|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/llist.h> | 
|  | #include <linux/bpf.h> | 
|  | #include <linux/irq_work.h> | 
|  | #include <linux/bpf_mem_alloc.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <asm/local.h> | 
|  |  | 
|  | /* Any context (including NMI) BPF specific memory allocator. | 
|  | * | 
|  | * Tracing BPF programs can attach to kprobe and fentry. Hence they | 
|  | * run in unknown context where calling plain kmalloc() might not be safe. | 
|  | * | 
|  | * Front-end kmalloc() with per-cpu per-bucket cache of free elements. | 
|  | * Refill this cache asynchronously from irq_work. | 
|  | * | 
|  | * CPU_0 buckets | 
|  | * 16 32 64 96 128 196 256 512 1024 2048 4096 | 
|  | * ... | 
|  | * CPU_N buckets | 
|  | * 16 32 64 96 128 196 256 512 1024 2048 4096 | 
|  | * | 
|  | * The buckets are prefilled at the start. | 
|  | * BPF programs always run with migration disabled. | 
|  | * It's safe to allocate from cache of the current cpu with irqs disabled. | 
|  | * Free-ing is always done into bucket of the current cpu as well. | 
|  | * irq_work trims extra free elements from buckets with kfree | 
|  | * and refills them with kmalloc, so global kmalloc logic takes care | 
|  | * of freeing objects allocated by one cpu and freed on another. | 
|  | * | 
|  | * Every allocated objected is padded with extra 8 bytes that contains | 
|  | * struct llist_node. | 
|  | */ | 
|  | #define LLIST_NODE_SZ sizeof(struct llist_node) | 
|  |  | 
|  | /* similar to kmalloc, but sizeof == 8 bucket is gone */ | 
|  | static u8 size_index[24] __ro_after_init = { | 
|  | 3,	/* 8 */ | 
|  | 3,	/* 16 */ | 
|  | 4,	/* 24 */ | 
|  | 4,	/* 32 */ | 
|  | 5,	/* 40 */ | 
|  | 5,	/* 48 */ | 
|  | 5,	/* 56 */ | 
|  | 5,	/* 64 */ | 
|  | 1,	/* 72 */ | 
|  | 1,	/* 80 */ | 
|  | 1,	/* 88 */ | 
|  | 1,	/* 96 */ | 
|  | 6,	/* 104 */ | 
|  | 6,	/* 112 */ | 
|  | 6,	/* 120 */ | 
|  | 6,	/* 128 */ | 
|  | 2,	/* 136 */ | 
|  | 2,	/* 144 */ | 
|  | 2,	/* 152 */ | 
|  | 2,	/* 160 */ | 
|  | 2,	/* 168 */ | 
|  | 2,	/* 176 */ | 
|  | 2,	/* 184 */ | 
|  | 2	/* 192 */ | 
|  | }; | 
|  |  | 
|  | static int bpf_mem_cache_idx(size_t size) | 
|  | { | 
|  | if (!size || size > 4096) | 
|  | return -1; | 
|  |  | 
|  | if (size <= 192) | 
|  | return size_index[(size - 1) / 8] - 1; | 
|  |  | 
|  | return fls(size - 1) - 2; | 
|  | } | 
|  |  | 
|  | #define NUM_CACHES 11 | 
|  |  | 
|  | struct bpf_mem_cache { | 
|  | /* per-cpu list of free objects of size 'unit_size'. | 
|  | * All accesses are done with interrupts disabled and 'active' counter | 
|  | * protection with __llist_add() and __llist_del_first(). | 
|  | */ | 
|  | struct llist_head free_llist; | 
|  | local_t active; | 
|  |  | 
|  | /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill | 
|  | * are sequenced by per-cpu 'active' counter. But unit_free() cannot | 
|  | * fail. When 'active' is busy the unit_free() will add an object to | 
|  | * free_llist_extra. | 
|  | */ | 
|  | struct llist_head free_llist_extra; | 
|  |  | 
|  | struct irq_work refill_work; | 
|  | struct obj_cgroup *objcg; | 
|  | int unit_size; | 
|  | /* count of objects in free_llist */ | 
|  | int free_cnt; | 
|  | int low_watermark, high_watermark, batch; | 
|  | int percpu_size; | 
|  | bool draining; | 
|  | struct bpf_mem_cache *tgt; | 
|  |  | 
|  | /* list of objects to be freed after RCU GP */ | 
|  | struct llist_head free_by_rcu; | 
|  | struct llist_node *free_by_rcu_tail; | 
|  | struct llist_head waiting_for_gp; | 
|  | struct llist_node *waiting_for_gp_tail; | 
|  | struct rcu_head rcu; | 
|  | atomic_t call_rcu_in_progress; | 
|  | struct llist_head free_llist_extra_rcu; | 
|  |  | 
|  | /* list of objects to be freed after RCU tasks trace GP */ | 
|  | struct llist_head free_by_rcu_ttrace; | 
|  | struct llist_head waiting_for_gp_ttrace; | 
|  | struct rcu_head rcu_ttrace; | 
|  | atomic_t call_rcu_ttrace_in_progress; | 
|  | }; | 
|  |  | 
|  | struct bpf_mem_caches { | 
|  | struct bpf_mem_cache cache[NUM_CACHES]; | 
|  | }; | 
|  |  | 
|  | static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; | 
|  |  | 
|  | static struct llist_node notrace *__llist_del_first(struct llist_head *head) | 
|  | { | 
|  | struct llist_node *entry, *next; | 
|  |  | 
|  | entry = head->first; | 
|  | if (!entry) | 
|  | return NULL; | 
|  | next = entry->next; | 
|  | head->first = next; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags) | 
|  | { | 
|  | if (c->percpu_size) { | 
|  | void __percpu **obj = kmalloc_node(c->percpu_size, flags, node); | 
|  | void __percpu *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags); | 
|  |  | 
|  | if (!obj || !pptr) { | 
|  | free_percpu(pptr); | 
|  | kfree(obj); | 
|  | return NULL; | 
|  | } | 
|  | obj[1] = pptr; | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node); | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c) | 
|  | { | 
|  | #ifdef CONFIG_MEMCG | 
|  | if (c->objcg) | 
|  | return get_mem_cgroup_from_objcg(c->objcg); | 
|  | return root_mem_cgroup; | 
|  | #else | 
|  | return NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void inc_active(struct bpf_mem_cache *c, unsigned long *flags) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_PREEMPT_RT)) | 
|  | /* In RT irq_work runs in per-cpu kthread, so disable | 
|  | * interrupts to avoid preemption and interrupts and | 
|  | * reduce the chance of bpf prog executing on this cpu | 
|  | * when active counter is busy. | 
|  | */ | 
|  | local_irq_save(*flags); | 
|  | /* alloc_bulk runs from irq_work which will not preempt a bpf | 
|  | * program that does unit_alloc/unit_free since IRQs are | 
|  | * disabled there. There is no race to increment 'active' | 
|  | * counter. It protects free_llist from corruption in case NMI | 
|  | * bpf prog preempted this loop. | 
|  | */ | 
|  | WARN_ON_ONCE(local_inc_return(&c->active) != 1); | 
|  | } | 
|  |  | 
|  | static void dec_active(struct bpf_mem_cache *c, unsigned long *flags) | 
|  | { | 
|  | local_dec(&c->active); | 
|  | if (IS_ENABLED(CONFIG_PREEMPT_RT)) | 
|  | local_irq_restore(*flags); | 
|  | } | 
|  |  | 
|  | static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | inc_active(c, &flags); | 
|  | __llist_add(obj, &c->free_llist); | 
|  | c->free_cnt++; | 
|  | dec_active(c, &flags); | 
|  | } | 
|  |  | 
|  | /* Mostly runs from irq_work except __init phase. */ | 
|  | static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic) | 
|  | { | 
|  | struct mem_cgroup *memcg = NULL, *old_memcg; | 
|  | gfp_t gfp; | 
|  | void *obj; | 
|  | int i; | 
|  |  | 
|  | gfp = __GFP_NOWARN | __GFP_ACCOUNT; | 
|  | gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL; | 
|  |  | 
|  | for (i = 0; i < cnt; i++) { | 
|  | /* | 
|  | * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is | 
|  | * done only by one CPU == current CPU. Other CPUs might | 
|  | * llist_add() and llist_del_all() in parallel. | 
|  | */ | 
|  | obj = llist_del_first(&c->free_by_rcu_ttrace); | 
|  | if (!obj) | 
|  | break; | 
|  | add_obj_to_free_list(c, obj); | 
|  | } | 
|  | if (i >= cnt) | 
|  | return; | 
|  |  | 
|  | for (; i < cnt; i++) { | 
|  | obj = llist_del_first(&c->waiting_for_gp_ttrace); | 
|  | if (!obj) | 
|  | break; | 
|  | add_obj_to_free_list(c, obj); | 
|  | } | 
|  | if (i >= cnt) | 
|  | return; | 
|  |  | 
|  | memcg = get_memcg(c); | 
|  | old_memcg = set_active_memcg(memcg); | 
|  | for (; i < cnt; i++) { | 
|  | /* Allocate, but don't deplete atomic reserves that typical | 
|  | * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc | 
|  | * will allocate from the current numa node which is what we | 
|  | * want here. | 
|  | */ | 
|  | obj = __alloc(c, node, gfp); | 
|  | if (!obj) | 
|  | break; | 
|  | add_obj_to_free_list(c, obj); | 
|  | } | 
|  | set_active_memcg(old_memcg); | 
|  | mem_cgroup_put(memcg); | 
|  | } | 
|  |  | 
|  | static void free_one(void *obj, bool percpu) | 
|  | { | 
|  | if (percpu) { | 
|  | free_percpu(((void __percpu **)obj)[1]); | 
|  | kfree(obj); | 
|  | return; | 
|  | } | 
|  |  | 
|  | kfree(obj); | 
|  | } | 
|  |  | 
|  | static int free_all(struct llist_node *llnode, bool percpu) | 
|  | { | 
|  | struct llist_node *pos, *t; | 
|  | int cnt = 0; | 
|  |  | 
|  | llist_for_each_safe(pos, t, llnode) { | 
|  | free_one(pos, percpu); | 
|  | cnt++; | 
|  | } | 
|  | return cnt; | 
|  | } | 
|  |  | 
|  | static void __free_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace); | 
|  |  | 
|  | free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size); | 
|  | atomic_set(&c->call_rcu_ttrace_in_progress, 0); | 
|  | } | 
|  |  | 
|  | static void __free_rcu_tasks_trace(struct rcu_head *head) | 
|  | { | 
|  | /* If RCU Tasks Trace grace period implies RCU grace period, | 
|  | * there is no need to invoke call_rcu(). | 
|  | */ | 
|  | if (rcu_trace_implies_rcu_gp()) | 
|  | __free_rcu(head); | 
|  | else | 
|  | call_rcu(head, __free_rcu); | 
|  | } | 
|  |  | 
|  | static void enque_to_free(struct bpf_mem_cache *c, void *obj) | 
|  | { | 
|  | struct llist_node *llnode = obj; | 
|  |  | 
|  | /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work. | 
|  | * Nothing races to add to free_by_rcu_ttrace list. | 
|  | */ | 
|  | llist_add(llnode, &c->free_by_rcu_ttrace); | 
|  | } | 
|  |  | 
|  | static void do_call_rcu_ttrace(struct bpf_mem_cache *c) | 
|  | { | 
|  | struct llist_node *llnode, *t; | 
|  |  | 
|  | if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) { | 
|  | if (unlikely(READ_ONCE(c->draining))) { | 
|  | llnode = llist_del_all(&c->free_by_rcu_ttrace); | 
|  | free_all(llnode, !!c->percpu_size); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); | 
|  | llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace)) | 
|  | llist_add(llnode, &c->waiting_for_gp_ttrace); | 
|  |  | 
|  | if (unlikely(READ_ONCE(c->draining))) { | 
|  | __free_rcu(&c->rcu_ttrace); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish. | 
|  | * If RCU Tasks Trace grace period implies RCU grace period, free | 
|  | * these elements directly, else use call_rcu() to wait for normal | 
|  | * progs to finish and finally do free_one() on each element. | 
|  | */ | 
|  | call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace); | 
|  | } | 
|  |  | 
|  | static void free_bulk(struct bpf_mem_cache *c) | 
|  | { | 
|  | struct bpf_mem_cache *tgt = c->tgt; | 
|  | struct llist_node *llnode, *t; | 
|  | unsigned long flags; | 
|  | int cnt; | 
|  |  | 
|  | WARN_ON_ONCE(tgt->unit_size != c->unit_size); | 
|  | WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); | 
|  |  | 
|  | do { | 
|  | inc_active(c, &flags); | 
|  | llnode = __llist_del_first(&c->free_llist); | 
|  | if (llnode) | 
|  | cnt = --c->free_cnt; | 
|  | else | 
|  | cnt = 0; | 
|  | dec_active(c, &flags); | 
|  | if (llnode) | 
|  | enque_to_free(tgt, llnode); | 
|  | } while (cnt > (c->high_watermark + c->low_watermark) / 2); | 
|  |  | 
|  | /* and drain free_llist_extra */ | 
|  | llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) | 
|  | enque_to_free(tgt, llnode); | 
|  | do_call_rcu_ttrace(tgt); | 
|  | } | 
|  |  | 
|  | static void __free_by_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); | 
|  | struct bpf_mem_cache *tgt = c->tgt; | 
|  | struct llist_node *llnode; | 
|  |  | 
|  | WARN_ON_ONCE(tgt->unit_size != c->unit_size); | 
|  | WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); | 
|  |  | 
|  | llnode = llist_del_all(&c->waiting_for_gp); | 
|  | if (!llnode) | 
|  | goto out; | 
|  |  | 
|  | llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace); | 
|  |  | 
|  | /* Objects went through regular RCU GP. Send them to RCU tasks trace */ | 
|  | do_call_rcu_ttrace(tgt); | 
|  | out: | 
|  | atomic_set(&c->call_rcu_in_progress, 0); | 
|  | } | 
|  |  | 
|  | static void check_free_by_rcu(struct bpf_mem_cache *c) | 
|  | { | 
|  | struct llist_node *llnode, *t; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* drain free_llist_extra_rcu */ | 
|  | if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) { | 
|  | inc_active(c, &flags); | 
|  | llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu)) | 
|  | if (__llist_add(llnode, &c->free_by_rcu)) | 
|  | c->free_by_rcu_tail = llnode; | 
|  | dec_active(c, &flags); | 
|  | } | 
|  |  | 
|  | if (llist_empty(&c->free_by_rcu)) | 
|  | return; | 
|  |  | 
|  | if (atomic_xchg(&c->call_rcu_in_progress, 1)) { | 
|  | /* | 
|  | * Instead of kmalloc-ing new rcu_head and triggering 10k | 
|  | * call_rcu() to hit rcutree.qhimark and force RCU to notice | 
|  | * the overload just ask RCU to hurry up. There could be many | 
|  | * objects in free_by_rcu list. | 
|  | * This hint reduces memory consumption for an artificial | 
|  | * benchmark from 2 Gbyte to 150 Mbyte. | 
|  | */ | 
|  | rcu_request_urgent_qs_task(current); | 
|  | return; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); | 
|  |  | 
|  | inc_active(c, &flags); | 
|  | WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu)); | 
|  | c->waiting_for_gp_tail = c->free_by_rcu_tail; | 
|  | dec_active(c, &flags); | 
|  |  | 
|  | if (unlikely(READ_ONCE(c->draining))) { | 
|  | free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size); | 
|  | atomic_set(&c->call_rcu_in_progress, 0); | 
|  | } else { | 
|  | call_rcu_hurry(&c->rcu, __free_by_rcu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bpf_mem_refill(struct irq_work *work) | 
|  | { | 
|  | struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work); | 
|  | int cnt; | 
|  |  | 
|  | /* Racy access to free_cnt. It doesn't need to be 100% accurate */ | 
|  | cnt = c->free_cnt; | 
|  | if (cnt < c->low_watermark) | 
|  | /* irq_work runs on this cpu and kmalloc will allocate | 
|  | * from the current numa node which is what we want here. | 
|  | */ | 
|  | alloc_bulk(c, c->batch, NUMA_NO_NODE, true); | 
|  | else if (cnt > c->high_watermark) | 
|  | free_bulk(c); | 
|  |  | 
|  | check_free_by_rcu(c); | 
|  | } | 
|  |  | 
|  | static void notrace irq_work_raise(struct bpf_mem_cache *c) | 
|  | { | 
|  | irq_work_queue(&c->refill_work); | 
|  | } | 
|  |  | 
|  | /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket | 
|  | * the freelist cache will be elem_size * 64 (or less) on each cpu. | 
|  | * | 
|  | * For bpf programs that don't have statically known allocation sizes and | 
|  | * assuming (low_mark + high_mark) / 2 as an average number of elements per | 
|  | * bucket and all buckets are used the total amount of memory in freelists | 
|  | * on each cpu will be: | 
|  | * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096 | 
|  | * == ~ 116 Kbyte using below heuristic. | 
|  | * Initialized, but unused bpf allocator (not bpf map specific one) will | 
|  | * consume ~ 11 Kbyte per cpu. | 
|  | * Typical case will be between 11K and 116K closer to 11K. | 
|  | * bpf progs can and should share bpf_mem_cache when possible. | 
|  | * | 
|  | * Percpu allocation is typically rare. To avoid potential unnecessary large | 
|  | * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1. | 
|  | */ | 
|  | static void init_refill_work(struct bpf_mem_cache *c) | 
|  | { | 
|  | init_irq_work(&c->refill_work, bpf_mem_refill); | 
|  | if (c->percpu_size) { | 
|  | c->low_watermark = 1; | 
|  | c->high_watermark = 3; | 
|  | } else if (c->unit_size <= 256) { | 
|  | c->low_watermark = 32; | 
|  | c->high_watermark = 96; | 
|  | } else { | 
|  | /* When page_size == 4k, order-0 cache will have low_mark == 2 | 
|  | * and high_mark == 6 with batch alloc of 3 individual pages at | 
|  | * a time. | 
|  | * 8k allocs and above low == 1, high == 3, batch == 1. | 
|  | */ | 
|  | c->low_watermark = max(32 * 256 / c->unit_size, 1); | 
|  | c->high_watermark = max(96 * 256 / c->unit_size, 3); | 
|  | } | 
|  | c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1); | 
|  | } | 
|  |  | 
|  | static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu) | 
|  | { | 
|  | int cnt = 1; | 
|  |  | 
|  | /* To avoid consuming memory, for non-percpu allocation, assume that | 
|  | * 1st run of bpf prog won't be doing more than 4 map_update_elem from | 
|  | * irq disabled region if unit size is less than or equal to 256. | 
|  | * For all other cases, let us just do one allocation. | 
|  | */ | 
|  | if (!c->percpu_size && c->unit_size <= 256) | 
|  | cnt = 4; | 
|  | alloc_bulk(c, cnt, cpu_to_node(cpu), false); | 
|  | } | 
|  |  | 
|  | /* When size != 0 bpf_mem_cache for each cpu. | 
|  | * This is typical bpf hash map use case when all elements have equal size. | 
|  | * | 
|  | * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on | 
|  | * kmalloc/kfree. Max allocation size is 4096 in this case. | 
|  | * This is bpf_dynptr and bpf_kptr use case. | 
|  | */ | 
|  | int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu) | 
|  | { | 
|  | struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc; | 
|  | struct bpf_mem_cache *c; struct bpf_mem_cache __percpu *pc; | 
|  | struct obj_cgroup *objcg = NULL; | 
|  | int cpu, i, unit_size, percpu_size = 0; | 
|  |  | 
|  | if (percpu && size == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* room for llist_node and per-cpu pointer */ | 
|  | if (percpu) | 
|  | percpu_size = LLIST_NODE_SZ + sizeof(void *); | 
|  | ma->percpu = percpu; | 
|  |  | 
|  | if (size) { | 
|  | pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL); | 
|  | if (!pc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!percpu) | 
|  | size += LLIST_NODE_SZ; /* room for llist_node */ | 
|  | unit_size = size; | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | if (memcg_bpf_enabled()) | 
|  | objcg = get_obj_cgroup_from_current(); | 
|  | #endif | 
|  | ma->objcg = objcg; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | c = per_cpu_ptr(pc, cpu); | 
|  | c->unit_size = unit_size; | 
|  | c->objcg = objcg; | 
|  | c->percpu_size = percpu_size; | 
|  | c->tgt = c; | 
|  | init_refill_work(c); | 
|  | prefill_mem_cache(c, cpu); | 
|  | } | 
|  | ma->cache = pc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL); | 
|  | if (!pcc) | 
|  | return -ENOMEM; | 
|  | #ifdef CONFIG_MEMCG | 
|  | objcg = get_obj_cgroup_from_current(); | 
|  | #endif | 
|  | ma->objcg = objcg; | 
|  | for_each_possible_cpu(cpu) { | 
|  | cc = per_cpu_ptr(pcc, cpu); | 
|  | for (i = 0; i < NUM_CACHES; i++) { | 
|  | c = &cc->cache[i]; | 
|  | c->unit_size = sizes[i]; | 
|  | c->objcg = objcg; | 
|  | c->percpu_size = percpu_size; | 
|  | c->tgt = c; | 
|  |  | 
|  | init_refill_work(c); | 
|  | prefill_mem_cache(c, cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | ma->caches = pcc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg) | 
|  | { | 
|  | struct bpf_mem_caches __percpu *pcc; | 
|  |  | 
|  | pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL); | 
|  | if (!pcc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ma->caches = pcc; | 
|  | ma->objcg = objcg; | 
|  | ma->percpu = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size) | 
|  | { | 
|  | struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc; | 
|  | int cpu, i, unit_size, percpu_size; | 
|  | struct obj_cgroup *objcg; | 
|  | struct bpf_mem_cache *c; | 
|  |  | 
|  | i = bpf_mem_cache_idx(size); | 
|  | if (i < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* room for llist_node and per-cpu pointer */ | 
|  | percpu_size = LLIST_NODE_SZ + sizeof(void *); | 
|  |  | 
|  | unit_size = sizes[i]; | 
|  | objcg = ma->objcg; | 
|  | pcc = ma->caches; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | cc = per_cpu_ptr(pcc, cpu); | 
|  | c = &cc->cache[i]; | 
|  | if (c->unit_size) | 
|  | break; | 
|  |  | 
|  | c->unit_size = unit_size; | 
|  | c->objcg = objcg; | 
|  | c->percpu_size = percpu_size; | 
|  | c->tgt = c; | 
|  |  | 
|  | init_refill_work(c); | 
|  | prefill_mem_cache(c, cpu); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void drain_mem_cache(struct bpf_mem_cache *c) | 
|  | { | 
|  | bool percpu = !!c->percpu_size; | 
|  |  | 
|  | /* No progs are using this bpf_mem_cache, but htab_map_free() called | 
|  | * bpf_mem_cache_free() for all remaining elements and they can be in | 
|  | * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now. | 
|  | * | 
|  | * Except for waiting_for_gp_ttrace list, there are no concurrent operations | 
|  | * on these lists, so it is safe to use __llist_del_all(). | 
|  | */ | 
|  | free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu); | 
|  | free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu); | 
|  | free_all(__llist_del_all(&c->free_llist), percpu); | 
|  | free_all(__llist_del_all(&c->free_llist_extra), percpu); | 
|  | free_all(__llist_del_all(&c->free_by_rcu), percpu); | 
|  | free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu); | 
|  | free_all(llist_del_all(&c->waiting_for_gp), percpu); | 
|  | } | 
|  |  | 
|  | static void check_mem_cache(struct bpf_mem_cache *c) | 
|  | { | 
|  | WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace)); | 
|  | WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); | 
|  | WARN_ON_ONCE(!llist_empty(&c->free_llist)); | 
|  | WARN_ON_ONCE(!llist_empty(&c->free_llist_extra)); | 
|  | WARN_ON_ONCE(!llist_empty(&c->free_by_rcu)); | 
|  | WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu)); | 
|  | WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); | 
|  | } | 
|  |  | 
|  | static void check_leaked_objs(struct bpf_mem_alloc *ma) | 
|  | { | 
|  | struct bpf_mem_caches *cc; | 
|  | struct bpf_mem_cache *c; | 
|  | int cpu, i; | 
|  |  | 
|  | if (ma->cache) { | 
|  | for_each_possible_cpu(cpu) { | 
|  | c = per_cpu_ptr(ma->cache, cpu); | 
|  | check_mem_cache(c); | 
|  | } | 
|  | } | 
|  | if (ma->caches) { | 
|  | for_each_possible_cpu(cpu) { | 
|  | cc = per_cpu_ptr(ma->caches, cpu); | 
|  | for (i = 0; i < NUM_CACHES; i++) { | 
|  | c = &cc->cache[i]; | 
|  | check_mem_cache(c); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma) | 
|  | { | 
|  | check_leaked_objs(ma); | 
|  | free_percpu(ma->cache); | 
|  | free_percpu(ma->caches); | 
|  | ma->cache = NULL; | 
|  | ma->caches = NULL; | 
|  | } | 
|  |  | 
|  | static void free_mem_alloc(struct bpf_mem_alloc *ma) | 
|  | { | 
|  | /* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks | 
|  | * might still execute. Wait for them. | 
|  | * | 
|  | * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(), | 
|  | * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used | 
|  | * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(), | 
|  | * so if call_rcu(head, __free_rcu) is skipped due to | 
|  | * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by | 
|  | * using rcu_trace_implies_rcu_gp() as well. | 
|  | */ | 
|  | rcu_barrier(); /* wait for __free_by_rcu */ | 
|  | rcu_barrier_tasks_trace(); /* wait for __free_rcu */ | 
|  | if (!rcu_trace_implies_rcu_gp()) | 
|  | rcu_barrier(); | 
|  | free_mem_alloc_no_barrier(ma); | 
|  | } | 
|  |  | 
|  | static void free_mem_alloc_deferred(struct work_struct *work) | 
|  | { | 
|  | struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work); | 
|  |  | 
|  | free_mem_alloc(ma); | 
|  | kfree(ma); | 
|  | } | 
|  |  | 
|  | static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress) | 
|  | { | 
|  | struct bpf_mem_alloc *copy; | 
|  |  | 
|  | if (!rcu_in_progress) { | 
|  | /* Fast path. No callbacks are pending, hence no need to do | 
|  | * rcu_barrier-s. | 
|  | */ | 
|  | free_mem_alloc_no_barrier(ma); | 
|  | return; | 
|  | } | 
|  |  | 
|  | copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL); | 
|  | if (!copy) { | 
|  | /* Slow path with inline barrier-s */ | 
|  | free_mem_alloc(ma); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Defer barriers into worker to let the rest of map memory to be freed */ | 
|  | memset(ma, 0, sizeof(*ma)); | 
|  | INIT_WORK(©->work, free_mem_alloc_deferred); | 
|  | queue_work(system_unbound_wq, ©->work); | 
|  | } | 
|  |  | 
|  | void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma) | 
|  | { | 
|  | struct bpf_mem_caches *cc; | 
|  | struct bpf_mem_cache *c; | 
|  | int cpu, i, rcu_in_progress; | 
|  |  | 
|  | if (ma->cache) { | 
|  | rcu_in_progress = 0; | 
|  | for_each_possible_cpu(cpu) { | 
|  | c = per_cpu_ptr(ma->cache, cpu); | 
|  | WRITE_ONCE(c->draining, true); | 
|  | irq_work_sync(&c->refill_work); | 
|  | drain_mem_cache(c); | 
|  | rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); | 
|  | rcu_in_progress += atomic_read(&c->call_rcu_in_progress); | 
|  | } | 
|  | obj_cgroup_put(ma->objcg); | 
|  | destroy_mem_alloc(ma, rcu_in_progress); | 
|  | } | 
|  | if (ma->caches) { | 
|  | rcu_in_progress = 0; | 
|  | for_each_possible_cpu(cpu) { | 
|  | cc = per_cpu_ptr(ma->caches, cpu); | 
|  | for (i = 0; i < NUM_CACHES; i++) { | 
|  | c = &cc->cache[i]; | 
|  | WRITE_ONCE(c->draining, true); | 
|  | irq_work_sync(&c->refill_work); | 
|  | drain_mem_cache(c); | 
|  | rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); | 
|  | rcu_in_progress += atomic_read(&c->call_rcu_in_progress); | 
|  | } | 
|  | } | 
|  | obj_cgroup_put(ma->objcg); | 
|  | destroy_mem_alloc(ma, rcu_in_progress); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* notrace is necessary here and in other functions to make sure | 
|  | * bpf programs cannot attach to them and cause llist corruptions. | 
|  | */ | 
|  | static void notrace *unit_alloc(struct bpf_mem_cache *c) | 
|  | { | 
|  | struct llist_node *llnode = NULL; | 
|  | unsigned long flags; | 
|  | int cnt = 0; | 
|  |  | 
|  | /* Disable irqs to prevent the following race for majority of prog types: | 
|  | * prog_A | 
|  | *   bpf_mem_alloc | 
|  | *      preemption or irq -> prog_B | 
|  | *        bpf_mem_alloc | 
|  | * | 
|  | * but prog_B could be a perf_event NMI prog. | 
|  | * Use per-cpu 'active' counter to order free_list access between | 
|  | * unit_alloc/unit_free/bpf_mem_refill. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | if (local_inc_return(&c->active) == 1) { | 
|  | llnode = __llist_del_first(&c->free_llist); | 
|  | if (llnode) { | 
|  | cnt = --c->free_cnt; | 
|  | *(struct bpf_mem_cache **)llnode = c; | 
|  | } | 
|  | } | 
|  | local_dec(&c->active); | 
|  |  | 
|  | WARN_ON(cnt < 0); | 
|  |  | 
|  | if (cnt < c->low_watermark) | 
|  | irq_work_raise(c); | 
|  | /* Enable IRQ after the enqueue of irq work completes, so irq work | 
|  | * will run after IRQ is enabled and free_llist may be refilled by | 
|  | * irq work before other task preempts current task. | 
|  | */ | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | return llnode; | 
|  | } | 
|  |  | 
|  | /* Though 'ptr' object could have been allocated on a different cpu | 
|  | * add it to the free_llist of the current cpu. | 
|  | * Let kfree() logic deal with it when it's later called from irq_work. | 
|  | */ | 
|  | static void notrace unit_free(struct bpf_mem_cache *c, void *ptr) | 
|  | { | 
|  | struct llist_node *llnode = ptr - LLIST_NODE_SZ; | 
|  | unsigned long flags; | 
|  | int cnt = 0; | 
|  |  | 
|  | BUILD_BUG_ON(LLIST_NODE_SZ > 8); | 
|  |  | 
|  | /* | 
|  | * Remember bpf_mem_cache that allocated this object. | 
|  | * The hint is not accurate. | 
|  | */ | 
|  | c->tgt = *(struct bpf_mem_cache **)llnode; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | if (local_inc_return(&c->active) == 1) { | 
|  | __llist_add(llnode, &c->free_llist); | 
|  | cnt = ++c->free_cnt; | 
|  | } else { | 
|  | /* unit_free() cannot fail. Therefore add an object to atomic | 
|  | * llist. free_bulk() will drain it. Though free_llist_extra is | 
|  | * a per-cpu list we have to use atomic llist_add here, since | 
|  | * it also can be interrupted by bpf nmi prog that does another | 
|  | * unit_free() into the same free_llist_extra. | 
|  | */ | 
|  | llist_add(llnode, &c->free_llist_extra); | 
|  | } | 
|  | local_dec(&c->active); | 
|  |  | 
|  | if (cnt > c->high_watermark) | 
|  | /* free few objects from current cpu into global kmalloc pool */ | 
|  | irq_work_raise(c); | 
|  | /* Enable IRQ after irq_work_raise() completes, otherwise when current | 
|  | * task is preempted by task which does unit_alloc(), unit_alloc() may | 
|  | * return NULL unexpectedly because irq work is already pending but can | 
|  | * not been triggered and free_llist can not be refilled timely. | 
|  | */ | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr) | 
|  | { | 
|  | struct llist_node *llnode = ptr - LLIST_NODE_SZ; | 
|  | unsigned long flags; | 
|  |  | 
|  | c->tgt = *(struct bpf_mem_cache **)llnode; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | if (local_inc_return(&c->active) == 1) { | 
|  | if (__llist_add(llnode, &c->free_by_rcu)) | 
|  | c->free_by_rcu_tail = llnode; | 
|  | } else { | 
|  | llist_add(llnode, &c->free_llist_extra_rcu); | 
|  | } | 
|  | local_dec(&c->active); | 
|  |  | 
|  | if (!atomic_read(&c->call_rcu_in_progress)) | 
|  | irq_work_raise(c); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* Called from BPF program or from sys_bpf syscall. | 
|  | * In both cases migration is disabled. | 
|  | */ | 
|  | void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size) | 
|  | { | 
|  | int idx; | 
|  | void *ret; | 
|  |  | 
|  | if (!size) | 
|  | return NULL; | 
|  |  | 
|  | if (!ma->percpu) | 
|  | size += LLIST_NODE_SZ; | 
|  | idx = bpf_mem_cache_idx(size); | 
|  | if (idx < 0) | 
|  | return NULL; | 
|  |  | 
|  | ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx); | 
|  | return !ret ? NULL : ret + LLIST_NODE_SZ; | 
|  | } | 
|  |  | 
|  | void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr) | 
|  | { | 
|  | struct bpf_mem_cache *c; | 
|  | int idx; | 
|  |  | 
|  | if (!ptr) | 
|  | return; | 
|  |  | 
|  | c = *(void **)(ptr - LLIST_NODE_SZ); | 
|  | idx = bpf_mem_cache_idx(c->unit_size); | 
|  | if (WARN_ON_ONCE(idx < 0)) | 
|  | return; | 
|  |  | 
|  | unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr); | 
|  | } | 
|  |  | 
|  | void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr) | 
|  | { | 
|  | struct bpf_mem_cache *c; | 
|  | int idx; | 
|  |  | 
|  | if (!ptr) | 
|  | return; | 
|  |  | 
|  | c = *(void **)(ptr - LLIST_NODE_SZ); | 
|  | idx = bpf_mem_cache_idx(c->unit_size); | 
|  | if (WARN_ON_ONCE(idx < 0)) | 
|  | return; | 
|  |  | 
|  | unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr); | 
|  | } | 
|  |  | 
|  | void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | ret = unit_alloc(this_cpu_ptr(ma->cache)); | 
|  | return !ret ? NULL : ret + LLIST_NODE_SZ; | 
|  | } | 
|  |  | 
|  | void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr) | 
|  | { | 
|  | if (!ptr) | 
|  | return; | 
|  |  | 
|  | unit_free(this_cpu_ptr(ma->cache), ptr); | 
|  | } | 
|  |  | 
|  | void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr) | 
|  | { | 
|  | if (!ptr) | 
|  | return; | 
|  |  | 
|  | unit_free_rcu(this_cpu_ptr(ma->cache), ptr); | 
|  | } | 
|  |  | 
|  | /* Directly does a kfree() without putting 'ptr' back to the free_llist | 
|  | * for reuse and without waiting for a rcu_tasks_trace gp. | 
|  | * The caller must first go through the rcu_tasks_trace gp for 'ptr' | 
|  | * before calling bpf_mem_cache_raw_free(). | 
|  | * It could be used when the rcu_tasks_trace callback does not have | 
|  | * a hold on the original bpf_mem_alloc object that allocated the | 
|  | * 'ptr'. This should only be used in the uncommon code path. | 
|  | * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled | 
|  | * and may affect performance. | 
|  | */ | 
|  | void bpf_mem_cache_raw_free(void *ptr) | 
|  | { | 
|  | if (!ptr) | 
|  | return; | 
|  |  | 
|  | kfree(ptr - LLIST_NODE_SZ); | 
|  | } | 
|  |  | 
|  | /* When flags == GFP_KERNEL, it signals that the caller will not cause | 
|  | * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use | 
|  | * kmalloc if the free_llist is empty. | 
|  | */ | 
|  | void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags) | 
|  | { | 
|  | struct bpf_mem_cache *c; | 
|  | void *ret; | 
|  |  | 
|  | c = this_cpu_ptr(ma->cache); | 
|  |  | 
|  | ret = unit_alloc(c); | 
|  | if (!ret && flags == GFP_KERNEL) { | 
|  | struct mem_cgroup *memcg, *old_memcg; | 
|  |  | 
|  | memcg = get_memcg(c); | 
|  | old_memcg = set_active_memcg(memcg); | 
|  | ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT); | 
|  | if (ret) | 
|  | *(struct bpf_mem_cache **)ret = c; | 
|  | set_active_memcg(old_memcg); | 
|  | mem_cgroup_put(memcg); | 
|  | } | 
|  |  | 
|  | return !ret ? NULL : ret + LLIST_NODE_SZ; | 
|  | } |