|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* tnum: tracked (or tristate) numbers | 
|  | * | 
|  | * A tnum tracks knowledge about the bits of a value.  Each bit can be either | 
|  | * known (0 or 1), or unknown (x).  Arithmetic operations on tnums will | 
|  | * propagate the unknown bits such that the tnum result represents all the | 
|  | * possible results for possible values of the operands. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/tnum.h> | 
|  |  | 
|  | #define TNUM(_v, _m)	(struct tnum){.value = _v, .mask = _m} | 
|  | /* A completely unknown value */ | 
|  | const struct tnum tnum_unknown = { .value = 0, .mask = -1 }; | 
|  |  | 
|  | struct tnum tnum_const(u64 value) | 
|  | { | 
|  | return TNUM(value, 0); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_range(u64 min, u64 max) | 
|  | { | 
|  | u64 chi = min ^ max, delta; | 
|  | u8 bits = fls64(chi); | 
|  |  | 
|  | /* special case, needed because 1ULL << 64 is undefined */ | 
|  | if (bits > 63) | 
|  | return tnum_unknown; | 
|  | /* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7. | 
|  | * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return | 
|  | *  constant min (since min == max). | 
|  | */ | 
|  | delta = (1ULL << bits) - 1; | 
|  | return TNUM(min & ~delta, delta); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_lshift(struct tnum a, u8 shift) | 
|  | { | 
|  | return TNUM(a.value << shift, a.mask << shift); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_rshift(struct tnum a, u8 shift) | 
|  | { | 
|  | return TNUM(a.value >> shift, a.mask >> shift); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness) | 
|  | { | 
|  | /* if a.value is negative, arithmetic shifting by minimum shift | 
|  | * will have larger negative offset compared to more shifting. | 
|  | * If a.value is nonnegative, arithmetic shifting by minimum shift | 
|  | * will have larger positive offset compare to more shifting. | 
|  | */ | 
|  | if (insn_bitness == 32) | 
|  | return TNUM((u32)(((s32)a.value) >> min_shift), | 
|  | (u32)(((s32)a.mask)  >> min_shift)); | 
|  | else | 
|  | return TNUM((s64)a.value >> min_shift, | 
|  | (s64)a.mask  >> min_shift); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_add(struct tnum a, struct tnum b) | 
|  | { | 
|  | u64 sm, sv, sigma, chi, mu; | 
|  |  | 
|  | sm = a.mask + b.mask; | 
|  | sv = a.value + b.value; | 
|  | sigma = sm + sv; | 
|  | chi = sigma ^ sv; | 
|  | mu = chi | a.mask | b.mask; | 
|  | return TNUM(sv & ~mu, mu); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_sub(struct tnum a, struct tnum b) | 
|  | { | 
|  | u64 dv, alpha, beta, chi, mu; | 
|  |  | 
|  | dv = a.value - b.value; | 
|  | alpha = dv + a.mask; | 
|  | beta = dv - b.mask; | 
|  | chi = alpha ^ beta; | 
|  | mu = chi | a.mask | b.mask; | 
|  | return TNUM(dv & ~mu, mu); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_and(struct tnum a, struct tnum b) | 
|  | { | 
|  | u64 alpha, beta, v; | 
|  |  | 
|  | alpha = a.value | a.mask; | 
|  | beta = b.value | b.mask; | 
|  | v = a.value & b.value; | 
|  | return TNUM(v, alpha & beta & ~v); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_or(struct tnum a, struct tnum b) | 
|  | { | 
|  | u64 v, mu; | 
|  |  | 
|  | v = a.value | b.value; | 
|  | mu = a.mask | b.mask; | 
|  | return TNUM(v, mu & ~v); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_xor(struct tnum a, struct tnum b) | 
|  | { | 
|  | u64 v, mu; | 
|  |  | 
|  | v = a.value ^ b.value; | 
|  | mu = a.mask | b.mask; | 
|  | return TNUM(v & ~mu, mu); | 
|  | } | 
|  |  | 
|  | /* Generate partial products by multiplying each bit in the multiplier (tnum a) | 
|  | * with the multiplicand (tnum b), and add the partial products after | 
|  | * appropriately bit-shifting them. Instead of directly performing tnum addition | 
|  | * on the generated partial products, equivalenty, decompose each partial | 
|  | * product into two tnums, consisting of the value-sum (acc_v) and the | 
|  | * mask-sum (acc_m) and then perform tnum addition on them. The following paper | 
|  | * explains the algorithm in more detail: https://arxiv.org/abs/2105.05398. | 
|  | */ | 
|  | struct tnum tnum_mul(struct tnum a, struct tnum b) | 
|  | { | 
|  | u64 acc_v = a.value * b.value; | 
|  | struct tnum acc_m = TNUM(0, 0); | 
|  |  | 
|  | while (a.value || a.mask) { | 
|  | /* LSB of tnum a is a certain 1 */ | 
|  | if (a.value & 1) | 
|  | acc_m = tnum_add(acc_m, TNUM(0, b.mask)); | 
|  | /* LSB of tnum a is uncertain */ | 
|  | else if (a.mask & 1) | 
|  | acc_m = tnum_add(acc_m, TNUM(0, b.value | b.mask)); | 
|  | /* Note: no case for LSB is certain 0 */ | 
|  | a = tnum_rshift(a, 1); | 
|  | b = tnum_lshift(b, 1); | 
|  | } | 
|  | return tnum_add(TNUM(acc_v, 0), acc_m); | 
|  | } | 
|  |  | 
|  | /* Note that if a and b disagree - i.e. one has a 'known 1' where the other has | 
|  | * a 'known 0' - this will return a 'known 1' for that bit. | 
|  | */ | 
|  | struct tnum tnum_intersect(struct tnum a, struct tnum b) | 
|  | { | 
|  | u64 v, mu; | 
|  |  | 
|  | v = a.value | b.value; | 
|  | mu = a.mask & b.mask; | 
|  | return TNUM(v & ~mu, mu); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_cast(struct tnum a, u8 size) | 
|  | { | 
|  | a.value &= (1ULL << (size * 8)) - 1; | 
|  | a.mask &= (1ULL << (size * 8)) - 1; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | bool tnum_is_aligned(struct tnum a, u64 size) | 
|  | { | 
|  | if (!size) | 
|  | return true; | 
|  | return !((a.value | a.mask) & (size - 1)); | 
|  | } | 
|  |  | 
|  | bool tnum_in(struct tnum a, struct tnum b) | 
|  | { | 
|  | if (b.mask & ~a.mask) | 
|  | return false; | 
|  | b.value &= ~a.mask; | 
|  | return a.value == b.value; | 
|  | } | 
|  |  | 
|  | int tnum_sbin(char *str, size_t size, struct tnum a) | 
|  | { | 
|  | size_t n; | 
|  |  | 
|  | for (n = 64; n; n--) { | 
|  | if (n < size) { | 
|  | if (a.mask & 1) | 
|  | str[n - 1] = 'x'; | 
|  | else if (a.value & 1) | 
|  | str[n - 1] = '1'; | 
|  | else | 
|  | str[n - 1] = '0'; | 
|  | } | 
|  | a.mask >>= 1; | 
|  | a.value >>= 1; | 
|  | } | 
|  | str[min(size - 1, (size_t)64)] = 0; | 
|  | return 64; | 
|  | } | 
|  |  | 
|  | struct tnum tnum_subreg(struct tnum a) | 
|  | { | 
|  | return tnum_cast(a, 4); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_clear_subreg(struct tnum a) | 
|  | { | 
|  | return tnum_lshift(tnum_rshift(a, 32), 32); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_with_subreg(struct tnum reg, struct tnum subreg) | 
|  | { | 
|  | return tnum_or(tnum_clear_subreg(reg), tnum_subreg(subreg)); | 
|  | } | 
|  |  | 
|  | struct tnum tnum_const_subreg(struct tnum a, u32 value) | 
|  | { | 
|  | return tnum_with_subreg(a, tnum_const(value)); | 
|  | } |