|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Generic pwmlib implementation | 
|  | * | 
|  | * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> | 
|  | * Copyright (C) 2011-2012 Avionic Design GmbH | 
|  | */ | 
|  |  | 
|  | #define DEFAULT_SYMBOL_NAMESPACE "PWM" | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/pwm.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/seq_file.h> | 
|  |  | 
|  | #include <dt-bindings/pwm/pwm.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/pwm.h> | 
|  |  | 
|  | /* protects access to pwm_chips */ | 
|  | static DEFINE_MUTEX(pwm_lock); | 
|  |  | 
|  | static DEFINE_IDR(pwm_chips); | 
|  |  | 
|  | static void pwmchip_lock(struct pwm_chip *chip) | 
|  | { | 
|  | if (chip->atomic) | 
|  | spin_lock(&chip->atomic_lock); | 
|  | else | 
|  | mutex_lock(&chip->nonatomic_lock); | 
|  | } | 
|  |  | 
|  | static void pwmchip_unlock(struct pwm_chip *chip) | 
|  | { | 
|  | if (chip->atomic) | 
|  | spin_unlock(&chip->atomic_lock); | 
|  | else | 
|  | mutex_unlock(&chip->nonatomic_lock); | 
|  | } | 
|  |  | 
|  | DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T)) | 
|  |  | 
|  | static bool pwm_wf_valid(const struct pwm_waveform *wf) | 
|  | { | 
|  | /* | 
|  | * For now restrict waveforms to period_length_ns <= S64_MAX to provide | 
|  | * some space for future extensions. One possibility is to simplify | 
|  | * representing waveforms with inverted polarity using negative values | 
|  | * somehow. | 
|  | */ | 
|  | if (wf->period_length_ns > S64_MAX) | 
|  | return false; | 
|  |  | 
|  | if (wf->duty_length_ns > wf->period_length_ns) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart | 
|  | * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0. | 
|  | */ | 
|  | if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state) | 
|  | { | 
|  | if (wf->period_length_ns) { | 
|  | if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns) | 
|  | *state = (struct pwm_state){ | 
|  | .enabled = true, | 
|  | .polarity = PWM_POLARITY_NORMAL, | 
|  | .period = wf->period_length_ns, | 
|  | .duty_cycle = wf->duty_length_ns, | 
|  | }; | 
|  | else | 
|  | *state = (struct pwm_state){ | 
|  | .enabled = true, | 
|  | .polarity = PWM_POLARITY_INVERSED, | 
|  | .period = wf->period_length_ns, | 
|  | .duty_cycle = wf->period_length_ns - wf->duty_length_ns, | 
|  | }; | 
|  | } else { | 
|  | *state = (struct pwm_state){ | 
|  | .enabled = false, | 
|  | }; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf) | 
|  | { | 
|  | if (state->enabled) { | 
|  | if (state->polarity == PWM_POLARITY_NORMAL) | 
|  | *wf = (struct pwm_waveform){ | 
|  | .period_length_ns = state->period, | 
|  | .duty_length_ns = state->duty_cycle, | 
|  | .duty_offset_ns = 0, | 
|  | }; | 
|  | else | 
|  | *wf = (struct pwm_waveform){ | 
|  | .period_length_ns = state->period, | 
|  | .duty_length_ns = state->period - state->duty_cycle, | 
|  | .duty_offset_ns = state->duty_cycle, | 
|  | }; | 
|  | } else { | 
|  | *wf = (struct pwm_waveform){ | 
|  | .period_length_ns = 0, | 
|  | }; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b) | 
|  | { | 
|  | if (a->period_length_ns > b->period_length_ns) | 
|  | return 1; | 
|  |  | 
|  | if (a->period_length_ns < b->period_length_ns) | 
|  | return -1; | 
|  |  | 
|  | if (a->duty_length_ns > b->duty_length_ns) | 
|  | return 1; | 
|  |  | 
|  | if (a->duty_length_ns < b->duty_length_ns) | 
|  | return -1; | 
|  |  | 
|  | if (a->duty_offset_ns > b->duty_offset_ns) | 
|  | return 1; | 
|  |  | 
|  | if (a->duty_offset_ns < b->duty_offset_ns) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool pwm_check_rounding(const struct pwm_waveform *wf, | 
|  | const struct pwm_waveform *wf_rounded) | 
|  | { | 
|  | if (!wf->period_length_ns) | 
|  | return true; | 
|  |  | 
|  | if (wf->period_length_ns < wf_rounded->period_length_ns) | 
|  | return false; | 
|  |  | 
|  | if (wf->duty_length_ns < wf_rounded->duty_length_ns) | 
|  | return false; | 
|  |  | 
|  | if (wf->duty_offset_ns < wf_rounded->duty_offset_ns) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm, | 
|  | const struct pwm_waveform *wf, void *wfhw) | 
|  | { | 
|  | const struct pwm_ops *ops = chip->ops; | 
|  | int ret; | 
|  |  | 
|  | ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw); | 
|  | trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm, | 
|  | const void *wfhw, struct pwm_waveform *wf) | 
|  | { | 
|  | const struct pwm_ops *ops = chip->ops; | 
|  | int ret; | 
|  |  | 
|  | ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf); | 
|  | trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw) | 
|  | { | 
|  | const struct pwm_ops *ops = chip->ops; | 
|  | int ret; | 
|  |  | 
|  | ret = ops->read_waveform(chip, pwm, wfhw); | 
|  | trace_pwm_read_waveform(pwm, wfhw, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw) | 
|  | { | 
|  | const struct pwm_ops *ops = chip->ops; | 
|  | int ret; | 
|  |  | 
|  | ret = ops->write_waveform(chip, pwm, wfhw); | 
|  | trace_pwm_write_waveform(pwm, wfhw, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define WFHWSIZE 20 | 
|  |  | 
|  | /** | 
|  | * pwm_round_waveform_might_sleep - Query hardware capabilities | 
|  | * Cannot be used in atomic context. | 
|  | * @pwm: PWM device | 
|  | * @wf: waveform to round and output parameter | 
|  | * | 
|  | * Typically a given waveform cannot be implemented exactly by hardware, e.g. | 
|  | * because hardware only supports coarse period resolution or no duty_offset. | 
|  | * This function returns the actually implemented waveform if you pass wf to | 
|  | * pwm_set_waveform_might_sleep now. | 
|  | * | 
|  | * Note however that the world doesn't stop turning when you call it, so when | 
|  | * doing | 
|  | * | 
|  | * 	pwm_round_waveform_might_sleep(mypwm, &wf); | 
|  | * 	pwm_set_waveform_might_sleep(mypwm, &wf, true); | 
|  | * | 
|  | * the latter might fail, e.g. because an input clock changed its rate between | 
|  | * these two calls and the waveform determined by | 
|  | * pwm_round_waveform_might_sleep() cannot be implemented any more. | 
|  | * | 
|  | * Returns 0 on success, 1 if there is no valid hardware configuration matching | 
|  | * the input waveform under the PWM rounding rules or a negative errno. | 
|  | */ | 
|  | int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) | 
|  | { | 
|  | struct pwm_chip *chip = pwm->chip; | 
|  | const struct pwm_ops *ops = chip->ops; | 
|  | struct pwm_waveform wf_req = *wf; | 
|  | char wfhw[WFHWSIZE]; | 
|  | int ret_tohw, ret_fromhw; | 
|  |  | 
|  | BUG_ON(WFHWSIZE < ops->sizeof_wfhw); | 
|  |  | 
|  | if (!pwmchip_supports_waveform(chip)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (!pwm_wf_valid(wf)) | 
|  | return -EINVAL; | 
|  |  | 
|  | guard(pwmchip)(chip); | 
|  |  | 
|  | if (!chip->operational) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw); | 
|  | if (ret_tohw < 0) | 
|  | return ret_tohw; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1) | 
|  | dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n", | 
|  | wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw); | 
|  |  | 
|  | ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf); | 
|  | if (ret_fromhw < 0) | 
|  | return ret_fromhw; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0) | 
|  | dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n", | 
|  | wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PWM_DEBUG) && | 
|  | ret_tohw == 0 && !pwm_check_rounding(&wf_req, wf)) | 
|  | dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", | 
|  | wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, | 
|  | wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns); | 
|  |  | 
|  | return ret_tohw; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep); | 
|  |  | 
|  | /** | 
|  | * pwm_get_waveform_might_sleep - Query hardware about current configuration | 
|  | * Cannot be used in atomic context. | 
|  | * @pwm: PWM device | 
|  | * @wf: output parameter | 
|  | * | 
|  | * Stores the current configuration of the PWM in @wf. Note this is the | 
|  | * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform. | 
|  | */ | 
|  | int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) | 
|  | { | 
|  | struct pwm_chip *chip = pwm->chip; | 
|  | const struct pwm_ops *ops = chip->ops; | 
|  | char wfhw[WFHWSIZE]; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(WFHWSIZE < ops->sizeof_wfhw); | 
|  |  | 
|  | if (!pwmchip_supports_waveform(chip) || !ops->read_waveform) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | guard(pwmchip)(chip); | 
|  |  | 
|  | if (!chip->operational) | 
|  | return -ENODEV; | 
|  |  | 
|  | err = __pwm_read_waveform(chip, pwm, &wfhw); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep); | 
|  |  | 
|  | /* Called with the pwmchip lock held */ | 
|  | static int __pwm_set_waveform(struct pwm_device *pwm, | 
|  | const struct pwm_waveform *wf, | 
|  | bool exact) | 
|  | { | 
|  | struct pwm_chip *chip = pwm->chip; | 
|  | const struct pwm_ops *ops = chip->ops; | 
|  | char wfhw[WFHWSIZE]; | 
|  | struct pwm_waveform wf_rounded; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(WFHWSIZE < ops->sizeof_wfhw); | 
|  |  | 
|  | if (!pwmchip_supports_waveform(chip)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (!pwm_wf_valid(wf)) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) { | 
|  | err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PWM_DEBUG) && !pwm_check_rounding(wf, &wf_rounded)) | 
|  | dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", | 
|  | wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, | 
|  | wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); | 
|  |  | 
|  | if (exact && pwmwfcmp(wf, &wf_rounded)) { | 
|  | dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n", | 
|  | wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, | 
|  | wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = __pwm_write_waveform(chip, pwm, &wfhw); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* update .state */ | 
|  | pwm_wf2state(wf, &pwm->state); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) { | 
|  | struct pwm_waveform wf_set; | 
|  |  | 
|  | err = __pwm_read_waveform(chip, pwm, &wfhw); | 
|  | if (err) | 
|  | /* maybe ignore? */ | 
|  | return err; | 
|  |  | 
|  | err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set); | 
|  | if (err) | 
|  | /* maybe ignore? */ | 
|  | return err; | 
|  |  | 
|  | if (pwmwfcmp(&wf_set, &wf_rounded) != 0) | 
|  | dev_err(&chip->dev, | 
|  | "Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n", | 
|  | wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, | 
|  | wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, | 
|  | wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pwm_set_waveform_might_sleep - Apply a new waveform | 
|  | * Cannot be used in atomic context. | 
|  | * @pwm: PWM device | 
|  | * @wf: The waveform to apply | 
|  | * @exact: If true no rounding is allowed | 
|  | * | 
|  | * Typically a requested waveform cannot be implemented exactly, e.g. because | 
|  | * you requested .period_length_ns = 100 ns, but the hardware can only set | 
|  | * periods that are a multiple of 8.5 ns. With that hardware passing exact = | 
|  | * true results in pwm_set_waveform_might_sleep() failing and returning 1. If | 
|  | * exact = false you get a period of 93.5 ns (i.e. the biggest period not bigger | 
|  | * than the requested value). | 
|  | * Note that even with exact = true, some rounding by less than 1 is | 
|  | * possible/needed. In the above example requesting .period_length_ns = 94 and | 
|  | * exact = true, you get the hardware configured with period = 93.5 ns. | 
|  | */ | 
|  | int pwm_set_waveform_might_sleep(struct pwm_device *pwm, | 
|  | const struct pwm_waveform *wf, bool exact) | 
|  | { | 
|  | struct pwm_chip *chip = pwm->chip; | 
|  | int err; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | guard(pwmchip)(chip); | 
|  |  | 
|  | if (!chip->operational) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { | 
|  | /* | 
|  | * Catch any drivers that have been marked as atomic but | 
|  | * that will sleep anyway. | 
|  | */ | 
|  | non_block_start(); | 
|  | err = __pwm_set_waveform(pwm, wf, exact); | 
|  | non_block_end(); | 
|  | } else { | 
|  | err = __pwm_set_waveform(pwm, wf, exact); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep); | 
|  |  | 
|  | static void pwm_apply_debug(struct pwm_device *pwm, | 
|  | const struct pwm_state *state) | 
|  | { | 
|  | struct pwm_state *last = &pwm->last; | 
|  | struct pwm_chip *chip = pwm->chip; | 
|  | struct pwm_state s1 = { 0 }, s2 = { 0 }; | 
|  | int err; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_PWM_DEBUG)) | 
|  | return; | 
|  |  | 
|  | /* No reasonable diagnosis possible without .get_state() */ | 
|  | if (!chip->ops->get_state) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * *state was just applied. Read out the hardware state and do some | 
|  | * checks. | 
|  | */ | 
|  |  | 
|  | err = chip->ops->get_state(chip, pwm, &s1); | 
|  | trace_pwm_get(pwm, &s1, err); | 
|  | if (err) | 
|  | /* If that failed there isn't much to debug */ | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The lowlevel driver either ignored .polarity (which is a bug) or as | 
|  | * best effort inverted .polarity and fixed .duty_cycle respectively. | 
|  | * Undo this inversion and fixup for further tests. | 
|  | */ | 
|  | if (s1.enabled && s1.polarity != state->polarity) { | 
|  | s2.polarity = state->polarity; | 
|  | s2.duty_cycle = s1.period - s1.duty_cycle; | 
|  | s2.period = s1.period; | 
|  | s2.enabled = s1.enabled; | 
|  | } else { | 
|  | s2 = s1; | 
|  | } | 
|  |  | 
|  | if (s2.polarity != state->polarity && | 
|  | state->duty_cycle < state->period) | 
|  | dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n"); | 
|  |  | 
|  | if (state->enabled && s2.enabled && | 
|  | last->polarity == state->polarity && | 
|  | last->period > s2.period && | 
|  | last->period <= state->period) | 
|  | dev_warn(pwmchip_parent(chip), | 
|  | ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", | 
|  | state->period, s2.period, last->period); | 
|  |  | 
|  | /* | 
|  | * Rounding period up is fine only if duty_cycle is 0 then, because a | 
|  | * flat line doesn't have a characteristic period. | 
|  | */ | 
|  | if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle) | 
|  | dev_warn(pwmchip_parent(chip), | 
|  | ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", | 
|  | state->period, s2.period); | 
|  |  | 
|  | if (state->enabled && | 
|  | last->polarity == state->polarity && | 
|  | last->period == s2.period && | 
|  | last->duty_cycle > s2.duty_cycle && | 
|  | last->duty_cycle <= state->duty_cycle) | 
|  | dev_warn(pwmchip_parent(chip), | 
|  | ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", | 
|  | state->duty_cycle, state->period, | 
|  | s2.duty_cycle, s2.period, | 
|  | last->duty_cycle, last->period); | 
|  |  | 
|  | if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle) | 
|  | dev_warn(pwmchip_parent(chip), | 
|  | ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", | 
|  | state->duty_cycle, state->period, | 
|  | s2.duty_cycle, s2.period); | 
|  |  | 
|  | if (!state->enabled && s2.enabled && s2.duty_cycle > 0) | 
|  | dev_warn(pwmchip_parent(chip), | 
|  | "requested disabled, but yielded enabled with duty > 0\n"); | 
|  |  | 
|  | /* reapply the state that the driver reported being configured. */ | 
|  | err = chip->ops->apply(chip, pwm, &s1); | 
|  | trace_pwm_apply(pwm, &s1, err); | 
|  | if (err) { | 
|  | *last = s1; | 
|  | dev_err(pwmchip_parent(chip), "failed to reapply current setting\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | *last = (struct pwm_state){ 0 }; | 
|  | err = chip->ops->get_state(chip, pwm, last); | 
|  | trace_pwm_get(pwm, last, err); | 
|  | if (err) | 
|  | return; | 
|  |  | 
|  | /* reapplication of the current state should give an exact match */ | 
|  | if (s1.enabled != last->enabled || | 
|  | s1.polarity != last->polarity || | 
|  | (s1.enabled && s1.period != last->period) || | 
|  | (s1.enabled && s1.duty_cycle != last->duty_cycle)) { | 
|  | dev_err(pwmchip_parent(chip), | 
|  | ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", | 
|  | s1.enabled, s1.polarity, s1.duty_cycle, s1.period, | 
|  | last->enabled, last->polarity, last->duty_cycle, | 
|  | last->period); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool pwm_state_valid(const struct pwm_state *state) | 
|  | { | 
|  | /* | 
|  | * For a disabled state all other state description is irrelevant and | 
|  | * and supposed to be ignored. So also ignore any strange values and | 
|  | * consider the state ok. | 
|  | */ | 
|  | if (state->enabled) | 
|  | return true; | 
|  |  | 
|  | if (!state->period) | 
|  | return false; | 
|  |  | 
|  | if (state->duty_cycle > state->period) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __pwm_apply() - atomically apply a new state to a PWM device | 
|  | * @pwm: PWM device | 
|  | * @state: new state to apply | 
|  | */ | 
|  | static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state) | 
|  | { | 
|  | struct pwm_chip *chip; | 
|  | const struct pwm_ops *ops; | 
|  | int err; | 
|  |  | 
|  | if (!pwm || !state) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!pwm_state_valid(state)) { | 
|  | /* | 
|  | * Allow to transition from one invalid state to another. | 
|  | * This ensures that you can e.g. change the polarity while | 
|  | * the period is zero. (This happens on stm32 when the hardware | 
|  | * is in its poweron default state.) This greatly simplifies | 
|  | * working with the sysfs API where you can only change one | 
|  | * parameter at a time. | 
|  | */ | 
|  | if (!pwm_state_valid(&pwm->state)) { | 
|  | pwm->state = *state; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | chip = pwm->chip; | 
|  | ops = chip->ops; | 
|  |  | 
|  | if (state->period == pwm->state.period && | 
|  | state->duty_cycle == pwm->state.duty_cycle && | 
|  | state->polarity == pwm->state.polarity && | 
|  | state->enabled == pwm->state.enabled && | 
|  | state->usage_power == pwm->state.usage_power) | 
|  | return 0; | 
|  |  | 
|  | if (pwmchip_supports_waveform(chip)) { | 
|  | struct pwm_waveform wf; | 
|  | char wfhw[WFHWSIZE]; | 
|  |  | 
|  | BUG_ON(WFHWSIZE < ops->sizeof_wfhw); | 
|  |  | 
|  | pwm_state2wf(state, &wf); | 
|  |  | 
|  | /* | 
|  | * The rounding is wrong here for states with inverted polarity. | 
|  | * While .apply() rounds down duty_cycle (which represents the | 
|  | * time from the start of the period to the inner edge), | 
|  | * .round_waveform_tohw() rounds down the time the PWM is high. | 
|  | * Can be fixed if the need arises, until reported otherwise | 
|  | * let's assume that consumers don't care. | 
|  | */ | 
|  |  | 
|  | err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw); | 
|  | if (err) { | 
|  | if (err > 0) | 
|  | /* | 
|  | * This signals an invalid request, typically | 
|  | * the requested period (or duty_offset) is | 
|  | * smaller than possible with the hardware. | 
|  | */ | 
|  | return -EINVAL; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PWM_DEBUG)) { | 
|  | struct pwm_waveform wf_rounded; | 
|  |  | 
|  | err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (!pwm_check_rounding(&wf, &wf_rounded)) | 
|  | dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", | 
|  | wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns, | 
|  | wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); | 
|  | } | 
|  |  | 
|  | err = __pwm_write_waveform(chip, pwm, &wfhw); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | pwm->state = *state; | 
|  |  | 
|  | } else { | 
|  | err = ops->apply(chip, pwm, state); | 
|  | trace_pwm_apply(pwm, state, err); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | pwm->state = *state; | 
|  |  | 
|  | /* | 
|  | * only do this after pwm->state was applied as some | 
|  | * implementations of .get_state() depend on this | 
|  | */ | 
|  | pwm_apply_debug(pwm, state); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pwm_apply_might_sleep() - atomically apply a new state to a PWM device | 
|  | * Cannot be used in atomic context. | 
|  | * @pwm: PWM device | 
|  | * @state: new state to apply | 
|  | */ | 
|  | int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state) | 
|  | { | 
|  | int err; | 
|  | struct pwm_chip *chip = pwm->chip; | 
|  |  | 
|  | /* | 
|  | * Some lowlevel driver's implementations of .apply() make use of | 
|  | * mutexes, also with some drivers only returning when the new | 
|  | * configuration is active calling pwm_apply_might_sleep() from atomic context | 
|  | * is a bad idea. So make it explicit that calling this function might | 
|  | * sleep. | 
|  | */ | 
|  | might_sleep(); | 
|  |  | 
|  | guard(pwmchip)(chip); | 
|  |  | 
|  | if (!chip->operational) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { | 
|  | /* | 
|  | * Catch any drivers that have been marked as atomic but | 
|  | * that will sleep anyway. | 
|  | */ | 
|  | non_block_start(); | 
|  | err = __pwm_apply(pwm, state); | 
|  | non_block_end(); | 
|  | } else { | 
|  | err = __pwm_apply(pwm, state); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwm_apply_might_sleep); | 
|  |  | 
|  | /** | 
|  | * pwm_apply_atomic() - apply a new state to a PWM device from atomic context | 
|  | * Not all PWM devices support this function, check with pwm_might_sleep(). | 
|  | * @pwm: PWM device | 
|  | * @state: new state to apply | 
|  | */ | 
|  | int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state) | 
|  | { | 
|  | struct pwm_chip *chip = pwm->chip; | 
|  |  | 
|  | WARN_ONCE(!chip->atomic, | 
|  | "sleeping PWM driver used in atomic context\n"); | 
|  |  | 
|  | guard(pwmchip)(chip); | 
|  |  | 
|  | if (!chip->operational) | 
|  | return -ENODEV; | 
|  |  | 
|  | return __pwm_apply(pwm, state); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwm_apply_atomic); | 
|  |  | 
|  | /** | 
|  | * pwm_get_state_hw() - get the current PWM state from hardware | 
|  | * @pwm: PWM device | 
|  | * @state: state to fill with the current PWM state | 
|  | * | 
|  | * Similar to pwm_get_state() but reads the current PWM state from hardware | 
|  | * instead of the requested state. | 
|  | * | 
|  | * Returns: 0 on success or a negative error code on failure. | 
|  | * Context: May sleep. | 
|  | */ | 
|  | int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state) | 
|  | { | 
|  | struct pwm_chip *chip = pwm->chip; | 
|  | const struct pwm_ops *ops = chip->ops; | 
|  | int ret = -EOPNOTSUPP; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | guard(pwmchip)(chip); | 
|  |  | 
|  | if (!chip->operational) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (pwmchip_supports_waveform(chip) && ops->read_waveform) { | 
|  | char wfhw[WFHWSIZE]; | 
|  | struct pwm_waveform wf; | 
|  |  | 
|  | BUG_ON(WFHWSIZE < ops->sizeof_wfhw); | 
|  |  | 
|  | ret = __pwm_read_waveform(chip, pwm, &wfhw); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | pwm_wf2state(&wf, state); | 
|  |  | 
|  | } else if (ops->get_state) { | 
|  | ret = ops->get_state(chip, pwm, state); | 
|  | trace_pwm_get(pwm, state, ret); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwm_get_state_hw); | 
|  |  | 
|  | /** | 
|  | * pwm_adjust_config() - adjust the current PWM config to the PWM arguments | 
|  | * @pwm: PWM device | 
|  | * | 
|  | * This function will adjust the PWM config to the PWM arguments provided | 
|  | * by the DT or PWM lookup table. This is particularly useful to adapt | 
|  | * the bootloader config to the Linux one. | 
|  | */ | 
|  | int pwm_adjust_config(struct pwm_device *pwm) | 
|  | { | 
|  | struct pwm_state state; | 
|  | struct pwm_args pargs; | 
|  |  | 
|  | pwm_get_args(pwm, &pargs); | 
|  | pwm_get_state(pwm, &state); | 
|  |  | 
|  | /* | 
|  | * If the current period is zero it means that either the PWM driver | 
|  | * does not support initial state retrieval or the PWM has not yet | 
|  | * been configured. | 
|  | * | 
|  | * In either case, we setup the new period and polarity, and assign a | 
|  | * duty cycle of 0. | 
|  | */ | 
|  | if (!state.period) { | 
|  | state.duty_cycle = 0; | 
|  | state.period = pargs.period; | 
|  | state.polarity = pargs.polarity; | 
|  |  | 
|  | return pwm_apply_might_sleep(pwm, &state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adjust the PWM duty cycle/period based on the period value provided | 
|  | * in PWM args. | 
|  | */ | 
|  | if (pargs.period != state.period) { | 
|  | u64 dutycycle = (u64)state.duty_cycle * pargs.period; | 
|  |  | 
|  | do_div(dutycycle, state.period); | 
|  | state.duty_cycle = dutycycle; | 
|  | state.period = pargs.period; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the polarity changed, we should also change the duty cycle. | 
|  | */ | 
|  | if (pargs.polarity != state.polarity) { | 
|  | state.polarity = pargs.polarity; | 
|  | state.duty_cycle = state.period - state.duty_cycle; | 
|  | } | 
|  |  | 
|  | return pwm_apply_might_sleep(pwm, &state); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwm_adjust_config); | 
|  |  | 
|  | /** | 
|  | * pwm_capture() - capture and report a PWM signal | 
|  | * @pwm: PWM device | 
|  | * @result: structure to fill with capture result | 
|  | * @timeout: time to wait, in milliseconds, before giving up on capture | 
|  | * | 
|  | * Returns: 0 on success or a negative error code on failure. | 
|  | */ | 
|  | static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, | 
|  | unsigned long timeout) | 
|  | { | 
|  | struct pwm_chip *chip = pwm->chip; | 
|  | const struct pwm_ops *ops = chip->ops; | 
|  |  | 
|  | if (!ops->capture) | 
|  | return -ENOSYS; | 
|  |  | 
|  | /* | 
|  | * Holding the pwm_lock is probably not needed. If you use pwm_capture() | 
|  | * and you're interested to speed it up, please convince yourself it's | 
|  | * really not needed, test and then suggest a patch on the mailing list. | 
|  | */ | 
|  | guard(mutex)(&pwm_lock); | 
|  |  | 
|  | guard(pwmchip)(chip); | 
|  |  | 
|  | if (!chip->operational) | 
|  | return -ENODEV; | 
|  |  | 
|  | return ops->capture(chip, pwm, result, timeout); | 
|  | } | 
|  |  | 
|  | static struct pwm_chip *pwmchip_find_by_name(const char *name) | 
|  | { | 
|  | struct pwm_chip *chip; | 
|  | unsigned long id, tmp; | 
|  |  | 
|  | if (!name) | 
|  | return NULL; | 
|  |  | 
|  | guard(mutex)(&pwm_lock); | 
|  |  | 
|  | idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) { | 
|  | if (device_match_name(pwmchip_parent(chip), name)) | 
|  | return chip; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int pwm_device_request(struct pwm_device *pwm, const char *label) | 
|  | { | 
|  | int err; | 
|  | struct pwm_chip *chip = pwm->chip; | 
|  | const struct pwm_ops *ops = chip->ops; | 
|  |  | 
|  | if (test_bit(PWMF_REQUESTED, &pwm->flags)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* | 
|  | * This function is called while holding pwm_lock. As .operational only | 
|  | * changes while holding this lock, checking it here without holding the | 
|  | * chip lock is fine. | 
|  | */ | 
|  | if (!chip->operational) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (!try_module_get(chip->owner)) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (!get_device(&chip->dev)) { | 
|  | err = -ENODEV; | 
|  | goto err_get_device; | 
|  | } | 
|  |  | 
|  | if (ops->request) { | 
|  | err = ops->request(chip, pwm); | 
|  | if (err) { | 
|  | put_device(&chip->dev); | 
|  | err_get_device: | 
|  | module_put(chip->owner); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ops->read_waveform || ops->get_state) { | 
|  | /* | 
|  | * Zero-initialize state because most drivers are unaware of | 
|  | * .usage_power. The other members of state are supposed to be | 
|  | * set by lowlevel drivers. We still initialize the whole | 
|  | * structure for simplicity even though this might paper over | 
|  | * faulty implementations of .get_state(). | 
|  | */ | 
|  | struct pwm_state state = { 0, }; | 
|  |  | 
|  | err = pwm_get_state_hw(pwm, &state); | 
|  | if (!err) | 
|  | pwm->state = state; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PWM_DEBUG)) | 
|  | pwm->last = pwm->state; | 
|  | } | 
|  |  | 
|  | set_bit(PWMF_REQUESTED, &pwm->flags); | 
|  | pwm->label = label; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pwm_request_from_chip() - request a PWM device relative to a PWM chip | 
|  | * @chip: PWM chip | 
|  | * @index: per-chip index of the PWM to request | 
|  | * @label: a literal description string of this PWM | 
|  | * | 
|  | * Returns: A pointer to the PWM device at the given index of the given PWM | 
|  | * chip. A negative error code is returned if the index is not valid for the | 
|  | * specified PWM chip or if the PWM device cannot be requested. | 
|  | */ | 
|  | static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, | 
|  | unsigned int index, | 
|  | const char *label) | 
|  | { | 
|  | struct pwm_device *pwm; | 
|  | int err; | 
|  |  | 
|  | if (!chip || index >= chip->npwm) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | guard(mutex)(&pwm_lock); | 
|  |  | 
|  | pwm = &chip->pwms[index]; | 
|  |  | 
|  | err = pwm_device_request(pwm, label); | 
|  | if (err < 0) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | return pwm; | 
|  | } | 
|  |  | 
|  | struct pwm_device * | 
|  | of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args) | 
|  | { | 
|  | struct pwm_device *pwm; | 
|  |  | 
|  | /* period in the second cell and flags in the third cell are optional */ | 
|  | if (args->args_count < 1) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | pwm = pwm_request_from_chip(chip, args->args[0], NULL); | 
|  | if (IS_ERR(pwm)) | 
|  | return pwm; | 
|  |  | 
|  | if (args->args_count > 1) | 
|  | pwm->args.period = args->args[1]; | 
|  |  | 
|  | pwm->args.polarity = PWM_POLARITY_NORMAL; | 
|  | if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) | 
|  | pwm->args.polarity = PWM_POLARITY_INVERSED; | 
|  |  | 
|  | return pwm; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); | 
|  |  | 
|  | /* | 
|  | * This callback is used for PXA PWM chips that only have a single PWM line. | 
|  | * For such chips you could argue that passing the line number (i.e. the first | 
|  | * parameter in the common case) is useless as it's always zero. So compared to | 
|  | * the default xlate function of_pwm_xlate_with_flags() the first parameter is | 
|  | * the default period and the second are flags. | 
|  | * | 
|  | * Note that if #pwm-cells = <3>, the semantic is the same as for | 
|  | * of_pwm_xlate_with_flags() to allow converting the affected driver to | 
|  | * #pwm-cells = <3> without breaking the legacy binding. | 
|  | * | 
|  | * Don't use for new drivers. | 
|  | */ | 
|  | struct pwm_device * | 
|  | of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args) | 
|  | { | 
|  | struct pwm_device *pwm; | 
|  |  | 
|  | if (args->args_count >= 3) | 
|  | return of_pwm_xlate_with_flags(chip, args); | 
|  |  | 
|  | pwm = pwm_request_from_chip(chip, 0, NULL); | 
|  | if (IS_ERR(pwm)) | 
|  | return pwm; | 
|  |  | 
|  | if (args->args_count > 0) | 
|  | pwm->args.period = args->args[0]; | 
|  |  | 
|  | pwm->args.polarity = PWM_POLARITY_NORMAL; | 
|  | if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED) | 
|  | pwm->args.polarity = PWM_POLARITY_INVERSED; | 
|  |  | 
|  | return pwm; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(of_pwm_single_xlate); | 
|  |  | 
|  | struct pwm_export { | 
|  | struct device pwm_dev; | 
|  | struct pwm_device *pwm; | 
|  | struct mutex lock; | 
|  | struct pwm_state suspend; | 
|  | }; | 
|  |  | 
|  | static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev) | 
|  | { | 
|  | return container_of(pwmchip_dev, struct pwm_chip, dev); | 
|  | } | 
|  |  | 
|  | static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev) | 
|  | { | 
|  | return container_of(pwm_dev, struct pwm_export, pwm_dev); | 
|  | } | 
|  |  | 
|  | static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev) | 
|  | { | 
|  | struct pwm_export *export = pwmexport_from_dev(pwm_dev); | 
|  |  | 
|  | return export->pwm; | 
|  | } | 
|  |  | 
|  | static ssize_t period_show(struct device *pwm_dev, | 
|  | struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | const struct pwm_device *pwm = pwm_from_dev(pwm_dev); | 
|  | struct pwm_state state; | 
|  |  | 
|  | pwm_get_state(pwm, &state); | 
|  |  | 
|  | return sysfs_emit(buf, "%llu\n", state.period); | 
|  | } | 
|  |  | 
|  | static ssize_t period_store(struct device *pwm_dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t size) | 
|  | { | 
|  | struct pwm_export *export = pwmexport_from_dev(pwm_dev); | 
|  | struct pwm_device *pwm = export->pwm; | 
|  | struct pwm_state state; | 
|  | u64 val; | 
|  | int ret; | 
|  |  | 
|  | ret = kstrtou64(buf, 0, &val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | guard(mutex)(&export->lock); | 
|  |  | 
|  | pwm_get_state(pwm, &state); | 
|  | state.period = val; | 
|  | ret = pwm_apply_might_sleep(pwm, &state); | 
|  |  | 
|  | return ret ? : size; | 
|  | } | 
|  |  | 
|  | static ssize_t duty_cycle_show(struct device *pwm_dev, | 
|  | struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | const struct pwm_device *pwm = pwm_from_dev(pwm_dev); | 
|  | struct pwm_state state; | 
|  |  | 
|  | pwm_get_state(pwm, &state); | 
|  |  | 
|  | return sysfs_emit(buf, "%llu\n", state.duty_cycle); | 
|  | } | 
|  |  | 
|  | static ssize_t duty_cycle_store(struct device *pwm_dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t size) | 
|  | { | 
|  | struct pwm_export *export = pwmexport_from_dev(pwm_dev); | 
|  | struct pwm_device *pwm = export->pwm; | 
|  | struct pwm_state state; | 
|  | u64 val; | 
|  | int ret; | 
|  |  | 
|  | ret = kstrtou64(buf, 0, &val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | guard(mutex)(&export->lock); | 
|  |  | 
|  | pwm_get_state(pwm, &state); | 
|  | state.duty_cycle = val; | 
|  | ret = pwm_apply_might_sleep(pwm, &state); | 
|  |  | 
|  | return ret ? : size; | 
|  | } | 
|  |  | 
|  | static ssize_t enable_show(struct device *pwm_dev, | 
|  | struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | const struct pwm_device *pwm = pwm_from_dev(pwm_dev); | 
|  | struct pwm_state state; | 
|  |  | 
|  | pwm_get_state(pwm, &state); | 
|  |  | 
|  | return sysfs_emit(buf, "%d\n", state.enabled); | 
|  | } | 
|  |  | 
|  | static ssize_t enable_store(struct device *pwm_dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t size) | 
|  | { | 
|  | struct pwm_export *export = pwmexport_from_dev(pwm_dev); | 
|  | struct pwm_device *pwm = export->pwm; | 
|  | struct pwm_state state; | 
|  | int val, ret; | 
|  |  | 
|  | ret = kstrtoint(buf, 0, &val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | guard(mutex)(&export->lock); | 
|  |  | 
|  | pwm_get_state(pwm, &state); | 
|  |  | 
|  | switch (val) { | 
|  | case 0: | 
|  | state.enabled = false; | 
|  | break; | 
|  | case 1: | 
|  | state.enabled = true; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = pwm_apply_might_sleep(pwm, &state); | 
|  |  | 
|  | return ret ? : size; | 
|  | } | 
|  |  | 
|  | static ssize_t polarity_show(struct device *pwm_dev, | 
|  | struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | const struct pwm_device *pwm = pwm_from_dev(pwm_dev); | 
|  | const char *polarity = "unknown"; | 
|  | struct pwm_state state; | 
|  |  | 
|  | pwm_get_state(pwm, &state); | 
|  |  | 
|  | switch (state.polarity) { | 
|  | case PWM_POLARITY_NORMAL: | 
|  | polarity = "normal"; | 
|  | break; | 
|  |  | 
|  | case PWM_POLARITY_INVERSED: | 
|  | polarity = "inversed"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return sysfs_emit(buf, "%s\n", polarity); | 
|  | } | 
|  |  | 
|  | static ssize_t polarity_store(struct device *pwm_dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t size) | 
|  | { | 
|  | struct pwm_export *export = pwmexport_from_dev(pwm_dev); | 
|  | struct pwm_device *pwm = export->pwm; | 
|  | enum pwm_polarity polarity; | 
|  | struct pwm_state state; | 
|  | int ret; | 
|  |  | 
|  | if (sysfs_streq(buf, "normal")) | 
|  | polarity = PWM_POLARITY_NORMAL; | 
|  | else if (sysfs_streq(buf, "inversed")) | 
|  | polarity = PWM_POLARITY_INVERSED; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | guard(mutex)(&export->lock); | 
|  |  | 
|  | pwm_get_state(pwm, &state); | 
|  | state.polarity = polarity; | 
|  | ret = pwm_apply_might_sleep(pwm, &state); | 
|  |  | 
|  | return ret ? : size; | 
|  | } | 
|  |  | 
|  | static ssize_t capture_show(struct device *pwm_dev, | 
|  | struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct pwm_device *pwm = pwm_from_dev(pwm_dev); | 
|  | struct pwm_capture result; | 
|  | int ret; | 
|  |  | 
|  | ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle); | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR_RW(period); | 
|  | static DEVICE_ATTR_RW(duty_cycle); | 
|  | static DEVICE_ATTR_RW(enable); | 
|  | static DEVICE_ATTR_RW(polarity); | 
|  | static DEVICE_ATTR_RO(capture); | 
|  |  | 
|  | static struct attribute *pwm_attrs[] = { | 
|  | &dev_attr_period.attr, | 
|  | &dev_attr_duty_cycle.attr, | 
|  | &dev_attr_enable.attr, | 
|  | &dev_attr_polarity.attr, | 
|  | &dev_attr_capture.attr, | 
|  | NULL | 
|  | }; | 
|  | ATTRIBUTE_GROUPS(pwm); | 
|  |  | 
|  | static void pwm_export_release(struct device *pwm_dev) | 
|  | { | 
|  | struct pwm_export *export = pwmexport_from_dev(pwm_dev); | 
|  |  | 
|  | kfree(export); | 
|  | } | 
|  |  | 
|  | static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm) | 
|  | { | 
|  | struct pwm_export *export; | 
|  | char *pwm_prop[2]; | 
|  | int ret; | 
|  |  | 
|  | if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags)) | 
|  | return -EBUSY; | 
|  |  | 
|  | export = kzalloc(sizeof(*export), GFP_KERNEL); | 
|  | if (!export) { | 
|  | clear_bit(PWMF_EXPORTED, &pwm->flags); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | export->pwm = pwm; | 
|  | mutex_init(&export->lock); | 
|  |  | 
|  | export->pwm_dev.release = pwm_export_release; | 
|  | export->pwm_dev.parent = pwmchip_dev; | 
|  | export->pwm_dev.devt = MKDEV(0, 0); | 
|  | export->pwm_dev.groups = pwm_groups; | 
|  | dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm); | 
|  |  | 
|  | ret = device_register(&export->pwm_dev); | 
|  | if (ret) { | 
|  | clear_bit(PWMF_EXPORTED, &pwm->flags); | 
|  | put_device(&export->pwm_dev); | 
|  | export = NULL; | 
|  | return ret; | 
|  | } | 
|  | pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm); | 
|  | pwm_prop[1] = NULL; | 
|  | kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); | 
|  | kfree(pwm_prop[0]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pwm_unexport_match(struct device *pwm_dev, const void *data) | 
|  | { | 
|  | return pwm_from_dev(pwm_dev) == data; | 
|  | } | 
|  |  | 
|  | static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm) | 
|  | { | 
|  | struct device *pwm_dev; | 
|  | char *pwm_prop[2]; | 
|  |  | 
|  | if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags)) | 
|  | return -ENODEV; | 
|  |  | 
|  | pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); | 
|  | if (!pwm_dev) | 
|  | return -ENODEV; | 
|  |  | 
|  | pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm); | 
|  | pwm_prop[1] = NULL; | 
|  | kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); | 
|  | kfree(pwm_prop[0]); | 
|  |  | 
|  | /* for device_find_child() */ | 
|  | put_device(pwm_dev); | 
|  | device_unregister(pwm_dev); | 
|  | pwm_put(pwm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t export_store(struct device *pwmchip_dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t len) | 
|  | { | 
|  | struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); | 
|  | struct pwm_device *pwm; | 
|  | unsigned int hwpwm; | 
|  | int ret; | 
|  |  | 
|  | ret = kstrtouint(buf, 0, &hwpwm); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (hwpwm >= chip->npwm) | 
|  | return -ENODEV; | 
|  |  | 
|  | pwm = pwm_request_from_chip(chip, hwpwm, "sysfs"); | 
|  | if (IS_ERR(pwm)) | 
|  | return PTR_ERR(pwm); | 
|  |  | 
|  | ret = pwm_export_child(pwmchip_dev, pwm); | 
|  | if (ret < 0) | 
|  | pwm_put(pwm); | 
|  |  | 
|  | return ret ? : len; | 
|  | } | 
|  | static DEVICE_ATTR_WO(export); | 
|  |  | 
|  | static ssize_t unexport_store(struct device *pwmchip_dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t len) | 
|  | { | 
|  | struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); | 
|  | unsigned int hwpwm; | 
|  | int ret; | 
|  |  | 
|  | ret = kstrtouint(buf, 0, &hwpwm); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (hwpwm >= chip->npwm) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]); | 
|  |  | 
|  | return ret ? : len; | 
|  | } | 
|  | static DEVICE_ATTR_WO(unexport); | 
|  |  | 
|  | static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); | 
|  |  | 
|  | return sysfs_emit(buf, "%u\n", chip->npwm); | 
|  | } | 
|  | static DEVICE_ATTR_RO(npwm); | 
|  |  | 
|  | static struct attribute *pwm_chip_attrs[] = { | 
|  | &dev_attr_export.attr, | 
|  | &dev_attr_unexport.attr, | 
|  | &dev_attr_npwm.attr, | 
|  | NULL, | 
|  | }; | 
|  | ATTRIBUTE_GROUPS(pwm_chip); | 
|  |  | 
|  | /* takes export->lock on success */ | 
|  | static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev, | 
|  | struct pwm_device *pwm, | 
|  | struct pwm_state *state) | 
|  | { | 
|  | struct device *pwm_dev; | 
|  | struct pwm_export *export; | 
|  |  | 
|  | if (!test_bit(PWMF_EXPORTED, &pwm->flags)) | 
|  | return NULL; | 
|  |  | 
|  | pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); | 
|  | if (!pwm_dev) | 
|  | return NULL; | 
|  |  | 
|  | export = pwmexport_from_dev(pwm_dev); | 
|  | put_device(pwm_dev);	/* for device_find_child() */ | 
|  |  | 
|  | mutex_lock(&export->lock); | 
|  | pwm_get_state(pwm, state); | 
|  |  | 
|  | return export; | 
|  | } | 
|  |  | 
|  | static int pwm_class_apply_state(struct pwm_export *export, | 
|  | struct pwm_device *pwm, | 
|  | struct pwm_state *state) | 
|  | { | 
|  | int ret = pwm_apply_might_sleep(pwm, state); | 
|  |  | 
|  | /* release lock taken in pwm_class_get_state */ | 
|  | mutex_unlock(&export->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm) | 
|  | { | 
|  | struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); | 
|  | unsigned int i; | 
|  | int ret = 0; | 
|  |  | 
|  | for (i = 0; i < npwm; i++) { | 
|  | struct pwm_device *pwm = &chip->pwms[i]; | 
|  | struct pwm_state state; | 
|  | struct pwm_export *export; | 
|  |  | 
|  | export = pwm_class_get_state(pwmchip_dev, pwm, &state); | 
|  | if (!export) | 
|  | continue; | 
|  |  | 
|  | /* If pwmchip was not enabled before suspend, do nothing. */ | 
|  | if (!export->suspend.enabled) { | 
|  | /* release lock taken in pwm_class_get_state */ | 
|  | mutex_unlock(&export->lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | state.enabled = export->suspend.enabled; | 
|  | ret = pwm_class_apply_state(export, pwm, &state); | 
|  | if (ret < 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pwm_class_suspend(struct device *pwmchip_dev) | 
|  | { | 
|  | struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); | 
|  | unsigned int i; | 
|  | int ret = 0; | 
|  |  | 
|  | for (i = 0; i < chip->npwm; i++) { | 
|  | struct pwm_device *pwm = &chip->pwms[i]; | 
|  | struct pwm_state state; | 
|  | struct pwm_export *export; | 
|  |  | 
|  | export = pwm_class_get_state(pwmchip_dev, pwm, &state); | 
|  | if (!export) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If pwmchip was not enabled before suspend, save | 
|  | * state for resume time and do nothing else. | 
|  | */ | 
|  | export->suspend = state; | 
|  | if (!state.enabled) { | 
|  | /* release lock taken in pwm_class_get_state */ | 
|  | mutex_unlock(&export->lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | state.enabled = false; | 
|  | ret = pwm_class_apply_state(export, pwm, &state); | 
|  | if (ret < 0) { | 
|  | /* | 
|  | * roll back the PWM devices that were disabled by | 
|  | * this suspend function. | 
|  | */ | 
|  | pwm_class_resume_npwm(pwmchip_dev, i); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pwm_class_resume(struct device *pwmchip_dev) | 
|  | { | 
|  | struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); | 
|  |  | 
|  | return pwm_class_resume_npwm(pwmchip_dev, chip->npwm); | 
|  | } | 
|  |  | 
|  | static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume); | 
|  |  | 
|  | static struct class pwm_class = { | 
|  | .name = "pwm", | 
|  | .dev_groups = pwm_chip_groups, | 
|  | .pm = pm_sleep_ptr(&pwm_class_pm_ops), | 
|  | }; | 
|  |  | 
|  | static void pwmchip_sysfs_unexport(struct pwm_chip *chip) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < chip->npwm; i++) { | 
|  | struct pwm_device *pwm = &chip->pwms[i]; | 
|  |  | 
|  | if (test_bit(PWMF_EXPORTED, &pwm->flags)) | 
|  | pwm_unexport_child(&chip->dev, pwm); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN | 
|  |  | 
|  | static void *pwmchip_priv(struct pwm_chip *chip) | 
|  | { | 
|  | return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN); | 
|  | } | 
|  |  | 
|  | /* This is the counterpart to pwmchip_alloc() */ | 
|  | void pwmchip_put(struct pwm_chip *chip) | 
|  | { | 
|  | put_device(&chip->dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwmchip_put); | 
|  |  | 
|  | static void pwmchip_release(struct device *pwmchip_dev) | 
|  | { | 
|  | struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); | 
|  |  | 
|  | kfree(chip); | 
|  | } | 
|  |  | 
|  | struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) | 
|  | { | 
|  | struct pwm_chip *chip; | 
|  | struct device *pwmchip_dev; | 
|  | size_t alloc_size; | 
|  | unsigned int i; | 
|  |  | 
|  | alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN), | 
|  | sizeof_priv); | 
|  |  | 
|  | chip = kzalloc(alloc_size, GFP_KERNEL); | 
|  | if (!chip) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | chip->npwm = npwm; | 
|  | chip->uses_pwmchip_alloc = true; | 
|  | chip->operational = false; | 
|  |  | 
|  | pwmchip_dev = &chip->dev; | 
|  | device_initialize(pwmchip_dev); | 
|  | pwmchip_dev->class = &pwm_class; | 
|  | pwmchip_dev->parent = parent; | 
|  | pwmchip_dev->release = pwmchip_release; | 
|  |  | 
|  | pwmchip_set_drvdata(chip, pwmchip_priv(chip)); | 
|  |  | 
|  | for (i = 0; i < chip->npwm; i++) { | 
|  | struct pwm_device *pwm = &chip->pwms[i]; | 
|  | pwm->chip = chip; | 
|  | pwm->hwpwm = i; | 
|  | } | 
|  |  | 
|  | return chip; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwmchip_alloc); | 
|  |  | 
|  | static void devm_pwmchip_put(void *data) | 
|  | { | 
|  | struct pwm_chip *chip = data; | 
|  |  | 
|  | pwmchip_put(chip); | 
|  | } | 
|  |  | 
|  | struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) | 
|  | { | 
|  | struct pwm_chip *chip; | 
|  | int ret; | 
|  |  | 
|  | chip = pwmchip_alloc(parent, npwm, sizeof_priv); | 
|  | if (IS_ERR(chip)) | 
|  | return chip; | 
|  |  | 
|  | ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | return chip; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(devm_pwmchip_alloc); | 
|  |  | 
|  | static void of_pwmchip_add(struct pwm_chip *chip) | 
|  | { | 
|  | if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node) | 
|  | return; | 
|  |  | 
|  | if (!chip->of_xlate) | 
|  | chip->of_xlate = of_pwm_xlate_with_flags; | 
|  |  | 
|  | of_node_get(pwmchip_parent(chip)->of_node); | 
|  | } | 
|  |  | 
|  | static void of_pwmchip_remove(struct pwm_chip *chip) | 
|  | { | 
|  | if (pwmchip_parent(chip)) | 
|  | of_node_put(pwmchip_parent(chip)->of_node); | 
|  | } | 
|  |  | 
|  | static bool pwm_ops_check(const struct pwm_chip *chip) | 
|  | { | 
|  | const struct pwm_ops *ops = chip->ops; | 
|  |  | 
|  | if (ops->write_waveform) { | 
|  | if (!ops->round_waveform_tohw || | 
|  | !ops->round_waveform_fromhw || | 
|  | !ops->write_waveform) | 
|  | return false; | 
|  |  | 
|  | if (WFHWSIZE < ops->sizeof_wfhw) { | 
|  | dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!ops->apply) | 
|  | return false; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) | 
|  | dev_warn(pwmchip_parent(chip), | 
|  | "Please implement the .get_state() callback\n"); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct device_link *pwm_device_link_add(struct device *dev, | 
|  | struct pwm_device *pwm) | 
|  | { | 
|  | struct device_link *dl; | 
|  |  | 
|  | if (!dev) { | 
|  | /* | 
|  | * No device for the PWM consumer has been provided. It may | 
|  | * impact the PM sequence ordering: the PWM supplier may get | 
|  | * suspended before the consumer. | 
|  | */ | 
|  | dev_warn(pwmchip_parent(pwm->chip), | 
|  | "No consumer device specified to create a link to\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER); | 
|  | if (!dl) { | 
|  | dev_err(dev, "failed to create device link to %s\n", | 
|  | dev_name(pwmchip_parent(pwm->chip))); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | return dl; | 
|  | } | 
|  |  | 
|  | static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) | 
|  | { | 
|  | struct pwm_chip *chip; | 
|  | unsigned long id, tmp; | 
|  |  | 
|  | guard(mutex)(&pwm_lock); | 
|  |  | 
|  | idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) | 
|  | if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode)) | 
|  | return chip; | 
|  |  | 
|  | return ERR_PTR(-EPROBE_DEFER); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * of_pwm_get() - request a PWM via the PWM framework | 
|  | * @dev: device for PWM consumer | 
|  | * @np: device node to get the PWM from | 
|  | * @con_id: consumer name | 
|  | * | 
|  | * Returns the PWM device parsed from the phandle and index specified in the | 
|  | * "pwms" property of a device tree node or a negative error-code on failure. | 
|  | * Values parsed from the device tree are stored in the returned PWM device | 
|  | * object. | 
|  | * | 
|  | * If con_id is NULL, the first PWM device listed in the "pwms" property will | 
|  | * be requested. Otherwise the "pwm-names" property is used to do a reverse | 
|  | * lookup of the PWM index. This also means that the "pwm-names" property | 
|  | * becomes mandatory for devices that look up the PWM device via the con_id | 
|  | * parameter. | 
|  | * | 
|  | * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded | 
|  | * error code on failure. | 
|  | */ | 
|  | static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, | 
|  | const char *con_id) | 
|  | { | 
|  | struct pwm_device *pwm = NULL; | 
|  | struct of_phandle_args args; | 
|  | struct device_link *dl; | 
|  | struct pwm_chip *chip; | 
|  | int index = 0; | 
|  | int err; | 
|  |  | 
|  | if (con_id) { | 
|  | index = of_property_match_string(np, "pwm-names", con_id); | 
|  | if (index < 0) | 
|  | return ERR_PTR(index); | 
|  | } | 
|  |  | 
|  | err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args); | 
|  | if (err) { | 
|  | pr_err("%s(): can't parse \"pwms\" property\n", __func__); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | chip = fwnode_to_pwmchip(of_fwnode_handle(args.np)); | 
|  | if (IS_ERR(chip)) { | 
|  | if (PTR_ERR(chip) != -EPROBE_DEFER) | 
|  | pr_err("%s(): PWM chip not found\n", __func__); | 
|  |  | 
|  | pwm = ERR_CAST(chip); | 
|  | goto put; | 
|  | } | 
|  |  | 
|  | pwm = chip->of_xlate(chip, &args); | 
|  | if (IS_ERR(pwm)) | 
|  | goto put; | 
|  |  | 
|  | dl = pwm_device_link_add(dev, pwm); | 
|  | if (IS_ERR(dl)) { | 
|  | /* of_xlate ended up calling pwm_request_from_chip() */ | 
|  | pwm_put(pwm); | 
|  | pwm = ERR_CAST(dl); | 
|  | goto put; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a consumer name was not given, try to look it up from the | 
|  | * "pwm-names" property if it exists. Otherwise use the name of | 
|  | * the user device node. | 
|  | */ | 
|  | if (!con_id) { | 
|  | err = of_property_read_string_index(np, "pwm-names", index, | 
|  | &con_id); | 
|  | if (err < 0) | 
|  | con_id = np->name; | 
|  | } | 
|  |  | 
|  | pwm->label = con_id; | 
|  |  | 
|  | put: | 
|  | of_node_put(args.np); | 
|  |  | 
|  | return pwm; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI | 
|  | * @fwnode: firmware node to get the "pwms" property from | 
|  | * | 
|  | * Returns the PWM device parsed from the fwnode and index specified in the | 
|  | * "pwms" property or a negative error-code on failure. | 
|  | * Values parsed from the device tree are stored in the returned PWM device | 
|  | * object. | 
|  | * | 
|  | * This is analogous to of_pwm_get() except con_id is not yet supported. | 
|  | * ACPI entries must look like | 
|  | * Package () {"pwms", Package () | 
|  | *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} | 
|  | * | 
|  | * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded | 
|  | * error code on failure. | 
|  | */ | 
|  | static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) | 
|  | { | 
|  | struct pwm_device *pwm; | 
|  | struct fwnode_reference_args args; | 
|  | struct pwm_chip *chip; | 
|  | int ret; | 
|  |  | 
|  | memset(&args, 0, sizeof(args)); | 
|  |  | 
|  | ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); | 
|  | if (ret < 0) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | if (args.nargs < 2) | 
|  | return ERR_PTR(-EPROTO); | 
|  |  | 
|  | chip = fwnode_to_pwmchip(args.fwnode); | 
|  | if (IS_ERR(chip)) | 
|  | return ERR_CAST(chip); | 
|  |  | 
|  | pwm = pwm_request_from_chip(chip, args.args[0], NULL); | 
|  | if (IS_ERR(pwm)) | 
|  | return pwm; | 
|  |  | 
|  | pwm->args.period = args.args[1]; | 
|  | pwm->args.polarity = PWM_POLARITY_NORMAL; | 
|  |  | 
|  | if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) | 
|  | pwm->args.polarity = PWM_POLARITY_INVERSED; | 
|  |  | 
|  | return pwm; | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(pwm_lookup_lock); | 
|  | static LIST_HEAD(pwm_lookup_list); | 
|  |  | 
|  | /** | 
|  | * pwm_get() - look up and request a PWM device | 
|  | * @dev: device for PWM consumer | 
|  | * @con_id: consumer name | 
|  | * | 
|  | * Lookup is first attempted using DT. If the device was not instantiated from | 
|  | * a device tree, a PWM chip and a relative index is looked up via a table | 
|  | * supplied by board setup code (see pwm_add_table()). | 
|  | * | 
|  | * Once a PWM chip has been found the specified PWM device will be requested | 
|  | * and is ready to be used. | 
|  | * | 
|  | * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded | 
|  | * error code on failure. | 
|  | */ | 
|  | struct pwm_device *pwm_get(struct device *dev, const char *con_id) | 
|  | { | 
|  | const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; | 
|  | const char *dev_id = dev ? dev_name(dev) : NULL; | 
|  | struct pwm_device *pwm; | 
|  | struct pwm_chip *chip; | 
|  | struct device_link *dl; | 
|  | unsigned int best = 0; | 
|  | struct pwm_lookup *p, *chosen = NULL; | 
|  | unsigned int match; | 
|  | int err; | 
|  |  | 
|  | /* look up via DT first */ | 
|  | if (is_of_node(fwnode)) | 
|  | return of_pwm_get(dev, to_of_node(fwnode), con_id); | 
|  |  | 
|  | /* then lookup via ACPI */ | 
|  | if (is_acpi_node(fwnode)) { | 
|  | pwm = acpi_pwm_get(fwnode); | 
|  | if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) | 
|  | return pwm; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We look up the provider in the static table typically provided by | 
|  | * board setup code. We first try to lookup the consumer device by | 
|  | * name. If the consumer device was passed in as NULL or if no match | 
|  | * was found, we try to find the consumer by directly looking it up | 
|  | * by name. | 
|  | * | 
|  | * If a match is found, the provider PWM chip is looked up by name | 
|  | * and a PWM device is requested using the PWM device per-chip index. | 
|  | * | 
|  | * The lookup algorithm was shamelessly taken from the clock | 
|  | * framework: | 
|  | * | 
|  | * We do slightly fuzzy matching here: | 
|  | *  An entry with a NULL ID is assumed to be a wildcard. | 
|  | *  If an entry has a device ID, it must match | 
|  | *  If an entry has a connection ID, it must match | 
|  | * Then we take the most specific entry - with the following order | 
|  | * of precedence: dev+con > dev only > con only. | 
|  | */ | 
|  | scoped_guard(mutex, &pwm_lookup_lock) | 
|  | list_for_each_entry(p, &pwm_lookup_list, list) { | 
|  | match = 0; | 
|  |  | 
|  | if (p->dev_id) { | 
|  | if (!dev_id || strcmp(p->dev_id, dev_id)) | 
|  | continue; | 
|  |  | 
|  | match += 2; | 
|  | } | 
|  |  | 
|  | if (p->con_id) { | 
|  | if (!con_id || strcmp(p->con_id, con_id)) | 
|  | continue; | 
|  |  | 
|  | match += 1; | 
|  | } | 
|  |  | 
|  | if (match > best) { | 
|  | chosen = p; | 
|  |  | 
|  | if (match != 3) | 
|  | best = match; | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!chosen) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | chip = pwmchip_find_by_name(chosen->provider); | 
|  |  | 
|  | /* | 
|  | * If the lookup entry specifies a module, load the module and retry | 
|  | * the PWM chip lookup. This can be used to work around driver load | 
|  | * ordering issues if driver's can't be made to properly support the | 
|  | * deferred probe mechanism. | 
|  | */ | 
|  | if (!chip && chosen->module) { | 
|  | err = request_module(chosen->module); | 
|  | if (err == 0) | 
|  | chip = pwmchip_find_by_name(chosen->provider); | 
|  | } | 
|  |  | 
|  | if (!chip) | 
|  | return ERR_PTR(-EPROBE_DEFER); | 
|  |  | 
|  | pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); | 
|  | if (IS_ERR(pwm)) | 
|  | return pwm; | 
|  |  | 
|  | dl = pwm_device_link_add(dev, pwm); | 
|  | if (IS_ERR(dl)) { | 
|  | pwm_put(pwm); | 
|  | return ERR_CAST(dl); | 
|  | } | 
|  |  | 
|  | pwm->args.period = chosen->period; | 
|  | pwm->args.polarity = chosen->polarity; | 
|  |  | 
|  | return pwm; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwm_get); | 
|  |  | 
|  | /** | 
|  | * pwm_put() - release a PWM device | 
|  | * @pwm: PWM device | 
|  | */ | 
|  | void pwm_put(struct pwm_device *pwm) | 
|  | { | 
|  | struct pwm_chip *chip; | 
|  |  | 
|  | if (!pwm) | 
|  | return; | 
|  |  | 
|  | chip = pwm->chip; | 
|  |  | 
|  | guard(mutex)(&pwm_lock); | 
|  |  | 
|  | /* | 
|  | * Trigger a warning if a consumer called pwm_put() twice. | 
|  | * If the chip isn't operational, PWMF_REQUESTED was already cleared in | 
|  | * pwmchip_remove(). So don't warn in this case. | 
|  | */ | 
|  | if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { | 
|  | pr_warn("PWM device already freed\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (chip->operational && chip->ops->free) | 
|  | pwm->chip->ops->free(pwm->chip, pwm); | 
|  |  | 
|  | pwm->label = NULL; | 
|  |  | 
|  | put_device(&chip->dev); | 
|  |  | 
|  | module_put(chip->owner); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwm_put); | 
|  |  | 
|  | static void devm_pwm_release(void *pwm) | 
|  | { | 
|  | pwm_put(pwm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * devm_pwm_get() - resource managed pwm_get() | 
|  | * @dev: device for PWM consumer | 
|  | * @con_id: consumer name | 
|  | * | 
|  | * This function performs like pwm_get() but the acquired PWM device will | 
|  | * automatically be released on driver detach. | 
|  | * | 
|  | * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded | 
|  | * error code on failure. | 
|  | */ | 
|  | struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) | 
|  | { | 
|  | struct pwm_device *pwm; | 
|  | int ret; | 
|  |  | 
|  | pwm = pwm_get(dev, con_id); | 
|  | if (IS_ERR(pwm)) | 
|  | return pwm; | 
|  |  | 
|  | ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | return pwm; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(devm_pwm_get); | 
|  |  | 
|  | /** | 
|  | * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node | 
|  | * @dev: device for PWM consumer | 
|  | * @fwnode: firmware node to get the PWM from | 
|  | * @con_id: consumer name | 
|  | * | 
|  | * Returns the PWM device parsed from the firmware node. See of_pwm_get() and | 
|  | * acpi_pwm_get() for a detailed description. | 
|  | * | 
|  | * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded | 
|  | * error code on failure. | 
|  | */ | 
|  | struct pwm_device *devm_fwnode_pwm_get(struct device *dev, | 
|  | struct fwnode_handle *fwnode, | 
|  | const char *con_id) | 
|  | { | 
|  | struct pwm_device *pwm = ERR_PTR(-ENODEV); | 
|  | int ret; | 
|  |  | 
|  | if (is_of_node(fwnode)) | 
|  | pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); | 
|  | else if (is_acpi_node(fwnode)) | 
|  | pwm = acpi_pwm_get(fwnode); | 
|  | if (IS_ERR(pwm)) | 
|  | return pwm; | 
|  |  | 
|  | ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | return pwm; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); | 
|  |  | 
|  | /** | 
|  | * __pwmchip_add() - register a new PWM chip | 
|  | * @chip: the PWM chip to add | 
|  | * @owner: reference to the module providing the chip. | 
|  | * | 
|  | * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the | 
|  | * pwmchip_add wrapper to do this right. | 
|  | * | 
|  | * Returns: 0 on success or a negative error code on failure. | 
|  | */ | 
|  | int __pwmchip_add(struct pwm_chip *chip, struct module *owner) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc, | 
|  | * otherwise the embedded struct device might disappear too early | 
|  | * resulting in memory corruption. | 
|  | * Catch drivers that were not converted appropriately. | 
|  | */ | 
|  | if (!chip->uses_pwmchip_alloc) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!pwm_ops_check(chip)) | 
|  | return -EINVAL; | 
|  |  | 
|  | chip->owner = owner; | 
|  |  | 
|  | if (chip->atomic) | 
|  | spin_lock_init(&chip->atomic_lock); | 
|  | else | 
|  | mutex_init(&chip->nonatomic_lock); | 
|  |  | 
|  | guard(mutex)(&pwm_lock); | 
|  |  | 
|  | ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | chip->id = ret; | 
|  |  | 
|  | dev_set_name(&chip->dev, "pwmchip%u", chip->id); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_OF)) | 
|  | of_pwmchip_add(chip); | 
|  |  | 
|  | scoped_guard(pwmchip, chip) | 
|  | chip->operational = true; | 
|  |  | 
|  | ret = device_add(&chip->dev); | 
|  | if (ret) | 
|  | goto err_device_add; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_device_add: | 
|  | scoped_guard(pwmchip, chip) | 
|  | chip->operational = false; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_OF)) | 
|  | of_pwmchip_remove(chip); | 
|  |  | 
|  | idr_remove(&pwm_chips, chip->id); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__pwmchip_add); | 
|  |  | 
|  | /** | 
|  | * pwmchip_remove() - remove a PWM chip | 
|  | * @chip: the PWM chip to remove | 
|  | * | 
|  | * Removes a PWM chip. | 
|  | */ | 
|  | void pwmchip_remove(struct pwm_chip *chip) | 
|  | { | 
|  | pwmchip_sysfs_unexport(chip); | 
|  |  | 
|  | scoped_guard(mutex, &pwm_lock) { | 
|  | unsigned int i; | 
|  |  | 
|  | scoped_guard(pwmchip, chip) | 
|  | chip->operational = false; | 
|  |  | 
|  | for (i = 0; i < chip->npwm; ++i) { | 
|  | struct pwm_device *pwm = &chip->pwms[i]; | 
|  |  | 
|  | if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { | 
|  | dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i); | 
|  | if (pwm->chip->ops->free) | 
|  | pwm->chip->ops->free(pwm->chip, pwm); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_OF)) | 
|  | of_pwmchip_remove(chip); | 
|  |  | 
|  | idr_remove(&pwm_chips, chip->id); | 
|  | } | 
|  |  | 
|  | device_del(&chip->dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pwmchip_remove); | 
|  |  | 
|  | static void devm_pwmchip_remove(void *data) | 
|  | { | 
|  | struct pwm_chip *chip = data; | 
|  |  | 
|  | pwmchip_remove(chip); | 
|  | } | 
|  |  | 
|  | int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = __pwmchip_add(chip, owner); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__devm_pwmchip_add); | 
|  |  | 
|  | /** | 
|  | * pwm_add_table() - register PWM device consumers | 
|  | * @table: array of consumers to register | 
|  | * @num: number of consumers in table | 
|  | */ | 
|  | void pwm_add_table(struct pwm_lookup *table, size_t num) | 
|  | { | 
|  | guard(mutex)(&pwm_lookup_lock); | 
|  |  | 
|  | while (num--) { | 
|  | list_add_tail(&table->list, &pwm_lookup_list); | 
|  | table++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pwm_remove_table() - unregister PWM device consumers | 
|  | * @table: array of consumers to unregister | 
|  | * @num: number of consumers in table | 
|  | */ | 
|  | void pwm_remove_table(struct pwm_lookup *table, size_t num) | 
|  | { | 
|  | guard(mutex)(&pwm_lookup_lock); | 
|  |  | 
|  | while (num--) { | 
|  | list_del(&table->list); | 
|  | table++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < chip->npwm; i++) { | 
|  | struct pwm_device *pwm = &chip->pwms[i]; | 
|  | struct pwm_state state; | 
|  |  | 
|  | pwm_get_state(pwm, &state); | 
|  |  | 
|  | seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); | 
|  |  | 
|  | if (test_bit(PWMF_REQUESTED, &pwm->flags)) | 
|  | seq_puts(s, " requested"); | 
|  |  | 
|  | if (state.enabled) | 
|  | seq_puts(s, " enabled"); | 
|  |  | 
|  | seq_printf(s, " period: %llu ns", state.period); | 
|  | seq_printf(s, " duty: %llu ns", state.duty_cycle); | 
|  | seq_printf(s, " polarity: %s", | 
|  | state.polarity ? "inverse" : "normal"); | 
|  |  | 
|  | if (state.usage_power) | 
|  | seq_puts(s, " usage_power"); | 
|  |  | 
|  | seq_puts(s, "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void *pwm_seq_start(struct seq_file *s, loff_t *pos) | 
|  | { | 
|  | unsigned long id = *pos; | 
|  | void *ret; | 
|  |  | 
|  | mutex_lock(&pwm_lock); | 
|  | s->private = ""; | 
|  |  | 
|  | ret = idr_get_next_ul(&pwm_chips, &id); | 
|  | *pos = id; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) | 
|  | { | 
|  | unsigned long id = *pos + 1; | 
|  | void *ret; | 
|  |  | 
|  | s->private = "\n"; | 
|  |  | 
|  | ret = idr_get_next_ul(&pwm_chips, &id); | 
|  | *pos = id; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void pwm_seq_stop(struct seq_file *s, void *v) | 
|  | { | 
|  | mutex_unlock(&pwm_lock); | 
|  | } | 
|  |  | 
|  | static int pwm_seq_show(struct seq_file *s, void *v) | 
|  | { | 
|  | struct pwm_chip *chip = v; | 
|  |  | 
|  | seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n", | 
|  | (char *)s->private, chip->id, | 
|  | pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus", | 
|  | dev_name(pwmchip_parent(chip)), chip->npwm, | 
|  | (chip->npwm != 1) ? "s" : ""); | 
|  |  | 
|  | pwm_dbg_show(chip, s); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations pwm_debugfs_sops = { | 
|  | .start = pwm_seq_start, | 
|  | .next = pwm_seq_next, | 
|  | .stop = pwm_seq_stop, | 
|  | .show = pwm_seq_show, | 
|  | }; | 
|  |  | 
|  | DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); | 
|  |  | 
|  | static int __init pwm_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = class_register(&pwm_class); | 
|  | if (ret) { | 
|  | pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_DEBUG_FS)) | 
|  | debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(pwm_init); |