitmap_zalloc(BIT_ULL(16), GFP_KERNEL); | 
|  | if (!iommu->copied_tables) | 
|  | return -ENOMEM; | 
|  |  | 
|  | old_rt_phys = rtaddr_reg & VTD_PAGE_MASK; | 
|  | if (!old_rt_phys) | 
|  | return -EINVAL; | 
|  |  | 
|  | old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB); | 
|  | if (!old_rt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* This is too big for the stack - allocate it from slab */ | 
|  | ctxt_table_entries = ext ? 512 : 256; | 
|  | ret = -ENOMEM; | 
|  | ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL); | 
|  | if (!ctxt_tbls) | 
|  | goto out_unmap; | 
|  |  | 
|  | for (bus = 0; bus < 256; bus++) { | 
|  | ret = copy_context_table(iommu, &old_rt[bus], | 
|  | ctxt_tbls, bus, ext); | 
|  | if (ret) { | 
|  | pr_err("%s: Failed to copy context table for bus %d\n", | 
|  | iommu->name, bus); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock(&iommu->lock); | 
|  |  | 
|  | /* Context tables are copied, now write them to the root_entry table */ | 
|  | for (bus = 0; bus < 256; bus++) { | 
|  | int idx = ext ? bus * 2 : bus; | 
|  | u64 val; | 
|  |  | 
|  | if (ctxt_tbls[idx]) { | 
|  | val = virt_to_phys(ctxt_tbls[idx]) | 1; | 
|  | iommu->root_entry[bus].lo = val; | 
|  | } | 
|  |  | 
|  | if (!ext || !ctxt_tbls[idx + 1]) | 
|  | continue; | 
|  |  | 
|  | val = virt_to_phys(ctxt_tbls[idx + 1]) | 1; | 
|  | iommu->root_entry[bus].hi = val; | 
|  | } | 
|  |  | 
|  | spin_unlock(&iommu->lock); | 
|  |  | 
|  | kfree(ctxt_tbls); | 
|  |  | 
|  | __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE); | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | out_unmap: | 
|  | memunmap(old_rt); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __init init_dmars(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu; | 
|  | int ret; | 
|  |  | 
|  | for_each_iommu(iommu, drhd) { | 
|  | if (drhd->ignored) { | 
|  | iommu_disable_translation(iommu); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the max pasid size of all IOMMU's in the system. | 
|  | * We need to ensure the system pasid table is no bigger | 
|  | * than the smallest supported. | 
|  | */ | 
|  | if (pasid_supported(iommu)) { | 
|  | u32 temp = 2 << ecap_pss(iommu->ecap); | 
|  |  | 
|  | intel_pasid_max_id = min_t(u32, temp, | 
|  | intel_pasid_max_id); | 
|  | } | 
|  |  | 
|  | intel_iommu_init_qi(iommu); | 
|  |  | 
|  | ret = iommu_init_domains(iommu); | 
|  | if (ret) | 
|  | goto free_iommu; | 
|  |  | 
|  | init_translation_status(iommu); | 
|  |  | 
|  | if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { | 
|  | iommu_disable_translation(iommu); | 
|  | clear_translation_pre_enabled(iommu); | 
|  | pr_warn("Translation was enabled for %s but we are not in kdump mode\n", | 
|  | iommu->name); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TBD: | 
|  | * we could share the same root & context tables | 
|  | * among all IOMMU's. Need to Split it later. | 
|  | */ | 
|  | ret = iommu_alloc_root_entry(iommu); | 
|  | if (ret) | 
|  | goto free_iommu; | 
|  |  | 
|  | if (translation_pre_enabled(iommu)) { | 
|  | pr_info("Translation already enabled - trying to copy translation structures\n"); | 
|  |  | 
|  | ret = copy_translation_tables(iommu); | 
|  | if (ret) { | 
|  | /* | 
|  | * We found the IOMMU with translation | 
|  | * enabled - but failed to copy over the | 
|  | * old root-entry table. Try to proceed | 
|  | * by disabling translation now and | 
|  | * allocating a clean root-entry table. | 
|  | * This might cause DMAR faults, but | 
|  | * probably the dump will still succeed. | 
|  | */ | 
|  | pr_err("Failed to copy translation tables from previous kernel for %s\n", | 
|  | iommu->name); | 
|  | iommu_disable_translation(iommu); | 
|  | clear_translation_pre_enabled(iommu); | 
|  | } else { | 
|  | pr_info("Copied translation tables from previous kernel for %s\n", | 
|  | iommu->name); | 
|  | } | 
|  | } | 
|  |  | 
|  | intel_svm_check(iommu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that qi is enabled on all iommus, set the root entry and flush | 
|  | * caches. This is required on some Intel X58 chipsets, otherwise the | 
|  | * flush_context function will loop forever and the boot hangs. | 
|  | */ | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  | iommu_flush_write_buffer(iommu); | 
|  | iommu_set_root_entry(iommu); | 
|  | } | 
|  |  | 
|  | check_tylersburg_isoch(); | 
|  |  | 
|  | /* | 
|  | * for each drhd | 
|  | *   enable fault log | 
|  | *   global invalidate context cache | 
|  | *   global invalidate iotlb | 
|  | *   enable translation | 
|  | */ | 
|  | for_each_iommu(iommu, drhd) { | 
|  | if (drhd->ignored) { | 
|  | /* | 
|  | * we always have to disable PMRs or DMA may fail on | 
|  | * this device | 
|  | */ | 
|  | if (force_on) | 
|  | iommu_disable_protect_mem_regions(iommu); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | iommu_flush_write_buffer(iommu); | 
|  |  | 
|  | if (ecap_prs(iommu->ecap)) { | 
|  | /* | 
|  | * Call dmar_alloc_hwirq() with dmar_global_lock held, | 
|  | * could cause possible lock race condition. | 
|  | */ | 
|  | up_write(&dmar_global_lock); | 
|  | ret = intel_iommu_enable_prq(iommu); | 
|  | down_write(&dmar_global_lock); | 
|  | if (ret) | 
|  | goto free_iommu; | 
|  | } | 
|  |  | 
|  | ret = dmar_set_interrupt(iommu); | 
|  | if (ret) | 
|  | goto free_iommu; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_iommu: | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  | disable_dmar_iommu(iommu); | 
|  | free_dmar_iommu(iommu); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __init init_no_remapping_devices(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct device *dev; | 
|  | int i; | 
|  |  | 
|  | for_each_drhd_unit(drhd) { | 
|  | if (!drhd->include_all) { | 
|  | for_each_active_dev_scope(drhd->devices, | 
|  | drhd->devices_cnt, i, dev) | 
|  | break; | 
|  | /* ignore DMAR unit if no devices exist */ | 
|  | if (i == drhd->devices_cnt) | 
|  | drhd->ignored = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | for_each_active_drhd_unit(drhd) { | 
|  | if (drhd->include_all) | 
|  | continue; | 
|  |  | 
|  | for_each_active_dev_scope(drhd->devices, | 
|  | drhd->devices_cnt, i, dev) | 
|  | if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev))) | 
|  | break; | 
|  | if (i < drhd->devices_cnt) | 
|  | continue; | 
|  |  | 
|  | /* This IOMMU has *only* gfx devices. Either bypass it or | 
|  | set the gfx_mapped flag, as appropriate */ | 
|  | drhd->gfx_dedicated = 1; | 
|  | if (disable_igfx_iommu) | 
|  | drhd->ignored = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SUSPEND | 
|  | static int init_iommu_hw(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu = NULL; | 
|  | int ret; | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  | if (iommu->qi) { | 
|  | ret = dmar_reenable_qi(iommu); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | for_each_iommu(iommu, drhd) { | 
|  | if (drhd->ignored) { | 
|  | /* | 
|  | * we always have to disable PMRs or DMA may fail on | 
|  | * this device | 
|  | */ | 
|  | if (force_on) | 
|  | iommu_disable_protect_mem_regions(iommu); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | iommu_flush_write_buffer(iommu); | 
|  | iommu_set_root_entry(iommu); | 
|  | iommu_enable_translation(iommu); | 
|  | iommu_disable_protect_mem_regions(iommu); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void iommu_flush_all(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu; | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  | iommu->flush.flush_context(iommu, 0, 0, 0, | 
|  | DMA_CCMD_GLOBAL_INVL); | 
|  | iommu->flush.flush_iotlb(iommu, 0, 0, 0, | 
|  | DMA_TLB_GLOBAL_FLUSH); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int iommu_suspend(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu = NULL; | 
|  | unsigned long flag; | 
|  |  | 
|  | iommu_flush_all(); | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  | iommu_disable_translation(iommu); | 
|  |  | 
|  | raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
|  |  | 
|  | iommu->iommu_state[SR_DMAR_FECTL_REG] = | 
|  | readl(iommu->reg + DMAR_FECTL_REG); | 
|  | iommu->iommu_state[SR_DMAR_FEDATA_REG] = | 
|  | readl(iommu->reg + DMAR_FEDATA_REG); | 
|  | iommu->iommu_state[SR_DMAR_FEADDR_REG] = | 
|  | readl(iommu->reg + DMAR_FEADDR_REG); | 
|  | iommu->iommu_state[SR_DMAR_FEUADDR_REG] = | 
|  | readl(iommu->reg + DMAR_FEUADDR_REG); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void iommu_resume(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu = NULL; | 
|  | unsigned long flag; | 
|  |  | 
|  | if (init_iommu_hw()) { | 
|  | if (force_on) | 
|  | panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); | 
|  | else | 
|  | WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  |  | 
|  | raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
|  |  | 
|  | writel(iommu->iommu_state[SR_DMAR_FECTL_REG], | 
|  | iommu->reg + DMAR_FECTL_REG); | 
|  | writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], | 
|  | iommu->reg + DMAR_FEDATA_REG); | 
|  | writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], | 
|  | iommu->reg + DMAR_FEADDR_REG); | 
|  | writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], | 
|  | iommu->reg + DMAR_FEUADDR_REG); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct syscore_ops iommu_syscore_ops = { | 
|  | .resume		= iommu_resume, | 
|  | .suspend	= iommu_suspend, | 
|  | }; | 
|  |  | 
|  | static void __init init_iommu_pm_ops(void) | 
|  | { | 
|  | register_syscore_ops(&iommu_syscore_ops); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline void init_iommu_pm_ops(void) {} | 
|  | #endif	/* CONFIG_PM */ | 
|  |  | 
|  | static int __init rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr) | 
|  | { | 
|  | if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) || | 
|  | !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) || | 
|  | rmrr->end_address <= rmrr->base_address || | 
|  | arch_rmrr_sanity_check(rmrr)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg) | 
|  | { | 
|  | struct acpi_dmar_reserved_memory *rmrr; | 
|  | struct dmar_rmrr_unit *rmrru; | 
|  |  | 
|  | rmrr = (struct acpi_dmar_reserved_memory *)header; | 
|  | if (rmrr_sanity_check(rmrr)) { | 
|  | pr_warn(FW_BUG | 
|  | "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n" | 
|  | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | 
|  | rmrr->base_address, rmrr->end_address, | 
|  | dmi_get_system_info(DMI_BIOS_VENDOR), | 
|  | dmi_get_system_info(DMI_BIOS_VERSION), | 
|  | dmi_get_system_info(DMI_PRODUCT_VERSION)); | 
|  | add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); | 
|  | } | 
|  |  | 
|  | rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); | 
|  | if (!rmrru) | 
|  | goto out; | 
|  |  | 
|  | rmrru->hdr = header; | 
|  |  | 
|  | rmrru->base_address = rmrr->base_address; | 
|  | rmrru->end_address = rmrr->end_address; | 
|  |  | 
|  | rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1), | 
|  | ((void *)rmrr) + rmrr->header.length, | 
|  | &rmrru->devices_cnt); | 
|  | if (rmrru->devices_cnt && rmrru->devices == NULL) | 
|  | goto free_rmrru; | 
|  |  | 
|  | list_add(&rmrru->list, &dmar_rmrr_units); | 
|  |  | 
|  | return 0; | 
|  | free_rmrru: | 
|  | kfree(rmrru); | 
|  | out: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr) | 
|  | { | 
|  | struct dmar_atsr_unit *atsru; | 
|  | struct acpi_dmar_atsr *tmp; | 
|  |  | 
|  | list_for_each_entry_rcu(atsru, &dmar_atsr_units, list, | 
|  | dmar_rcu_check()) { | 
|  | tmp = (struct acpi_dmar_atsr *)atsru->hdr; | 
|  | if (atsr->segment != tmp->segment) | 
|  | continue; | 
|  | if (atsr->header.length != tmp->header.length) | 
|  | continue; | 
|  | if (memcmp(atsr, tmp, atsr->header.length) == 0) | 
|  | return atsru; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg) | 
|  | { | 
|  | struct acpi_dmar_atsr *atsr; | 
|  | struct dmar_atsr_unit *atsru; | 
|  |  | 
|  | if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) | 
|  | return 0; | 
|  |  | 
|  | atsr = container_of(hdr, struct acpi_dmar_atsr, header); | 
|  | atsru = dmar_find_atsr(atsr); | 
|  | if (atsru) | 
|  | return 0; | 
|  |  | 
|  | atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL); | 
|  | if (!atsru) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * If memory is allocated from slab by ACPI _DSM method, we need to | 
|  | * copy the memory content because the memory buffer will be freed | 
|  | * on return. | 
|  | */ | 
|  | atsru->hdr = (void *)(atsru + 1); | 
|  | memcpy(atsru->hdr, hdr, hdr->length); | 
|  | atsru->include_all = atsr->flags & 0x1; | 
|  | if (!atsru->include_all) { | 
|  | atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1), | 
|  | (void *)atsr + atsr->header.length, | 
|  | &atsru->devices_cnt); | 
|  | if (atsru->devices_cnt && atsru->devices == NULL) { | 
|  | kfree(atsru); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_add_rcu(&atsru->list, &dmar_atsr_units); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru) | 
|  | { | 
|  | dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt); | 
|  | kfree(atsru); | 
|  | } | 
|  |  | 
|  | int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg) | 
|  | { | 
|  | struct acpi_dmar_atsr *atsr; | 
|  | struct dmar_atsr_unit *atsru; | 
|  |  | 
|  | atsr = container_of(hdr, struct acpi_dmar_atsr, header); | 
|  | atsru = dmar_find_atsr(atsr); | 
|  | if (atsru) { | 
|  | list_del_rcu(&atsru->list); | 
|  | synchronize_rcu(); | 
|  | intel_iommu_free_atsr(atsru); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg) | 
|  | { | 
|  | int i; | 
|  | struct device *dev; | 
|  | struct acpi_dmar_atsr *atsr; | 
|  | struct dmar_atsr_unit *atsru; | 
|  |  | 
|  | atsr = container_of(hdr, struct acpi_dmar_atsr, header); | 
|  | atsru = dmar_find_atsr(atsr); | 
|  | if (!atsru) | 
|  | return 0; | 
|  |  | 
|  | if (!atsru->include_all && atsru->devices && atsru->devices_cnt) { | 
|  | for_each_active_dev_scope(atsru->devices, atsru->devices_cnt, | 
|  | i, dev) | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc) | 
|  | { | 
|  | struct dmar_satc_unit *satcu; | 
|  | struct acpi_dmar_satc *tmp; | 
|  |  | 
|  | list_for_each_entry_rcu(satcu, &dmar_satc_units, list, | 
|  | dmar_rcu_check()) { | 
|  | tmp = (struct acpi_dmar_satc *)satcu->hdr; | 
|  | if (satc->segment != tmp->segment) | 
|  | continue; | 
|  | if (satc->header.length != tmp->header.length) | 
|  | continue; | 
|  | if (memcmp(satc, tmp, satc->header.length) == 0) | 
|  | return satcu; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg) | 
|  | { | 
|  | struct acpi_dmar_satc *satc; | 
|  | struct dmar_satc_unit *satcu; | 
|  |  | 
|  | if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) | 
|  | return 0; | 
|  |  | 
|  | satc = container_of(hdr, struct acpi_dmar_satc, header); | 
|  | satcu = dmar_find_satc(satc); | 
|  | if (satcu) | 
|  | return 0; | 
|  |  | 
|  | satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL); | 
|  | if (!satcu) | 
|  | return -ENOMEM; | 
|  |  | 
|  | satcu->hdr = (void *)(satcu + 1); | 
|  | memcpy(satcu->hdr, hdr, hdr->length); | 
|  | satcu->atc_required = satc->flags & 0x1; | 
|  | satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1), | 
|  | (void *)satc + satc->header.length, | 
|  | &satcu->devices_cnt); | 
|  | if (satcu->devices_cnt && !satcu->devices) { | 
|  | kfree(satcu); | 
|  | return -ENOMEM; | 
|  | } | 
|  | list_add_rcu(&satcu->list, &dmar_satc_units); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_iommu_add(struct dmar_drhd_unit *dmaru) | 
|  | { | 
|  | struct intel_iommu *iommu = dmaru->iommu; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Disable translation if already enabled prior to OS handover. | 
|  | */ | 
|  | if (iommu->gcmd & DMA_GCMD_TE) | 
|  | iommu_disable_translation(iommu); | 
|  |  | 
|  | ret = iommu_init_domains(iommu); | 
|  | if (ret == 0) | 
|  | ret = iommu_alloc_root_entry(iommu); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | intel_svm_check(iommu); | 
|  |  | 
|  | if (dmaru->ignored) { | 
|  | /* | 
|  | * we always have to disable PMRs or DMA may fail on this device | 
|  | */ | 
|  | if (force_on) | 
|  | iommu_disable_protect_mem_regions(iommu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | intel_iommu_init_qi(iommu); | 
|  | iommu_flush_write_buffer(iommu); | 
|  |  | 
|  | if (ecap_prs(iommu->ecap)) { | 
|  | ret = intel_iommu_enable_prq(iommu); | 
|  | if (ret) | 
|  | goto disable_iommu; | 
|  | } | 
|  |  | 
|  | ret = dmar_set_interrupt(iommu); | 
|  | if (ret) | 
|  | goto disable_iommu; | 
|  |  | 
|  | iommu_set_root_entry(iommu); | 
|  | iommu_enable_translation(iommu); | 
|  |  | 
|  | iommu_disable_protect_mem_regions(iommu); | 
|  | return 0; | 
|  |  | 
|  | disable_iommu: | 
|  | disable_dmar_iommu(iommu); | 
|  | out: | 
|  | free_dmar_iommu(iommu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert) | 
|  | { | 
|  | int ret = 0; | 
|  | struct intel_iommu *iommu = dmaru->iommu; | 
|  |  | 
|  | if (!intel_iommu_enabled) | 
|  | return 0; | 
|  | if (iommu == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (insert) { | 
|  | ret = intel_iommu_add(dmaru); | 
|  | } else { | 
|  | disable_dmar_iommu(iommu); | 
|  | free_dmar_iommu(iommu); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void intel_iommu_free_dmars(void) | 
|  | { | 
|  | struct dmar_rmrr_unit *rmrru, *rmrr_n; | 
|  | struct dmar_atsr_unit *atsru, *atsr_n; | 
|  | struct dmar_satc_unit *satcu, *satc_n; | 
|  |  | 
|  | list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) { | 
|  | list_del(&rmrru->list); | 
|  | dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt); | 
|  | kfree(rmrru); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) { | 
|  | list_del(&atsru->list); | 
|  | intel_iommu_free_atsr(atsru); | 
|  | } | 
|  | list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) { | 
|  | list_del(&satcu->list); | 
|  | dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt); | 
|  | kfree(satcu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct dmar_satc_unit *dmar_find_matched_satc_unit(struct pci_dev *dev) | 
|  | { | 
|  | struct dmar_satc_unit *satcu; | 
|  | struct acpi_dmar_satc *satc; | 
|  | struct device *tmp; | 
|  | int i; | 
|  |  | 
|  | dev = pci_physfn(dev); | 
|  | rcu_read_lock(); | 
|  |  | 
|  | list_for_each_entry_rcu(satcu, &dmar_satc_units, list) { | 
|  | satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); | 
|  | if (satc->segment != pci_domain_nr(dev->bus)) | 
|  | continue; | 
|  | for_each_dev_scope(satcu->devices, satcu->devices_cnt, i, tmp) | 
|  | if (to_pci_dev(tmp) == dev) | 
|  | goto out; | 
|  | } | 
|  | satcu = NULL; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return satcu; | 
|  | } | 
|  |  | 
|  | static int dmar_ats_supported(struct pci_dev *dev, struct intel_iommu *iommu) | 
|  | { | 
|  | int i, ret = 1; | 
|  | struct pci_bus *bus; | 
|  | struct pci_dev *bridge = NULL; | 
|  | struct device *tmp; | 
|  | struct acpi_dmar_atsr *atsr; | 
|  | struct dmar_atsr_unit *atsru; | 
|  | struct dmar_satc_unit *satcu; | 
|  |  | 
|  | dev = pci_physfn(dev); | 
|  | satcu = dmar_find_matched_satc_unit(dev); | 
|  | if (satcu) | 
|  | /* | 
|  | * This device supports ATS as it is in SATC table. | 
|  | * When IOMMU is in legacy mode, enabling ATS is done | 
|  | * automatically by HW for the device that requires | 
|  | * ATS, hence OS should not enable this device ATS | 
|  | * to avoid duplicated TLB invalidation. | 
|  | */ | 
|  | return !(satcu->atc_required && !sm_supported(iommu)); | 
|  |  | 
|  | for (bus = dev->bus; bus; bus = bus->parent) { | 
|  | bridge = bus->self; | 
|  | /* If it's an integrated device, allow ATS */ | 
|  | if (!bridge) | 
|  | return 1; | 
|  | /* Connected via non-PCIe: no ATS */ | 
|  | if (!pci_is_pcie(bridge) || | 
|  | pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) | 
|  | return 0; | 
|  | /* If we found the root port, look it up in the ATSR */ | 
|  | if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) | 
|  | break; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { | 
|  | atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); | 
|  | if (atsr->segment != pci_domain_nr(dev->bus)) | 
|  | continue; | 
|  |  | 
|  | for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp) | 
|  | if (tmp == &bridge->dev) | 
|  | goto out; | 
|  |  | 
|  | if (atsru->include_all) | 
|  | goto out; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info) | 
|  | { | 
|  | int ret; | 
|  | struct dmar_rmrr_unit *rmrru; | 
|  | struct dmar_atsr_unit *atsru; | 
|  | struct dmar_satc_unit *satcu; | 
|  | struct acpi_dmar_atsr *atsr; | 
|  | struct acpi_dmar_reserved_memory *rmrr; | 
|  | struct acpi_dmar_satc *satc; | 
|  |  | 
|  | if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING) | 
|  | return 0; | 
|  |  | 
|  | list_for_each_entry(rmrru, &dmar_rmrr_units, list) { | 
|  | rmrr = container_of(rmrru->hdr, | 
|  | struct acpi_dmar_reserved_memory, header); | 
|  | if (info->event == BUS_NOTIFY_ADD_DEVICE) { | 
|  | ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1), | 
|  | ((void *)rmrr) + rmrr->header.length, | 
|  | rmrr->segment, rmrru->devices, | 
|  | rmrru->devices_cnt); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { | 
|  | dmar_remove_dev_scope(info, rmrr->segment, | 
|  | rmrru->devices, rmrru->devices_cnt); | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry(atsru, &dmar_atsr_units, list) { | 
|  | if (atsru->include_all) | 
|  | continue; | 
|  |  | 
|  | atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); | 
|  | if (info->event == BUS_NOTIFY_ADD_DEVICE) { | 
|  | ret = dmar_insert_dev_scope(info, (void *)(atsr + 1), | 
|  | (void *)atsr + atsr->header.length, | 
|  | atsr->segment, atsru->devices, | 
|  | atsru->devices_cnt); | 
|  | if (ret > 0) | 
|  | break; | 
|  | else if (ret < 0) | 
|  | return ret; | 
|  | } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { | 
|  | if (dmar_remove_dev_scope(info, atsr->segment, | 
|  | atsru->devices, atsru->devices_cnt)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | list_for_each_entry(satcu, &dmar_satc_units, list) { | 
|  | satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); | 
|  | if (info->event == BUS_NOTIFY_ADD_DEVICE) { | 
|  | ret = dmar_insert_dev_scope(info, (void *)(satc + 1), | 
|  | (void *)satc + satc->header.length, | 
|  | satc->segment, satcu->devices, | 
|  | satcu->devices_cnt); | 
|  | if (ret > 0) | 
|  | break; | 
|  | else if (ret < 0) | 
|  | return ret; | 
|  | } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { | 
|  | if (dmar_remove_dev_scope(info, satc->segment, | 
|  | satcu->devices, satcu->devices_cnt)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_disable_iommus(void) | 
|  | { | 
|  | struct intel_iommu *iommu = NULL; | 
|  | struct dmar_drhd_unit *drhd; | 
|  |  | 
|  | for_each_iommu(iommu, drhd) | 
|  | iommu_disable_translation(iommu); | 
|  | } | 
|  |  | 
|  | void intel_iommu_shutdown(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu = NULL; | 
|  |  | 
|  | if (no_iommu || dmar_disabled) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * All other CPUs were brought down, hotplug interrupts were disabled, | 
|  | * no lock and RCU checking needed anymore | 
|  | */ | 
|  | list_for_each_entry(drhd, &dmar_drhd_units, list) { | 
|  | iommu = drhd->iommu; | 
|  |  | 
|  | /* Disable PMRs explicitly here. */ | 
|  | iommu_disable_protect_mem_regions(iommu); | 
|  |  | 
|  | /* Make sure the IOMMUs are switched off */ | 
|  | iommu_disable_translation(iommu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct intel_iommu *dev_to_intel_iommu(struct device *dev) | 
|  | { | 
|  | struct iommu_device *iommu_dev = dev_to_iommu_device(dev); | 
|  |  | 
|  | return container_of(iommu_dev, struct intel_iommu, iommu); | 
|  | } | 
|  |  | 
|  | static ssize_t version_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct intel_iommu *iommu = dev_to_intel_iommu(dev); | 
|  | u32 ver = readl(iommu->reg + DMAR_VER_REG); | 
|  | return sysfs_emit(buf, "%d:%d\n", | 
|  | DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver)); | 
|  | } | 
|  | static DEVICE_ATTR_RO(version); | 
|  |  | 
|  | static ssize_t address_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct intel_iommu *iommu = dev_to_intel_iommu(dev); | 
|  | return sysfs_emit(buf, "%llx\n", iommu->reg_phys); | 
|  | } | 
|  | static DEVICE_ATTR_RO(address); | 
|  |  | 
|  | static ssize_t cap_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct intel_iommu *iommu = dev_to_intel_iommu(dev); | 
|  | return sysfs_emit(buf, "%llx\n", iommu->cap); | 
|  | } | 
|  | static DEVICE_ATTR_RO(cap); | 
|  |  | 
|  | static ssize_t ecap_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct intel_iommu *iommu = dev_to_intel_iommu(dev); | 
|  | return sysfs_emit(buf, "%llx\n", iommu->ecap); | 
|  | } | 
|  | static DEVICE_ATTR_RO(ecap); | 
|  |  | 
|  | static ssize_t domains_supported_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct intel_iommu *iommu = dev_to_intel_iommu(dev); | 
|  | return sysfs_emit(buf, "%ld\n", cap_ndoms(iommu->cap)); | 
|  | } | 
|  | static DEVICE_ATTR_RO(domains_supported); | 
|  |  | 
|  | static ssize_t domains_used_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct intel_iommu *iommu = dev_to_intel_iommu(dev); | 
|  | return sysfs_emit(buf, "%d\n", | 
|  | bitmap_weight(iommu->domain_ids, | 
|  | cap_ndoms(iommu->cap))); | 
|  | } | 
|  | static DEVICE_ATTR_RO(domains_used); | 
|  |  | 
|  | static struct attribute *intel_iommu_attrs[] = { | 
|  | &dev_attr_version.attr, | 
|  | &dev_attr_address.attr, | 
|  | &dev_attr_cap.attr, | 
|  | &dev_attr_ecap.attr, | 
|  | &dev_attr_domains_supported.attr, | 
|  | &dev_attr_domains_used.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group intel_iommu_group = { | 
|  | .name = "intel-iommu", | 
|  | .attrs = intel_iommu_attrs, | 
|  | }; | 
|  |  | 
|  | const struct attribute_group *intel_iommu_groups[] = { | 
|  | &intel_iommu_group, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static bool has_external_pci(void) | 
|  | { | 
|  | struct pci_dev *pdev = NULL; | 
|  |  | 
|  | for_each_pci_dev(pdev) | 
|  | if (pdev->external_facing) { | 
|  | pci_dev_put(pdev); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int __init platform_optin_force_iommu(void) | 
|  | { | 
|  | if (!dmar_platform_optin() || no_platform_optin || !has_external_pci()) | 
|  | return 0; | 
|  |  | 
|  | if (no_iommu || dmar_disabled) | 
|  | pr_info("Intel-IOMMU force enabled due to platform opt in\n"); | 
|  |  | 
|  | /* | 
|  | * If Intel-IOMMU is disabled by default, we will apply identity | 
|  | * map for all devices except those marked as being untrusted. | 
|  | */ | 
|  | if (dmar_disabled) | 
|  | iommu_set_default_passthrough(false); | 
|  |  | 
|  | dmar_disabled = 0; | 
|  | no_iommu = 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int __init probe_acpi_namespace_devices(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | /* To avoid a -Wunused-but-set-variable warning. */ | 
|  | struct intel_iommu *iommu __maybe_unused; | 
|  | struct device *dev; | 
|  | int i, ret = 0; | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  | for_each_active_dev_scope(drhd->devices, | 
|  | drhd->devices_cnt, i, dev) { | 
|  | struct acpi_device_physical_node *pn; | 
|  | struct acpi_device *adev; | 
|  |  | 
|  | if (dev->bus != &acpi_bus_type) | 
|  | continue; | 
|  |  | 
|  | up_read(&dmar_global_lock); | 
|  | adev = to_acpi_device(dev); | 
|  | mutex_lock(&adev->physical_node_lock); | 
|  | list_for_each_entry(pn, | 
|  | &adev->physical_node_list, node) { | 
|  | ret = iommu_probe_device(pn->dev); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&adev->physical_node_lock); | 
|  | down_read(&dmar_global_lock); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __init int tboot_force_iommu(void) | 
|  | { | 
|  | if (!tboot_enabled()) | 
|  | return 0; | 
|  |  | 
|  | if (no_iommu || dmar_disabled) | 
|  | pr_warn("Forcing Intel-IOMMU to enabled\n"); | 
|  |  | 
|  | dmar_disabled = 0; | 
|  | no_iommu = 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int __init intel_iommu_init(void) | 
|  | { | 
|  | int ret = -ENODEV; | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu; | 
|  |  | 
|  | /* | 
|  | * Intel IOMMU is required for a TXT/tboot launch or platform | 
|  | * opt in, so enforce that. | 
|  | */ | 
|  | force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) || | 
|  | platform_optin_force_iommu(); | 
|  |  | 
|  | down_write(&dmar_global_lock); | 
|  | if (dmar_table_init()) { | 
|  | if (force_on) | 
|  | panic("tboot: Failed to initialize DMAR table\n"); | 
|  | goto out_free_dmar; | 
|  | } | 
|  |  | 
|  | if (dmar_dev_scope_init() < 0) { | 
|  | if (force_on) | 
|  | panic("tboot: Failed to initialize DMAR device scope\n"); | 
|  | goto out_free_dmar; | 
|  | } | 
|  |  | 
|  | up_write(&dmar_global_lock); | 
|  |  | 
|  | /* | 
|  | * The bus notifier takes the dmar_global_lock, so lockdep will | 
|  | * complain later when we register it under the lock. | 
|  | */ | 
|  | dmar_register_bus_notifier(); | 
|  |  | 
|  | down_write(&dmar_global_lock); | 
|  |  | 
|  | if (!no_iommu) | 
|  | intel_iommu_debugfs_init(); | 
|  |  | 
|  | if (no_iommu || dmar_disabled) { | 
|  | /* | 
|  | * We exit the function here to ensure IOMMU's remapping and | 
|  | * mempool aren't setup, which means that the IOMMU's PMRs | 
|  | * won't be disabled via the call to init_dmars(). So disable | 
|  | * it explicitly here. The PMRs were setup by tboot prior to | 
|  | * calling SENTER, but the kernel is expected to reset/tear | 
|  | * down the PMRs. | 
|  | */ | 
|  | if (intel_iommu_tboot_noforce) { | 
|  | for_each_iommu(iommu, drhd) | 
|  | iommu_disable_protect_mem_regions(iommu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure the IOMMUs are switched off, even when we | 
|  | * boot into a kexec kernel and the previous kernel left | 
|  | * them enabled | 
|  | */ | 
|  | intel_disable_iommus(); | 
|  | goto out_free_dmar; | 
|  | } | 
|  |  | 
|  | if (list_empty(&dmar_rmrr_units)) | 
|  | pr_info("No RMRR found\n"); | 
|  |  | 
|  | if (list_empty(&dmar_atsr_units)) | 
|  | pr_info("No ATSR found\n"); | 
|  |  | 
|  | if (list_empty(&dmar_satc_units)) | 
|  | pr_info("No SATC found\n"); | 
|  |  | 
|  | init_no_remapping_devices(); | 
|  |  | 
|  | ret = init_dmars(); | 
|  | if (ret) { | 
|  | if (force_on) | 
|  | panic("tboot: Failed to initialize DMARs\n"); | 
|  | pr_err("Initialization failed\n"); | 
|  | goto out_free_dmar; | 
|  | } | 
|  | up_write(&dmar_global_lock); | 
|  |  | 
|  | init_iommu_pm_ops(); | 
|  |  | 
|  | down_read(&dmar_global_lock); | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  | /* | 
|  | * The flush queue implementation does not perform | 
|  | * page-selective invalidations that are required for efficient | 
|  | * TLB flushes in virtual environments.  The benefit of batching | 
|  | * is likely to be much lower than the overhead of synchronizing | 
|  | * the virtual and physical IOMMU page-tables. | 
|  | */ | 
|  | if (cap_caching_mode(iommu->cap) && | 
|  | !first_level_by_default(iommu)) { | 
|  | pr_info_once("IOMMU batching disallowed due to virtualization\n"); | 
|  | iommu_set_dma_strict(); | 
|  | } | 
|  | iommu_device_sysfs_add(&iommu->iommu, NULL, | 
|  | intel_iommu_groups, | 
|  | "%s", iommu->name); | 
|  | /* | 
|  | * The iommu device probe is protected by the iommu_probe_device_lock. | 
|  | * Release the dmar_global_lock before entering the device probe path | 
|  | * to avoid unnecessary lock order splat. | 
|  | */ | 
|  | up_read(&dmar_global_lock); | 
|  | iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); | 
|  | down_read(&dmar_global_lock); | 
|  |  | 
|  | iommu_pmu_register(iommu); | 
|  | } | 
|  |  | 
|  | if (probe_acpi_namespace_devices()) | 
|  | pr_warn("ACPI name space devices didn't probe correctly\n"); | 
|  |  | 
|  | /* Finally, we enable the DMA remapping hardware. */ | 
|  | for_each_iommu(iommu, drhd) { | 
|  | if (!drhd->ignored && !translation_pre_enabled(iommu)) | 
|  | iommu_enable_translation(iommu); | 
|  |  | 
|  | iommu_disable_protect_mem_regions(iommu); | 
|  | } | 
|  | up_read(&dmar_global_lock); | 
|  |  | 
|  | pr_info("Intel(R) Virtualization Technology for Directed I/O\n"); | 
|  |  | 
|  | intel_iommu_enabled = 1; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_dmar: | 
|  | intel_iommu_free_dmars(); | 
|  | up_write(&dmar_global_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque) | 
|  | { | 
|  | struct device_domain_info *info = opaque; | 
|  |  | 
|  | domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NB - intel-iommu lacks any sort of reference counting for the users of | 
|  | * dependent devices.  If multiple endpoints have intersecting dependent | 
|  | * devices, unbinding the driver from any one of them will possibly leave | 
|  | * the others unable to operate. | 
|  | */ | 
|  | static void domain_context_clear(struct device_domain_info *info) | 
|  | { | 
|  | if (!dev_is_pci(info->dev)) { | 
|  | domain_context_clear_one(info, info->bus, info->devfn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pci_for_each_dma_alias(to_pci_dev(info->dev), | 
|  | &domain_context_clear_one_cb, info); | 
|  | iommu_disable_pci_ats(info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the page table pointer in context or pasid table entries so that | 
|  | * all DMA requests without PASID from the device are blocked. If the page | 
|  | * table has been set, clean up the data structures. | 
|  | */ | 
|  | void device_block_translation(struct device *dev) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (info->domain) | 
|  | cache_tag_unassign_domain(info->domain, dev, IOMMU_NO_PASID); | 
|  |  | 
|  | if (!dev_is_real_dma_subdevice(dev)) { | 
|  | if (sm_supported(iommu)) | 
|  | intel_pasid_tear_down_entry(iommu, dev, | 
|  | IOMMU_NO_PASID, false); | 
|  | else | 
|  | domain_context_clear(info); | 
|  | } | 
|  |  | 
|  | if (!info->domain) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&info->domain->lock, flags); | 
|  | list_del(&info->link); | 
|  | spin_unlock_irqrestore(&info->domain->lock, flags); | 
|  |  | 
|  | domain_detach_iommu(info->domain, iommu); | 
|  | info->domain = NULL; | 
|  | } | 
|  |  | 
|  | static int blocking_domain_attach_dev(struct iommu_domain *domain, | 
|  | struct device *dev) | 
|  | { | 
|  | device_block_translation(dev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int blocking_domain_set_dev_pasid(struct iommu_domain *domain, | 
|  | struct device *dev, ioasid_t pasid, | 
|  | struct iommu_domain *old); | 
|  |  | 
|  | static struct iommu_domain blocking_domain = { | 
|  | .type = IOMMU_DOMAIN_BLOCKED, | 
|  | .ops = &(const struct iommu_domain_ops) { | 
|  | .attach_dev	= blocking_domain_attach_dev, | 
|  | .set_dev_pasid	= blocking_domain_set_dev_pasid, | 
|  | } | 
|  | }; | 
|  |  | 
|  | static int iommu_superpage_capability(struct intel_iommu *iommu, bool first_stage) | 
|  | { | 
|  | if (!intel_iommu_superpage) | 
|  | return 0; | 
|  |  | 
|  | if (first_stage) | 
|  | return cap_fl1gp_support(iommu->cap) ? 2 : 1; | 
|  |  | 
|  | return fls(cap_super_page_val(iommu->cap)); | 
|  | } | 
|  |  | 
|  | static struct dmar_domain *paging_domain_alloc(struct device *dev, bool first_stage) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | struct dmar_domain *domain; | 
|  | int addr_width; | 
|  |  | 
|  | domain = kzalloc(sizeof(*domain), GFP_KERNEL); | 
|  | if (!domain) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | INIT_LIST_HEAD(&domain->devices); | 
|  | INIT_LIST_HEAD(&domain->dev_pasids); | 
|  | INIT_LIST_HEAD(&domain->cache_tags); | 
|  | spin_lock_init(&domain->lock); | 
|  | spin_lock_init(&domain->cache_lock); | 
|  | xa_init(&domain->iommu_array); | 
|  |  | 
|  | domain->nid = dev_to_node(dev); | 
|  | domain->use_first_level = first_stage; | 
|  |  | 
|  | /* calculate the address width */ | 
|  | addr_width = agaw_to_width(iommu->agaw); | 
|  | if (addr_width > cap_mgaw(iommu->cap)) | 
|  | addr_width = cap_mgaw(iommu->cap); | 
|  | domain->gaw = addr_width; | 
|  | domain->agaw = iommu->agaw; | 
|  | domain->max_addr = __DOMAIN_MAX_ADDR(addr_width); | 
|  |  | 
|  | /* iommu memory access coherency */ | 
|  | domain->iommu_coherency = iommu_paging_structure_coherency(iommu); | 
|  |  | 
|  | /* pagesize bitmap */ | 
|  | domain->domain.pgsize_bitmap = SZ_4K; | 
|  | domain->iommu_superpage = iommu_superpage_capability(iommu, first_stage); | 
|  | domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain); | 
|  |  | 
|  | /* | 
|  | * IOVA aperture: First-level translation restricts the input-address | 
|  | * to a canonical address (i.e., address bits 63:N have the same value | 
|  | * as address bit [N-1], where N is 48-bits with 4-level paging and | 
|  | * 57-bits with 5-level paging). Hence, skip bit [N-1]. | 
|  | */ | 
|  | domain->domain.geometry.force_aperture = true; | 
|  | domain->domain.geometry.aperture_start = 0; | 
|  | if (first_stage) | 
|  | domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1); | 
|  | else | 
|  | domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw); | 
|  |  | 
|  | /* always allocate the top pgd */ | 
|  | domain->pgd = iommu_alloc_page_node(domain->nid, GFP_KERNEL); | 
|  | if (!domain->pgd) { | 
|  | kfree(domain); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | domain_flush_cache(domain, domain->pgd, PAGE_SIZE); | 
|  |  | 
|  | return domain; | 
|  | } | 
|  |  | 
|  | static struct iommu_domain * | 
|  | intel_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags, | 
|  | const struct iommu_user_data *user_data) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING; | 
|  | bool nested_parent = flags & IOMMU_HWPT_ALLOC_NEST_PARENT; | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | struct dmar_domain *dmar_domain; | 
|  | struct iommu_domain *domain; | 
|  | bool first_stage; | 
|  |  | 
|  | if (flags & | 
|  | (~(IOMMU_HWPT_ALLOC_NEST_PARENT | IOMMU_HWPT_ALLOC_DIRTY_TRACKING | | 
|  | IOMMU_HWPT_ALLOC_PASID))) | 
|  | return ERR_PTR(-EOPNOTSUPP); | 
|  | if (nested_parent && !nested_supported(iommu)) | 
|  | return ERR_PTR(-EOPNOTSUPP); | 
|  | if (user_data || (dirty_tracking && !ssads_supported(iommu))) | 
|  | return ERR_PTR(-EOPNOTSUPP); | 
|  |  | 
|  | /* | 
|  | * Always allocate the guest compatible page table unless | 
|  | * IOMMU_HWPT_ALLOC_NEST_PARENT or IOMMU_HWPT_ALLOC_DIRTY_TRACKING | 
|  | * is specified. | 
|  | */ | 
|  | if (nested_parent || dirty_tracking) { | 
|  | if (!sm_supported(iommu) || !ecap_slts(iommu->ecap)) | 
|  | return ERR_PTR(-EOPNOTSUPP); | 
|  | first_stage = false; | 
|  | } else { | 
|  | first_stage = first_level_by_default(iommu); | 
|  | } | 
|  |  | 
|  | dmar_domain = paging_domain_alloc(dev, first_stage); | 
|  | if (IS_ERR(dmar_domain)) | 
|  | return ERR_CAST(dmar_domain); | 
|  | domain = &dmar_domain->domain; | 
|  | domain->type = IOMMU_DOMAIN_UNMANAGED; | 
|  | domain->owner = &intel_iommu_ops; | 
|  | domain->ops = intel_iommu_ops.default_domain_ops; | 
|  |  | 
|  | if (nested_parent) { | 
|  | dmar_domain->nested_parent = true; | 
|  | INIT_LIST_HEAD(&dmar_domain->s1_domains); | 
|  | spin_lock_init(&dmar_domain->s1_lock); | 
|  | } | 
|  |  | 
|  | if (dirty_tracking) { | 
|  | if (dmar_domain->use_first_level) { | 
|  | iommu_domain_free(domain); | 
|  | return ERR_PTR(-EOPNOTSUPP); | 
|  | } | 
|  | domain->dirty_ops = &intel_dirty_ops; | 
|  | } | 
|  |  | 
|  | return domain; | 
|  | } | 
|  |  | 
|  | static void intel_iommu_domain_free(struct iommu_domain *domain) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
|  |  | 
|  | WARN_ON(dmar_domain->nested_parent && | 
|  | !list_empty(&dmar_domain->s1_domains)); | 
|  | domain_exit(dmar_domain); | 
|  | } | 
|  |  | 
|  | int paging_domain_compatible(struct iommu_domain *domain, struct device *dev) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | int addr_width; | 
|  |  | 
|  | if (WARN_ON_ONCE(!(domain->type & __IOMMU_DOMAIN_PAGING))) | 
|  | return -EPERM; | 
|  |  | 
|  | if (dmar_domain->force_snooping && !ecap_sc_support(iommu->ecap)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (domain->dirty_ops && !ssads_supported(iommu)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (dmar_domain->iommu_coherency != | 
|  | iommu_paging_structure_coherency(iommu)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (dmar_domain->iommu_superpage != | 
|  | iommu_superpage_capability(iommu, dmar_domain->use_first_level)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (dmar_domain->use_first_level && | 
|  | (!sm_supported(iommu) || !ecap_flts(iommu->ecap))) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* check if this iommu agaw is sufficient for max mapped address */ | 
|  | addr_width = agaw_to_width(iommu->agaw); | 
|  | if (addr_width > cap_mgaw(iommu->cap)) | 
|  | addr_width = cap_mgaw(iommu->cap); | 
|  |  | 
|  | if (dmar_domain->gaw > addr_width || dmar_domain->agaw > iommu->agaw) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev) && | 
|  | context_copied(iommu, info->bus, info->devfn)) | 
|  | return intel_pasid_setup_sm_context(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_iommu_attach_device(struct iommu_domain *domain, | 
|  | struct device *dev) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | device_block_translation(dev); | 
|  |  | 
|  | ret = paging_domain_compatible(domain, dev); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return dmar_domain_attach_device(to_dmar_domain(domain), dev); | 
|  | } | 
|  |  | 
|  | static int intel_iommu_map(struct iommu_domain *domain, | 
|  | unsigned long iova, phys_addr_t hpa, | 
|  | size_t size, int iommu_prot, gfp_t gfp) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
|  | u64 max_addr; | 
|  | int prot = 0; | 
|  |  | 
|  | if (iommu_prot & IOMMU_READ) | 
|  | prot |= DMA_PTE_READ; | 
|  | if (iommu_prot & IOMMU_WRITE) | 
|  | prot |= DMA_PTE_WRITE; | 
|  | if (dmar_domain->set_pte_snp) | 
|  | prot |= DMA_PTE_SNP; | 
|  |  | 
|  | max_addr = iova + size; | 
|  | if (dmar_domain->max_addr < max_addr) { | 
|  | u64 end; | 
|  |  | 
|  | /* check if minimum agaw is sufficient for mapped address */ | 
|  | end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; | 
|  | if (end < max_addr) { | 
|  | pr_err("%s: iommu width (%d) is not " | 
|  | "sufficient for the mapped address (%llx)\n", | 
|  | __func__, dmar_domain->gaw, max_addr); | 
|  | return -EFAULT; | 
|  | } | 
|  | dmar_domain->max_addr = max_addr; | 
|  | } | 
|  | /* Round up size to next multiple of PAGE_SIZE, if it and | 
|  | the low bits of hpa would take us onto the next page */ | 
|  | size = aligned_nrpages(hpa, size); | 
|  | return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, | 
|  | hpa >> VTD_PAGE_SHIFT, size, prot, gfp); | 
|  | } | 
|  |  | 
|  | static int intel_iommu_map_pages(struct iommu_domain *domain, | 
|  | unsigned long iova, phys_addr_t paddr, | 
|  | size_t pgsize, size_t pgcount, | 
|  | int prot, gfp_t gfp, size_t *mapped) | 
|  | { | 
|  | unsigned long pgshift = __ffs(pgsize); | 
|  | size_t size = pgcount << pgshift; | 
|  | int ret; | 
|  |  | 
|  | if (pgsize != SZ_4K && pgsize != SZ_2M && pgsize != SZ_1G) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!IS_ALIGNED(iova | paddr, pgsize)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = intel_iommu_map(domain, iova, paddr, size, prot, gfp); | 
|  | if (!ret && mapped) | 
|  | *mapped = size; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static size_t intel_iommu_unmap(struct iommu_domain *domain, | 
|  | unsigned long iova, size_t size, | 
|  | struct iommu_iotlb_gather *gather) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
|  | unsigned long start_pfn, last_pfn; | 
|  | int level = 0; | 
|  |  | 
|  | /* Cope with horrid API which requires us to unmap more than the | 
|  | size argument if it happens to be a large-page mapping. */ | 
|  | if (unlikely(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, | 
|  | &level, GFP_ATOMIC))) | 
|  | return 0; | 
|  |  | 
|  | if (size < VTD_PAGE_SIZE << level_to_offset_bits(level)) | 
|  | size = VTD_PAGE_SIZE << level_to_offset_bits(level); | 
|  |  | 
|  | start_pfn = iova >> VTD_PAGE_SHIFT; | 
|  | last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT; | 
|  |  | 
|  | domain_unmap(dmar_domain, start_pfn, last_pfn, &gather->freelist); | 
|  |  | 
|  | if (dmar_domain->max_addr == iova + size) | 
|  | dmar_domain->max_addr = iova; | 
|  |  | 
|  | /* | 
|  | * We do not use page-selective IOTLB invalidation in flush queue, | 
|  | * so there is no need to track page and sync iotlb. | 
|  | */ | 
|  | if (!iommu_iotlb_gather_queued(gather)) | 
|  | iommu_iotlb_gather_add_page(domain, gather, iova, size); | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static size_t intel_iommu_unmap_pages(struct iommu_domain *domain, | 
|  | unsigned long iova, | 
|  | size_t pgsize, size_t pgcount, | 
|  | struct iommu_iotlb_gather *gather) | 
|  | { | 
|  | unsigned long pgshift = __ffs(pgsize); | 
|  | size_t size = pgcount << pgshift; | 
|  |  | 
|  | return intel_iommu_unmap(domain, iova, size, gather); | 
|  | } | 
|  |  | 
|  | static void intel_iommu_tlb_sync(struct iommu_domain *domain, | 
|  | struct iommu_iotlb_gather *gather) | 
|  | { | 
|  | cache_tag_flush_range(to_dmar_domain(domain), gather->start, | 
|  | gather->end, list_empty(&gather->freelist)); | 
|  | iommu_put_pages_list(&gather->freelist); | 
|  | } | 
|  |  | 
|  | static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, | 
|  | dma_addr_t iova) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
|  | struct dma_pte *pte; | 
|  | int level = 0; | 
|  | u64 phys = 0; | 
|  |  | 
|  | pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level, | 
|  | GFP_ATOMIC); | 
|  | if (pte && dma_pte_present(pte)) | 
|  | phys = dma_pte_addr(pte) + | 
|  | (iova & (BIT_MASK(level_to_offset_bits(level) + | 
|  | VTD_PAGE_SHIFT) - 1)); | 
|  |  | 
|  | return phys; | 
|  | } | 
|  |  | 
|  | static bool domain_support_force_snooping(struct dmar_domain *domain) | 
|  | { | 
|  | struct device_domain_info *info; | 
|  | bool support = true; | 
|  |  | 
|  | assert_spin_locked(&domain->lock); | 
|  | list_for_each_entry(info, &domain->devices, link) { | 
|  | if (!ecap_sc_support(info->iommu->ecap)) { | 
|  | support = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return support; | 
|  | } | 
|  |  | 
|  | static void domain_set_force_snooping(struct dmar_domain *domain) | 
|  | { | 
|  | struct device_domain_info *info; | 
|  |  | 
|  | assert_spin_locked(&domain->lock); | 
|  | /* | 
|  | * Second level page table supports per-PTE snoop control. The | 
|  | * iommu_map() interface will handle this by setting SNP bit. | 
|  | */ | 
|  | if (!domain->use_first_level) { | 
|  | domain->set_pte_snp = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(info, &domain->devices, link) | 
|  | intel_pasid_setup_page_snoop_control(info->iommu, info->dev, | 
|  | IOMMU_NO_PASID); | 
|  | } | 
|  |  | 
|  | static bool intel_iommu_enforce_cache_coherency(struct iommu_domain *domain) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (dmar_domain->force_snooping) | 
|  | return true; | 
|  |  | 
|  | spin_lock_irqsave(&dmar_domain->lock, flags); | 
|  | if (!domain_support_force_snooping(dmar_domain) || | 
|  | (!dmar_domain->use_first_level && dmar_domain->has_mappings)) { | 
|  | spin_unlock_irqrestore(&dmar_domain->lock, flags); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | domain_set_force_snooping(dmar_domain); | 
|  | dmar_domain->force_snooping = true; | 
|  | spin_unlock_irqrestore(&dmar_domain->lock, flags); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool intel_iommu_capable(struct device *dev, enum iommu_cap cap) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  |  | 
|  | switch (cap) { | 
|  | case IOMMU_CAP_CACHE_COHERENCY: | 
|  | case IOMMU_CAP_DEFERRED_FLUSH: | 
|  | return true; | 
|  | case IOMMU_CAP_PRE_BOOT_PROTECTION: | 
|  | return dmar_platform_optin(); | 
|  | case IOMMU_CAP_ENFORCE_CACHE_COHERENCY: | 
|  | return ecap_sc_support(info->iommu->ecap); | 
|  | case IOMMU_CAP_DIRTY_TRACKING: | 
|  | return ssads_supported(info->iommu); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct iommu_device *intel_iommu_probe_device(struct device *dev) | 
|  | { | 
|  | struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL; | 
|  | struct device_domain_info *info; | 
|  | struct intel_iommu *iommu; | 
|  | u8 bus, devfn; | 
|  | int ret; | 
|  |  | 
|  | iommu = device_lookup_iommu(dev, &bus, &devfn); | 
|  | if (!iommu || !iommu->iommu.ops) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | info = kzalloc(sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (dev_is_real_dma_subdevice(dev)) { | 
|  | info->bus = pdev->bus->number; | 
|  | info->devfn = pdev->devfn; | 
|  | info->segment = pci_domain_nr(pdev->bus); | 
|  | } else { | 
|  | info->bus = bus; | 
|  | info->devfn = devfn; | 
|  | info->segment = iommu->segment; | 
|  | } | 
|  |  | 
|  | info->dev = dev; | 
|  | info->iommu = iommu; | 
|  | if (dev_is_pci(dev)) { | 
|  | if (ecap_dev_iotlb_support(iommu->ecap) && | 
|  | pci_ats_supported(pdev) && | 
|  | dmar_ats_supported(pdev, iommu)) { | 
|  | info->ats_supported = 1; | 
|  | info->dtlb_extra_inval = dev_needs_extra_dtlb_flush(pdev); | 
|  |  | 
|  | /* | 
|  | * For IOMMU that supports device IOTLB throttling | 
|  | * (DIT), we assign PFSID to the invalidation desc | 
|  | * of a VF such that IOMMU HW can gauge queue depth | 
|  | * at PF level. If DIT is not set, PFSID will be | 
|  | * treated as reserved, which should be set to 0. | 
|  | */ | 
|  | if (ecap_dit(iommu->ecap)) | 
|  | info->pfsid = pci_dev_id(pci_physfn(pdev)); | 
|  | info->ats_qdep = pci_ats_queue_depth(pdev); | 
|  | } | 
|  | if (sm_supported(iommu)) { | 
|  | if (pasid_supported(iommu)) { | 
|  | int features = pci_pasid_features(pdev); | 
|  |  | 
|  | if (features >= 0) | 
|  | info->pasid_supported = features | 1; | 
|  | } | 
|  |  | 
|  | if (info->ats_supported && ecap_prs(iommu->ecap) && | 
|  | pci_pri_supported(pdev)) | 
|  | info->pri_supported = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | dev_iommu_priv_set(dev, info); | 
|  | if (pdev && pci_ats_supported(pdev)) { | 
|  | pci_prepare_ats(pdev, VTD_PAGE_SHIFT); | 
|  | ret = device_rbtree_insert(iommu, info); | 
|  | if (ret) | 
|  | goto free; | 
|  | } | 
|  |  | 
|  | if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) { | 
|  | ret = intel_pasid_alloc_table(dev); | 
|  | if (ret) { | 
|  | dev_err(dev, "PASID table allocation failed\n"); | 
|  | goto clear_rbtree; | 
|  | } | 
|  |  | 
|  | if (!context_copied(iommu, info->bus, info->devfn)) { | 
|  | ret = intel_pasid_setup_sm_context(dev); | 
|  | if (ret) | 
|  | goto free_table; | 
|  | } | 
|  | } | 
|  |  | 
|  | intel_iommu_debugfs_create_dev(info); | 
|  |  | 
|  | /* | 
|  | * The PCIe spec, in its wisdom, declares that the behaviour of the | 
|  | * device is undefined if you enable PASID support after ATS support. | 
|  | * So always enable PASID support on devices which have it, even if | 
|  | * we can't yet know if we're ever going to use it. | 
|  | */ | 
|  | if (info->pasid_supported && | 
|  | !pci_enable_pasid(pdev, info->pasid_supported & ~1)) | 
|  | info->pasid_enabled = 1; | 
|  |  | 
|  | if (sm_supported(iommu)) | 
|  | iommu_enable_pci_ats(info); | 
|  | iommu_enable_pci_pri(info); | 
|  |  | 
|  | return &iommu->iommu; | 
|  | free_table: | 
|  | intel_pasid_free_table(dev); | 
|  | clear_rbtree: | 
|  | device_rbtree_remove(info); | 
|  | free: | 
|  | kfree(info); | 
|  |  | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static void intel_iommu_release_device(struct device *dev) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  |  | 
|  | iommu_disable_pci_pri(info); | 
|  | iommu_disable_pci_ats(info); | 
|  |  | 
|  | if (info->pasid_enabled) { | 
|  | pci_disable_pasid(to_pci_dev(dev)); | 
|  | info->pasid_enabled = 0; | 
|  | } | 
|  |  | 
|  | mutex_lock(&iommu->iopf_lock); | 
|  | if (dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev))) | 
|  | device_rbtree_remove(info); | 
|  | mutex_unlock(&iommu->iopf_lock); | 
|  |  | 
|  | if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev) && | 
|  | !context_copied(iommu, info->bus, info->devfn)) | 
|  | intel_pasid_teardown_sm_context(dev); | 
|  |  | 
|  | intel_pasid_free_table(dev); | 
|  | intel_iommu_debugfs_remove_dev(info); | 
|  | kfree(info); | 
|  | set_dma_ops(dev, NULL); | 
|  | } | 
|  |  | 
|  | static void intel_iommu_get_resv_regions(struct device *device, | 
|  | struct list_head *head) | 
|  | { | 
|  | int prot = DMA_PTE_READ | DMA_PTE_WRITE; | 
|  | struct iommu_resv_region *reg; | 
|  | struct dmar_rmrr_unit *rmrr; | 
|  | struct device *i_dev; | 
|  | int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_rmrr_units(rmrr) { | 
|  | for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, | 
|  | i, i_dev) { | 
|  | struct iommu_resv_region *resv; | 
|  | enum iommu_resv_type type; | 
|  | size_t length; | 
|  |  | 
|  | if (i_dev != device && | 
|  | !is_downstream_to_pci_bridge(device, i_dev)) | 
|  | continue; | 
|  |  | 
|  | length = rmrr->end_address - rmrr->base_address + 1; | 
|  |  | 
|  | type = device_rmrr_is_relaxable(device) ? | 
|  | IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT; | 
|  |  | 
|  | resv = iommu_alloc_resv_region(rmrr->base_address, | 
|  | length, prot, type, | 
|  | GFP_ATOMIC); | 
|  | if (!resv) | 
|  | break; | 
|  |  | 
|  | list_add_tail(&resv->list, head); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA | 
|  | if (dev_is_pci(device)) { | 
|  | struct pci_dev *pdev = to_pci_dev(device); | 
|  |  | 
|  | if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) { | 
|  | reg = iommu_alloc_resv_region(0, 1UL << 24, prot, | 
|  | IOMMU_RESV_DIRECT_RELAXABLE, | 
|  | GFP_KERNEL); | 
|  | if (reg) | 
|  | list_add_tail(®->list, head); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */ | 
|  |  | 
|  | reg = iommu_alloc_resv_region(IOAPIC_RANGE_START, | 
|  | IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1, | 
|  | 0, IOMMU_RESV_MSI, GFP_KERNEL); | 
|  | if (!reg) | 
|  | return; | 
|  | list_add_tail(®->list, head); | 
|  | } | 
|  |  | 
|  | static struct iommu_group *intel_iommu_device_group(struct device *dev) | 
|  | { | 
|  | if (dev_is_pci(dev)) | 
|  | return pci_device_group(dev); | 
|  | return generic_device_group(dev); | 
|  | } | 
|  |  | 
|  | int intel_iommu_enable_iopf(struct device *dev) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | int ret; | 
|  |  | 
|  | if (!info->pri_enabled) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (info->iopf_refcount) { | 
|  | info->iopf_refcount++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = iopf_queue_add_device(iommu->iopf_queue, dev); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | info->iopf_refcount = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void intel_iommu_disable_iopf(struct device *dev) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  |  | 
|  | if (WARN_ON(!info->pri_enabled || !info->iopf_refcount)) | 
|  | return; | 
|  |  | 
|  | if (--info->iopf_refcount) | 
|  | return; | 
|  |  | 
|  | iopf_queue_remove_device(iommu->iopf_queue, dev); | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat) | 
|  | { | 
|  | switch (feat) { | 
|  | case IOMMU_DEV_FEAT_IOPF: | 
|  | return intel_iommu_enable_iopf(dev); | 
|  |  | 
|  | case IOMMU_DEV_FEAT_SVA: | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat) | 
|  | { | 
|  | switch (feat) { | 
|  | case IOMMU_DEV_FEAT_IOPF: | 
|  | intel_iommu_disable_iopf(dev); | 
|  | return 0; | 
|  |  | 
|  | case IOMMU_DEV_FEAT_SVA: | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool intel_iommu_is_attach_deferred(struct device *dev) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  |  | 
|  | return translation_pre_enabled(info->iommu) && !info->domain; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the device does not live on an external facing PCI port that is | 
|  | * marked as untrusted. Such devices should not be able to apply quirks and | 
|  | * thus not be able to bypass the IOMMU restrictions. | 
|  | */ | 
|  | static bool risky_device(struct pci_dev *pdev) | 
|  | { | 
|  | if (pdev->untrusted) { | 
|  | pci_info(pdev, | 
|  | "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n", | 
|  | pdev->vendor, pdev->device); | 
|  | pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n"); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int intel_iommu_iotlb_sync_map(struct iommu_domain *domain, | 
|  | unsigned long iova, size_t size) | 
|  | { | 
|  | cache_tag_flush_range_np(to_dmar_domain(domain), iova, iova + size - 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void domain_remove_dev_pasid(struct iommu_domain *domain, | 
|  | struct device *dev, ioasid_t pasid) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct dev_pasid_info *curr, *dev_pasid = NULL; | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | struct dmar_domain *dmar_domain; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!domain) | 
|  | return; | 
|  |  | 
|  | /* Identity domain has no meta data for pasid. */ | 
|  | if (domain->type == IOMMU_DOMAIN_IDENTITY) | 
|  | return; | 
|  |  | 
|  | dmar_domain = to_dmar_domain(domain); | 
|  | spin_lock_irqsave(&dmar_domain->lock, flags); | 
|  | list_for_each_entry(curr, &dmar_domain->dev_pasids, link_domain) { | 
|  | if (curr->dev == dev && curr->pasid == pasid) { | 
|  | list_del(&curr->link_domain); | 
|  | dev_pasid = curr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&dmar_domain->lock, flags); | 
|  |  | 
|  | cache_tag_unassign_domain(dmar_domain, dev, pasid); | 
|  | domain_detach_iommu(dmar_domain, iommu); | 
|  | if (!WARN_ON_ONCE(!dev_pasid)) { | 
|  | intel_iommu_debugfs_remove_dev_pasid(dev_pasid); | 
|  | kfree(dev_pasid); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int blocking_domain_set_dev_pasid(struct iommu_domain *domain, | 
|  | struct device *dev, ioasid_t pasid, | 
|  | struct iommu_domain *old) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  |  | 
|  | intel_pasid_tear_down_entry(info->iommu, dev, pasid, false); | 
|  | domain_remove_dev_pasid(old, dev, pasid); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct dev_pasid_info * | 
|  | domain_add_dev_pasid(struct iommu_domain *domain, | 
|  | struct device *dev, ioasid_t pasid) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | struct dev_pasid_info *dev_pasid; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | dev_pasid = kzalloc(sizeof(*dev_pasid), GFP_KERNEL); | 
|  | if (!dev_pasid) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ret = domain_attach_iommu(dmar_domain, iommu); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | ret = cache_tag_assign_domain(dmar_domain, dev, pasid); | 
|  | if (ret) | 
|  | goto out_detach_iommu; | 
|  |  | 
|  | dev_pasid->dev = dev; | 
|  | dev_pasid->pasid = pasid; | 
|  | spin_lock_irqsave(&dmar_domain->lock, flags); | 
|  | list_add(&dev_pasid->link_domain, &dmar_domain->dev_pasids); | 
|  | spin_unlock_irqrestore(&dmar_domain->lock, flags); | 
|  |  | 
|  | return dev_pasid; | 
|  | out_detach_iommu: | 
|  | domain_detach_iommu(dmar_domain, iommu); | 
|  | out_free: | 
|  | kfree(dev_pasid); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static int intel_iommu_set_dev_pasid(struct iommu_domain *domain, | 
|  | struct device *dev, ioasid_t pasid, | 
|  | struct iommu_domain *old) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | struct dev_pasid_info *dev_pasid; | 
|  | int ret; | 
|  |  | 
|  | if (WARN_ON_ONCE(!(domain->type & __IOMMU_DOMAIN_PAGING))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!pasid_supported(iommu) || dev_is_real_dma_subdevice(dev)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (domain->dirty_ops) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (context_copied(iommu, info->bus, info->devfn)) | 
|  | return -EBUSY; | 
|  |  | 
|  | ret = paging_domain_compatible(domain, dev); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | dev_pasid = domain_add_dev_pasid(domain, dev, pasid); | 
|  | if (IS_ERR(dev_pasid)) | 
|  | return PTR_ERR(dev_pasid); | 
|  |  | 
|  | if (dmar_domain->use_first_level) | 
|  | ret = domain_setup_first_level(iommu, dmar_domain, | 
|  | dev, pasid, old); | 
|  | else | 
|  | ret = domain_setup_second_level(iommu, dmar_domain, | 
|  | dev, pasid, old); | 
|  | if (ret) | 
|  | goto out_remove_dev_pasid; | 
|  |  | 
|  | domain_remove_dev_pasid(old, dev, pasid); | 
|  |  | 
|  | intel_iommu_debugfs_create_dev_pasid(dev_pasid); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_remove_dev_pasid: | 
|  | domain_remove_dev_pasid(domain, dev, pasid); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void *intel_iommu_hw_info(struct device *dev, u32 *length, u32 *type) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | struct iommu_hw_info_vtd *vtd; | 
|  |  | 
|  | vtd = kzalloc(sizeof(*vtd), GFP_KERNEL); | 
|  | if (!vtd) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | vtd->flags = IOMMU_HW_INFO_VTD_ERRATA_772415_SPR17; | 
|  | vtd->cap_reg = iommu->cap; | 
|  | vtd->ecap_reg = iommu->ecap; | 
|  | *length = sizeof(*vtd); | 
|  | *type = IOMMU_HW_INFO_TYPE_INTEL_VTD; | 
|  | return vtd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set dirty tracking for the device list of a domain. The caller must | 
|  | * hold the domain->lock when calling it. | 
|  | */ | 
|  | static int device_set_dirty_tracking(struct list_head *devices, bool enable) | 
|  | { | 
|  | struct device_domain_info *info; | 
|  | int ret = 0; | 
|  |  | 
|  | list_for_each_entry(info, devices, link) { | 
|  | ret = intel_pasid_setup_dirty_tracking(info->iommu, info->dev, | 
|  | IOMMU_NO_PASID, enable); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int parent_domain_set_dirty_tracking(struct dmar_domain *domain, | 
|  | bool enable) | 
|  | { | 
|  | struct dmar_domain *s1_domain; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&domain->s1_lock); | 
|  | list_for_each_entry(s1_domain, &domain->s1_domains, s2_link) { | 
|  | spin_lock_irqsave(&s1_domain->lock, flags); | 
|  | ret = device_set_dirty_tracking(&s1_domain->devices, enable); | 
|  | spin_unlock_irqrestore(&s1_domain->lock, flags); | 
|  | if (ret) | 
|  | goto err_unwind; | 
|  | } | 
|  | spin_unlock(&domain->s1_lock); | 
|  | return 0; | 
|  |  | 
|  | err_unwind: | 
|  | list_for_each_entry(s1_domain, &domain->s1_domains, s2_link) { | 
|  | spin_lock_irqsave(&s1_domain->lock, flags); | 
|  | device_set_dirty_tracking(&s1_domain->devices, | 
|  | domain->dirty_tracking); | 
|  | spin_unlock_irqrestore(&s1_domain->lock, flags); | 
|  | } | 
|  | spin_unlock(&domain->s1_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int intel_iommu_set_dirty_tracking(struct iommu_domain *domain, | 
|  | bool enable) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&dmar_domain->lock); | 
|  | if (dmar_domain->dirty_tracking == enable) | 
|  | goto out_unlock; | 
|  |  | 
|  | ret = device_set_dirty_tracking(&dmar_domain->devices, enable); | 
|  | if (ret) | 
|  | goto err_unwind; | 
|  |  | 
|  | if (dmar_domain->nested_parent) { | 
|  | ret = parent_domain_set_dirty_tracking(dmar_domain, enable); | 
|  | if (ret) | 
|  | goto err_unwind; | 
|  | } | 
|  |  | 
|  | dmar_domain->dirty_tracking = enable; | 
|  | out_unlock: | 
|  | spin_unlock(&dmar_domain->lock); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_unwind: | 
|  | device_set_dirty_tracking(&dmar_domain->devices, | 
|  | dmar_domain->dirty_tracking); | 
|  | spin_unlock(&dmar_domain->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int intel_iommu_read_and_clear_dirty(struct iommu_domain *domain, | 
|  | unsigned long iova, size_t size, | 
|  | unsigned long flags, | 
|  | struct iommu_dirty_bitmap *dirty) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
|  | unsigned long end = iova + size - 1; | 
|  | unsigned long pgsize; | 
|  |  | 
|  | /* | 
|  | * IOMMUFD core calls into a dirty tracking disabled domain without an | 
|  | * IOVA bitmap set in order to clean dirty bits in all PTEs that might | 
|  | * have occurred when we stopped dirty tracking. This ensures that we | 
|  | * never inherit dirtied bits from a previous cycle. | 
|  | */ | 
|  | if (!dmar_domain->dirty_tracking && dirty->bitmap) | 
|  | return -EINVAL; | 
|  |  | 
|  | do { | 
|  | struct dma_pte *pte; | 
|  | int lvl = 0; | 
|  |  | 
|  | pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &lvl, | 
|  | GFP_ATOMIC); | 
|  | pgsize = level_size(lvl) << VTD_PAGE_SHIFT; | 
|  | if (!pte || !dma_pte_present(pte)) { | 
|  | iova += pgsize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (dma_sl_pte_test_and_clear_dirty(pte, flags)) | 
|  | iommu_dirty_bitmap_record(dirty, iova, pgsize); | 
|  | iova += pgsize; | 
|  | } while (iova < end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct iommu_dirty_ops intel_dirty_ops = { | 
|  | .set_dirty_tracking = intel_iommu_set_dirty_tracking, | 
|  | .read_and_clear_dirty = intel_iommu_read_and_clear_dirty, | 
|  | }; | 
|  |  | 
|  | static int context_setup_pass_through(struct device *dev, u8 bus, u8 devfn) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | struct context_entry *context; | 
|  |  | 
|  | spin_lock(&iommu->lock); | 
|  | context = iommu_context_addr(iommu, bus, devfn, 1); | 
|  | if (!context) { | 
|  | spin_unlock(&iommu->lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (context_present(context) && !context_copied(iommu, bus, devfn)) { | 
|  | spin_unlock(&iommu->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | copied_context_tear_down(iommu, context, bus, devfn); | 
|  | context_clear_entry(context); | 
|  | context_set_domain_id(context, FLPT_DEFAULT_DID); | 
|  |  | 
|  | /* | 
|  | * In pass through mode, AW must be programmed to indicate the largest | 
|  | * AGAW value supported by hardware. And ASR is ignored by hardware. | 
|  | */ | 
|  | context_set_address_width(context, iommu->msagaw); | 
|  | context_set_translation_type(context, CONTEXT_TT_PASS_THROUGH); | 
|  | context_set_fault_enable(context); | 
|  | context_set_present(context); | 
|  | if (!ecap_coherent(iommu->ecap)) | 
|  | clflush_cache_range(context, sizeof(*context)); | 
|  | context_present_cache_flush(iommu, FLPT_DEFAULT_DID, bus, devfn); | 
|  | spin_unlock(&iommu->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int context_setup_pass_through_cb(struct pci_dev *pdev, u16 alias, void *data) | 
|  | { | 
|  | struct device *dev = data; | 
|  |  | 
|  | return context_setup_pass_through(dev, PCI_BUS_NUM(alias), alias & 0xff); | 
|  | } | 
|  |  | 
|  | static int device_setup_pass_through(struct device *dev) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  |  | 
|  | if (!dev_is_pci(dev)) | 
|  | return context_setup_pass_through(dev, info->bus, info->devfn); | 
|  |  | 
|  | return pci_for_each_dma_alias(to_pci_dev(dev), | 
|  | context_setup_pass_through_cb, dev); | 
|  | } | 
|  |  | 
|  | static int identity_domain_attach_dev(struct iommu_domain *domain, struct device *dev) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | int ret; | 
|  |  | 
|  | device_block_translation(dev); | 
|  |  | 
|  | if (dev_is_real_dma_subdevice(dev)) | 
|  | return 0; | 
|  |  | 
|  | if (sm_supported(iommu)) | 
|  | ret = intel_pasid_setup_pass_through(iommu, dev, IOMMU_NO_PASID); | 
|  | else | 
|  | ret = device_setup_pass_through(dev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int identity_domain_set_dev_pasid(struct iommu_domain *domain, | 
|  | struct device *dev, ioasid_t pasid, | 
|  | struct iommu_domain *old) | 
|  | { | 
|  | struct device_domain_info *info = dev_iommu_priv_get(dev); | 
|  | struct intel_iommu *iommu = info->iommu; | 
|  | int ret; | 
|  |  | 
|  | if (!pasid_supported(iommu) || dev_is_real_dma_subdevice(dev)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = domain_setup_passthrough(iommu, dev, pasid, old); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | domain_remove_dev_pasid(old, dev, pasid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct iommu_domain identity_domain = { | 
|  | .type = IOMMU_DOMAIN_IDENTITY, | 
|  | .ops = &(const struct iommu_domain_ops) { | 
|  | .attach_dev	= identity_domain_attach_dev, | 
|  | .set_dev_pasid	= identity_domain_set_dev_pasid, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | const struct iommu_ops intel_iommu_ops = { | 
|  | .blocked_domain		= &blocking_domain, | 
|  | .release_domain		= &blocking_domain, | 
|  | .identity_domain	= &identity_domain, | 
|  | .capable		= intel_iommu_capable, | 
|  | .hw_info		= intel_iommu_hw_info, | 
|  | .domain_alloc_paging_flags = intel_iommu_domain_alloc_paging_flags, | 
|  | .domain_alloc_sva	= intel_svm_domain_alloc, | 
|  | .domain_alloc_nested	= intel_iommu_domain_alloc_nested, | 
|  | .probe_device		= intel_iommu_probe_device, | 
|  | .release_device		= intel_iommu_release_device, | 
|  | .get_resv_regions	= intel_iommu_get_resv_regions, | 
|  | .device_group		= intel_iommu_device_group, | 
|  | .dev_enable_feat	= intel_iommu_dev_enable_feat, | 
|  | .dev_disable_feat	= intel_iommu_dev_disable_feat, | 
|  | .is_attach_deferred	= intel_iommu_is_attach_deferred, | 
|  | .def_domain_type	= device_def_domain_type, | 
|  | .pgsize_bitmap		= SZ_4K, | 
|  | .page_response		= intel_iommu_page_response, | 
|  | .default_domain_ops = &(const struct iommu_domain_ops) { | 
|  | .attach_dev		= intel_iommu_attach_device, | 
|  | .set_dev_pasid		= intel_iommu_set_dev_pasid, | 
|  | .map_pages		= intel_iommu_map_pages, | 
|  | .unmap_pages		= intel_iommu_unmap_pages, | 
|  | .iotlb_sync_map		= intel_iommu_iotlb_sync_map, | 
|  | .flush_iotlb_all        = intel_flush_iotlb_all, | 
|  | .iotlb_sync		= intel_iommu_tlb_sync, | 
|  | .iova_to_phys		= intel_iommu_iova_to_phys, | 
|  | .free			= intel_iommu_domain_free, | 
|  | .enforce_cache_coherency = intel_iommu_enforce_cache_coherency, | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void quirk_iommu_igfx(struct pci_dev *dev) | 
|  | { | 
|  | if (risky_device(dev)) | 
|  | return; | 
|  |  | 
|  | pci_info(dev, "Disabling IOMMU for graphics on this chipset\n"); | 
|  | disable_igfx_iommu = 1; | 
|  | } | 
|  |  | 
|  | /* G4x/GM45 integrated gfx dmar support is totally busted. */ | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx); | 
|  |  | 
|  | /* Broadwell igfx malfunctions with dmar */ | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx); | 
|  |  | 
|  | static void quirk_iommu_rwbf(struct pci_dev *dev) | 
|  | { | 
|  | if (risky_device(dev)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Mobile 4 Series Chipset neglects to set RWBF capability, | 
|  | * but needs it. Same seems to hold for the desktop versions. | 
|  | */ | 
|  | pci_info(dev, "Forcing write-buffer flush capability\n"); | 
|  | rwbf_quirk = 1; | 
|  | } | 
|  |  | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf); | 
|  |  | 
|  | #define GGC 0x52 | 
|  | #define GGC_MEMORY_SIZE_MASK	(0xf << 8) | 
|  | #define GGC_MEMORY_SIZE_NONE	(0x0 << 8) | 
|  | #define GGC_MEMORY_SIZE_1M	(0x1 << 8) | 
|  | #define GGC_MEMORY_SIZE_2M	(0x3 << 8) | 
|  | #define GGC_MEMORY_VT_ENABLED	(0x8 << 8) | 
|  | #define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8) | 
|  | #define GGC_MEMORY_SIZE_3M_VT	(0xa << 8) | 
|  | #define GGC_MEMORY_SIZE_4M_VT	(0xb << 8) | 
|  |  | 
|  | static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) | 
|  | { | 
|  | unsigned short ggc; | 
|  |  | 
|  | if (risky_device(dev)) | 
|  | return; | 
|  |  | 
|  | if (pci_read_config_word(dev, GGC, &ggc)) | 
|  | return; | 
|  |  | 
|  | if (!(ggc & GGC_MEMORY_VT_ENABLED)) { | 
|  | pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); | 
|  | disable_igfx_iommu = 1; | 
|  | } else if (!disable_igfx_iommu) { | 
|  | /* we have to ensure the gfx device is idle before we flush */ | 
|  | pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n"); | 
|  | iommu_set_dma_strict(); | 
|  | } | 
|  | } | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); | 
|  |  | 
|  | static void quirk_igfx_skip_te_disable(struct pci_dev *dev) | 
|  | { | 
|  | unsigned short ver; | 
|  |  | 
|  | if (!IS_GFX_DEVICE(dev)) | 
|  | return; | 
|  |  | 
|  | ver = (dev->device >> 8) & 0xff; | 
|  | if (ver != 0x45 && ver != 0x46 && ver != 0x4c && | 
|  | ver != 0x4e && ver != 0x8a && ver != 0x98 && | 
|  | ver != 0x9a && ver != 0xa7 && ver != 0x7d) | 
|  | return; | 
|  |  | 
|  | if (risky_device(dev)) | 
|  | return; | 
|  |  | 
|  | pci_info(dev, "Skip IOMMU disabling for graphics\n"); | 
|  | iommu_skip_te_disable = 1; | 
|  | } | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable); | 
|  |  | 
|  | /* On Tylersburg chipsets, some BIOSes have been known to enable the | 
|  | ISOCH DMAR unit for the Azalia sound device, but not give it any | 
|  | TLB entries, which causes it to deadlock. Check for that.  We do | 
|  | this in a function called from init_dmars(), instead of in a PCI | 
|  | quirk, because we don't want to print the obnoxious "BIOS broken" | 
|  | message if VT-d is actually disabled. | 
|  | */ | 
|  | static void __init check_tylersburg_isoch(void) | 
|  | { | 
|  | struct pci_dev *pdev; | 
|  | uint32_t vtisochctrl; | 
|  |  | 
|  | /* If there's no Azalia in the system anyway, forget it. */ | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); | 
|  | if (!pdev) | 
|  | return; | 
|  |  | 
|  | if (risky_device(pdev)) { | 
|  | pci_dev_put(pdev); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pci_dev_put(pdev); | 
|  |  | 
|  | /* System Management Registers. Might be hidden, in which case | 
|  | we can't do the sanity check. But that's OK, because the | 
|  | known-broken BIOSes _don't_ actually hide it, so far. */ | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); | 
|  | if (!pdev) | 
|  | return; | 
|  |  | 
|  | if (risky_device(pdev)) { | 
|  | pci_dev_put(pdev); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { | 
|  | pci_dev_put(pdev); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pci_dev_put(pdev); | 
|  |  | 
|  | /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ | 
|  | if (vtisochctrl & 1) | 
|  | return; | 
|  |  | 
|  | /* Drop all bits other than the number of TLB entries */ | 
|  | vtisochctrl &= 0x1c; | 
|  |  | 
|  | /* If we have the recommended number of TLB entries (16), fine. */ | 
|  | if (vtisochctrl == 0x10) | 
|  | return; | 
|  |  | 
|  | /* Zero TLB entries? You get to ride the short bus to school. */ | 
|  | if (!vtisochctrl) { | 
|  | WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" | 
|  | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | 
|  | dmi_get_system_info(DMI_BIOS_VENDOR), | 
|  | dmi_get_system_info(DMI_BIOS_VERSION), | 
|  | dmi_get_system_info(DMI_PRODUCT_VERSION)); | 
|  | iommu_identity_mapping |= IDENTMAP_AZALIA; | 
|  | return; | 
|  | } | 
|  |  | 
|  | pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", | 
|  | vtisochctrl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here we deal with a device TLB defect where device may inadvertently issue ATS | 
|  | * invalidation completion before posted writes initiated with translated address | 
|  | * that utilized translations matching the invalidation address range, violating | 
|  | * the invalidation completion ordering. | 
|  | * Therefore, any use cases that cannot guarantee DMA is stopped before unmap is | 
|  | * vulnerable to this defect. In other words, any dTLB invalidation initiated not | 
|  | * under the control of the trusted/privileged host device driver must use this | 
|  | * quirk. | 
|  | * Device TLBs are invalidated under the following six conditions: | 
|  | * 1. Device driver does DMA API unmap IOVA | 
|  | * 2. Device driver unbind a PASID from a process, sva_unbind_device() | 
|  | * 3. PASID is torn down, after PASID cache is flushed. e.g. process | 
|  | *    exit_mmap() due to crash | 
|  | * 4. Under SVA usage, called by mmu_notifier.invalidate_range() where | 
|  | *    VM has to free pages that were unmapped | 
|  | * 5. Userspace driver unmaps a DMA buffer | 
|  | * 6. Cache invalidation in vSVA usage (upcoming) | 
|  | * | 
|  | * For #1 and #2, device drivers are responsible for stopping DMA traffic | 
|  | * before unmap/unbind. For #3, iommu driver gets mmu_notifier to | 
|  | * invalidate TLB the same way as normal user unmap which will use this quirk. | 
|  | * The dTLB invalidation after PASID cache flush does not need this quirk. | 
|  | * | 
|  | * As a reminder, #6 will *NEED* this quirk as we enable nested translation. | 
|  | */ | 
|  | void quirk_extra_dev_tlb_flush(struct device_domain_info *info, | 
|  | unsigned long address, unsigned long mask, | 
|  | u32 pasid, u16 qdep) | 
|  | { | 
|  | u16 sid; | 
|  |  | 
|  | if (likely(!info->dtlb_extra_inval)) | 
|  | return; | 
|  |  | 
|  | sid = PCI_DEVID(info->bus, info->devfn); | 
|  | if (pasid == IOMMU_NO_PASID) { | 
|  | qi_flush_dev_iotlb(info->iommu, sid, info->pfsid, | 
|  | qdep, address, mask); | 
|  | } else { | 
|  | qi_flush_dev_iotlb_pasid(info->iommu, sid, info->pfsid, | 
|  | pasid, qdep, address, mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define ecmd_get_status_code(res)	(((res) & 0xff) >> 1) | 
|  |  | 
|  | /* | 
|  | * Function to submit a command to the enhanced command interface. The | 
|  | * valid enhanced command descriptions are defined in Table 47 of the | 
|  | * VT-d spec. The VT-d hardware implementation may support some but not | 
|  | * all commands, which can be determined by checking the Enhanced | 
|  | * Command Capability Register. | 
|  | * | 
|  | * Return values: | 
|  | *  - 0: Command successful without any error; | 
|  | *  - Negative: software error value; | 
|  | *  - Nonzero positive: failure status code defined in Table 48. | 
|  | */ | 
|  | int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob) | 
|  | { | 
|  | unsigned long flags; | 
|  | u64 res; | 
|  | int ret; | 
|  |  | 
|  | if (!cap_ecmds(iommu->cap)) | 
|  | return -ENODEV; | 
|  |  | 
|  | raw_spin_lock_irqsave(&iommu->register_lock, flags); | 
|  |  | 
|  | res = dmar_readq(iommu->reg + DMAR_ECRSP_REG); | 
|  | if (res & DMA_ECMD_ECRSP_IP) { | 
|  | ret = -EBUSY; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unconditionally write the operand B, because | 
|  | * - There is no side effect if an ecmd doesn't require an | 
|  | *   operand B, but we set the register to some value. | 
|  | * - It's not invoked in any critical path. The extra MMIO | 
|  | *   write doesn't bring any performance concerns. | 
|  | */ | 
|  | dmar_writeq(iommu->reg + DMAR_ECEO_REG, ob); | 
|  | dmar_writeq(iommu->reg + DMAR_ECMD_REG, ecmd | (oa << DMA_ECMD_OA_SHIFT)); | 
|  |  | 
|  | IOMMU_WAIT_OP(iommu, DMAR_ECRSP_REG, dmar_readq, | 
|  | !(res & DMA_ECMD_ECRSP_IP), res); | 
|  |  | 
|  | if (res & DMA_ECMD_ECRSP_IP) { | 
|  | ret = -ETIMEDOUT; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = ecmd_get_status_code(res); | 
|  | err: | 
|  | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } |