|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | 
|  | * | 
|  | *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
|  | * | 
|  | *  Interactivity improvements by Mike Galbraith | 
|  | *  (C) 2007 Mike Galbraith <efault@gmx.de> | 
|  | * | 
|  | *  Various enhancements by Dmitry Adamushko. | 
|  | *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 
|  | * | 
|  | *  Group scheduling enhancements by Srivatsa Vaddagiri | 
|  | *  Copyright IBM Corporation, 2007 | 
|  | *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 
|  | * | 
|  | *  Scaled math optimizations by Thomas Gleixner | 
|  | *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 
|  | * | 
|  | *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 
|  | *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra | 
|  | */ | 
|  | #include <linux/energy_model.h> | 
|  | #include <linux/mmap_lock.h> | 
|  | #include <linux/hugetlb_inline.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/mm_api.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/spinlock_api.h> | 
|  | #include <linux/cpumask_api.h> | 
|  | #include <linux/lockdep_api.h> | 
|  | #include <linux/softirq.h> | 
|  | #include <linux/refcount_api.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <linux/sched/cond_resched.h> | 
|  | #include <linux/sched/cputime.h> | 
|  | #include <linux/sched/isolation.h> | 
|  | #include <linux/sched/nohz.h> | 
|  |  | 
|  | #include <linux/cpuidle.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/memory-tiers.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/mutex_api.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/psi.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/task_work.h> | 
|  | #include <linux/rbtree_augmented.h> | 
|  |  | 
|  | #include <asm/switch_to.h> | 
|  |  | 
|  | #include "sched.h" | 
|  | #include "stats.h" | 
|  | #include "autogroup.h" | 
|  |  | 
|  | /* | 
|  | * The initial- and re-scaling of tunables is configurable | 
|  | * | 
|  | * Options are: | 
|  | * | 
|  | *   SCHED_TUNABLESCALING_NONE - unscaled, always *1 | 
|  | *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) | 
|  | *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | 
|  | * | 
|  | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | 
|  | */ | 
|  | unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; | 
|  |  | 
|  | /* | 
|  | * Minimal preemption granularity for CPU-bound tasks: | 
|  | * | 
|  | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
|  | */ | 
|  | unsigned int sysctl_sched_base_slice			= 750000ULL; | 
|  | static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL; | 
|  |  | 
|  | const_debug unsigned int sysctl_sched_migration_cost	= 500000UL; | 
|  |  | 
|  | static int __init setup_sched_thermal_decay_shift(char *str) | 
|  | { | 
|  | pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); | 
|  | return 1; | 
|  | } | 
|  | __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * For asym packing, by default the lower numbered CPU has higher priority. | 
|  | */ | 
|  | int __weak arch_asym_cpu_priority(int cpu) | 
|  | { | 
|  | return -cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The margin used when comparing utilization with CPU capacity. | 
|  | * | 
|  | * (default: ~20%) | 
|  | */ | 
|  | #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024) | 
|  |  | 
|  | /* | 
|  | * The margin used when comparing CPU capacities. | 
|  | * is 'cap1' noticeably greater than 'cap2' | 
|  | * | 
|  | * (default: ~5%) | 
|  | */ | 
|  | #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | /* | 
|  | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | 
|  | * each time a cfs_rq requests quota. | 
|  | * | 
|  | * Note: in the case that the slice exceeds the runtime remaining (either due | 
|  | * to consumption or the quota being specified to be smaller than the slice) | 
|  | * we will always only issue the remaining available time. | 
|  | * | 
|  | * (default: 5 msec, units: microseconds) | 
|  | */ | 
|  | static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ | 
|  | static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static struct ctl_table sched_fair_sysctls[] = { | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | { | 
|  | .procname       = "sched_cfs_bandwidth_slice_us", | 
|  | .data           = &sysctl_sched_cfs_bandwidth_slice, | 
|  | .maxlen         = sizeof(unsigned int), | 
|  | .mode           = 0644, | 
|  | .proc_handler   = proc_dointvec_minmax, | 
|  | .extra1         = SYSCTL_ONE, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | { | 
|  | .procname	= "numa_balancing_promote_rate_limit_MBps", | 
|  | .data		= &sysctl_numa_balancing_promote_rate_limit, | 
|  | .maxlen		= sizeof(unsigned int), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= SYSCTL_ZERO, | 
|  | }, | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  | }; | 
|  |  | 
|  | static int __init sched_fair_sysctl_init(void) | 
|  | { | 
|  | register_sysctl_init("kernel", sched_fair_sysctls); | 
|  | return 0; | 
|  | } | 
|  | late_initcall(sched_fair_sysctl_init); | 
|  | #endif | 
|  |  | 
|  | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | 
|  | { | 
|  | lw->weight += inc; | 
|  | lw->inv_weight = 0; | 
|  | } | 
|  |  | 
|  | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | 
|  | { | 
|  | lw->weight -= dec; | 
|  | lw->inv_weight = 0; | 
|  | } | 
|  |  | 
|  | static inline void update_load_set(struct load_weight *lw, unsigned long w) | 
|  | { | 
|  | lw->weight = w; | 
|  | lw->inv_weight = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Increase the granularity value when there are more CPUs, | 
|  | * because with more CPUs the 'effective latency' as visible | 
|  | * to users decreases. But the relationship is not linear, | 
|  | * so pick a second-best guess by going with the log2 of the | 
|  | * number of CPUs. | 
|  | * | 
|  | * This idea comes from the SD scheduler of Con Kolivas: | 
|  | */ | 
|  | static unsigned int get_update_sysctl_factor(void) | 
|  | { | 
|  | unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); | 
|  | unsigned int factor; | 
|  |  | 
|  | switch (sysctl_sched_tunable_scaling) { | 
|  | case SCHED_TUNABLESCALING_NONE: | 
|  | factor = 1; | 
|  | break; | 
|  | case SCHED_TUNABLESCALING_LINEAR: | 
|  | factor = cpus; | 
|  | break; | 
|  | case SCHED_TUNABLESCALING_LOG: | 
|  | default: | 
|  | factor = 1 + ilog2(cpus); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return factor; | 
|  | } | 
|  |  | 
|  | static void update_sysctl(void) | 
|  | { | 
|  | unsigned int factor = get_update_sysctl_factor(); | 
|  |  | 
|  | #define SET_SYSCTL(name) \ | 
|  | (sysctl_##name = (factor) * normalized_sysctl_##name) | 
|  | SET_SYSCTL(sched_base_slice); | 
|  | #undef SET_SYSCTL | 
|  | } | 
|  |  | 
|  | void __init sched_init_granularity(void) | 
|  | { | 
|  | update_sysctl(); | 
|  | } | 
|  |  | 
|  | #define WMULT_CONST	(~0U) | 
|  | #define WMULT_SHIFT	32 | 
|  |  | 
|  | static void __update_inv_weight(struct load_weight *lw) | 
|  | { | 
|  | unsigned long w; | 
|  |  | 
|  | if (likely(lw->inv_weight)) | 
|  | return; | 
|  |  | 
|  | w = scale_load_down(lw->weight); | 
|  |  | 
|  | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | 
|  | lw->inv_weight = 1; | 
|  | else if (unlikely(!w)) | 
|  | lw->inv_weight = WMULT_CONST; | 
|  | else | 
|  | lw->inv_weight = WMULT_CONST / w; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * delta_exec * weight / lw.weight | 
|  | *   OR | 
|  | * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT | 
|  | * | 
|  | * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case | 
|  | * we're guaranteed shift stays positive because inv_weight is guaranteed to | 
|  | * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. | 
|  | * | 
|  | * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus | 
|  | * weight/lw.weight <= 1, and therefore our shift will also be positive. | 
|  | */ | 
|  | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) | 
|  | { | 
|  | u64 fact = scale_load_down(weight); | 
|  | u32 fact_hi = (u32)(fact >> 32); | 
|  | int shift = WMULT_SHIFT; | 
|  | int fs; | 
|  |  | 
|  | __update_inv_weight(lw); | 
|  |  | 
|  | if (unlikely(fact_hi)) { | 
|  | fs = fls(fact_hi); | 
|  | shift -= fs; | 
|  | fact >>= fs; | 
|  | } | 
|  |  | 
|  | fact = mul_u32_u32(fact, lw->inv_weight); | 
|  |  | 
|  | fact_hi = (u32)(fact >> 32); | 
|  | if (fact_hi) { | 
|  | fs = fls(fact_hi); | 
|  | shift -= fs; | 
|  | fact >>= fs; | 
|  | } | 
|  |  | 
|  | return mul_u64_u32_shr(delta_exec, fact, shift); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * delta /= w | 
|  | */ | 
|  | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) | 
|  | { | 
|  | if (unlikely(se->load.weight != NICE_0_LOAD)) | 
|  | delta = __calc_delta(delta, NICE_0_LOAD, &se->load); | 
|  |  | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | const struct sched_class fair_sched_class; | 
|  |  | 
|  | /************************************************************** | 
|  | * CFS operations on generic schedulable entities: | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  |  | 
|  | /* Walk up scheduling entities hierarchy */ | 
|  | #define for_each_sched_entity(se) \ | 
|  | for (; se; se = se->parent) | 
|  |  | 
|  | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  | int cpu = cpu_of(rq); | 
|  |  | 
|  | if (cfs_rq->on_list) | 
|  | return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; | 
|  |  | 
|  | cfs_rq->on_list = 1; | 
|  |  | 
|  | /* | 
|  | * Ensure we either appear before our parent (if already | 
|  | * enqueued) or force our parent to appear after us when it is | 
|  | * enqueued. The fact that we always enqueue bottom-up | 
|  | * reduces this to two cases and a special case for the root | 
|  | * cfs_rq. Furthermore, it also means that we will always reset | 
|  | * tmp_alone_branch either when the branch is connected | 
|  | * to a tree or when we reach the top of the tree | 
|  | */ | 
|  | if (cfs_rq->tg->parent && | 
|  | cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { | 
|  | /* | 
|  | * If parent is already on the list, we add the child | 
|  | * just before. Thanks to circular linked property of | 
|  | * the list, this means to put the child at the tail | 
|  | * of the list that starts by parent. | 
|  | */ | 
|  | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | 
|  | &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); | 
|  | /* | 
|  | * The branch is now connected to its tree so we can | 
|  | * reset tmp_alone_branch to the beginning of the | 
|  | * list. | 
|  | */ | 
|  | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!cfs_rq->tg->parent) { | 
|  | /* | 
|  | * cfs rq without parent should be put | 
|  | * at the tail of the list. | 
|  | */ | 
|  | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | 
|  | &rq->leaf_cfs_rq_list); | 
|  | /* | 
|  | * We have reach the top of a tree so we can reset | 
|  | * tmp_alone_branch to the beginning of the list. | 
|  | */ | 
|  | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The parent has not already been added so we want to | 
|  | * make sure that it will be put after us. | 
|  | * tmp_alone_branch points to the begin of the branch | 
|  | * where we will add parent. | 
|  | */ | 
|  | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); | 
|  | /* | 
|  | * update tmp_alone_branch to points to the new begin | 
|  | * of the branch | 
|  | */ | 
|  | rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (cfs_rq->on_list) { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  |  | 
|  | /* | 
|  | * With cfs_rq being unthrottled/throttled during an enqueue, | 
|  | * it can happen the tmp_alone_branch points to the leaf that | 
|  | * we finally want to delete. In this case, tmp_alone_branch moves | 
|  | * to the prev element but it will point to rq->leaf_cfs_rq_list | 
|  | * at the end of the enqueue. | 
|  | */ | 
|  | if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) | 
|  | rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; | 
|  |  | 
|  | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); | 
|  | cfs_rq->on_list = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void assert_list_leaf_cfs_rq(struct rq *rq) | 
|  | { | 
|  | SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); | 
|  | } | 
|  |  | 
|  | /* Iterate through all leaf cfs_rq's on a runqueue */ | 
|  | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\ | 
|  | list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\ | 
|  | leaf_cfs_rq_list) | 
|  |  | 
|  | /* Do the two (enqueued) entities belong to the same group ? */ | 
|  | static inline struct cfs_rq * | 
|  | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
|  | { | 
|  | if (se->cfs_rq == pse->cfs_rq) | 
|  | return se->cfs_rq; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline struct sched_entity *parent_entity(const struct sched_entity *se) | 
|  | { | 
|  | return se->parent; | 
|  | } | 
|  |  | 
|  | static void | 
|  | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
|  | { | 
|  | int se_depth, pse_depth; | 
|  |  | 
|  | /* | 
|  | * preemption test can be made between sibling entities who are in the | 
|  | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | 
|  | * both tasks until we find their ancestors who are siblings of common | 
|  | * parent. | 
|  | */ | 
|  |  | 
|  | /* First walk up until both entities are at same depth */ | 
|  | se_depth = (*se)->depth; | 
|  | pse_depth = (*pse)->depth; | 
|  |  | 
|  | while (se_depth > pse_depth) { | 
|  | se_depth--; | 
|  | *se = parent_entity(*se); | 
|  | } | 
|  |  | 
|  | while (pse_depth > se_depth) { | 
|  | pse_depth--; | 
|  | *pse = parent_entity(*pse); | 
|  | } | 
|  |  | 
|  | while (!is_same_group(*se, *pse)) { | 
|  | *se = parent_entity(*se); | 
|  | *pse = parent_entity(*pse); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int tg_is_idle(struct task_group *tg) | 
|  | { | 
|  | return tg->idle > 0; | 
|  | } | 
|  |  | 
|  | static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_rq->idle > 0; | 
|  | } | 
|  |  | 
|  | static int se_is_idle(struct sched_entity *se) | 
|  | { | 
|  | if (entity_is_task(se)) | 
|  | return task_has_idle_policy(task_of(se)); | 
|  | return cfs_rq_is_idle(group_cfs_rq(se)); | 
|  | } | 
|  |  | 
|  | #else	/* !CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | #define for_each_sched_entity(se) \ | 
|  | for (; se; se = NULL) | 
|  |  | 
|  | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void assert_list_leaf_cfs_rq(struct rq *rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\ | 
|  | for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) | 
|  |  | 
|  | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline int tg_is_idle(struct task_group *tg) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int se_is_idle(struct sched_entity *se) | 
|  | { | 
|  | return task_has_idle_policy(task_of(se)); | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | static __always_inline | 
|  | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); | 
|  |  | 
|  | /************************************************************** | 
|  | * Scheduling class tree data structure manipulation methods: | 
|  | */ | 
|  |  | 
|  | static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) | 
|  | { | 
|  | s64 delta = (s64)(vruntime - max_vruntime); | 
|  | if (delta > 0) | 
|  | max_vruntime = vruntime; | 
|  |  | 
|  | return max_vruntime; | 
|  | } | 
|  |  | 
|  | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | 
|  | { | 
|  | s64 delta = (s64)(vruntime - min_vruntime); | 
|  | if (delta < 0) | 
|  | min_vruntime = vruntime; | 
|  |  | 
|  | return min_vruntime; | 
|  | } | 
|  |  | 
|  | static inline bool entity_before(const struct sched_entity *a, | 
|  | const struct sched_entity *b) | 
|  | { | 
|  | /* | 
|  | * Tiebreak on vruntime seems unnecessary since it can | 
|  | * hardly happen. | 
|  | */ | 
|  | return (s64)(a->deadline - b->deadline) < 0; | 
|  | } | 
|  |  | 
|  | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | return (s64)(se->vruntime - cfs_rq->min_vruntime); | 
|  | } | 
|  |  | 
|  | #define __node_2_se(node) \ | 
|  | rb_entry((node), struct sched_entity, run_node) | 
|  |  | 
|  | /* | 
|  | * Compute virtual time from the per-task service numbers: | 
|  | * | 
|  | * Fair schedulers conserve lag: | 
|  | * | 
|  | *   \Sum lag_i = 0 | 
|  | * | 
|  | * Where lag_i is given by: | 
|  | * | 
|  | *   lag_i = S - s_i = w_i * (V - v_i) | 
|  | * | 
|  | * Where S is the ideal service time and V is it's virtual time counterpart. | 
|  | * Therefore: | 
|  | * | 
|  | *   \Sum lag_i = 0 | 
|  | *   \Sum w_i * (V - v_i) = 0 | 
|  | *   \Sum w_i * V - w_i * v_i = 0 | 
|  | * | 
|  | * From which we can solve an expression for V in v_i (which we have in | 
|  | * se->vruntime): | 
|  | * | 
|  | *       \Sum v_i * w_i   \Sum v_i * w_i | 
|  | *   V = -------------- = -------------- | 
|  | *          \Sum w_i            W | 
|  | * | 
|  | * Specifically, this is the weighted average of all entity virtual runtimes. | 
|  | * | 
|  | * [[ NOTE: this is only equal to the ideal scheduler under the condition | 
|  | *          that join/leave operations happen at lag_i = 0, otherwise the | 
|  | *          virtual time has non-contiguous motion equivalent to: | 
|  | * | 
|  | *	      V +-= lag_i / W | 
|  | * | 
|  | *	    Also see the comment in place_entity() that deals with this. ]] | 
|  | * | 
|  | * However, since v_i is u64, and the multiplication could easily overflow | 
|  | * transform it into a relative form that uses smaller quantities: | 
|  | * | 
|  | * Substitute: v_i == (v_i - v0) + v0 | 
|  | * | 
|  | *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i | 
|  | * V = ---------------------------- = --------------------- + v0 | 
|  | *                  W                            W | 
|  | * | 
|  | * Which we track using: | 
|  | * | 
|  | *                    v0 := cfs_rq->min_vruntime | 
|  | * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime | 
|  | *              \Sum w_i := cfs_rq->avg_load | 
|  | * | 
|  | * Since min_vruntime is a monotonic increasing variable that closely tracks | 
|  | * the per-task service, these deltas: (v_i - v), will be in the order of the | 
|  | * maximal (virtual) lag induced in the system due to quantisation. | 
|  | * | 
|  | * Also, we use scale_load_down() to reduce the size. | 
|  | * | 
|  | * As measured, the max (key * weight) value was ~44 bits for a kernel build. | 
|  | */ | 
|  | static void | 
|  | avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | unsigned long weight = scale_load_down(se->load.weight); | 
|  | s64 key = entity_key(cfs_rq, se); | 
|  |  | 
|  | cfs_rq->avg_vruntime += key * weight; | 
|  | cfs_rq->avg_load += weight; | 
|  | } | 
|  |  | 
|  | static void | 
|  | avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | unsigned long weight = scale_load_down(se->load.weight); | 
|  | s64 key = entity_key(cfs_rq, se); | 
|  |  | 
|  | cfs_rq->avg_vruntime -= key * weight; | 
|  | cfs_rq->avg_load -= weight; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) | 
|  | { | 
|  | /* | 
|  | * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load | 
|  | */ | 
|  | cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Specifically: avg_runtime() + 0 must result in entity_eligible() := true | 
|  | * For this to be so, the result of this function must have a left bias. | 
|  | */ | 
|  | u64 avg_vruntime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct sched_entity *curr = cfs_rq->curr; | 
|  | s64 avg = cfs_rq->avg_vruntime; | 
|  | long load = cfs_rq->avg_load; | 
|  |  | 
|  | if (curr && curr->on_rq) { | 
|  | unsigned long weight = scale_load_down(curr->load.weight); | 
|  |  | 
|  | avg += entity_key(cfs_rq, curr) * weight; | 
|  | load += weight; | 
|  | } | 
|  |  | 
|  | if (load) { | 
|  | /* sign flips effective floor / ceiling */ | 
|  | if (avg < 0) | 
|  | avg -= (load - 1); | 
|  | avg = div_s64(avg, load); | 
|  | } | 
|  |  | 
|  | return cfs_rq->min_vruntime + avg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lag_i = S - s_i = w_i * (V - v_i) | 
|  | * | 
|  | * However, since V is approximated by the weighted average of all entities it | 
|  | * is possible -- by addition/removal/reweight to the tree -- to move V around | 
|  | * and end up with a larger lag than we started with. | 
|  | * | 
|  | * Limit this to either double the slice length with a minimum of TICK_NSEC | 
|  | * since that is the timing granularity. | 
|  | * | 
|  | * EEVDF gives the following limit for a steady state system: | 
|  | * | 
|  | *   -r_max < lag < max(r_max, q) | 
|  | * | 
|  | * XXX could add max_slice to the augmented data to track this. | 
|  | */ | 
|  | static s64 entity_lag(u64 avruntime, struct sched_entity *se) | 
|  | { | 
|  | s64 vlag, limit; | 
|  |  | 
|  | vlag = avruntime - se->vruntime; | 
|  | limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); | 
|  |  | 
|  | return clamp(vlag, -limit, limit); | 
|  | } | 
|  |  | 
|  | static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | SCHED_WARN_ON(!se->on_rq); | 
|  |  | 
|  | se->vlag = entity_lag(avg_vruntime(cfs_rq), se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Entity is eligible once it received less service than it ought to have, | 
|  | * eg. lag >= 0. | 
|  | * | 
|  | * lag_i = S - s_i = w_i*(V - v_i) | 
|  | * | 
|  | * lag_i >= 0 -> V >= v_i | 
|  | * | 
|  | *     \Sum (v_i - v)*w_i | 
|  | * V = ------------------ + v | 
|  | *          \Sum w_i | 
|  | * | 
|  | * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) | 
|  | * | 
|  | * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due | 
|  | *       to the loss in precision caused by the division. | 
|  | */ | 
|  | static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) | 
|  | { | 
|  | struct sched_entity *curr = cfs_rq->curr; | 
|  | s64 avg = cfs_rq->avg_vruntime; | 
|  | long load = cfs_rq->avg_load; | 
|  |  | 
|  | if (curr && curr->on_rq) { | 
|  | unsigned long weight = scale_load_down(curr->load.weight); | 
|  |  | 
|  | avg += entity_key(cfs_rq, curr) * weight; | 
|  | load += weight; | 
|  | } | 
|  |  | 
|  | return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; | 
|  | } | 
|  |  | 
|  | int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | return vruntime_eligible(cfs_rq, se->vruntime); | 
|  | } | 
|  |  | 
|  | static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) | 
|  | { | 
|  | u64 min_vruntime = cfs_rq->min_vruntime; | 
|  | /* | 
|  | * open coded max_vruntime() to allow updating avg_vruntime | 
|  | */ | 
|  | s64 delta = (s64)(vruntime - min_vruntime); | 
|  | if (delta > 0) { | 
|  | avg_vruntime_update(cfs_rq, delta); | 
|  | min_vruntime = vruntime; | 
|  | } | 
|  | return min_vruntime; | 
|  | } | 
|  |  | 
|  | static void update_min_vruntime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct sched_entity *se = __pick_root_entity(cfs_rq); | 
|  | struct sched_entity *curr = cfs_rq->curr; | 
|  | u64 vruntime = cfs_rq->min_vruntime; | 
|  |  | 
|  | if (curr) { | 
|  | if (curr->on_rq) | 
|  | vruntime = curr->vruntime; | 
|  | else | 
|  | curr = NULL; | 
|  | } | 
|  |  | 
|  | if (se) { | 
|  | if (!curr) | 
|  | vruntime = se->min_vruntime; | 
|  | else | 
|  | vruntime = min_vruntime(vruntime, se->min_vruntime); | 
|  | } | 
|  |  | 
|  | /* ensure we never gain time by being placed backwards. */ | 
|  | cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); | 
|  | } | 
|  |  | 
|  | static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct sched_entity *root = __pick_root_entity(cfs_rq); | 
|  | struct sched_entity *curr = cfs_rq->curr; | 
|  | u64 min_slice = ~0ULL; | 
|  |  | 
|  | if (curr && curr->on_rq) | 
|  | min_slice = curr->slice; | 
|  |  | 
|  | if (root) | 
|  | min_slice = min(min_slice, root->min_slice); | 
|  |  | 
|  | return min_slice; | 
|  | } | 
|  |  | 
|  | static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) | 
|  | { | 
|  | return entity_before(__node_2_se(a), __node_2_se(b)); | 
|  | } | 
|  |  | 
|  | #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) | 
|  |  | 
|  | static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) | 
|  | { | 
|  | if (node) { | 
|  | struct sched_entity *rse = __node_2_se(node); | 
|  | if (vruntime_gt(min_vruntime, se, rse)) | 
|  | se->min_vruntime = rse->min_vruntime; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) | 
|  | { | 
|  | if (node) { | 
|  | struct sched_entity *rse = __node_2_se(node); | 
|  | if (rse->min_slice < se->min_slice) | 
|  | se->min_slice = rse->min_slice; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) | 
|  | */ | 
|  | static inline bool min_vruntime_update(struct sched_entity *se, bool exit) | 
|  | { | 
|  | u64 old_min_vruntime = se->min_vruntime; | 
|  | u64 old_min_slice = se->min_slice; | 
|  | struct rb_node *node = &se->run_node; | 
|  |  | 
|  | se->min_vruntime = se->vruntime; | 
|  | __min_vruntime_update(se, node->rb_right); | 
|  | __min_vruntime_update(se, node->rb_left); | 
|  |  | 
|  | se->min_slice = se->slice; | 
|  | __min_slice_update(se, node->rb_right); | 
|  | __min_slice_update(se, node->rb_left); | 
|  |  | 
|  | return se->min_vruntime == old_min_vruntime && | 
|  | se->min_slice == old_min_slice; | 
|  | } | 
|  |  | 
|  | RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, | 
|  | run_node, min_vruntime, min_vruntime_update); | 
|  |  | 
|  | /* | 
|  | * Enqueue an entity into the rb-tree: | 
|  | */ | 
|  | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | avg_vruntime_add(cfs_rq, se); | 
|  | se->min_vruntime = se->vruntime; | 
|  | se->min_slice = se->slice; | 
|  | rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, | 
|  | __entity_less, &min_vruntime_cb); | 
|  | } | 
|  |  | 
|  | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, | 
|  | &min_vruntime_cb); | 
|  | avg_vruntime_sub(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; | 
|  |  | 
|  | if (!root) | 
|  | return NULL; | 
|  |  | 
|  | return __node_2_se(root); | 
|  | } | 
|  |  | 
|  | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); | 
|  |  | 
|  | if (!left) | 
|  | return NULL; | 
|  |  | 
|  | return __node_2_se(left); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Earliest Eligible Virtual Deadline First | 
|  | * | 
|  | * In order to provide latency guarantees for different request sizes | 
|  | * EEVDF selects the best runnable task from two criteria: | 
|  | * | 
|  | *  1) the task must be eligible (must be owed service) | 
|  | * | 
|  | *  2) from those tasks that meet 1), we select the one | 
|  | *     with the earliest virtual deadline. | 
|  | * | 
|  | * We can do this in O(log n) time due to an augmented RB-tree. The | 
|  | * tree keeps the entries sorted on deadline, but also functions as a | 
|  | * heap based on the vruntime by keeping: | 
|  | * | 
|  | *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) | 
|  | * | 
|  | * Which allows tree pruning through eligibility. | 
|  | */ | 
|  | static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; | 
|  | struct sched_entity *se = __pick_first_entity(cfs_rq); | 
|  | struct sched_entity *curr = cfs_rq->curr; | 
|  | struct sched_entity *best = NULL; | 
|  |  | 
|  | /* | 
|  | * We can safely skip eligibility check if there is only one entity | 
|  | * in this cfs_rq, saving some cycles. | 
|  | */ | 
|  | if (cfs_rq->nr_running == 1) | 
|  | return curr && curr->on_rq ? curr : se; | 
|  |  | 
|  | if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) | 
|  | curr = NULL; | 
|  |  | 
|  | /* | 
|  | * Once selected, run a task until it either becomes non-eligible or | 
|  | * until it gets a new slice. See the HACK in set_next_entity(). | 
|  | */ | 
|  | if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) | 
|  | return curr; | 
|  |  | 
|  | /* Pick the leftmost entity if it's eligible */ | 
|  | if (se && entity_eligible(cfs_rq, se)) { | 
|  | best = se; | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | /* Heap search for the EEVD entity */ | 
|  | while (node) { | 
|  | struct rb_node *left = node->rb_left; | 
|  |  | 
|  | /* | 
|  | * Eligible entities in left subtree are always better | 
|  | * choices, since they have earlier deadlines. | 
|  | */ | 
|  | if (left && vruntime_eligible(cfs_rq, | 
|  | __node_2_se(left)->min_vruntime)) { | 
|  | node = left; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | se = __node_2_se(node); | 
|  |  | 
|  | /* | 
|  | * The left subtree either is empty or has no eligible | 
|  | * entity, so check the current node since it is the one | 
|  | * with earliest deadline that might be eligible. | 
|  | */ | 
|  | if (entity_eligible(cfs_rq, se)) { | 
|  | best = se; | 
|  | break; | 
|  | } | 
|  |  | 
|  | node = node->rb_right; | 
|  | } | 
|  | found: | 
|  | if (!best || (curr && entity_before(curr, best))) | 
|  | best = curr; | 
|  |  | 
|  | return best; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); | 
|  |  | 
|  | if (!last) | 
|  | return NULL; | 
|  |  | 
|  | return __node_2_se(last); | 
|  | } | 
|  |  | 
|  | /************************************************************** | 
|  | * Scheduling class statistics methods: | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  | int sched_update_scaling(void) | 
|  | { | 
|  | unsigned int factor = get_update_sysctl_factor(); | 
|  |  | 
|  | #define WRT_SYSCTL(name) \ | 
|  | (normalized_sysctl_##name = sysctl_##name / (factor)) | 
|  | WRT_SYSCTL(sched_base_slice); | 
|  | #undef WRT_SYSCTL | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); | 
|  |  | 
|  | /* | 
|  | * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i | 
|  | * this is probably good enough. | 
|  | */ | 
|  | static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | if ((s64)(se->vruntime - se->deadline) < 0) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * For EEVDF the virtual time slope is determined by w_i (iow. | 
|  | * nice) while the request time r_i is determined by | 
|  | * sysctl_sched_base_slice. | 
|  | */ | 
|  | if (!se->custom_slice) | 
|  | se->slice = sysctl_sched_base_slice; | 
|  |  | 
|  | /* | 
|  | * EEVDF: vd_i = ve_i + r_i / w_i | 
|  | */ | 
|  | se->deadline = se->vruntime + calc_delta_fair(se->slice, se); | 
|  |  | 
|  | /* | 
|  | * The task has consumed its request, reschedule. | 
|  | */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #include "pelt.h" | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); | 
|  | static unsigned long task_h_load(struct task_struct *p); | 
|  | static unsigned long capacity_of(int cpu); | 
|  |  | 
|  | /* Give new sched_entity start runnable values to heavy its load in infant time */ | 
|  | void init_entity_runnable_average(struct sched_entity *se) | 
|  | { | 
|  | struct sched_avg *sa = &se->avg; | 
|  |  | 
|  | memset(sa, 0, sizeof(*sa)); | 
|  |  | 
|  | /* | 
|  | * Tasks are initialized with full load to be seen as heavy tasks until | 
|  | * they get a chance to stabilize to their real load level. | 
|  | * Group entities are initialized with zero load to reflect the fact that | 
|  | * nothing has been attached to the task group yet. | 
|  | */ | 
|  | if (entity_is_task(se)) | 
|  | sa->load_avg = scale_load_down(se->load.weight); | 
|  |  | 
|  | /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * With new tasks being created, their initial util_avgs are extrapolated | 
|  | * based on the cfs_rq's current util_avg: | 
|  | * | 
|  | *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) | 
|  | *		* se_weight(se) | 
|  | * | 
|  | * However, in many cases, the above util_avg does not give a desired | 
|  | * value. Moreover, the sum of the util_avgs may be divergent, such | 
|  | * as when the series is a harmonic series. | 
|  | * | 
|  | * To solve this problem, we also cap the util_avg of successive tasks to | 
|  | * only 1/2 of the left utilization budget: | 
|  | * | 
|  | *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n | 
|  | * | 
|  | * where n denotes the nth task and cpu_scale the CPU capacity. | 
|  | * | 
|  | * For example, for a CPU with 1024 of capacity, a simplest series from | 
|  | * the beginning would be like: | 
|  | * | 
|  | *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ... | 
|  | * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... | 
|  | * | 
|  | * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) | 
|  | * if util_avg > util_avg_cap. | 
|  | */ | 
|  | void post_init_entity_util_avg(struct task_struct *p) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  | struct sched_avg *sa = &se->avg; | 
|  | long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); | 
|  | long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; | 
|  |  | 
|  | if (p->sched_class != &fair_sched_class) { | 
|  | /* | 
|  | * For !fair tasks do: | 
|  | * | 
|  | update_cfs_rq_load_avg(now, cfs_rq); | 
|  | attach_entity_load_avg(cfs_rq, se); | 
|  | switched_from_fair(rq, p); | 
|  | * | 
|  | * such that the next switched_to_fair() has the | 
|  | * expected state. | 
|  | */ | 
|  | se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cap > 0) { | 
|  | if (cfs_rq->avg.util_avg != 0) { | 
|  | sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se); | 
|  | sa->util_avg /= (cfs_rq->avg.load_avg + 1); | 
|  |  | 
|  | if (sa->util_avg > cap) | 
|  | sa->util_avg = cap; | 
|  | } else { | 
|  | sa->util_avg = cap; | 
|  | } | 
|  | } | 
|  |  | 
|  | sa->runnable_avg = sa->util_avg; | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_SMP */ | 
|  | void init_entity_runnable_average(struct sched_entity *se) | 
|  | { | 
|  | } | 
|  | void post_init_entity_util_avg(struct task_struct *p) | 
|  | { | 
|  | } | 
|  | static void update_tg_load_avg(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) | 
|  | { | 
|  | u64 now = rq_clock_task(rq); | 
|  | s64 delta_exec; | 
|  |  | 
|  | delta_exec = now - curr->exec_start; | 
|  | if (unlikely(delta_exec <= 0)) | 
|  | return delta_exec; | 
|  |  | 
|  | curr->exec_start = now; | 
|  | curr->sum_exec_runtime += delta_exec; | 
|  |  | 
|  | if (schedstat_enabled()) { | 
|  | struct sched_statistics *stats; | 
|  |  | 
|  | stats = __schedstats_from_se(curr); | 
|  | __schedstat_set(stats->exec_max, | 
|  | max(delta_exec, stats->exec_max)); | 
|  | } | 
|  |  | 
|  | return delta_exec; | 
|  | } | 
|  |  | 
|  | static inline void update_curr_task(struct task_struct *p, s64 delta_exec) | 
|  | { | 
|  | trace_sched_stat_runtime(p, delta_exec); | 
|  | account_group_exec_runtime(p, delta_exec); | 
|  | cgroup_account_cputime(p, delta_exec); | 
|  | if (p->dl_server) | 
|  | dl_server_update(p->dl_server, delta_exec); | 
|  | } | 
|  |  | 
|  | static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 
|  | { | 
|  | if (!sched_feat(PREEMPT_SHORT)) | 
|  | return false; | 
|  |  | 
|  | if (curr->vlag == curr->deadline) | 
|  | return false; | 
|  |  | 
|  | return !entity_eligible(cfs_rq, curr); | 
|  | } | 
|  |  | 
|  | static inline bool do_preempt_short(struct cfs_rq *cfs_rq, | 
|  | struct sched_entity *pse, struct sched_entity *se) | 
|  | { | 
|  | if (!sched_feat(PREEMPT_SHORT)) | 
|  | return false; | 
|  |  | 
|  | if (pse->slice >= se->slice) | 
|  | return false; | 
|  |  | 
|  | if (!entity_eligible(cfs_rq, pse)) | 
|  | return false; | 
|  |  | 
|  | if (entity_before(pse, se)) | 
|  | return true; | 
|  |  | 
|  | if (!entity_eligible(cfs_rq, se)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used by other classes to account runtime. | 
|  | */ | 
|  | s64 update_curr_common(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | s64 delta_exec; | 
|  |  | 
|  | delta_exec = update_curr_se(rq, &curr->se); | 
|  | if (likely(delta_exec > 0)) | 
|  | update_curr_task(curr, delta_exec); | 
|  |  | 
|  | return delta_exec; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the current task's runtime statistics. | 
|  | */ | 
|  | static void update_curr(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct sched_entity *curr = cfs_rq->curr; | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  | s64 delta_exec; | 
|  | bool resched; | 
|  |  | 
|  | if (unlikely(!curr)) | 
|  | return; | 
|  |  | 
|  | delta_exec = update_curr_se(rq, curr); | 
|  | if (unlikely(delta_exec <= 0)) | 
|  | return; | 
|  |  | 
|  | curr->vruntime += calc_delta_fair(delta_exec, curr); | 
|  | resched = update_deadline(cfs_rq, curr); | 
|  | update_min_vruntime(cfs_rq); | 
|  |  | 
|  | if (entity_is_task(curr)) { | 
|  | struct task_struct *p = task_of(curr); | 
|  |  | 
|  | update_curr_task(p, delta_exec); | 
|  |  | 
|  | /* | 
|  | * Any fair task that runs outside of fair_server should | 
|  | * account against fair_server such that it can account for | 
|  | * this time and possibly avoid running this period. | 
|  | */ | 
|  | if (p->dl_server != &rq->fair_server) | 
|  | dl_server_update(&rq->fair_server, delta_exec); | 
|  | } | 
|  |  | 
|  | account_cfs_rq_runtime(cfs_rq, delta_exec); | 
|  |  | 
|  | if (rq->nr_running == 1) | 
|  | return; | 
|  |  | 
|  | if (resched || did_preempt_short(cfs_rq, curr)) { | 
|  | resched_curr(rq); | 
|  | clear_buddies(cfs_rq, curr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_curr_fair(struct rq *rq) | 
|  | { | 
|  | update_curr(cfs_rq_of(&rq->curr->se)); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | struct sched_statistics *stats; | 
|  | struct task_struct *p = NULL; | 
|  |  | 
|  | if (!schedstat_enabled()) | 
|  | return; | 
|  |  | 
|  | stats = __schedstats_from_se(se); | 
|  |  | 
|  | if (entity_is_task(se)) | 
|  | p = task_of(se); | 
|  |  | 
|  | __update_stats_wait_start(rq_of(cfs_rq), p, stats); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | struct sched_statistics *stats; | 
|  | struct task_struct *p = NULL; | 
|  |  | 
|  | if (!schedstat_enabled()) | 
|  | return; | 
|  |  | 
|  | stats = __schedstats_from_se(se); | 
|  |  | 
|  | /* | 
|  | * When the sched_schedstat changes from 0 to 1, some sched se | 
|  | * maybe already in the runqueue, the se->statistics.wait_start | 
|  | * will be 0.So it will let the delta wrong. We need to avoid this | 
|  | * scenario. | 
|  | */ | 
|  | if (unlikely(!schedstat_val(stats->wait_start))) | 
|  | return; | 
|  |  | 
|  | if (entity_is_task(se)) | 
|  | p = task_of(se); | 
|  |  | 
|  | __update_stats_wait_end(rq_of(cfs_rq), p, stats); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | struct sched_statistics *stats; | 
|  | struct task_struct *tsk = NULL; | 
|  |  | 
|  | if (!schedstat_enabled()) | 
|  | return; | 
|  |  | 
|  | stats = __schedstats_from_se(se); | 
|  |  | 
|  | if (entity_is_task(se)) | 
|  | tsk = task_of(se); | 
|  |  | 
|  | __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Task is being enqueued - update stats: | 
|  | */ | 
|  | static inline void | 
|  | update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|  | { | 
|  | if (!schedstat_enabled()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Are we enqueueing a waiting task? (for current tasks | 
|  | * a dequeue/enqueue event is a NOP) | 
|  | */ | 
|  | if (se != cfs_rq->curr) | 
|  | update_stats_wait_start_fair(cfs_rq, se); | 
|  |  | 
|  | if (flags & ENQUEUE_WAKEUP) | 
|  | update_stats_enqueue_sleeper_fair(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|  | { | 
|  |  | 
|  | if (!schedstat_enabled()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Mark the end of the wait period if dequeueing a | 
|  | * waiting task: | 
|  | */ | 
|  | if (se != cfs_rq->curr) | 
|  | update_stats_wait_end_fair(cfs_rq, se); | 
|  |  | 
|  | if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { | 
|  | struct task_struct *tsk = task_of(se); | 
|  | unsigned int state; | 
|  |  | 
|  | /* XXX racy against TTWU */ | 
|  | state = READ_ONCE(tsk->__state); | 
|  | if (state & TASK_INTERRUPTIBLE) | 
|  | __schedstat_set(tsk->stats.sleep_start, | 
|  | rq_clock(rq_of(cfs_rq))); | 
|  | if (state & TASK_UNINTERRUPTIBLE) | 
|  | __schedstat_set(tsk->stats.block_start, | 
|  | rq_clock(rq_of(cfs_rq))); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are picking a new current task - update its stats: | 
|  | */ | 
|  | static inline void | 
|  | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* | 
|  | * We are starting a new run period: | 
|  | */ | 
|  | se->exec_start = rq_clock_task(rq_of(cfs_rq)); | 
|  | } | 
|  |  | 
|  | /************************************************** | 
|  | * Scheduling class queueing methods: | 
|  | */ | 
|  |  | 
|  | static inline bool is_core_idle(int cpu) | 
|  | { | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | int sibling; | 
|  |  | 
|  | for_each_cpu(sibling, cpu_smt_mask(cpu)) { | 
|  | if (cpu == sibling) | 
|  | continue; | 
|  |  | 
|  | if (!idle_cpu(sibling)) | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | #define NUMA_IMBALANCE_MIN 2 | 
|  |  | 
|  | static inline long | 
|  | adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) | 
|  | { | 
|  | /* | 
|  | * Allow a NUMA imbalance if busy CPUs is less than the maximum | 
|  | * threshold. Above this threshold, individual tasks may be contending | 
|  | * for both memory bandwidth and any shared HT resources.  This is an | 
|  | * approximation as the number of running tasks may not be related to | 
|  | * the number of busy CPUs due to sched_setaffinity. | 
|  | */ | 
|  | if (dst_running > imb_numa_nr) | 
|  | return imbalance; | 
|  |  | 
|  | /* | 
|  | * Allow a small imbalance based on a simple pair of communicating | 
|  | * tasks that remain local when the destination is lightly loaded. | 
|  | */ | 
|  | if (imbalance <= NUMA_IMBALANCE_MIN) | 
|  | return 0; | 
|  |  | 
|  | return imbalance; | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | /* | 
|  | * Approximate time to scan a full NUMA task in ms. The task scan period is | 
|  | * calculated based on the tasks virtual memory size and | 
|  | * numa_balancing_scan_size. | 
|  | */ | 
|  | unsigned int sysctl_numa_balancing_scan_period_min = 1000; | 
|  | unsigned int sysctl_numa_balancing_scan_period_max = 60000; | 
|  |  | 
|  | /* Portion of address space to scan in MB */ | 
|  | unsigned int sysctl_numa_balancing_scan_size = 256; | 
|  |  | 
|  | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ | 
|  | unsigned int sysctl_numa_balancing_scan_delay = 1000; | 
|  |  | 
|  | /* The page with hint page fault latency < threshold in ms is considered hot */ | 
|  | unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; | 
|  |  | 
|  | struct numa_group { | 
|  | refcount_t refcount; | 
|  |  | 
|  | spinlock_t lock; /* nr_tasks, tasks */ | 
|  | int nr_tasks; | 
|  | pid_t gid; | 
|  | int active_nodes; | 
|  |  | 
|  | struct rcu_head rcu; | 
|  | unsigned long total_faults; | 
|  | unsigned long max_faults_cpu; | 
|  | /* | 
|  | * faults[] array is split into two regions: faults_mem and faults_cpu. | 
|  | * | 
|  | * Faults_cpu is used to decide whether memory should move | 
|  | * towards the CPU. As a consequence, these stats are weighted | 
|  | * more by CPU use than by memory faults. | 
|  | */ | 
|  | unsigned long faults[]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * For functions that can be called in multiple contexts that permit reading | 
|  | * ->numa_group (see struct task_struct for locking rules). | 
|  | */ | 
|  | static struct numa_group *deref_task_numa_group(struct task_struct *p) | 
|  | { | 
|  | return rcu_dereference_check(p->numa_group, p == current || | 
|  | (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); | 
|  | } | 
|  |  | 
|  | static struct numa_group *deref_curr_numa_group(struct task_struct *p) | 
|  | { | 
|  | return rcu_dereference_protected(p->numa_group, p == current); | 
|  | } | 
|  |  | 
|  | static inline unsigned long group_faults_priv(struct numa_group *ng); | 
|  | static inline unsigned long group_faults_shared(struct numa_group *ng); | 
|  |  | 
|  | static unsigned int task_nr_scan_windows(struct task_struct *p) | 
|  | { | 
|  | unsigned long rss = 0; | 
|  | unsigned long nr_scan_pages; | 
|  |  | 
|  | /* | 
|  | * Calculations based on RSS as non-present and empty pages are skipped | 
|  | * by the PTE scanner and NUMA hinting faults should be trapped based | 
|  | * on resident pages | 
|  | */ | 
|  | nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); | 
|  | rss = get_mm_rss(p->mm); | 
|  | if (!rss) | 
|  | rss = nr_scan_pages; | 
|  |  | 
|  | rss = round_up(rss, nr_scan_pages); | 
|  | return rss / nr_scan_pages; | 
|  | } | 
|  |  | 
|  | /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ | 
|  | #define MAX_SCAN_WINDOW 2560 | 
|  |  | 
|  | static unsigned int task_scan_min(struct task_struct *p) | 
|  | { | 
|  | unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); | 
|  | unsigned int scan, floor; | 
|  | unsigned int windows = 1; | 
|  |  | 
|  | if (scan_size < MAX_SCAN_WINDOW) | 
|  | windows = MAX_SCAN_WINDOW / scan_size; | 
|  | floor = 1000 / windows; | 
|  |  | 
|  | scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); | 
|  | return max_t(unsigned int, floor, scan); | 
|  | } | 
|  |  | 
|  | static unsigned int task_scan_start(struct task_struct *p) | 
|  | { | 
|  | unsigned long smin = task_scan_min(p); | 
|  | unsigned long period = smin; | 
|  | struct numa_group *ng; | 
|  |  | 
|  | /* Scale the maximum scan period with the amount of shared memory. */ | 
|  | rcu_read_lock(); | 
|  | ng = rcu_dereference(p->numa_group); | 
|  | if (ng) { | 
|  | unsigned long shared = group_faults_shared(ng); | 
|  | unsigned long private = group_faults_priv(ng); | 
|  |  | 
|  | period *= refcount_read(&ng->refcount); | 
|  | period *= shared + 1; | 
|  | period /= private + shared + 1; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return max(smin, period); | 
|  | } | 
|  |  | 
|  | static unsigned int task_scan_max(struct task_struct *p) | 
|  | { | 
|  | unsigned long smin = task_scan_min(p); | 
|  | unsigned long smax; | 
|  | struct numa_group *ng; | 
|  |  | 
|  | /* Watch for min being lower than max due to floor calculations */ | 
|  | smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); | 
|  |  | 
|  | /* Scale the maximum scan period with the amount of shared memory. */ | 
|  | ng = deref_curr_numa_group(p); | 
|  | if (ng) { | 
|  | unsigned long shared = group_faults_shared(ng); | 
|  | unsigned long private = group_faults_priv(ng); | 
|  | unsigned long period = smax; | 
|  |  | 
|  | period *= refcount_read(&ng->refcount); | 
|  | period *= shared + 1; | 
|  | period /= private + shared + 1; | 
|  |  | 
|  | smax = max(smax, period); | 
|  | } | 
|  |  | 
|  | return max(smin, smax); | 
|  | } | 
|  |  | 
|  | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); | 
|  | rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); | 
|  | } | 
|  |  | 
|  | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); | 
|  | rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); | 
|  | } | 
|  |  | 
|  | /* Shared or private faults. */ | 
|  | #define NR_NUMA_HINT_FAULT_TYPES 2 | 
|  |  | 
|  | /* Memory and CPU locality */ | 
|  | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) | 
|  |  | 
|  | /* Averaged statistics, and temporary buffers. */ | 
|  | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) | 
|  |  | 
|  | pid_t task_numa_group_id(struct task_struct *p) | 
|  | { | 
|  | struct numa_group *ng; | 
|  | pid_t gid = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ng = rcu_dereference(p->numa_group); | 
|  | if (ng) | 
|  | gid = ng->gid; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return gid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The averaged statistics, shared & private, memory & CPU, | 
|  | * occupy the first half of the array. The second half of the | 
|  | * array is for current counters, which are averaged into the | 
|  | * first set by task_numa_placement. | 
|  | */ | 
|  | static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) | 
|  | { | 
|  | return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; | 
|  | } | 
|  |  | 
|  | static inline unsigned long task_faults(struct task_struct *p, int nid) | 
|  | { | 
|  | if (!p->numa_faults) | 
|  | return 0; | 
|  |  | 
|  | return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + | 
|  | p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; | 
|  | } | 
|  |  | 
|  | static inline unsigned long group_faults(struct task_struct *p, int nid) | 
|  | { | 
|  | struct numa_group *ng = deref_task_numa_group(p); | 
|  |  | 
|  | if (!ng) | 
|  | return 0; | 
|  |  | 
|  | return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + | 
|  | ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; | 
|  | } | 
|  |  | 
|  | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) | 
|  | { | 
|  | return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + | 
|  | group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; | 
|  | } | 
|  |  | 
|  | static inline unsigned long group_faults_priv(struct numa_group *ng) | 
|  | { | 
|  | unsigned long faults = 0; | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | 
|  | } | 
|  |  | 
|  | return faults; | 
|  | } | 
|  |  | 
|  | static inline unsigned long group_faults_shared(struct numa_group *ng) | 
|  | { | 
|  | unsigned long faults = 0; | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; | 
|  | } | 
|  |  | 
|  | return faults; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A node triggering more than 1/3 as many NUMA faults as the maximum is | 
|  | * considered part of a numa group's pseudo-interleaving set. Migrations | 
|  | * between these nodes are slowed down, to allow things to settle down. | 
|  | */ | 
|  | #define ACTIVE_NODE_FRACTION 3 | 
|  |  | 
|  | static bool numa_is_active_node(int nid, struct numa_group *ng) | 
|  | { | 
|  | return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; | 
|  | } | 
|  |  | 
|  | /* Handle placement on systems where not all nodes are directly connected. */ | 
|  | static unsigned long score_nearby_nodes(struct task_struct *p, int nid, | 
|  | int lim_dist, bool task) | 
|  | { | 
|  | unsigned long score = 0; | 
|  | int node, max_dist; | 
|  |  | 
|  | /* | 
|  | * All nodes are directly connected, and the same distance | 
|  | * from each other. No need for fancy placement algorithms. | 
|  | */ | 
|  | if (sched_numa_topology_type == NUMA_DIRECT) | 
|  | return 0; | 
|  |  | 
|  | /* sched_max_numa_distance may be changed in parallel. */ | 
|  | max_dist = READ_ONCE(sched_max_numa_distance); | 
|  | /* | 
|  | * This code is called for each node, introducing N^2 complexity, | 
|  | * which should be OK given the number of nodes rarely exceeds 8. | 
|  | */ | 
|  | for_each_online_node(node) { | 
|  | unsigned long faults; | 
|  | int dist = node_distance(nid, node); | 
|  |  | 
|  | /* | 
|  | * The furthest away nodes in the system are not interesting | 
|  | * for placement; nid was already counted. | 
|  | */ | 
|  | if (dist >= max_dist || node == nid) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * On systems with a backplane NUMA topology, compare groups | 
|  | * of nodes, and move tasks towards the group with the most | 
|  | * memory accesses. When comparing two nodes at distance | 
|  | * "hoplimit", only nodes closer by than "hoplimit" are part | 
|  | * of each group. Skip other nodes. | 
|  | */ | 
|  | if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) | 
|  | continue; | 
|  |  | 
|  | /* Add up the faults from nearby nodes. */ | 
|  | if (task) | 
|  | faults = task_faults(p, node); | 
|  | else | 
|  | faults = group_faults(p, node); | 
|  |  | 
|  | /* | 
|  | * On systems with a glueless mesh NUMA topology, there are | 
|  | * no fixed "groups of nodes". Instead, nodes that are not | 
|  | * directly connected bounce traffic through intermediate | 
|  | * nodes; a numa_group can occupy any set of nodes. | 
|  | * The further away a node is, the less the faults count. | 
|  | * This seems to result in good task placement. | 
|  | */ | 
|  | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | 
|  | faults *= (max_dist - dist); | 
|  | faults /= (max_dist - LOCAL_DISTANCE); | 
|  | } | 
|  |  | 
|  | score += faults; | 
|  | } | 
|  |  | 
|  | return score; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These return the fraction of accesses done by a particular task, or | 
|  | * task group, on a particular numa node.  The group weight is given a | 
|  | * larger multiplier, in order to group tasks together that are almost | 
|  | * evenly spread out between numa nodes. | 
|  | */ | 
|  | static inline unsigned long task_weight(struct task_struct *p, int nid, | 
|  | int dist) | 
|  | { | 
|  | unsigned long faults, total_faults; | 
|  |  | 
|  | if (!p->numa_faults) | 
|  | return 0; | 
|  |  | 
|  | total_faults = p->total_numa_faults; | 
|  |  | 
|  | if (!total_faults) | 
|  | return 0; | 
|  |  | 
|  | faults = task_faults(p, nid); | 
|  | faults += score_nearby_nodes(p, nid, dist, true); | 
|  |  | 
|  | return 1000 * faults / total_faults; | 
|  | } | 
|  |  | 
|  | static inline unsigned long group_weight(struct task_struct *p, int nid, | 
|  | int dist) | 
|  | { | 
|  | struct numa_group *ng = deref_task_numa_group(p); | 
|  | unsigned long faults, total_faults; | 
|  |  | 
|  | if (!ng) | 
|  | return 0; | 
|  |  | 
|  | total_faults = ng->total_faults; | 
|  |  | 
|  | if (!total_faults) | 
|  | return 0; | 
|  |  | 
|  | faults = group_faults(p, nid); | 
|  | faults += score_nearby_nodes(p, nid, dist, false); | 
|  |  | 
|  | return 1000 * faults / total_faults; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If memory tiering mode is enabled, cpupid of slow memory page is | 
|  | * used to record scan time instead of CPU and PID.  When tiering mode | 
|  | * is disabled at run time, the scan time (in cpupid) will be | 
|  | * interpreted as CPU and PID.  So CPU needs to be checked to avoid to | 
|  | * access out of array bound. | 
|  | */ | 
|  | static inline bool cpupid_valid(int cpupid) | 
|  | { | 
|  | return cpupid_to_cpu(cpupid) < nr_cpu_ids; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For memory tiering mode, if there are enough free pages (more than | 
|  | * enough watermark defined here) in fast memory node, to take full | 
|  | * advantage of fast memory capacity, all recently accessed slow | 
|  | * memory pages will be migrated to fast memory node without | 
|  | * considering hot threshold. | 
|  | */ | 
|  | static bool pgdat_free_space_enough(struct pglist_data *pgdat) | 
|  | { | 
|  | int z; | 
|  | unsigned long enough_wmark; | 
|  |  | 
|  | enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, | 
|  | pgdat->node_present_pages >> 4); | 
|  | for (z = pgdat->nr_zones - 1; z >= 0; z--) { | 
|  | struct zone *zone = pgdat->node_zones + z; | 
|  |  | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | if (zone_watermark_ok(zone, 0, | 
|  | promo_wmark_pages(zone) + enough_wmark, | 
|  | ZONE_MOVABLE, 0)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For memory tiering mode, when page tables are scanned, the scan | 
|  | * time will be recorded in struct page in addition to make page | 
|  | * PROT_NONE for slow memory page.  So when the page is accessed, in | 
|  | * hint page fault handler, the hint page fault latency is calculated | 
|  | * via, | 
|  | * | 
|  | *	hint page fault latency = hint page fault time - scan time | 
|  | * | 
|  | * The smaller the hint page fault latency, the higher the possibility | 
|  | * for the page to be hot. | 
|  | */ | 
|  | static int numa_hint_fault_latency(struct folio *folio) | 
|  | { | 
|  | int last_time, time; | 
|  |  | 
|  | time = jiffies_to_msecs(jiffies); | 
|  | last_time = folio_xchg_access_time(folio, time); | 
|  |  | 
|  | return (time - last_time) & PAGE_ACCESS_TIME_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For memory tiering mode, too high promotion/demotion throughput may | 
|  | * hurt application latency.  So we provide a mechanism to rate limit | 
|  | * the number of pages that are tried to be promoted. | 
|  | */ | 
|  | static bool numa_promotion_rate_limit(struct pglist_data *pgdat, | 
|  | unsigned long rate_limit, int nr) | 
|  | { | 
|  | unsigned long nr_cand; | 
|  | unsigned int now, start; | 
|  |  | 
|  | now = jiffies_to_msecs(jiffies); | 
|  | mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); | 
|  | nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); | 
|  | start = pgdat->nbp_rl_start; | 
|  | if (now - start > MSEC_PER_SEC && | 
|  | cmpxchg(&pgdat->nbp_rl_start, start, now) == start) | 
|  | pgdat->nbp_rl_nr_cand = nr_cand; | 
|  | if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define NUMA_MIGRATION_ADJUST_STEPS	16 | 
|  |  | 
|  | static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, | 
|  | unsigned long rate_limit, | 
|  | unsigned int ref_th) | 
|  | { | 
|  | unsigned int now, start, th_period, unit_th, th; | 
|  | unsigned long nr_cand, ref_cand, diff_cand; | 
|  |  | 
|  | now = jiffies_to_msecs(jiffies); | 
|  | th_period = sysctl_numa_balancing_scan_period_max; | 
|  | start = pgdat->nbp_th_start; | 
|  | if (now - start > th_period && | 
|  | cmpxchg(&pgdat->nbp_th_start, start, now) == start) { | 
|  | ref_cand = rate_limit * | 
|  | sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; | 
|  | nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); | 
|  | diff_cand = nr_cand - pgdat->nbp_th_nr_cand; | 
|  | unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; | 
|  | th = pgdat->nbp_threshold ? : ref_th; | 
|  | if (diff_cand > ref_cand * 11 / 10) | 
|  | th = max(th - unit_th, unit_th); | 
|  | else if (diff_cand < ref_cand * 9 / 10) | 
|  | th = min(th + unit_th, ref_th * 2); | 
|  | pgdat->nbp_th_nr_cand = nr_cand; | 
|  | pgdat->nbp_threshold = th; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, | 
|  | int src_nid, int dst_cpu) | 
|  | { | 
|  | struct numa_group *ng = deref_curr_numa_group(p); | 
|  | int dst_nid = cpu_to_node(dst_cpu); | 
|  | int last_cpupid, this_cpupid; | 
|  |  | 
|  | /* | 
|  | * Cannot migrate to memoryless nodes. | 
|  | */ | 
|  | if (!node_state(dst_nid, N_MEMORY)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The pages in slow memory node should be migrated according | 
|  | * to hot/cold instead of private/shared. | 
|  | */ | 
|  | if (folio_use_access_time(folio)) { | 
|  | struct pglist_data *pgdat; | 
|  | unsigned long rate_limit; | 
|  | unsigned int latency, th, def_th; | 
|  |  | 
|  | pgdat = NODE_DATA(dst_nid); | 
|  | if (pgdat_free_space_enough(pgdat)) { | 
|  | /* workload changed, reset hot threshold */ | 
|  | pgdat->nbp_threshold = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | def_th = sysctl_numa_balancing_hot_threshold; | 
|  | rate_limit = sysctl_numa_balancing_promote_rate_limit << \ | 
|  | (20 - PAGE_SHIFT); | 
|  | numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); | 
|  |  | 
|  | th = pgdat->nbp_threshold ? : def_th; | 
|  | latency = numa_hint_fault_latency(folio); | 
|  | if (latency >= th) | 
|  | return false; | 
|  |  | 
|  | return !numa_promotion_rate_limit(pgdat, rate_limit, | 
|  | folio_nr_pages(folio)); | 
|  | } | 
|  |  | 
|  | this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); | 
|  | last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); | 
|  |  | 
|  | if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && | 
|  | !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Allow first faults or private faults to migrate immediately early in | 
|  | * the lifetime of a task. The magic number 4 is based on waiting for | 
|  | * two full passes of the "multi-stage node selection" test that is | 
|  | * executed below. | 
|  | */ | 
|  | if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && | 
|  | (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Multi-stage node selection is used in conjunction with a periodic | 
|  | * migration fault to build a temporal task<->page relation. By using | 
|  | * a two-stage filter we remove short/unlikely relations. | 
|  | * | 
|  | * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate | 
|  | * a task's usage of a particular page (n_p) per total usage of this | 
|  | * page (n_t) (in a given time-span) to a probability. | 
|  | * | 
|  | * Our periodic faults will sample this probability and getting the | 
|  | * same result twice in a row, given these samples are fully | 
|  | * independent, is then given by P(n)^2, provided our sample period | 
|  | * is sufficiently short compared to the usage pattern. | 
|  | * | 
|  | * This quadric squishes small probabilities, making it less likely we | 
|  | * act on an unlikely task<->page relation. | 
|  | */ | 
|  | if (!cpupid_pid_unset(last_cpupid) && | 
|  | cpupid_to_nid(last_cpupid) != dst_nid) | 
|  | return false; | 
|  |  | 
|  | /* Always allow migrate on private faults */ | 
|  | if (cpupid_match_pid(p, last_cpupid)) | 
|  | return true; | 
|  |  | 
|  | /* A shared fault, but p->numa_group has not been set up yet. */ | 
|  | if (!ng) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Destination node is much more heavily used than the source | 
|  | * node? Allow migration. | 
|  | */ | 
|  | if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * | 
|  | ACTIVE_NODE_FRACTION) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Distribute memory according to CPU & memory use on each node, | 
|  | * with 3/4 hysteresis to avoid unnecessary memory migrations: | 
|  | * | 
|  | * faults_cpu(dst)   3   faults_cpu(src) | 
|  | * --------------- * - > --------------- | 
|  | * faults_mem(dst)   4   faults_mem(src) | 
|  | */ | 
|  | return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > | 
|  | group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'numa_type' describes the node at the moment of load balancing. | 
|  | */ | 
|  | enum numa_type { | 
|  | /* The node has spare capacity that can be used to run more tasks.  */ | 
|  | node_has_spare = 0, | 
|  | /* | 
|  | * The node is fully used and the tasks don't compete for more CPU | 
|  | * cycles. Nevertheless, some tasks might wait before running. | 
|  | */ | 
|  | node_fully_busy, | 
|  | /* | 
|  | * The node is overloaded and can't provide expected CPU cycles to all | 
|  | * tasks. | 
|  | */ | 
|  | node_overloaded | 
|  | }; | 
|  |  | 
|  | /* Cached statistics for all CPUs within a node */ | 
|  | struct numa_stats { | 
|  | unsigned long load; | 
|  | unsigned long runnable; | 
|  | unsigned long util; | 
|  | /* Total compute capacity of CPUs on a node */ | 
|  | unsigned long compute_capacity; | 
|  | unsigned int nr_running; | 
|  | unsigned int weight; | 
|  | enum numa_type node_type; | 
|  | int idle_cpu; | 
|  | }; | 
|  |  | 
|  | struct task_numa_env { | 
|  | struct task_struct *p; | 
|  |  | 
|  | int src_cpu, src_nid; | 
|  | int dst_cpu, dst_nid; | 
|  | int imb_numa_nr; | 
|  |  | 
|  | struct numa_stats src_stats, dst_stats; | 
|  |  | 
|  | int imbalance_pct; | 
|  | int dist; | 
|  |  | 
|  | struct task_struct *best_task; | 
|  | long best_imp; | 
|  | int best_cpu; | 
|  | }; | 
|  |  | 
|  | static unsigned long cpu_load(struct rq *rq); | 
|  | static unsigned long cpu_runnable(struct rq *rq); | 
|  |  | 
|  | static inline enum | 
|  | numa_type numa_classify(unsigned int imbalance_pct, | 
|  | struct numa_stats *ns) | 
|  | { | 
|  | if ((ns->nr_running > ns->weight) && | 
|  | (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || | 
|  | ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) | 
|  | return node_overloaded; | 
|  |  | 
|  | if ((ns->nr_running < ns->weight) || | 
|  | (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && | 
|  | ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) | 
|  | return node_has_spare; | 
|  |  | 
|  | return node_fully_busy; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | /* Forward declarations of select_idle_sibling helpers */ | 
|  | static inline bool test_idle_cores(int cpu); | 
|  | static inline int numa_idle_core(int idle_core, int cpu) | 
|  | { | 
|  | if (!static_branch_likely(&sched_smt_present) || | 
|  | idle_core >= 0 || !test_idle_cores(cpu)) | 
|  | return idle_core; | 
|  |  | 
|  | /* | 
|  | * Prefer cores instead of packing HT siblings | 
|  | * and triggering future load balancing. | 
|  | */ | 
|  | if (is_core_idle(cpu)) | 
|  | idle_core = cpu; | 
|  |  | 
|  | return idle_core; | 
|  | } | 
|  | #else | 
|  | static inline int numa_idle_core(int idle_core, int cpu) | 
|  | { | 
|  | return idle_core; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Gather all necessary information to make NUMA balancing placement | 
|  | * decisions that are compatible with standard load balancer. This | 
|  | * borrows code and logic from update_sg_lb_stats but sharing a | 
|  | * common implementation is impractical. | 
|  | */ | 
|  | static void update_numa_stats(struct task_numa_env *env, | 
|  | struct numa_stats *ns, int nid, | 
|  | bool find_idle) | 
|  | { | 
|  | int cpu, idle_core = -1; | 
|  |  | 
|  | memset(ns, 0, sizeof(*ns)); | 
|  | ns->idle_cpu = -1; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_cpu(cpu, cpumask_of_node(nid)) { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | ns->load += cpu_load(rq); | 
|  | ns->runnable += cpu_runnable(rq); | 
|  | ns->util += cpu_util_cfs(cpu); | 
|  | ns->nr_running += rq->cfs.h_nr_running; | 
|  | ns->compute_capacity += capacity_of(cpu); | 
|  |  | 
|  | if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { | 
|  | if (READ_ONCE(rq->numa_migrate_on) || | 
|  | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) | 
|  | continue; | 
|  |  | 
|  | if (ns->idle_cpu == -1) | 
|  | ns->idle_cpu = cpu; | 
|  |  | 
|  | idle_core = numa_idle_core(idle_core, cpu); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | ns->weight = cpumask_weight(cpumask_of_node(nid)); | 
|  |  | 
|  | ns->node_type = numa_classify(env->imbalance_pct, ns); | 
|  |  | 
|  | if (idle_core >= 0) | 
|  | ns->idle_cpu = idle_core; | 
|  | } | 
|  |  | 
|  | static void task_numa_assign(struct task_numa_env *env, | 
|  | struct task_struct *p, long imp) | 
|  | { | 
|  | struct rq *rq = cpu_rq(env->dst_cpu); | 
|  |  | 
|  | /* Check if run-queue part of active NUMA balance. */ | 
|  | if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { | 
|  | int cpu; | 
|  | int start = env->dst_cpu; | 
|  |  | 
|  | /* Find alternative idle CPU. */ | 
|  | for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { | 
|  | if (cpu == env->best_cpu || !idle_cpu(cpu) || | 
|  | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | env->dst_cpu = cpu; | 
|  | rq = cpu_rq(env->dst_cpu); | 
|  | if (!xchg(&rq->numa_migrate_on, 1)) | 
|  | goto assign; | 
|  | } | 
|  |  | 
|  | /* Failed to find an alternative idle CPU */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | assign: | 
|  | /* | 
|  | * Clear previous best_cpu/rq numa-migrate flag, since task now | 
|  | * found a better CPU to move/swap. | 
|  | */ | 
|  | if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { | 
|  | rq = cpu_rq(env->best_cpu); | 
|  | WRITE_ONCE(rq->numa_migrate_on, 0); | 
|  | } | 
|  |  | 
|  | if (env->best_task) | 
|  | put_task_struct(env->best_task); | 
|  | if (p) | 
|  | get_task_struct(p); | 
|  |  | 
|  | env->best_task = p; | 
|  | env->best_imp = imp; | 
|  | env->best_cpu = env->dst_cpu; | 
|  | } | 
|  |  | 
|  | static bool load_too_imbalanced(long src_load, long dst_load, | 
|  | struct task_numa_env *env) | 
|  | { | 
|  | long imb, old_imb; | 
|  | long orig_src_load, orig_dst_load; | 
|  | long src_capacity, dst_capacity; | 
|  |  | 
|  | /* | 
|  | * The load is corrected for the CPU capacity available on each node. | 
|  | * | 
|  | * src_load        dst_load | 
|  | * ------------ vs --------- | 
|  | * src_capacity    dst_capacity | 
|  | */ | 
|  | src_capacity = env->src_stats.compute_capacity; | 
|  | dst_capacity = env->dst_stats.compute_capacity; | 
|  |  | 
|  | imb = abs(dst_load * src_capacity - src_load * dst_capacity); | 
|  |  | 
|  | orig_src_load = env->src_stats.load; | 
|  | orig_dst_load = env->dst_stats.load; | 
|  |  | 
|  | old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); | 
|  |  | 
|  | /* Would this change make things worse? */ | 
|  | return (imb > old_imb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Maximum NUMA importance can be 1998 (2*999); | 
|  | * SMALLIMP @ 30 would be close to 1998/64. | 
|  | * Used to deter task migration. | 
|  | */ | 
|  | #define SMALLIMP	30 | 
|  |  | 
|  | /* | 
|  | * This checks if the overall compute and NUMA accesses of the system would | 
|  | * be improved if the source tasks was migrated to the target dst_cpu taking | 
|  | * into account that it might be best if task running on the dst_cpu should | 
|  | * be exchanged with the source task | 
|  | */ | 
|  | static bool task_numa_compare(struct task_numa_env *env, | 
|  | long taskimp, long groupimp, bool maymove) | 
|  | { | 
|  | struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); | 
|  | struct rq *dst_rq = cpu_rq(env->dst_cpu); | 
|  | long imp = p_ng ? groupimp : taskimp; | 
|  | struct task_struct *cur; | 
|  | long src_load, dst_load; | 
|  | int dist = env->dist; | 
|  | long moveimp = imp; | 
|  | long load; | 
|  | bool stopsearch = false; | 
|  |  | 
|  | if (READ_ONCE(dst_rq->numa_migrate_on)) | 
|  | return false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cur = rcu_dereference(dst_rq->curr); | 
|  | if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) | 
|  | cur = NULL; | 
|  |  | 
|  | /* | 
|  | * Because we have preemption enabled we can get migrated around and | 
|  | * end try selecting ourselves (current == env->p) as a swap candidate. | 
|  | */ | 
|  | if (cur == env->p) { | 
|  | stopsearch = true; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | if (!cur) { | 
|  | if (maymove && moveimp >= env->best_imp) | 
|  | goto assign; | 
|  | else | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* Skip this swap candidate if cannot move to the source cpu. */ | 
|  | if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * Skip this swap candidate if it is not moving to its preferred | 
|  | * node and the best task is. | 
|  | */ | 
|  | if (env->best_task && | 
|  | env->best_task->numa_preferred_nid == env->src_nid && | 
|  | cur->numa_preferred_nid != env->src_nid) { | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * "imp" is the fault differential for the source task between the | 
|  | * source and destination node. Calculate the total differential for | 
|  | * the source task and potential destination task. The more negative | 
|  | * the value is, the more remote accesses that would be expected to | 
|  | * be incurred if the tasks were swapped. | 
|  | * | 
|  | * If dst and source tasks are in the same NUMA group, or not | 
|  | * in any group then look only at task weights. | 
|  | */ | 
|  | cur_ng = rcu_dereference(cur->numa_group); | 
|  | if (cur_ng == p_ng) { | 
|  | /* | 
|  | * Do not swap within a group or between tasks that have | 
|  | * no group if there is spare capacity. Swapping does | 
|  | * not address the load imbalance and helps one task at | 
|  | * the cost of punishing another. | 
|  | */ | 
|  | if (env->dst_stats.node_type == node_has_spare) | 
|  | goto unlock; | 
|  |  | 
|  | imp = taskimp + task_weight(cur, env->src_nid, dist) - | 
|  | task_weight(cur, env->dst_nid, dist); | 
|  | /* | 
|  | * Add some hysteresis to prevent swapping the | 
|  | * tasks within a group over tiny differences. | 
|  | */ | 
|  | if (cur_ng) | 
|  | imp -= imp / 16; | 
|  | } else { | 
|  | /* | 
|  | * Compare the group weights. If a task is all by itself | 
|  | * (not part of a group), use the task weight instead. | 
|  | */ | 
|  | if (cur_ng && p_ng) | 
|  | imp += group_weight(cur, env->src_nid, dist) - | 
|  | group_weight(cur, env->dst_nid, dist); | 
|  | else | 
|  | imp += task_weight(cur, env->src_nid, dist) - | 
|  | task_weight(cur, env->dst_nid, dist); | 
|  | } | 
|  |  | 
|  | /* Discourage picking a task already on its preferred node */ | 
|  | if (cur->numa_preferred_nid == env->dst_nid) | 
|  | imp -= imp / 16; | 
|  |  | 
|  | /* | 
|  | * Encourage picking a task that moves to its preferred node. | 
|  | * This potentially makes imp larger than it's maximum of | 
|  | * 1998 (see SMALLIMP and task_weight for why) but in this | 
|  | * case, it does not matter. | 
|  | */ | 
|  | if (cur->numa_preferred_nid == env->src_nid) | 
|  | imp += imp / 8; | 
|  |  | 
|  | if (maymove && moveimp > imp && moveimp > env->best_imp) { | 
|  | imp = moveimp; | 
|  | cur = NULL; | 
|  | goto assign; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prefer swapping with a task moving to its preferred node over a | 
|  | * task that is not. | 
|  | */ | 
|  | if (env->best_task && cur->numa_preferred_nid == env->src_nid && | 
|  | env->best_task->numa_preferred_nid != env->src_nid) { | 
|  | goto assign; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the NUMA importance is less than SMALLIMP, | 
|  | * task migration might only result in ping pong | 
|  | * of tasks and also hurt performance due to cache | 
|  | * misses. | 
|  | */ | 
|  | if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * In the overloaded case, try and keep the load balanced. | 
|  | */ | 
|  | load = task_h_load(env->p) - task_h_load(cur); | 
|  | if (!load) | 
|  | goto assign; | 
|  |  | 
|  | dst_load = env->dst_stats.load + load; | 
|  | src_load = env->src_stats.load - load; | 
|  |  | 
|  | if (load_too_imbalanced(src_load, dst_load, env)) | 
|  | goto unlock; | 
|  |  | 
|  | assign: | 
|  | /* Evaluate an idle CPU for a task numa move. */ | 
|  | if (!cur) { | 
|  | int cpu = env->dst_stats.idle_cpu; | 
|  |  | 
|  | /* Nothing cached so current CPU went idle since the search. */ | 
|  | if (cpu < 0) | 
|  | cpu = env->dst_cpu; | 
|  |  | 
|  | /* | 
|  | * If the CPU is no longer truly idle and the previous best CPU | 
|  | * is, keep using it. | 
|  | */ | 
|  | if (!idle_cpu(cpu) && env->best_cpu >= 0 && | 
|  | idle_cpu(env->best_cpu)) { | 
|  | cpu = env->best_cpu; | 
|  | } | 
|  |  | 
|  | env->dst_cpu = cpu; | 
|  | } | 
|  |  | 
|  | task_numa_assign(env, cur, imp); | 
|  |  | 
|  | /* | 
|  | * If a move to idle is allowed because there is capacity or load | 
|  | * balance improves then stop the search. While a better swap | 
|  | * candidate may exist, a search is not free. | 
|  | */ | 
|  | if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) | 
|  | stopsearch = true; | 
|  |  | 
|  | /* | 
|  | * If a swap candidate must be identified and the current best task | 
|  | * moves its preferred node then stop the search. | 
|  | */ | 
|  | if (!maymove && env->best_task && | 
|  | env->best_task->numa_preferred_nid == env->src_nid) { | 
|  | stopsearch = true; | 
|  | } | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return stopsearch; | 
|  | } | 
|  |  | 
|  | static void task_numa_find_cpu(struct task_numa_env *env, | 
|  | long taskimp, long groupimp) | 
|  | { | 
|  | bool maymove = false; | 
|  | int cpu; | 
|  |  | 
|  | /* | 
|  | * If dst node has spare capacity, then check if there is an | 
|  | * imbalance that would be overruled by the load balancer. | 
|  | */ | 
|  | if (env->dst_stats.node_type == node_has_spare) { | 
|  | unsigned int imbalance; | 
|  | int src_running, dst_running; | 
|  |  | 
|  | /* | 
|  | * Would movement cause an imbalance? Note that if src has | 
|  | * more running tasks that the imbalance is ignored as the | 
|  | * move improves the imbalance from the perspective of the | 
|  | * CPU load balancer. | 
|  | * */ | 
|  | src_running = env->src_stats.nr_running - 1; | 
|  | dst_running = env->dst_stats.nr_running + 1; | 
|  | imbalance = max(0, dst_running - src_running); | 
|  | imbalance = adjust_numa_imbalance(imbalance, dst_running, | 
|  | env->imb_numa_nr); | 
|  |  | 
|  | /* Use idle CPU if there is no imbalance */ | 
|  | if (!imbalance) { | 
|  | maymove = true; | 
|  | if (env->dst_stats.idle_cpu >= 0) { | 
|  | env->dst_cpu = env->dst_stats.idle_cpu; | 
|  | task_numa_assign(env, NULL, 0); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | long src_load, dst_load, load; | 
|  | /* | 
|  | * If the improvement from just moving env->p direction is better | 
|  | * than swapping tasks around, check if a move is possible. | 
|  | */ | 
|  | load = task_h_load(env->p); | 
|  | dst_load = env->dst_stats.load + load; | 
|  | src_load = env->src_stats.load - load; | 
|  | maymove = !load_too_imbalanced(src_load, dst_load, env); | 
|  | } | 
|  |  | 
|  | for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { | 
|  | /* Skip this CPU if the source task cannot migrate */ | 
|  | if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) | 
|  | continue; | 
|  |  | 
|  | env->dst_cpu = cpu; | 
|  | if (task_numa_compare(env, taskimp, groupimp, maymove)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int task_numa_migrate(struct task_struct *p) | 
|  | { | 
|  | struct task_numa_env env = { | 
|  | .p = p, | 
|  |  | 
|  | .src_cpu = task_cpu(p), | 
|  | .src_nid = task_node(p), | 
|  |  | 
|  | .imbalance_pct = 112, | 
|  |  | 
|  | .best_task = NULL, | 
|  | .best_imp = 0, | 
|  | .best_cpu = -1, | 
|  | }; | 
|  | unsigned long taskweight, groupweight; | 
|  | struct sched_domain *sd; | 
|  | long taskimp, groupimp; | 
|  | struct numa_group *ng; | 
|  | struct rq *best_rq; | 
|  | int nid, ret, dist; | 
|  |  | 
|  | /* | 
|  | * Pick the lowest SD_NUMA domain, as that would have the smallest | 
|  | * imbalance and would be the first to start moving tasks about. | 
|  | * | 
|  | * And we want to avoid any moving of tasks about, as that would create | 
|  | * random movement of tasks -- counter the numa conditions we're trying | 
|  | * to satisfy here. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); | 
|  | if (sd) { | 
|  | env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; | 
|  | env.imb_numa_nr = sd->imb_numa_nr; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * Cpusets can break the scheduler domain tree into smaller | 
|  | * balance domains, some of which do not cross NUMA boundaries. | 
|  | * Tasks that are "trapped" in such domains cannot be migrated | 
|  | * elsewhere, so there is no point in (re)trying. | 
|  | */ | 
|  | if (unlikely(!sd)) { | 
|  | sched_setnuma(p, task_node(p)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | env.dst_nid = p->numa_preferred_nid; | 
|  | dist = env.dist = node_distance(env.src_nid, env.dst_nid); | 
|  | taskweight = task_weight(p, env.src_nid, dist); | 
|  | groupweight = group_weight(p, env.src_nid, dist); | 
|  | update_numa_stats(&env, &env.src_stats, env.src_nid, false); | 
|  | taskimp = task_weight(p, env.dst_nid, dist) - taskweight; | 
|  | groupimp = group_weight(p, env.dst_nid, dist) - groupweight; | 
|  | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); | 
|  |  | 
|  | /* Try to find a spot on the preferred nid. */ | 
|  | task_numa_find_cpu(&env, taskimp, groupimp); | 
|  |  | 
|  | /* | 
|  | * Look at other nodes in these cases: | 
|  | * - there is no space available on the preferred_nid | 
|  | * - the task is part of a numa_group that is interleaved across | 
|  | *   multiple NUMA nodes; in order to better consolidate the group, | 
|  | *   we need to check other locations. | 
|  | */ | 
|  | ng = deref_curr_numa_group(p); | 
|  | if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { | 
|  | for_each_node_state(nid, N_CPU) { | 
|  | if (nid == env.src_nid || nid == p->numa_preferred_nid) | 
|  | continue; | 
|  |  | 
|  | dist = node_distance(env.src_nid, env.dst_nid); | 
|  | if (sched_numa_topology_type == NUMA_BACKPLANE && | 
|  | dist != env.dist) { | 
|  | taskweight = task_weight(p, env.src_nid, dist); | 
|  | groupweight = group_weight(p, env.src_nid, dist); | 
|  | } | 
|  |  | 
|  | /* Only consider nodes where both task and groups benefit */ | 
|  | taskimp = task_weight(p, nid, dist) - taskweight; | 
|  | groupimp = group_weight(p, nid, dist) - groupweight; | 
|  | if (taskimp < 0 && groupimp < 0) | 
|  | continue; | 
|  |  | 
|  | env.dist = dist; | 
|  | env.dst_nid = nid; | 
|  | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); | 
|  | task_numa_find_cpu(&env, taskimp, groupimp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the task is part of a workload that spans multiple NUMA nodes, | 
|  | * and is migrating into one of the workload's active nodes, remember | 
|  | * this node as the task's preferred numa node, so the workload can | 
|  | * settle down. | 
|  | * A task that migrated to a second choice node will be better off | 
|  | * trying for a better one later. Do not set the preferred node here. | 
|  | */ | 
|  | if (ng) { | 
|  | if (env.best_cpu == -1) | 
|  | nid = env.src_nid; | 
|  | else | 
|  | nid = cpu_to_node(env.best_cpu); | 
|  |  | 
|  | if (nid != p->numa_preferred_nid) | 
|  | sched_setnuma(p, nid); | 
|  | } | 
|  |  | 
|  | /* No better CPU than the current one was found. */ | 
|  | if (env.best_cpu == -1) { | 
|  | trace_sched_stick_numa(p, env.src_cpu, NULL, -1); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | best_rq = cpu_rq(env.best_cpu); | 
|  | if (env.best_task == NULL) { | 
|  | ret = migrate_task_to(p, env.best_cpu); | 
|  | WRITE_ONCE(best_rq->numa_migrate_on, 0); | 
|  | if (ret != 0) | 
|  | trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); | 
|  | WRITE_ONCE(best_rq->numa_migrate_on, 0); | 
|  |  | 
|  | if (ret != 0) | 
|  | trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); | 
|  | put_task_struct(env.best_task); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Attempt to migrate a task to a CPU on the preferred node. */ | 
|  | static void numa_migrate_preferred(struct task_struct *p) | 
|  | { | 
|  | unsigned long interval = HZ; | 
|  |  | 
|  | /* This task has no NUMA fault statistics yet */ | 
|  | if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) | 
|  | return; | 
|  |  | 
|  | /* Periodically retry migrating the task to the preferred node */ | 
|  | interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); | 
|  | p->numa_migrate_retry = jiffies + interval; | 
|  |  | 
|  | /* Success if task is already running on preferred CPU */ | 
|  | if (task_node(p) == p->numa_preferred_nid) | 
|  | return; | 
|  |  | 
|  | /* Otherwise, try migrate to a CPU on the preferred node */ | 
|  | task_numa_migrate(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find out how many nodes the workload is actively running on. Do this by | 
|  | * tracking the nodes from which NUMA hinting faults are triggered. This can | 
|  | * be different from the set of nodes where the workload's memory is currently | 
|  | * located. | 
|  | */ | 
|  | static void numa_group_count_active_nodes(struct numa_group *numa_group) | 
|  | { | 
|  | unsigned long faults, max_faults = 0; | 
|  | int nid, active_nodes = 0; | 
|  |  | 
|  | for_each_node_state(nid, N_CPU) { | 
|  | faults = group_faults_cpu(numa_group, nid); | 
|  | if (faults > max_faults) | 
|  | max_faults = faults; | 
|  | } | 
|  |  | 
|  | for_each_node_state(nid, N_CPU) { | 
|  | faults = group_faults_cpu(numa_group, nid); | 
|  | if (faults * ACTIVE_NODE_FRACTION > max_faults) | 
|  | active_nodes++; | 
|  | } | 
|  |  | 
|  | numa_group->max_faults_cpu = max_faults; | 
|  | numa_group->active_nodes = active_nodes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS | 
|  | * increments. The more local the fault statistics are, the higher the scan | 
|  | * period will be for the next scan window. If local/(local+remote) ratio is | 
|  | * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) | 
|  | * the scan period will decrease. Aim for 70% local accesses. | 
|  | */ | 
|  | #define NUMA_PERIOD_SLOTS 10 | 
|  | #define NUMA_PERIOD_THRESHOLD 7 | 
|  |  | 
|  | /* | 
|  | * Increase the scan period (slow down scanning) if the majority of | 
|  | * our memory is already on our local node, or if the majority of | 
|  | * the page accesses are shared with other processes. | 
|  | * Otherwise, decrease the scan period. | 
|  | */ | 
|  | static void update_task_scan_period(struct task_struct *p, | 
|  | unsigned long shared, unsigned long private) | 
|  | { | 
|  | unsigned int period_slot; | 
|  | int lr_ratio, ps_ratio; | 
|  | int diff; | 
|  |  | 
|  | unsigned long remote = p->numa_faults_locality[0]; | 
|  | unsigned long local = p->numa_faults_locality[1]; | 
|  |  | 
|  | /* | 
|  | * If there were no record hinting faults then either the task is | 
|  | * completely idle or all activity is in areas that are not of interest | 
|  | * to automatic numa balancing. Related to that, if there were failed | 
|  | * migration then it implies we are migrating too quickly or the local | 
|  | * node is overloaded. In either case, scan slower | 
|  | */ | 
|  | if (local + shared == 0 || p->numa_faults_locality[2]) { | 
|  | p->numa_scan_period = min(p->numa_scan_period_max, | 
|  | p->numa_scan_period << 1); | 
|  |  | 
|  | p->mm->numa_next_scan = jiffies + | 
|  | msecs_to_jiffies(p->numa_scan_period); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare to scale scan period relative to the current period. | 
|  | *	 == NUMA_PERIOD_THRESHOLD scan period stays the same | 
|  | *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) | 
|  | *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) | 
|  | */ | 
|  | period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); | 
|  | lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); | 
|  | ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); | 
|  |  | 
|  | if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { | 
|  | /* | 
|  | * Most memory accesses are local. There is no need to | 
|  | * do fast NUMA scanning, since memory is already local. | 
|  | */ | 
|  | int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; | 
|  | if (!slot) | 
|  | slot = 1; | 
|  | diff = slot * period_slot; | 
|  | } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { | 
|  | /* | 
|  | * Most memory accesses are shared with other tasks. | 
|  | * There is no point in continuing fast NUMA scanning, | 
|  | * since other tasks may just move the memory elsewhere. | 
|  | */ | 
|  | int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; | 
|  | if (!slot) | 
|  | slot = 1; | 
|  | diff = slot * period_slot; | 
|  | } else { | 
|  | /* | 
|  | * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, | 
|  | * yet they are not on the local NUMA node. Speed up | 
|  | * NUMA scanning to get the memory moved over. | 
|  | */ | 
|  | int ratio = max(lr_ratio, ps_ratio); | 
|  | diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; | 
|  | } | 
|  |  | 
|  | p->numa_scan_period = clamp(p->numa_scan_period + diff, | 
|  | task_scan_min(p), task_scan_max(p)); | 
|  | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the fraction of time the task has been running since the last | 
|  | * NUMA placement cycle. The scheduler keeps similar statistics, but | 
|  | * decays those on a 32ms period, which is orders of magnitude off | 
|  | * from the dozens-of-seconds NUMA balancing period. Use the scheduler | 
|  | * stats only if the task is so new there are no NUMA statistics yet. | 
|  | */ | 
|  | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) | 
|  | { | 
|  | u64 runtime, delta, now; | 
|  | /* Use the start of this time slice to avoid calculations. */ | 
|  | now = p->se.exec_start; | 
|  | runtime = p->se.sum_exec_runtime; | 
|  |  | 
|  | if (p->last_task_numa_placement) { | 
|  | delta = runtime - p->last_sum_exec_runtime; | 
|  | *period = now - p->last_task_numa_placement; | 
|  |  | 
|  | /* Avoid time going backwards, prevent potential divide error: */ | 
|  | if (unlikely((s64)*period < 0)) | 
|  | *period = 0; | 
|  | } else { | 
|  | delta = p->se.avg.load_sum; | 
|  | *period = LOAD_AVG_MAX; | 
|  | } | 
|  |  | 
|  | p->last_sum_exec_runtime = runtime; | 
|  | p->last_task_numa_placement = now; | 
|  |  | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine the preferred nid for a task in a numa_group. This needs to | 
|  | * be done in a way that produces consistent results with group_weight, | 
|  | * otherwise workloads might not converge. | 
|  | */ | 
|  | static int preferred_group_nid(struct task_struct *p, int nid) | 
|  | { | 
|  | nodemask_t nodes; | 
|  | int dist; | 
|  |  | 
|  | /* Direct connections between all NUMA nodes. */ | 
|  | if (sched_numa_topology_type == NUMA_DIRECT) | 
|  | return nid; | 
|  |  | 
|  | /* | 
|  | * On a system with glueless mesh NUMA topology, group_weight | 
|  | * scores nodes according to the number of NUMA hinting faults on | 
|  | * both the node itself, and on nearby nodes. | 
|  | */ | 
|  | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | 
|  | unsigned long score, max_score = 0; | 
|  | int node, max_node = nid; | 
|  |  | 
|  | dist = sched_max_numa_distance; | 
|  |  | 
|  | for_each_node_state(node, N_CPU) { | 
|  | score = group_weight(p, node, dist); | 
|  | if (score > max_score) { | 
|  | max_score = score; | 
|  | max_node = node; | 
|  | } | 
|  | } | 
|  | return max_node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finding the preferred nid in a system with NUMA backplane | 
|  | * interconnect topology is more involved. The goal is to locate | 
|  | * tasks from numa_groups near each other in the system, and | 
|  | * untangle workloads from different sides of the system. This requires | 
|  | * searching down the hierarchy of node groups, recursively searching | 
|  | * inside the highest scoring group of nodes. The nodemask tricks | 
|  | * keep the complexity of the search down. | 
|  | */ | 
|  | nodes = node_states[N_CPU]; | 
|  | for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { | 
|  | unsigned long max_faults = 0; | 
|  | nodemask_t max_group = NODE_MASK_NONE; | 
|  | int a, b; | 
|  |  | 
|  | /* Are there nodes at this distance from each other? */ | 
|  | if (!find_numa_distance(dist)) | 
|  | continue; | 
|  |  | 
|  | for_each_node_mask(a, nodes) { | 
|  | unsigned long faults = 0; | 
|  | nodemask_t this_group; | 
|  | nodes_clear(this_group); | 
|  |  | 
|  | /* Sum group's NUMA faults; includes a==b case. */ | 
|  | for_each_node_mask(b, nodes) { | 
|  | if (node_distance(a, b) < dist) { | 
|  | faults += group_faults(p, b); | 
|  | node_set(b, this_group); | 
|  | node_clear(b, nodes); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Remember the top group. */ | 
|  | if (faults > max_faults) { | 
|  | max_faults = faults; | 
|  | max_group = this_group; | 
|  | /* | 
|  | * subtle: at the smallest distance there is | 
|  | * just one node left in each "group", the | 
|  | * winner is the preferred nid. | 
|  | */ | 
|  | nid = a; | 
|  | } | 
|  | } | 
|  | /* Next round, evaluate the nodes within max_group. */ | 
|  | if (!max_faults) | 
|  | break; | 
|  | nodes = max_group; | 
|  | } | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static void task_numa_placement(struct task_struct *p) | 
|  | { | 
|  | int seq, nid, max_nid = NUMA_NO_NODE; | 
|  | unsigned long max_faults = 0; | 
|  | unsigned long fault_types[2] = { 0, 0 }; | 
|  | unsigned long total_faults; | 
|  | u64 runtime, period; | 
|  | spinlock_t *group_lock = NULL; | 
|  | struct numa_group *ng; | 
|  |  | 
|  | /* | 
|  | * The p->mm->numa_scan_seq field gets updated without | 
|  | * exclusive access. Use READ_ONCE() here to ensure | 
|  | * that the field is read in a single access: | 
|  | */ | 
|  | seq = READ_ONCE(p->mm->numa_scan_seq); | 
|  | if (p->numa_scan_seq == seq) | 
|  | return; | 
|  | p->numa_scan_seq = seq; | 
|  | p->numa_scan_period_max = task_scan_max(p); | 
|  |  | 
|  | total_faults = p->numa_faults_locality[0] + | 
|  | p->numa_faults_locality[1]; | 
|  | runtime = numa_get_avg_runtime(p, &period); | 
|  |  | 
|  | /* If the task is part of a group prevent parallel updates to group stats */ | 
|  | ng = deref_curr_numa_group(p); | 
|  | if (ng) { | 
|  | group_lock = &ng->lock; | 
|  | spin_lock_irq(group_lock); | 
|  | } | 
|  |  | 
|  | /* Find the node with the highest number of faults */ | 
|  | for_each_online_node(nid) { | 
|  | /* Keep track of the offsets in numa_faults array */ | 
|  | int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; | 
|  | unsigned long faults = 0, group_faults = 0; | 
|  | int priv; | 
|  |  | 
|  | for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { | 
|  | long diff, f_diff, f_weight; | 
|  |  | 
|  | mem_idx = task_faults_idx(NUMA_MEM, nid, priv); | 
|  | membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); | 
|  | cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); | 
|  | cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); | 
|  |  | 
|  | /* Decay existing window, copy faults since last scan */ | 
|  | diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; | 
|  | fault_types[priv] += p->numa_faults[membuf_idx]; | 
|  | p->numa_faults[membuf_idx] = 0; | 
|  |  | 
|  | /* | 
|  | * Normalize the faults_from, so all tasks in a group | 
|  | * count according to CPU use, instead of by the raw | 
|  | * number of faults. Tasks with little runtime have | 
|  | * little over-all impact on throughput, and thus their | 
|  | * faults are less important. | 
|  | */ | 
|  | f_weight = div64_u64(runtime << 16, period + 1); | 
|  | f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / | 
|  | (total_faults + 1); | 
|  | f_diff = f_weight - p->numa_faults[cpu_idx] / 2; | 
|  | p->numa_faults[cpubuf_idx] = 0; | 
|  |  | 
|  | p->numa_faults[mem_idx] += diff; | 
|  | p->numa_faults[cpu_idx] += f_diff; | 
|  | faults += p->numa_faults[mem_idx]; | 
|  | p->total_numa_faults += diff; | 
|  | if (ng) { | 
|  | /* | 
|  | * safe because we can only change our own group | 
|  | * | 
|  | * mem_idx represents the offset for a given | 
|  | * nid and priv in a specific region because it | 
|  | * is at the beginning of the numa_faults array. | 
|  | */ | 
|  | ng->faults[mem_idx] += diff; | 
|  | ng->faults[cpu_idx] += f_diff; | 
|  | ng->total_faults += diff; | 
|  | group_faults += ng->faults[mem_idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ng) { | 
|  | if (faults > max_faults) { | 
|  | max_faults = faults; | 
|  | max_nid = nid; | 
|  | } | 
|  | } else if (group_faults > max_faults) { | 
|  | max_faults = group_faults; | 
|  | max_nid = nid; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cannot migrate task to CPU-less node */ | 
|  | max_nid = numa_nearest_node(max_nid, N_CPU); | 
|  |  | 
|  | if (ng) { | 
|  | numa_group_count_active_nodes(ng); | 
|  | spin_unlock_irq(group_lock); | 
|  | max_nid = preferred_group_nid(p, max_nid); | 
|  | } | 
|  |  | 
|  | if (max_faults) { | 
|  | /* Set the new preferred node */ | 
|  | if (max_nid != p->numa_preferred_nid) | 
|  | sched_setnuma(p, max_nid); | 
|  | } | 
|  |  | 
|  | update_task_scan_period(p, fault_types[0], fault_types[1]); | 
|  | } | 
|  |  | 
|  | static inline int get_numa_group(struct numa_group *grp) | 
|  | { | 
|  | return refcount_inc_not_zero(&grp->refcount); | 
|  | } | 
|  |  | 
|  | static inline void put_numa_group(struct numa_group *grp) | 
|  | { | 
|  | if (refcount_dec_and_test(&grp->refcount)) | 
|  | kfree_rcu(grp, rcu); | 
|  | } | 
|  |  | 
|  | static void task_numa_group(struct task_struct *p, int cpupid, int flags, | 
|  | int *priv) | 
|  | { | 
|  | struct numa_group *grp, *my_grp; | 
|  | struct task_struct *tsk; | 
|  | bool join = false; | 
|  | int cpu = cpupid_to_cpu(cpupid); | 
|  | int i; | 
|  |  | 
|  | if (unlikely(!deref_curr_numa_group(p))) { | 
|  | unsigned int size = sizeof(struct numa_group) + | 
|  | NR_NUMA_HINT_FAULT_STATS * | 
|  | nr_node_ids * sizeof(unsigned long); | 
|  |  | 
|  | grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!grp) | 
|  | return; | 
|  |  | 
|  | refcount_set(&grp->refcount, 1); | 
|  | grp->active_nodes = 1; | 
|  | grp->max_faults_cpu = 0; | 
|  | spin_lock_init(&grp->lock); | 
|  | grp->gid = p->pid; | 
|  |  | 
|  | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | 
|  | grp->faults[i] = p->numa_faults[i]; | 
|  |  | 
|  | grp->total_faults = p->total_numa_faults; | 
|  |  | 
|  | grp->nr_tasks++; | 
|  | rcu_assign_pointer(p->numa_group, grp); | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | tsk = READ_ONCE(cpu_rq(cpu)->curr); | 
|  |  | 
|  | if (!cpupid_match_pid(tsk, cpupid)) | 
|  | goto no_join; | 
|  |  | 
|  | grp = rcu_dereference(tsk->numa_group); | 
|  | if (!grp) | 
|  | goto no_join; | 
|  |  | 
|  | my_grp = deref_curr_numa_group(p); | 
|  | if (grp == my_grp) | 
|  | goto no_join; | 
|  |  | 
|  | /* | 
|  | * Only join the other group if its bigger; if we're the bigger group, | 
|  | * the other task will join us. | 
|  | */ | 
|  | if (my_grp->nr_tasks > grp->nr_tasks) | 
|  | goto no_join; | 
|  |  | 
|  | /* | 
|  | * Tie-break on the grp address. | 
|  | */ | 
|  | if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) | 
|  | goto no_join; | 
|  |  | 
|  | /* Always join threads in the same process. */ | 
|  | if (tsk->mm == current->mm) | 
|  | join = true; | 
|  |  | 
|  | /* Simple filter to avoid false positives due to PID collisions */ | 
|  | if (flags & TNF_SHARED) | 
|  | join = true; | 
|  |  | 
|  | /* Update priv based on whether false sharing was detected */ | 
|  | *priv = !join; | 
|  |  | 
|  | if (join && !get_numa_group(grp)) | 
|  | goto no_join; | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!join) | 
|  | return; | 
|  |  | 
|  | WARN_ON_ONCE(irqs_disabled()); | 
|  | double_lock_irq(&my_grp->lock, &grp->lock); | 
|  |  | 
|  | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { | 
|  | my_grp->faults[i] -= p->numa_faults[i]; | 
|  | grp->faults[i] += p->numa_faults[i]; | 
|  | } | 
|  | my_grp->total_faults -= p->total_numa_faults; | 
|  | grp->total_faults += p->total_numa_faults; | 
|  |  | 
|  | my_grp->nr_tasks--; | 
|  | grp->nr_tasks++; | 
|  |  | 
|  | spin_unlock(&my_grp->lock); | 
|  | spin_unlock_irq(&grp->lock); | 
|  |  | 
|  | rcu_assign_pointer(p->numa_group, grp); | 
|  |  | 
|  | put_numa_group(my_grp); | 
|  | return; | 
|  |  | 
|  | no_join: | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get rid of NUMA statistics associated with a task (either current or dead). | 
|  | * If @final is set, the task is dead and has reached refcount zero, so we can | 
|  | * safely free all relevant data structures. Otherwise, there might be | 
|  | * concurrent reads from places like load balancing and procfs, and we should | 
|  | * reset the data back to default state without freeing ->numa_faults. | 
|  | */ | 
|  | void task_numa_free(struct task_struct *p, bool final) | 
|  | { | 
|  | /* safe: p either is current or is being freed by current */ | 
|  | struct numa_group *grp = rcu_dereference_raw(p->numa_group); | 
|  | unsigned long *numa_faults = p->numa_faults; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | if (!numa_faults) | 
|  | return; | 
|  |  | 
|  | if (grp) { | 
|  | spin_lock_irqsave(&grp->lock, flags); | 
|  | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | 
|  | grp->faults[i] -= p->numa_faults[i]; | 
|  | grp->total_faults -= p->total_numa_faults; | 
|  |  | 
|  | grp->nr_tasks--; | 
|  | spin_unlock_irqrestore(&grp->lock, flags); | 
|  | RCU_INIT_POINTER(p->numa_group, NULL); | 
|  | put_numa_group(grp); | 
|  | } | 
|  |  | 
|  | if (final) { | 
|  | p->numa_faults = NULL; | 
|  | kfree(numa_faults); | 
|  | } else { | 
|  | p->total_numa_faults = 0; | 
|  | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | 
|  | numa_faults[i] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Got a PROT_NONE fault for a page on @node. | 
|  | */ | 
|  | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) | 
|  | { | 
|  | struct task_struct *p = current; | 
|  | bool migrated = flags & TNF_MIGRATED; | 
|  | int cpu_node = task_node(current); | 
|  | int local = !!(flags & TNF_FAULT_LOCAL); | 
|  | struct numa_group *ng; | 
|  | int priv; | 
|  |  | 
|  | if (!static_branch_likely(&sched_numa_balancing)) | 
|  | return; | 
|  |  | 
|  | /* for example, ksmd faulting in a user's mm */ | 
|  | if (!p->mm) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * NUMA faults statistics are unnecessary for the slow memory | 
|  | * node for memory tiering mode. | 
|  | */ | 
|  | if (!node_is_toptier(mem_node) && | 
|  | (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || | 
|  | !cpupid_valid(last_cpupid))) | 
|  | return; | 
|  |  | 
|  | /* Allocate buffer to track faults on a per-node basis */ | 
|  | if (unlikely(!p->numa_faults)) { | 
|  | int size = sizeof(*p->numa_faults) * | 
|  | NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; | 
|  |  | 
|  | p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); | 
|  | if (!p->numa_faults) | 
|  | return; | 
|  |  | 
|  | p->total_numa_faults = 0; | 
|  | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First accesses are treated as private, otherwise consider accesses | 
|  | * to be private if the accessing pid has not changed | 
|  | */ | 
|  | if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { | 
|  | priv = 1; | 
|  | } else { | 
|  | priv = cpupid_match_pid(p, last_cpupid); | 
|  | if (!priv && !(flags & TNF_NO_GROUP)) | 
|  | task_numa_group(p, last_cpupid, flags, &priv); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a workload spans multiple NUMA nodes, a shared fault that | 
|  | * occurs wholly within the set of nodes that the workload is | 
|  | * actively using should be counted as local. This allows the | 
|  | * scan rate to slow down when a workload has settled down. | 
|  | */ | 
|  | ng = deref_curr_numa_group(p); | 
|  | if (!priv && !local && ng && ng->active_nodes > 1 && | 
|  | numa_is_active_node(cpu_node, ng) && | 
|  | numa_is_active_node(mem_node, ng)) | 
|  | local = 1; | 
|  |  | 
|  | /* | 
|  | * Retry to migrate task to preferred node periodically, in case it | 
|  | * previously failed, or the scheduler moved us. | 
|  | */ | 
|  | if (time_after(jiffies, p->numa_migrate_retry)) { | 
|  | task_numa_placement(p); | 
|  | numa_migrate_preferred(p); | 
|  | } | 
|  |  | 
|  | if (migrated) | 
|  | p->numa_pages_migrated += pages; | 
|  | if (flags & TNF_MIGRATE_FAIL) | 
|  | p->numa_faults_locality[2] += pages; | 
|  |  | 
|  | p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; | 
|  | p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; | 
|  | p->numa_faults_locality[local] += pages; | 
|  | } | 
|  |  | 
|  | static void reset_ptenuma_scan(struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * We only did a read acquisition of the mmap sem, so | 
|  | * p->mm->numa_scan_seq is written to without exclusive access | 
|  | * and the update is not guaranteed to be atomic. That's not | 
|  | * much of an issue though, since this is just used for | 
|  | * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not | 
|  | * expensive, to avoid any form of compiler optimizations: | 
|  | */ | 
|  | WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); | 
|  | p->mm->numa_scan_offset = 0; | 
|  | } | 
|  |  | 
|  | static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long pids; | 
|  | /* | 
|  | * Allow unconditional access first two times, so that all the (pages) | 
|  | * of VMAs get prot_none fault introduced irrespective of accesses. | 
|  | * This is also done to avoid any side effect of task scanning | 
|  | * amplifying the unfairness of disjoint set of VMAs' access. | 
|  | */ | 
|  | if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) | 
|  | return true; | 
|  |  | 
|  | pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; | 
|  | if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Complete a scan that has already started regardless of PID access, or | 
|  | * some VMAs may never be scanned in multi-threaded applications: | 
|  | */ | 
|  | if (mm->numa_scan_offset > vma->vm_start) { | 
|  | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This vma has not been accessed for a while, and if the number | 
|  | * the threads in the same process is low, which means no other | 
|  | * threads can help scan this vma, force a vma scan. | 
|  | */ | 
|  | if (READ_ONCE(mm->numa_scan_seq) > | 
|  | (vma->numab_state->prev_scan_seq + get_nr_threads(current))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) | 
|  |  | 
|  | /* | 
|  | * The expensive part of numa migration is done from task_work context. | 
|  | * Triggered from task_tick_numa(). | 
|  | */ | 
|  | static void task_numa_work(struct callback_head *work) | 
|  | { | 
|  | unsigned long migrate, next_scan, now = jiffies; | 
|  | struct task_struct *p = current; | 
|  | struct mm_struct *mm = p->mm; | 
|  | u64 runtime = p->se.sum_exec_runtime; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long start, end; | 
|  | unsigned long nr_pte_updates = 0; | 
|  | long pages, virtpages; | 
|  | struct vma_iterator vmi; | 
|  | bool vma_pids_skipped; | 
|  | bool vma_pids_forced = false; | 
|  |  | 
|  | SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); | 
|  |  | 
|  | work->next = work; | 
|  | /* | 
|  | * Who cares about NUMA placement when they're dying. | 
|  | * | 
|  | * NOTE: make sure not to dereference p->mm before this check, | 
|  | * exit_task_work() happens _after_ exit_mm() so we could be called | 
|  | * without p->mm even though we still had it when we enqueued this | 
|  | * work. | 
|  | */ | 
|  | if (p->flags & PF_EXITING) | 
|  | return; | 
|  |  | 
|  | if (!mm->numa_next_scan) { | 
|  | mm->numa_next_scan = now + | 
|  | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enforce maximal scan/migration frequency.. | 
|  | */ | 
|  | migrate = mm->numa_next_scan; | 
|  | if (time_before(now, migrate)) | 
|  | return; | 
|  |  | 
|  | if (p->numa_scan_period == 0) { | 
|  | p->numa_scan_period_max = task_scan_max(p); | 
|  | p->numa_scan_period = task_scan_start(p); | 
|  | } | 
|  |  | 
|  | next_scan = now + msecs_to_jiffies(p->numa_scan_period); | 
|  | if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Delay this task enough that another task of this mm will likely win | 
|  | * the next time around. | 
|  | */ | 
|  | p->node_stamp += 2 * TICK_NSEC; | 
|  |  | 
|  | pages = sysctl_numa_balancing_scan_size; | 
|  | pages <<= 20 - PAGE_SHIFT; /* MB in pages */ | 
|  | virtpages = pages * 8;	   /* Scan up to this much virtual space */ | 
|  | if (!pages) | 
|  | return; | 
|  |  | 
|  |  | 
|  | if (!mmap_read_trylock(mm)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * VMAs are skipped if the current PID has not trapped a fault within | 
|  | * the VMA recently. Allow scanning to be forced if there is no | 
|  | * suitable VMA remaining. | 
|  | */ | 
|  | vma_pids_skipped = false; | 
|  |  | 
|  | retry_pids: | 
|  | start = mm->numa_scan_offset; | 
|  | vma_iter_init(&vmi, mm, start); | 
|  | vma = vma_next(&vmi); | 
|  | if (!vma) { | 
|  | reset_ptenuma_scan(p); | 
|  | start = 0; | 
|  | vma_iter_set(&vmi, start); | 
|  | vma = vma_next(&vmi); | 
|  | } | 
|  |  | 
|  | do { | 
|  | if (!vma_migratable(vma) || !vma_policy_mof(vma) || | 
|  | is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { | 
|  | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shared library pages mapped by multiple processes are not | 
|  | * migrated as it is expected they are cache replicated. Avoid | 
|  | * hinting faults in read-only file-backed mappings or the vDSO | 
|  | * as migrating the pages will be of marginal benefit. | 
|  | */ | 
|  | if (!vma->vm_mm || | 
|  | (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { | 
|  | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Skip inaccessible VMAs to avoid any confusion between | 
|  | * PROT_NONE and NUMA hinting PTEs | 
|  | */ | 
|  | if (!vma_is_accessible(vma)) { | 
|  | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Initialise new per-VMA NUMAB state. */ | 
|  | if (!vma->numab_state) { | 
|  | vma->numab_state = kzalloc(sizeof(struct vma_numab_state), | 
|  | GFP_KERNEL); | 
|  | if (!vma->numab_state) | 
|  | continue; | 
|  |  | 
|  | vma->numab_state->start_scan_seq = mm->numa_scan_seq; | 
|  |  | 
|  | vma->numab_state->next_scan = now + | 
|  | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | 
|  |  | 
|  | /* Reset happens after 4 times scan delay of scan start */ | 
|  | vma->numab_state->pids_active_reset =  vma->numab_state->next_scan + | 
|  | msecs_to_jiffies(VMA_PID_RESET_PERIOD); | 
|  |  | 
|  | /* | 
|  | * Ensure prev_scan_seq does not match numa_scan_seq, | 
|  | * to prevent VMAs being skipped prematurely on the | 
|  | * first scan: | 
|  | */ | 
|  | vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scanning the VMAs of short lived tasks add more overhead. So | 
|  | * delay the scan for new VMAs. | 
|  | */ | 
|  | if (mm->numa_scan_seq && time_before(jiffies, | 
|  | vma->numab_state->next_scan)) { | 
|  | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* RESET access PIDs regularly for old VMAs. */ | 
|  | if (mm->numa_scan_seq && | 
|  | time_after(jiffies, vma->numab_state->pids_active_reset)) { | 
|  | vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + | 
|  | msecs_to_jiffies(VMA_PID_RESET_PERIOD); | 
|  | vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); | 
|  | vma->numab_state->pids_active[1] = 0; | 
|  | } | 
|  |  | 
|  | /* Do not rescan VMAs twice within the same sequence. */ | 
|  | if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { | 
|  | mm->numa_scan_offset = vma->vm_end; | 
|  | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do not scan the VMA if task has not accessed it, unless no other | 
|  | * VMA candidate exists. | 
|  | */ | 
|  | if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { | 
|  | vma_pids_skipped = true; | 
|  | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | do { | 
|  | start = max(start, vma->vm_start); | 
|  | end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); | 
|  | end = min(end, vma->vm_end); | 
|  | nr_pte_updates = change_prot_numa(vma, start, end); | 
|  |  | 
|  | /* | 
|  | * Try to scan sysctl_numa_balancing_size worth of | 
|  | * hpages that have at least one present PTE that | 
|  | * is not already PTE-numa. If the VMA contains | 
|  | * areas that are unused or already full of prot_numa | 
|  | * PTEs, scan up to virtpages, to skip through those | 
|  | * areas faster. | 
|  | */ | 
|  | if (nr_pte_updates) | 
|  | pages -= (end - start) >> PAGE_SHIFT; | 
|  | virtpages -= (end - start) >> PAGE_SHIFT; | 
|  |  | 
|  | start = end; | 
|  | if (pages <= 0 || virtpages <= 0) | 
|  | goto out; | 
|  |  | 
|  | cond_resched(); | 
|  | } while (end != vma->vm_end); | 
|  |  | 
|  | /* VMA scan is complete, do not scan until next sequence. */ | 
|  | vma->numab_state->prev_scan_seq = mm->numa_scan_seq; | 
|  |  | 
|  | /* | 
|  | * Only force scan within one VMA at a time, to limit the | 
|  | * cost of scanning a potentially uninteresting VMA. | 
|  | */ | 
|  | if (vma_pids_forced) | 
|  | break; | 
|  | } for_each_vma(vmi, vma); | 
|  |  | 
|  | /* | 
|  | * If no VMAs are remaining and VMAs were skipped due to the PID | 
|  | * not accessing the VMA previously, then force a scan to ensure | 
|  | * forward progress: | 
|  | */ | 
|  | if (!vma && !vma_pids_forced && vma_pids_skipped) { | 
|  | vma_pids_forced = true; | 
|  | goto retry_pids; | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * It is possible to reach the end of the VMA list but the last few | 
|  | * VMAs are not guaranteed to the vma_migratable. If they are not, we | 
|  | * would find the !migratable VMA on the next scan but not reset the | 
|  | * scanner to the start so check it now. | 
|  | */ | 
|  | if (vma) | 
|  | mm->numa_scan_offset = start; | 
|  | else | 
|  | reset_ptenuma_scan(p); | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | /* | 
|  | * Make sure tasks use at least 32x as much time to run other code | 
|  | * than they used here, to limit NUMA PTE scanning overhead to 3% max. | 
|  | * Usually update_task_scan_period slows down scanning enough; on an | 
|  | * overloaded system we need to limit overhead on a per task basis. | 
|  | */ | 
|  | if (unlikely(p->se.sum_exec_runtime != runtime)) { | 
|  | u64 diff = p->se.sum_exec_runtime - runtime; | 
|  | p->node_stamp += 32 * diff; | 
|  | } | 
|  | } | 
|  |  | 
|  | void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) | 
|  | { | 
|  | int mm_users = 0; | 
|  | struct mm_struct *mm = p->mm; | 
|  |  | 
|  | if (mm) { | 
|  | mm_users = atomic_read(&mm->mm_users); | 
|  | if (mm_users == 1) { | 
|  | mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | 
|  | mm->numa_scan_seq = 0; | 
|  | } | 
|  | } | 
|  | p->node_stamp			= 0; | 
|  | p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0; | 
|  | p->numa_scan_period		= sysctl_numa_balancing_scan_delay; | 
|  | p->numa_migrate_retry		= 0; | 
|  | /* Protect against double add, see task_tick_numa and task_numa_work */ | 
|  | p->numa_work.next		= &p->numa_work; | 
|  | p->numa_faults			= NULL; | 
|  | p->numa_pages_migrated		= 0; | 
|  | p->total_numa_faults		= 0; | 
|  | RCU_INIT_POINTER(p->numa_group, NULL); | 
|  | p->last_task_numa_placement	= 0; | 
|  | p->last_sum_exec_runtime	= 0; | 
|  |  | 
|  | init_task_work(&p->numa_work, task_numa_work); | 
|  |  | 
|  | /* New address space, reset the preferred nid */ | 
|  | if (!(clone_flags & CLONE_VM)) { | 
|  | p->numa_preferred_nid = NUMA_NO_NODE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * New thread, keep existing numa_preferred_nid which should be copied | 
|  | * already by arch_dup_task_struct but stagger when scans start. | 
|  | */ | 
|  | if (mm) { | 
|  | unsigned int delay; | 
|  |  | 
|  | delay = min_t(unsigned int, task_scan_max(current), | 
|  | current->numa_scan_period * mm_users * NSEC_PER_MSEC); | 
|  | delay += 2 * TICK_NSEC; | 
|  | p->node_stamp = delay; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drive the periodic memory faults.. | 
|  | */ | 
|  | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | 
|  | { | 
|  | struct callback_head *work = &curr->numa_work; | 
|  | u64 period, now; | 
|  |  | 
|  | /* | 
|  | * We don't care about NUMA placement if we don't have memory. | 
|  | */ | 
|  | if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Using runtime rather than walltime has the dual advantage that | 
|  | * we (mostly) drive the selection from busy threads and that the | 
|  | * task needs to have done some actual work before we bother with | 
|  | * NUMA placement. | 
|  | */ | 
|  | now = curr->se.sum_exec_runtime; | 
|  | period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; | 
|  |  | 
|  | if (now > curr->node_stamp + period) { | 
|  | if (!curr->node_stamp) | 
|  | curr->numa_scan_period = task_scan_start(curr); | 
|  | curr->node_stamp += period; | 
|  |  | 
|  | if (!time_before(jiffies, curr->mm->numa_next_scan)) | 
|  | task_work_add(curr, work, TWA_RESUME); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_scan_period(struct task_struct *p, int new_cpu) | 
|  | { | 
|  | int src_nid = cpu_to_node(task_cpu(p)); | 
|  | int dst_nid = cpu_to_node(new_cpu); | 
|  |  | 
|  | if (!static_branch_likely(&sched_numa_balancing)) | 
|  | return; | 
|  |  | 
|  | if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) | 
|  | return; | 
|  |  | 
|  | if (src_nid == dst_nid) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Allow resets if faults have been trapped before one scan | 
|  | * has completed. This is most likely due to a new task that | 
|  | * is pulled cross-node due to wakeups or load balancing. | 
|  | */ | 
|  | if (p->numa_scan_seq) { | 
|  | /* | 
|  | * Avoid scan adjustments if moving to the preferred | 
|  | * node or if the task was not previously running on | 
|  | * the preferred node. | 
|  | */ | 
|  | if (dst_nid == p->numa_preferred_nid || | 
|  | (p->numa_preferred_nid != NUMA_NO_NODE && | 
|  | src_nid != p->numa_preferred_nid)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | p->numa_scan_period = task_scan_start(p); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void update_scan_period(struct task_struct *p, int new_cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | static void | 
|  | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | update_load_add(&cfs_rq->load, se->load.weight); | 
|  | #ifdef CONFIG_SMP | 
|  | if (entity_is_task(se)) { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  |  | 
|  | account_numa_enqueue(rq, task_of(se)); | 
|  | list_add(&se->group_node, &rq->cfs_tasks); | 
|  | } | 
|  | #endif | 
|  | cfs_rq->nr_running++; | 
|  | if (se_is_idle(se)) | 
|  | cfs_rq->idle_nr_running++; | 
|  | } | 
|  |  | 
|  | static void | 
|  | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | update_load_sub(&cfs_rq->load, se->load.weight); | 
|  | #ifdef CONFIG_SMP | 
|  | if (entity_is_task(se)) { | 
|  | account_numa_dequeue(rq_of(cfs_rq), task_of(se)); | 
|  | list_del_init(&se->group_node); | 
|  | } | 
|  | #endif | 
|  | cfs_rq->nr_running--; | 
|  | if (se_is_idle(se)) | 
|  | cfs_rq->idle_nr_running--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Signed add and clamp on underflow. | 
|  | * | 
|  | * Explicitly do a load-store to ensure the intermediate value never hits | 
|  | * memory. This allows lockless observations without ever seeing the negative | 
|  | * values. | 
|  | */ | 
|  | #define add_positive(_ptr, _val) do {                           \ | 
|  | typeof(_ptr) ptr = (_ptr);                              \ | 
|  | typeof(_val) val = (_val);                              \ | 
|  | typeof(*ptr) res, var = READ_ONCE(*ptr);                \ | 
|  | \ | 
|  | res = var + val;                                        \ | 
|  | \ | 
|  | if (val < 0 && res > var)                               \ | 
|  | res = 0;                                        \ | 
|  | \ | 
|  | WRITE_ONCE(*ptr, res);                                  \ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Unsigned subtract and clamp on underflow. | 
|  | * | 
|  | * Explicitly do a load-store to ensure the intermediate value never hits | 
|  | * memory. This allows lockless observations without ever seeing the negative | 
|  | * values. | 
|  | */ | 
|  | #define sub_positive(_ptr, _val) do {				\ | 
|  | typeof(_ptr) ptr = (_ptr);				\ | 
|  | typeof(*ptr) val = (_val);				\ | 
|  | typeof(*ptr) res, var = READ_ONCE(*ptr);		\ | 
|  | res = var - val;					\ | 
|  | if (res > var)						\ | 
|  | res = 0;					\ | 
|  | WRITE_ONCE(*ptr, res);					\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Remove and clamp on negative, from a local variable. | 
|  | * | 
|  | * A variant of sub_positive(), which does not use explicit load-store | 
|  | * and is thus optimized for local variable updates. | 
|  | */ | 
|  | #define lsub_positive(_ptr, _val) do {				\ | 
|  | typeof(_ptr) ptr = (_ptr);				\ | 
|  | *ptr -= min_t(typeof(*ptr), *ptr, _val);		\ | 
|  | } while (0) | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static inline void | 
|  | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | cfs_rq->avg.load_avg += se->avg.load_avg; | 
|  | cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); | 
|  | sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); | 
|  | /* See update_cfs_rq_load_avg() */ | 
|  | cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, | 
|  | cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); | 
|  | } | 
|  | #else | 
|  | static inline void | 
|  | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | 
|  | static inline void | 
|  | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | 
|  | #endif | 
|  |  | 
|  | static void reweight_eevdf(struct sched_entity *se, u64 avruntime, | 
|  | unsigned long weight) | 
|  | { | 
|  | unsigned long old_weight = se->load.weight; | 
|  | s64 vlag, vslice; | 
|  |  | 
|  | /* | 
|  | * VRUNTIME | 
|  | * -------- | 
|  | * | 
|  | * COROLLARY #1: The virtual runtime of the entity needs to be | 
|  | * adjusted if re-weight at !0-lag point. | 
|  | * | 
|  | * Proof: For contradiction assume this is not true, so we can | 
|  | * re-weight without changing vruntime at !0-lag point. | 
|  | * | 
|  | *             Weight	VRuntime   Avg-VRuntime | 
|  | *     before    w          v            V | 
|  | *      after    w'         v'           V' | 
|  | * | 
|  | * Since lag needs to be preserved through re-weight: | 
|  | * | 
|  | *	lag = (V - v)*w = (V'- v')*w', where v = v' | 
|  | *	==>	V' = (V - v)*w/w' + v		(1) | 
|  | * | 
|  | * Let W be the total weight of the entities before reweight, | 
|  | * since V' is the new weighted average of entities: | 
|  | * | 
|  | *	V' = (WV + w'v - wv) / (W + w' - w)	(2) | 
|  | * | 
|  | * by using (1) & (2) we obtain: | 
|  | * | 
|  | *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v | 
|  | *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v | 
|  | *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v | 
|  | *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3) | 
|  | * | 
|  | * Since we are doing at !0-lag point which means V != v, we | 
|  | * can simplify (3): | 
|  | * | 
|  | *	==>	W / (W + w' - w) = w / w' | 
|  | *	==>	Ww' = Ww + ww' - ww | 
|  | *	==>	W * (w' - w) = w * (w' - w) | 
|  | *	==>	W = w	(re-weight indicates w' != w) | 
|  | * | 
|  | * So the cfs_rq contains only one entity, hence vruntime of | 
|  | * the entity @v should always equal to the cfs_rq's weighted | 
|  | * average vruntime @V, which means we will always re-weight | 
|  | * at 0-lag point, thus breach assumption. Proof completed. | 
|  | * | 
|  | * | 
|  | * COROLLARY #2: Re-weight does NOT affect weighted average | 
|  | * vruntime of all the entities. | 
|  | * | 
|  | * Proof: According to corollary #1, Eq. (1) should be: | 
|  | * | 
|  | *	(V - v)*w = (V' - v')*w' | 
|  | *	==>    v' = V' - (V - v)*w/w'		(4) | 
|  | * | 
|  | * According to the weighted average formula, we have: | 
|  | * | 
|  | *	V' = (WV - wv + w'v') / (W - w + w') | 
|  | *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') | 
|  | *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w') | 
|  | *	   = (WV + w'V' - Vw) / (W - w + w') | 
|  | * | 
|  | *	==>  V'*(W - w + w') = WV + w'V' - Vw | 
|  | *	==>	V' * (W - w) = (W - w) * V	(5) | 
|  | * | 
|  | * If the entity is the only one in the cfs_rq, then reweight | 
|  | * always occurs at 0-lag point, so V won't change. Or else | 
|  | * there are other entities, hence W != w, then Eq. (5) turns | 
|  | * into V' = V. So V won't change in either case, proof done. | 
|  | * | 
|  | * | 
|  | * So according to corollary #1 & #2, the effect of re-weight | 
|  | * on vruntime should be: | 
|  | * | 
|  | *	v' = V' - (V - v) * w / w'		(4) | 
|  | *	   = V  - (V - v) * w / w' | 
|  | *	   = V  - vl * w / w' | 
|  | *	   = V  - vl' | 
|  | */ | 
|  | if (avruntime != se->vruntime) { | 
|  | vlag = entity_lag(avruntime, se); | 
|  | vlag = div_s64(vlag * old_weight, weight); | 
|  | se->vruntime = avruntime - vlag; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DEADLINE | 
|  | * -------- | 
|  | * | 
|  | * When the weight changes, the virtual time slope changes and | 
|  | * we should adjust the relative virtual deadline accordingly. | 
|  | * | 
|  | *	d' = v' + (d - v)*w/w' | 
|  | *	   = V' - (V - v)*w/w' + (d - v)*w/w' | 
|  | *	   = V  - (V - v)*w/w' + (d - v)*w/w' | 
|  | *	   = V  + (d - V)*w/w' | 
|  | */ | 
|  | vslice = (s64)(se->deadline - avruntime); | 
|  | vslice = div_s64(vslice * old_weight, weight); | 
|  | se->deadline = avruntime + vslice; | 
|  | } | 
|  |  | 
|  | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | 
|  | unsigned long weight) | 
|  | { | 
|  | bool curr = cfs_rq->curr == se; | 
|  | u64 avruntime; | 
|  |  | 
|  | if (se->on_rq) { | 
|  | /* commit outstanding execution time */ | 
|  | update_curr(cfs_rq); | 
|  | avruntime = avg_vruntime(cfs_rq); | 
|  | if (!curr) | 
|  | __dequeue_entity(cfs_rq, se); | 
|  | update_load_sub(&cfs_rq->load, se->load.weight); | 
|  | } | 
|  | dequeue_load_avg(cfs_rq, se); | 
|  |  | 
|  | if (se->on_rq) { | 
|  | reweight_eevdf(se, avruntime, weight); | 
|  | } else { | 
|  | /* | 
|  | * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), | 
|  | * we need to scale se->vlag when w_i changes. | 
|  | */ | 
|  | se->vlag = div_s64(se->vlag * se->load.weight, weight); | 
|  | } | 
|  |  | 
|  | update_load_set(&se->load, weight); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | do { | 
|  | u32 divider = get_pelt_divider(&se->avg); | 
|  |  | 
|  | se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); | 
|  | } while (0); | 
|  | #endif | 
|  |  | 
|  | enqueue_load_avg(cfs_rq, se); | 
|  | if (se->on_rq) { | 
|  | update_load_add(&cfs_rq->load, se->load.weight); | 
|  | if (!curr) | 
|  | __enqueue_entity(cfs_rq, se); | 
|  |  | 
|  | /* | 
|  | * The entity's vruntime has been adjusted, so let's check | 
|  | * whether the rq-wide min_vruntime needs updated too. Since | 
|  | * the calculations above require stable min_vruntime rather | 
|  | * than up-to-date one, we do the update at the end of the | 
|  | * reweight process. | 
|  | */ | 
|  | update_min_vruntime(cfs_rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void reweight_task_fair(struct rq *rq, struct task_struct *p, | 
|  | const struct load_weight *lw) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  | struct load_weight *load = &se->load; | 
|  |  | 
|  | reweight_entity(cfs_rq, se, lw->weight); | 
|  | load->inv_weight = lw->inv_weight; | 
|  | } | 
|  |  | 
|  | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * All this does is approximate the hierarchical proportion which includes that | 
|  | * global sum we all love to hate. | 
|  | * | 
|  | * That is, the weight of a group entity, is the proportional share of the | 
|  | * group weight based on the group runqueue weights. That is: | 
|  | * | 
|  | *                     tg->weight * grq->load.weight | 
|  | *   ge->load.weight = -----------------------------               (1) | 
|  | *                       \Sum grq->load.weight | 
|  | * | 
|  | * Now, because computing that sum is prohibitively expensive to compute (been | 
|  | * there, done that) we approximate it with this average stuff. The average | 
|  | * moves slower and therefore the approximation is cheaper and more stable. | 
|  | * | 
|  | * So instead of the above, we substitute: | 
|  | * | 
|  | *   grq->load.weight -> grq->avg.load_avg                         (2) | 
|  | * | 
|  | * which yields the following: | 
|  | * | 
|  | *                     tg->weight * grq->avg.load_avg | 
|  | *   ge->load.weight = ------------------------------              (3) | 
|  | *                             tg->load_avg | 
|  | * | 
|  | * Where: tg->load_avg ~= \Sum grq->avg.load_avg | 
|  | * | 
|  | * That is shares_avg, and it is right (given the approximation (2)). | 
|  | * | 
|  | * The problem with it is that because the average is slow -- it was designed | 
|  | * to be exactly that of course -- this leads to transients in boundary | 
|  | * conditions. In specific, the case where the group was idle and we start the | 
|  | * one task. It takes time for our CPU's grq->avg.load_avg to build up, | 
|  | * yielding bad latency etc.. | 
|  | * | 
|  | * Now, in that special case (1) reduces to: | 
|  | * | 
|  | *                     tg->weight * grq->load.weight | 
|  | *   ge->load.weight = ----------------------------- = tg->weight   (4) | 
|  | *                         grp->load.weight | 
|  | * | 
|  | * That is, the sum collapses because all other CPUs are idle; the UP scenario. | 
|  | * | 
|  | * So what we do is modify our approximation (3) to approach (4) in the (near) | 
|  | * UP case, like: | 
|  | * | 
|  | *   ge->load.weight = | 
|  | * | 
|  | *              tg->weight * grq->load.weight | 
|  | *     ---------------------------------------------------         (5) | 
|  | *     tg->load_avg - grq->avg.load_avg + grq->load.weight | 
|  | * | 
|  | * But because grq->load.weight can drop to 0, resulting in a divide by zero, | 
|  | * we need to use grq->avg.load_avg as its lower bound, which then gives: | 
|  | * | 
|  | * | 
|  | *                     tg->weight * grq->load.weight | 
|  | *   ge->load.weight = -----------------------------		   (6) | 
|  | *                             tg_load_avg' | 
|  | * | 
|  | * Where: | 
|  | * | 
|  | *   tg_load_avg' = tg->load_avg - grq->avg.load_avg + | 
|  | *                  max(grq->load.weight, grq->avg.load_avg) | 
|  | * | 
|  | * And that is shares_weight and is icky. In the (near) UP case it approaches | 
|  | * (4) while in the normal case it approaches (3). It consistently | 
|  | * overestimates the ge->load.weight and therefore: | 
|  | * | 
|  | *   \Sum ge->load.weight >= tg->weight | 
|  | * | 
|  | * hence icky! | 
|  | */ | 
|  | static long calc_group_shares(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | long tg_weight, tg_shares, load, shares; | 
|  | struct task_group *tg = cfs_rq->tg; | 
|  |  | 
|  | tg_shares = READ_ONCE(tg->shares); | 
|  |  | 
|  | load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); | 
|  |  | 
|  | tg_weight = atomic_long_read(&tg->load_avg); | 
|  |  | 
|  | /* Ensure tg_weight >= load */ | 
|  | tg_weight -= cfs_rq->tg_load_avg_contrib; | 
|  | tg_weight += load; | 
|  |  | 
|  | shares = (tg_shares * load); | 
|  | if (tg_weight) | 
|  | shares /= tg_weight; | 
|  |  | 
|  | /* | 
|  | * MIN_SHARES has to be unscaled here to support per-CPU partitioning | 
|  | * of a group with small tg->shares value. It is a floor value which is | 
|  | * assigned as a minimum load.weight to the sched_entity representing | 
|  | * the group on a CPU. | 
|  | * | 
|  | * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 | 
|  | * on an 8-core system with 8 tasks each runnable on one CPU shares has | 
|  | * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In | 
|  | * case no task is runnable on a CPU MIN_SHARES=2 should be returned | 
|  | * instead of 0. | 
|  | */ | 
|  | return clamp_t(long, shares, MIN_SHARES, tg_shares); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * Recomputes the group entity based on the current state of its group | 
|  | * runqueue. | 
|  | */ | 
|  | static void update_cfs_group(struct sched_entity *se) | 
|  | { | 
|  | struct cfs_rq *gcfs_rq = group_cfs_rq(se); | 
|  | long shares; | 
|  |  | 
|  | if (!gcfs_rq) | 
|  | return; | 
|  |  | 
|  | if (throttled_hierarchy(gcfs_rq)) | 
|  | return; | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | shares = READ_ONCE(gcfs_rq->tg->shares); | 
|  | #else | 
|  | shares = calc_group_shares(gcfs_rq); | 
|  | #endif | 
|  | if (unlikely(se->load.weight != shares)) | 
|  | reweight_entity(cfs_rq_of(se), se, shares); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_FAIR_GROUP_SCHED */ | 
|  | static inline void update_cfs_group(struct sched_entity *se) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) | 
|  | { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  |  | 
|  | if (&rq->cfs == cfs_rq) { | 
|  | /* | 
|  | * There are a few boundary cases this might miss but it should | 
|  | * get called often enough that that should (hopefully) not be | 
|  | * a real problem. | 
|  | * | 
|  | * It will not get called when we go idle, because the idle | 
|  | * thread is a different class (!fair), nor will the utilization | 
|  | * number include things like RT tasks. | 
|  | * | 
|  | * As is, the util number is not freq-invariant (we'd have to | 
|  | * implement arch_scale_freq_capacity() for that). | 
|  | * | 
|  | * See cpu_util_cfs(). | 
|  | */ | 
|  | cpufreq_update_util(rq, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static inline bool load_avg_is_decayed(struct sched_avg *sa) | 
|  | { | 
|  | if (sa->load_sum) | 
|  | return false; | 
|  |  | 
|  | if (sa->util_sum) | 
|  | return false; | 
|  |  | 
|  | if (sa->runnable_sum) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * _avg must be null when _sum are null because _avg = _sum / divider | 
|  | * Make sure that rounding and/or propagation of PELT values never | 
|  | * break this. | 
|  | */ | 
|  | SCHED_WARN_ON(sa->load_avg || | 
|  | sa->util_avg || | 
|  | sa->runnable_avg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return u64_u32_load_copy(cfs_rq->avg.last_update_time, | 
|  | cfs_rq->last_update_time_copy); | 
|  | } | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* | 
|  | * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list | 
|  | * immediately before a parent cfs_rq, and cfs_rqs are removed from the list | 
|  | * bottom-up, we only have to test whether the cfs_rq before us on the list | 
|  | * is our child. | 
|  | * If cfs_rq is not on the list, test whether a child needs its to be added to | 
|  | * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details). | 
|  | */ | 
|  | static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct cfs_rq *prev_cfs_rq; | 
|  | struct list_head *prev; | 
|  |  | 
|  | if (cfs_rq->on_list) { | 
|  | prev = cfs_rq->leaf_cfs_rq_list.prev; | 
|  | } else { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  |  | 
|  | prev = rq->tmp_alone_branch; | 
|  | } | 
|  |  | 
|  | prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); | 
|  |  | 
|  | return (prev_cfs_rq->tg->parent == cfs_rq->tg); | 
|  | } | 
|  |  | 
|  | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (cfs_rq->load.weight) | 
|  | return false; | 
|  |  | 
|  | if (!load_avg_is_decayed(&cfs_rq->avg)) | 
|  | return false; | 
|  |  | 
|  | if (child_cfs_rq_on_list(cfs_rq)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_tg_load_avg - update the tg's load avg | 
|  | * @cfs_rq: the cfs_rq whose avg changed | 
|  | * | 
|  | * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. | 
|  | * However, because tg->load_avg is a global value there are performance | 
|  | * considerations. | 
|  | * | 
|  | * In order to avoid having to look at the other cfs_rq's, we use a | 
|  | * differential update where we store the last value we propagated. This in | 
|  | * turn allows skipping updates if the differential is 'small'. | 
|  | * | 
|  | * Updating tg's load_avg is necessary before update_cfs_share(). | 
|  | */ | 
|  | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | long delta; | 
|  | u64 now; | 
|  |  | 
|  | /* | 
|  | * No need to update load_avg for root_task_group as it is not used. | 
|  | */ | 
|  | if (cfs_rq->tg == &root_task_group) | 
|  | return; | 
|  |  | 
|  | /* rq has been offline and doesn't contribute to the share anymore: */ | 
|  | if (!cpu_active(cpu_of(rq_of(cfs_rq)))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * For migration heavy workloads, access to tg->load_avg can be | 
|  | * unbound. Limit the update rate to at most once per ms. | 
|  | */ | 
|  | now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); | 
|  | if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) | 
|  | return; | 
|  |  | 
|  | delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; | 
|  | if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { | 
|  | atomic_long_add(delta, &cfs_rq->tg->load_avg); | 
|  | cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; | 
|  | cfs_rq->last_update_tg_load_avg = now; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | long delta; | 
|  | u64 now; | 
|  |  | 
|  | /* | 
|  | * No need to update load_avg for root_task_group, as it is not used. | 
|  | */ | 
|  | if (cfs_rq->tg == &root_task_group) | 
|  | return; | 
|  |  | 
|  | now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); | 
|  | delta = 0 - cfs_rq->tg_load_avg_contrib; | 
|  | atomic_long_add(delta, &cfs_rq->tg->load_avg); | 
|  | cfs_rq->tg_load_avg_contrib = 0; | 
|  | cfs_rq->last_update_tg_load_avg = now; | 
|  | } | 
|  |  | 
|  | /* CPU offline callback: */ | 
|  | static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) | 
|  | { | 
|  | struct task_group *tg; | 
|  |  | 
|  | lockdep_assert_rq_held(rq); | 
|  |  | 
|  | /* | 
|  | * The rq clock has already been updated in | 
|  | * set_rq_offline(), so we should skip updating | 
|  | * the rq clock again in unthrottle_cfs_rq(). | 
|  | */ | 
|  | rq_clock_start_loop_update(rq); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(tg, &task_groups, list) { | 
|  | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|  |  | 
|  | clear_tg_load_avg(cfs_rq); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | rq_clock_stop_loop_update(rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called within set_task_rq() right before setting a task's CPU. The | 
|  | * caller only guarantees p->pi_lock is held; no other assumptions, | 
|  | * including the state of rq->lock, should be made. | 
|  | */ | 
|  | void set_task_rq_fair(struct sched_entity *se, | 
|  | struct cfs_rq *prev, struct cfs_rq *next) | 
|  | { | 
|  | u64 p_last_update_time; | 
|  | u64 n_last_update_time; | 
|  |  | 
|  | if (!sched_feat(ATTACH_AGE_LOAD)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We are supposed to update the task to "current" time, then its up to | 
|  | * date and ready to go to new CPU/cfs_rq. But we have difficulty in | 
|  | * getting what current time is, so simply throw away the out-of-date | 
|  | * time. This will result in the wakee task is less decayed, but giving | 
|  | * the wakee more load sounds not bad. | 
|  | */ | 
|  | if (!(se->avg.last_update_time && prev)) | 
|  | return; | 
|  |  | 
|  | p_last_update_time = cfs_rq_last_update_time(prev); | 
|  | n_last_update_time = cfs_rq_last_update_time(next); | 
|  |  | 
|  | __update_load_avg_blocked_se(p_last_update_time, se); | 
|  | se->avg.last_update_time = n_last_update_time; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to | 
|  | * propagate its contribution. The key to this propagation is the invariant | 
|  | * that for each group: | 
|  | * | 
|  | *   ge->avg == grq->avg						(1) | 
|  | * | 
|  | * _IFF_ we look at the pure running and runnable sums. Because they | 
|  | * represent the very same entity, just at different points in the hierarchy. | 
|  | * | 
|  | * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial | 
|  | * and simply copies the running/runnable sum over (but still wrong, because | 
|  | * the group entity and group rq do not have their PELT windows aligned). | 
|  | * | 
|  | * However, update_tg_cfs_load() is more complex. So we have: | 
|  | * | 
|  | *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2) | 
|  | * | 
|  | * And since, like util, the runnable part should be directly transferable, | 
|  | * the following would _appear_ to be the straight forward approach: | 
|  | * | 
|  | *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3) | 
|  | * | 
|  | * And per (1) we have: | 
|  | * | 
|  | *   ge->avg.runnable_avg == grq->avg.runnable_avg | 
|  | * | 
|  | * Which gives: | 
|  | * | 
|  | *                      ge->load.weight * grq->avg.load_avg | 
|  | *   ge->avg.load_avg = -----------------------------------		(4) | 
|  | *                               grq->load.weight | 
|  | * | 
|  | * Except that is wrong! | 
|  | * | 
|  | * Because while for entities historical weight is not important and we | 
|  | * really only care about our future and therefore can consider a pure | 
|  | * runnable sum, runqueues can NOT do this. | 
|  | * | 
|  | * We specifically want runqueues to have a load_avg that includes | 
|  | * historical weights. Those represent the blocked load, the load we expect | 
|  | * to (shortly) return to us. This only works by keeping the weights as | 
|  | * integral part of the sum. We therefore cannot decompose as per (3). | 
|  | * | 
|  | * Another reason this doesn't work is that runnable isn't a 0-sum entity. | 
|  | * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the | 
|  | * rq itself is runnable anywhere between 2/3 and 1 depending on how the | 
|  | * runnable section of these tasks overlap (or not). If they were to perfectly | 
|  | * align the rq as a whole would be runnable 2/3 of the time. If however we | 
|  | * always have at least 1 runnable task, the rq as a whole is always runnable. | 
|  | * | 
|  | * So we'll have to approximate.. :/ | 
|  | * | 
|  | * Given the constraint: | 
|  | * | 
|  | *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX | 
|  | * | 
|  | * We can construct a rule that adds runnable to a rq by assuming minimal | 
|  | * overlap. | 
|  | * | 
|  | * On removal, we'll assume each task is equally runnable; which yields: | 
|  | * | 
|  | *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight | 
|  | * | 
|  | * XXX: only do this for the part of runnable > running ? | 
|  | * | 
|  | */ | 
|  | static inline void | 
|  | update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) | 
|  | { | 
|  | long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; | 
|  | u32 new_sum, divider; | 
|  |  | 
|  | /* Nothing to update */ | 
|  | if (!delta_avg) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | 
|  | * See ___update_load_avg() for details. | 
|  | */ | 
|  | divider = get_pelt_divider(&cfs_rq->avg); | 
|  |  | 
|  |  | 
|  | /* Set new sched_entity's utilization */ | 
|  | se->avg.util_avg = gcfs_rq->avg.util_avg; | 
|  | new_sum = se->avg.util_avg * divider; | 
|  | delta_sum = (long)new_sum - (long)se->avg.util_sum; | 
|  | se->avg.util_sum = new_sum; | 
|  |  | 
|  | /* Update parent cfs_rq utilization */ | 
|  | add_positive(&cfs_rq->avg.util_avg, delta_avg); | 
|  | add_positive(&cfs_rq->avg.util_sum, delta_sum); | 
|  |  | 
|  | /* See update_cfs_rq_load_avg() */ | 
|  | cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, | 
|  | cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) | 
|  | { | 
|  | long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; | 
|  | u32 new_sum, divider; | 
|  |  | 
|  | /* Nothing to update */ | 
|  | if (!delta_avg) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | 
|  | * See ___update_load_avg() for details. | 
|  | */ | 
|  | divider = get_pelt_divider(&cfs_rq->avg); | 
|  |  | 
|  | /* Set new sched_entity's runnable */ | 
|  | se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; | 
|  | new_sum = se->avg.runnable_avg * divider; | 
|  | delta_sum = (long)new_sum - (long)se->avg.runnable_sum; | 
|  | se->avg.runnable_sum = new_sum; | 
|  |  | 
|  | /* Update parent cfs_rq runnable */ | 
|  | add_positive(&cfs_rq->avg.runnable_avg, delta_avg); | 
|  | add_positive(&cfs_rq->avg.runnable_sum, delta_sum); | 
|  | /* See update_cfs_rq_load_avg() */ | 
|  | cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, | 
|  | cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) | 
|  | { | 
|  | long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; | 
|  | unsigned long load_avg; | 
|  | u64 load_sum = 0; | 
|  | s64 delta_sum; | 
|  | u32 divider; | 
|  |  | 
|  | if (!runnable_sum) | 
|  | return; | 
|  |  | 
|  | gcfs_rq->prop_runnable_sum = 0; | 
|  |  | 
|  | /* | 
|  | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | 
|  | * See ___update_load_avg() for details. | 
|  | */ | 
|  | divider = get_pelt_divider(&cfs_rq->avg); | 
|  |  | 
|  | if (runnable_sum >= 0) { | 
|  | /* | 
|  | * Add runnable; clip at LOAD_AVG_MAX. Reflects that until | 
|  | * the CPU is saturated running == runnable. | 
|  | */ | 
|  | runnable_sum += se->avg.load_sum; | 
|  | runnable_sum = min_t(long, runnable_sum, divider); | 
|  | } else { | 
|  | /* | 
|  | * Estimate the new unweighted runnable_sum of the gcfs_rq by | 
|  | * assuming all tasks are equally runnable. | 
|  | */ | 
|  | if (scale_load_down(gcfs_rq->load.weight)) { | 
|  | load_sum = div_u64(gcfs_rq->avg.load_sum, | 
|  | scale_load_down(gcfs_rq->load.weight)); | 
|  | } | 
|  |  | 
|  | /* But make sure to not inflate se's runnable */ | 
|  | runnable_sum = min(se->avg.load_sum, load_sum); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * runnable_sum can't be lower than running_sum | 
|  | * Rescale running sum to be in the same range as runnable sum | 
|  | * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT] | 
|  | * runnable_sum is in [0 : LOAD_AVG_MAX] | 
|  | */ | 
|  | running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; | 
|  | runnable_sum = max(runnable_sum, running_sum); | 
|  |  | 
|  | load_sum = se_weight(se) * runnable_sum; | 
|  | load_avg = div_u64(load_sum, divider); | 
|  |  | 
|  | delta_avg = load_avg - se->avg.load_avg; | 
|  | if (!delta_avg) | 
|  | return; | 
|  |  | 
|  | delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; | 
|  |  | 
|  | se->avg.load_sum = runnable_sum; | 
|  | se->avg.load_avg = load_avg; | 
|  | add_positive(&cfs_rq->avg.load_avg, delta_avg); | 
|  | add_positive(&cfs_rq->avg.load_sum, delta_sum); | 
|  | /* See update_cfs_rq_load_avg() */ | 
|  | cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, | 
|  | cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); | 
|  | } | 
|  |  | 
|  | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) | 
|  | { | 
|  | cfs_rq->propagate = 1; | 
|  | cfs_rq->prop_runnable_sum += runnable_sum; | 
|  | } | 
|  |  | 
|  | /* Update task and its cfs_rq load average */ | 
|  | static inline int propagate_entity_load_avg(struct sched_entity *se) | 
|  | { | 
|  | struct cfs_rq *cfs_rq, *gcfs_rq; | 
|  |  | 
|  | if (entity_is_task(se)) | 
|  | return 0; | 
|  |  | 
|  | gcfs_rq = group_cfs_rq(se); | 
|  | if (!gcfs_rq->propagate) | 
|  | return 0; | 
|  |  | 
|  | gcfs_rq->propagate = 0; | 
|  |  | 
|  | cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); | 
|  |  | 
|  | update_tg_cfs_util(cfs_rq, se, gcfs_rq); | 
|  | update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); | 
|  | update_tg_cfs_load(cfs_rq, se, gcfs_rq); | 
|  |  | 
|  | trace_pelt_cfs_tp(cfs_rq); | 
|  | trace_pelt_se_tp(se); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we need to update the load and the utilization of a blocked | 
|  | * group_entity: | 
|  | */ | 
|  | static inline bool skip_blocked_update(struct sched_entity *se) | 
|  | { | 
|  | struct cfs_rq *gcfs_rq = group_cfs_rq(se); | 
|  |  | 
|  | /* | 
|  | * If sched_entity still have not zero load or utilization, we have to | 
|  | * decay it: | 
|  | */ | 
|  | if (se->avg.load_avg || se->avg.util_avg) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If there is a pending propagation, we have to update the load and | 
|  | * the utilization of the sched_entity: | 
|  | */ | 
|  | if (gcfs_rq->propagate) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Otherwise, the load and the utilization of the sched_entity is | 
|  | * already zero and there is no pending propagation, so it will be a | 
|  | * waste of time to try to decay it: | 
|  | */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} | 
|  |  | 
|  | static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} | 
|  |  | 
|  | static inline int propagate_entity_load_avg(struct sched_entity *se) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} | 
|  |  | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | static inline void migrate_se_pelt_lag(struct sched_entity *se) | 
|  | { | 
|  | u64 throttled = 0, now, lut; | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct rq *rq; | 
|  | bool is_idle; | 
|  |  | 
|  | if (load_avg_is_decayed(&se->avg)) | 
|  | return; | 
|  |  | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | rq = rq_of(cfs_rq); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | is_idle = is_idle_task(rcu_dereference(rq->curr)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * The lag estimation comes with a cost we don't want to pay all the | 
|  | * time. Hence, limiting to the case where the source CPU is idle and | 
|  | * we know we are at the greatest risk to have an outdated clock. | 
|  | */ | 
|  | if (!is_idle) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: | 
|  | * | 
|  | *   last_update_time (the cfs_rq's last_update_time) | 
|  | *	= cfs_rq_clock_pelt()@cfs_rq_idle | 
|  | *      = rq_clock_pelt()@cfs_rq_idle | 
|  | *        - cfs->throttled_clock_pelt_time@cfs_rq_idle | 
|  | * | 
|  | *   cfs_idle_lag (delta between rq's update and cfs_rq's update) | 
|  | *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle | 
|  | * | 
|  | *   rq_idle_lag (delta between now and rq's update) | 
|  | *      = sched_clock_cpu() - rq_clock()@rq_idle | 
|  | * | 
|  | * We can then write: | 
|  | * | 
|  | *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + | 
|  | *          sched_clock_cpu() - rq_clock()@rq_idle | 
|  | * Where: | 
|  | *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle | 
|  | *      rq_clock()@rq_idle      is rq->clock_idle | 
|  | *      cfs->throttled_clock_pelt_time@cfs_rq_idle | 
|  | *                              is cfs_rq->throttled_pelt_idle | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); | 
|  | /* The clock has been stopped for throttling */ | 
|  | if (throttled == U64_MAX) | 
|  | return; | 
|  | #endif | 
|  | now = u64_u32_load(rq->clock_pelt_idle); | 
|  | /* | 
|  | * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case | 
|  | * is observed the old clock_pelt_idle value and the new clock_idle, | 
|  | * which lead to an underestimation. The opposite would lead to an | 
|  | * overestimation. | 
|  | */ | 
|  | smp_rmb(); | 
|  | lut = cfs_rq_last_update_time(cfs_rq); | 
|  |  | 
|  | now -= throttled; | 
|  | if (now < lut) | 
|  | /* | 
|  | * cfs_rq->avg.last_update_time is more recent than our | 
|  | * estimation, let's use it. | 
|  | */ | 
|  | now = lut; | 
|  | else | 
|  | now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); | 
|  |  | 
|  | __update_load_avg_blocked_se(now, se); | 
|  | } | 
|  | #else | 
|  | static void migrate_se_pelt_lag(struct sched_entity *se) {} | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * update_cfs_rq_load_avg - update the cfs_rq's load/util averages | 
|  | * @now: current time, as per cfs_rq_clock_pelt() | 
|  | * @cfs_rq: cfs_rq to update | 
|  | * | 
|  | * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) | 
|  | * avg. The immediate corollary is that all (fair) tasks must be attached. | 
|  | * | 
|  | * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. | 
|  | * | 
|  | * Return: true if the load decayed or we removed load. | 
|  | * | 
|  | * Since both these conditions indicate a changed cfs_rq->avg.load we should | 
|  | * call update_tg_load_avg() when this function returns true. | 
|  | */ | 
|  | static inline int | 
|  | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) | 
|  | { | 
|  | unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; | 
|  | struct sched_avg *sa = &cfs_rq->avg; | 
|  | int decayed = 0; | 
|  |  | 
|  | if (cfs_rq->removed.nr) { | 
|  | unsigned long r; | 
|  | u32 divider = get_pelt_divider(&cfs_rq->avg); | 
|  |  | 
|  | raw_spin_lock(&cfs_rq->removed.lock); | 
|  | swap(cfs_rq->removed.util_avg, removed_util); | 
|  | swap(cfs_rq->removed.load_avg, removed_load); | 
|  | swap(cfs_rq->removed.runnable_avg, removed_runnable); | 
|  | cfs_rq->removed.nr = 0; | 
|  | raw_spin_unlock(&cfs_rq->removed.lock); | 
|  |  | 
|  | r = removed_load; | 
|  | sub_positive(&sa->load_avg, r); | 
|  | sub_positive(&sa->load_sum, r * divider); | 
|  | /* See sa->util_sum below */ | 
|  | sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); | 
|  |  | 
|  | r = removed_util; | 
|  | sub_positive(&sa->util_avg, r); | 
|  | sub_positive(&sa->util_sum, r * divider); | 
|  | /* | 
|  | * Because of rounding, se->util_sum might ends up being +1 more than | 
|  | * cfs->util_sum. Although this is not a problem by itself, detaching | 
|  | * a lot of tasks with the rounding problem between 2 updates of | 
|  | * util_avg (~1ms) can make cfs->util_sum becoming null whereas | 
|  | * cfs_util_avg is not. | 
|  | * Check that util_sum is still above its lower bound for the new | 
|  | * util_avg. Given that period_contrib might have moved since the last | 
|  | * sync, we are only sure that util_sum must be above or equal to | 
|  | *    util_avg * minimum possible divider | 
|  | */ | 
|  | sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); | 
|  |  | 
|  | r = removed_runnable; | 
|  | sub_positive(&sa->runnable_avg, r); | 
|  | sub_positive(&sa->runnable_sum, r * divider); | 
|  | /* See sa->util_sum above */ | 
|  | sa->runnable_sum = max_t(u32, sa->runnable_sum, | 
|  | sa->runnable_avg * PELT_MIN_DIVIDER); | 
|  |  | 
|  | /* | 
|  | * removed_runnable is the unweighted version of removed_load so we | 
|  | * can use it to estimate removed_load_sum. | 
|  | */ | 
|  | add_tg_cfs_propagate(cfs_rq, | 
|  | -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); | 
|  |  | 
|  | decayed = 1; | 
|  | } | 
|  |  | 
|  | decayed |= __update_load_avg_cfs_rq(now, cfs_rq); | 
|  | u64_u32_store_copy(sa->last_update_time, | 
|  | cfs_rq->last_update_time_copy, | 
|  | sa->last_update_time); | 
|  | return decayed; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * attach_entity_load_avg - attach this entity to its cfs_rq load avg | 
|  | * @cfs_rq: cfs_rq to attach to | 
|  | * @se: sched_entity to attach | 
|  | * | 
|  | * Must call update_cfs_rq_load_avg() before this, since we rely on | 
|  | * cfs_rq->avg.last_update_time being current. | 
|  | */ | 
|  | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* | 
|  | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | 
|  | * See ___update_load_avg() for details. | 
|  | */ | 
|  | u32 divider = get_pelt_divider(&cfs_rq->avg); | 
|  |  | 
|  | /* | 
|  | * When we attach the @se to the @cfs_rq, we must align the decay | 
|  | * window because without that, really weird and wonderful things can | 
|  | * happen. | 
|  | * | 
|  | * XXX illustrate | 
|  | */ | 
|  | se->avg.last_update_time = cfs_rq->avg.last_update_time; | 
|  | se->avg.period_contrib = cfs_rq->avg.period_contrib; | 
|  |  | 
|  | /* | 
|  | * Hell(o) Nasty stuff.. we need to recompute _sum based on the new | 
|  | * period_contrib. This isn't strictly correct, but since we're | 
|  | * entirely outside of the PELT hierarchy, nobody cares if we truncate | 
|  | * _sum a little. | 
|  | */ | 
|  | se->avg.util_sum = se->avg.util_avg * divider; | 
|  |  | 
|  | se->avg.runnable_sum = se->avg.runnable_avg * divider; | 
|  |  | 
|  | se->avg.load_sum = se->avg.load_avg * divider; | 
|  | if (se_weight(se) < se->avg.load_sum) | 
|  | se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); | 
|  | else | 
|  | se->avg.load_sum = 1; | 
|  |  | 
|  | enqueue_load_avg(cfs_rq, se); | 
|  | cfs_rq->avg.util_avg += se->avg.util_avg; | 
|  | cfs_rq->avg.util_sum += se->avg.util_sum; | 
|  | cfs_rq->avg.runnable_avg += se->avg.runnable_avg; | 
|  | cfs_rq->avg.runnable_sum += se->avg.runnable_sum; | 
|  |  | 
|  | add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); | 
|  |  | 
|  | cfs_rq_util_change(cfs_rq, 0); | 
|  |  | 
|  | trace_pelt_cfs_tp(cfs_rq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * detach_entity_load_avg - detach this entity from its cfs_rq load avg | 
|  | * @cfs_rq: cfs_rq to detach from | 
|  | * @se: sched_entity to detach | 
|  | * | 
|  | * Must call update_cfs_rq_load_avg() before this, since we rely on | 
|  | * cfs_rq->avg.last_update_time being current. | 
|  | */ | 
|  | static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | dequeue_load_avg(cfs_rq, se); | 
|  | sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); | 
|  | sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); | 
|  | /* See update_cfs_rq_load_avg() */ | 
|  | cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, | 
|  | cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); | 
|  |  | 
|  | sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); | 
|  | sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); | 
|  | /* See update_cfs_rq_load_avg() */ | 
|  | cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, | 
|  | cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); | 
|  |  | 
|  | add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); | 
|  |  | 
|  | cfs_rq_util_change(cfs_rq, 0); | 
|  |  | 
|  | trace_pelt_cfs_tp(cfs_rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Optional action to be done while updating the load average | 
|  | */ | 
|  | #define UPDATE_TG	0x1 | 
|  | #define SKIP_AGE_LOAD	0x2 | 
|  | #define DO_ATTACH	0x4 | 
|  | #define DO_DETACH	0x8 | 
|  |  | 
|  | /* Update task and its cfs_rq load average */ | 
|  | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|  | { | 
|  | u64 now = cfs_rq_clock_pelt(cfs_rq); | 
|  | int decayed; | 
|  |  | 
|  | /* | 
|  | * Track task load average for carrying it to new CPU after migrated, and | 
|  | * track group sched_entity load average for task_h_load calculation in migration | 
|  | */ | 
|  | if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) | 
|  | __update_load_avg_se(now, cfs_rq, se); | 
|  |  | 
|  | decayed  = update_cfs_rq_load_avg(now, cfs_rq); | 
|  | decayed |= propagate_entity_load_avg(se); | 
|  |  | 
|  | if (!se->avg.last_update_time && (flags & DO_ATTACH)) { | 
|  |  | 
|  | /* | 
|  | * DO_ATTACH means we're here from enqueue_entity(). | 
|  | * !last_update_time means we've passed through | 
|  | * migrate_task_rq_fair() indicating we migrated. | 
|  | * | 
|  | * IOW we're enqueueing a task on a new CPU. | 
|  | */ | 
|  | attach_entity_load_avg(cfs_rq, se); | 
|  | update_tg_load_avg(cfs_rq); | 
|  |  | 
|  | } else if (flags & DO_DETACH) { | 
|  | /* | 
|  | * DO_DETACH means we're here from dequeue_entity() | 
|  | * and we are migrating task out of the CPU. | 
|  | */ | 
|  | detach_entity_load_avg(cfs_rq, se); | 
|  | update_tg_load_avg(cfs_rq); | 
|  | } else if (decayed) { | 
|  | cfs_rq_util_change(cfs_rq, 0); | 
|  |  | 
|  | if (flags & UPDATE_TG) | 
|  | update_tg_load_avg(cfs_rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Synchronize entity load avg of dequeued entity without locking | 
|  | * the previous rq. | 
|  | */ | 
|  | static void sync_entity_load_avg(struct sched_entity *se) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  | u64 last_update_time; | 
|  |  | 
|  | last_update_time = cfs_rq_last_update_time(cfs_rq); | 
|  | __update_load_avg_blocked_se(last_update_time, se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Task first catches up with cfs_rq, and then subtract | 
|  | * itself from the cfs_rq (task must be off the queue now). | 
|  | */ | 
|  | static void remove_entity_load_avg(struct sched_entity *se) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * tasks cannot exit without having gone through wake_up_new_task() -> | 
|  | * enqueue_task_fair() which will have added things to the cfs_rq, | 
|  | * so we can remove unconditionally. | 
|  | */ | 
|  |  | 
|  | sync_entity_load_avg(se); | 
|  |  | 
|  | raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); | 
|  | ++cfs_rq->removed.nr; | 
|  | cfs_rq->removed.util_avg	+= se->avg.util_avg; | 
|  | cfs_rq->removed.load_avg	+= se->avg.load_avg; | 
|  | cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg; | 
|  | raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); | 
|  | } | 
|  |  | 
|  | static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_rq->avg.runnable_avg; | 
|  | } | 
|  |  | 
|  | static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_rq->avg.load_avg; | 
|  | } | 
|  |  | 
|  | static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); | 
|  |  | 
|  | static inline unsigned long task_util(struct task_struct *p) | 
|  | { | 
|  | return READ_ONCE(p->se.avg.util_avg); | 
|  | } | 
|  |  | 
|  | static inline unsigned long task_runnable(struct task_struct *p) | 
|  | { | 
|  | return READ_ONCE(p->se.avg.runnable_avg); | 
|  | } | 
|  |  | 
|  | static inline unsigned long _task_util_est(struct task_struct *p) | 
|  | { | 
|  | return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; | 
|  | } | 
|  |  | 
|  | static inline unsigned long task_util_est(struct task_struct *p) | 
|  | { | 
|  | return max(task_util(p), _task_util_est(p)); | 
|  | } | 
|  |  | 
|  | static inline void util_est_enqueue(struct cfs_rq *cfs_rq, | 
|  | struct task_struct *p) | 
|  | { | 
|  | unsigned int enqueued; | 
|  |  | 
|  | if (!sched_feat(UTIL_EST)) | 
|  | return; | 
|  |  | 
|  | /* Update root cfs_rq's estimated utilization */ | 
|  | enqueued  = cfs_rq->avg.util_est; | 
|  | enqueued += _task_util_est(p); | 
|  | WRITE_ONCE(cfs_rq->avg.util_est, enqueued); | 
|  |  | 
|  | trace_sched_util_est_cfs_tp(cfs_rq); | 
|  | } | 
|  |  | 
|  | static inline void util_est_dequeue(struct cfs_rq *cfs_rq, | 
|  | struct task_struct *p) | 
|  | { | 
|  | unsigned int enqueued; | 
|  |  | 
|  | if (!sched_feat(UTIL_EST)) | 
|  | return; | 
|  |  | 
|  | /* Update root cfs_rq's estimated utilization */ | 
|  | enqueued  = cfs_rq->avg.util_est; | 
|  | enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); | 
|  | WRITE_ONCE(cfs_rq->avg.util_est, enqueued); | 
|  |  | 
|  | trace_sched_util_est_cfs_tp(cfs_rq); | 
|  | } | 
|  |  | 
|  | #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) | 
|  |  | 
|  | static inline void util_est_update(struct cfs_rq *cfs_rq, | 
|  | struct task_struct *p, | 
|  | bool task_sleep) | 
|  | { | 
|  | unsigned int ewma, dequeued, last_ewma_diff; | 
|  |  | 
|  | if (!sched_feat(UTIL_EST)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Skip update of task's estimated utilization when the task has not | 
|  | * yet completed an activation, e.g. being migrated. | 
|  | */ | 
|  | if (!task_sleep) | 
|  | return; | 
|  |  | 
|  | /* Get current estimate of utilization */ | 
|  | ewma = READ_ONCE(p->se.avg.util_est); | 
|  |  | 
|  | /* | 
|  | * If the PELT values haven't changed since enqueue time, | 
|  | * skip the util_est update. | 
|  | */ | 
|  | if (ewma & UTIL_AVG_UNCHANGED) | 
|  | return; | 
|  |  | 
|  | /* Get utilization at dequeue */ | 
|  | dequeued = task_util(p); | 
|  |  | 
|  | /* | 
|  | * Reset EWMA on utilization increases, the moving average is used only | 
|  | * to smooth utilization decreases. | 
|  | */ | 
|  | if (ewma <= dequeued) { | 
|  | ewma = dequeued; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Skip update of task's estimated utilization when its members are | 
|  | * already ~1% close to its last activation value. | 
|  | */ | 
|  | last_ewma_diff = ewma - dequeued; | 
|  | if (last_ewma_diff < UTIL_EST_MARGIN) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * To avoid overestimation of actual task utilization, skip updates if | 
|  | * we cannot grant there is idle time in this CPU. | 
|  | */ | 
|  | if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * To avoid underestimate of task utilization, skip updates of EWMA if | 
|  | * we cannot grant that thread got all CPU time it wanted. | 
|  | */ | 
|  | if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) | 
|  | goto done; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Update Task's estimated utilization | 
|  | * | 
|  | * When *p completes an activation we can consolidate another sample | 
|  | * of the task size. This is done by using this value to update the | 
|  | * Exponential Weighted Moving Average (EWMA): | 
|  | * | 
|  | *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1) | 
|  | *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1) | 
|  | *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1) | 
|  | *          = w * (      -last_ewma_diff           ) +     ewma(t-1) | 
|  | *          = w * (-last_ewma_diff +  ewma(t-1) / w) | 
|  | * | 
|  | * Where 'w' is the weight of new samples, which is configured to be | 
|  | * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) | 
|  | */ | 
|  | ewma <<= UTIL_EST_WEIGHT_SHIFT; | 
|  | ewma  -= last_ewma_diff; | 
|  | ewma >>= UTIL_EST_WEIGHT_SHIFT; | 
|  | done: | 
|  | ewma |= UTIL_AVG_UNCHANGED; | 
|  | WRITE_ONCE(p->se.avg.util_est, ewma); | 
|  |  | 
|  | trace_sched_util_est_se_tp(&p->se); | 
|  | } | 
|  |  | 
|  | static inline unsigned long get_actual_cpu_capacity(int cpu) | 
|  | { | 
|  | unsigned long capacity = arch_scale_cpu_capacity(cpu); | 
|  |  | 
|  | capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); | 
|  |  | 
|  | return capacity; | 
|  | } | 
|  |  | 
|  | static inline int util_fits_cpu(unsigned long util, | 
|  | unsigned long uclamp_min, | 
|  | unsigned long uclamp_max, | 
|  | int cpu) | 
|  | { | 
|  | unsigned long capacity = capacity_of(cpu); | 
|  | unsigned long capacity_orig; | 
|  | bool fits, uclamp_max_fits; | 
|  |  | 
|  | /* | 
|  | * Check if the real util fits without any uclamp boost/cap applied. | 
|  | */ | 
|  | fits = fits_capacity(util, capacity); | 
|  |  | 
|  | if (!uclamp_is_used()) | 
|  | return fits; | 
|  |  | 
|  | /* | 
|  | * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and | 
|  | * uclamp_max. We only care about capacity pressure (by using | 
|  | * capacity_of()) for comparing against the real util. | 
|  | * | 
|  | * If a task is boosted to 1024 for example, we don't want a tiny | 
|  | * pressure to skew the check whether it fits a CPU or not. | 
|  | * | 
|  | * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it | 
|  | * should fit a little cpu even if there's some pressure. | 
|  | * | 
|  | * Only exception is for HW or cpufreq pressure since it has a direct impact | 
|  | * on available OPP of the system. | 
|  | * | 
|  | * We honour it for uclamp_min only as a drop in performance level | 
|  | * could result in not getting the requested minimum performance level. | 
|  | * | 
|  | * For uclamp_max, we can tolerate a drop in performance level as the | 
|  | * goal is to cap the task. So it's okay if it's getting less. | 
|  | */ | 
|  | capacity_orig = arch_scale_cpu_capacity(cpu); | 
|  |  | 
|  | /* | 
|  | * We want to force a task to fit a cpu as implied by uclamp_max. | 
|  | * But we do have some corner cases to cater for.. | 
|  | * | 
|  | * | 
|  | *                                 C=z | 
|  | *   |                             ___ | 
|  | *   |                  C=y       |   | | 
|  | *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max | 
|  | *   |      C=x        |   |      |   | | 
|  | *   |      ___        |   |      |   | | 
|  | *   |     |   |       |   |      |   |    (util somewhere in this region) | 
|  | *   |     |   |       |   |      |   | | 
|  | *   |     |   |       |   |      |   | | 
|  | *   +---------------------------------------- | 
|  | *         CPU0        CPU1       CPU2 | 
|  | * | 
|  | *   In the above example if a task is capped to a specific performance | 
|  | *   point, y, then when: | 
|  | * | 
|  | *   * util = 80% of x then it does not fit on CPU0 and should migrate | 
|  | *     to CPU1 | 
|  | *   * util = 80% of y then it is forced to fit on CPU1 to honour | 
|  | *     uclamp_max request. | 
|  | * | 
|  | *   which is what we're enforcing here. A task always fits if | 
|  | *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, | 
|  | *   the normal upmigration rules should withhold still. | 
|  | * | 
|  | *   Only exception is when we are on max capacity, then we need to be | 
|  | *   careful not to block overutilized state. This is so because: | 
|  | * | 
|  | *     1. There's no concept of capping at max_capacity! We can't go | 
|  | *        beyond this performance level anyway. | 
|  | *     2. The system is being saturated when we're operating near | 
|  | *        max capacity, it doesn't make sense to block overutilized. | 
|  | */ | 
|  | uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); | 
|  | uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); | 
|  | fits = fits || uclamp_max_fits; | 
|  |  | 
|  | /* | 
|  | * | 
|  | *                                 C=z | 
|  | *   |                             ___       (region a, capped, util >= uclamp_max) | 
|  | *   |                  C=y       |   | | 
|  | *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max | 
|  | *   |      C=x        |   |      |   | | 
|  | *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max) | 
|  | *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min | 
|  | *   |     |   |       |   |      |   | | 
|  | *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min) | 
|  | *   +---------------------------------------- | 
|  | *         CPU0        CPU1       CPU2 | 
|  | * | 
|  | * a) If util > uclamp_max, then we're capped, we don't care about | 
|  | *    actual fitness value here. We only care if uclamp_max fits | 
|  | *    capacity without taking margin/pressure into account. | 
|  | *    See comment above. | 
|  | * | 
|  | * b) If uclamp_min <= util <= uclamp_max, then the normal | 
|  | *    fits_capacity() rules apply. Except we need to ensure that we | 
|  | *    enforce we remain within uclamp_max, see comment above. | 
|  | * | 
|  | * c) If util < uclamp_min, then we are boosted. Same as (b) but we | 
|  | *    need to take into account the boosted value fits the CPU without | 
|  | *    taking margin/pressure into account. | 
|  | * | 
|  | * Cases (a) and (b) are handled in the 'fits' variable already. We | 
|  | * just need to consider an extra check for case (c) after ensuring we | 
|  | * handle the case uclamp_min > uclamp_max. | 
|  | */ | 
|  | uclamp_min = min(uclamp_min, uclamp_max); | 
|  | if (fits && (util < uclamp_min) && | 
|  | (uclamp_min > get_actual_cpu_capacity(cpu))) | 
|  | return -1; | 
|  |  | 
|  | return fits; | 
|  | } | 
|  |  | 
|  | static inline int task_fits_cpu(struct task_struct *p, int cpu) | 
|  | { | 
|  | unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); | 
|  | unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); | 
|  | unsigned long util = task_util_est(p); | 
|  | /* | 
|  | * Return true only if the cpu fully fits the task requirements, which | 
|  | * include the utilization but also the performance hints. | 
|  | */ | 
|  | return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); | 
|  | } | 
|  |  | 
|  | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) | 
|  | { | 
|  | int cpu = cpu_of(rq); | 
|  |  | 
|  | if (!sched_asym_cpucap_active()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Affinity allows us to go somewhere higher?  Or are we on biggest | 
|  | * available CPU already? Or do we fit into this CPU ? | 
|  | */ | 
|  | if (!p || (p->nr_cpus_allowed == 1) || | 
|  | (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || | 
|  | task_fits_cpu(p, cpu)) { | 
|  |  | 
|  | rq->misfit_task_load = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that misfit_task_load will not be null even if | 
|  | * task_h_load() returns 0. | 
|  | */ | 
|  | rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_SMP */ | 
|  |  | 
|  | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return !cfs_rq->nr_running; | 
|  | } | 
|  |  | 
|  | #define UPDATE_TG	0x0 | 
|  | #define SKIP_AGE_LOAD	0x0 | 
|  | #define DO_ATTACH	0x0 | 
|  | #define DO_DETACH	0x0 | 
|  |  | 
|  | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) | 
|  | { | 
|  | cfs_rq_util_change(cfs_rq, 0); | 
|  | } | 
|  |  | 
|  | static inline void remove_entity_load_avg(struct sched_entity *se) {} | 
|  |  | 
|  | static inline void | 
|  | attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | 
|  | static inline void | 
|  | detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | 
|  |  | 
|  | static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} | 
|  |  | 
|  | static inline void | 
|  | util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} | 
|  |  | 
|  | static inline void | 
|  | util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, | 
|  | bool task_sleep) {} | 
|  | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static void | 
|  | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|  | { | 
|  | u64 vslice, vruntime = avg_vruntime(cfs_rq); | 
|  | s64 lag = 0; | 
|  |  | 
|  | if (!se->custom_slice) | 
|  | se->slice = sysctl_sched_base_slice; | 
|  | vslice = calc_delta_fair(se->slice, se); | 
|  |  | 
|  | /* | 
|  | * Due to how V is constructed as the weighted average of entities, | 
|  | * adding tasks with positive lag, or removing tasks with negative lag | 
|  | * will move 'time' backwards, this can screw around with the lag of | 
|  | * other tasks. | 
|  | * | 
|  | * EEVDF: placement strategy #1 / #2 | 
|  | */ | 
|  | if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { | 
|  | struct sched_entity *curr = cfs_rq->curr; | 
|  | unsigned long load; | 
|  |  | 
|  | lag = se->vlag; | 
|  |  | 
|  | /* | 
|  | * If we want to place a task and preserve lag, we have to | 
|  | * consider the effect of the new entity on the weighted | 
|  | * average and compensate for this, otherwise lag can quickly | 
|  | * evaporate. | 
|  | * | 
|  | * Lag is defined as: | 
|  | * | 
|  | *   lag_i = S - s_i = w_i * (V - v_i) | 
|  | * | 
|  | * To avoid the 'w_i' term all over the place, we only track | 
|  | * the virtual lag: | 
|  | * | 
|  | *   vl_i = V - v_i <=> v_i = V - vl_i | 
|  | * | 
|  | * And we take V to be the weighted average of all v: | 
|  | * | 
|  | *   V = (\Sum w_j*v_j) / W | 
|  | * | 
|  | * Where W is: \Sum w_j | 
|  | * | 
|  | * Then, the weighted average after adding an entity with lag | 
|  | * vl_i is given by: | 
|  | * | 
|  | *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) | 
|  | *      = (W*V + w_i*(V - vl_i)) / (W + w_i) | 
|  | *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i) | 
|  | *      = (V*(W + w_i) - w_i*l) / (W + w_i) | 
|  | *      = V - w_i*vl_i / (W + w_i) | 
|  | * | 
|  | * And the actual lag after adding an entity with vl_i is: | 
|  | * | 
|  | *   vl'_i = V' - v_i | 
|  | *         = V - w_i*vl_i / (W + w_i) - (V - vl_i) | 
|  | *         = vl_i - w_i*vl_i / (W + w_i) | 
|  | * | 
|  | * Which is strictly less than vl_i. So in order to preserve lag | 
|  | * we should inflate the lag before placement such that the | 
|  | * effective lag after placement comes out right. | 
|  | * | 
|  | * As such, invert the above relation for vl'_i to get the vl_i | 
|  | * we need to use such that the lag after placement is the lag | 
|  | * we computed before dequeue. | 
|  | * | 
|  | *   vl'_i = vl_i - w_i*vl_i / (W + w_i) | 
|  | *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) | 
|  | * | 
|  | *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i | 
|  | *                   = W*vl_i | 
|  | * | 
|  | *   vl_i = (W + w_i)*vl'_i / W | 
|  | */ | 
|  | load = cfs_rq->avg_load; | 
|  | if (curr && curr->on_rq) | 
|  | load += scale_load_down(curr->load.weight); | 
|  |  | 
|  | lag *= load + scale_load_down(se->load.weight); | 
|  | if (WARN_ON_ONCE(!load)) | 
|  | load = 1; | 
|  | lag = div_s64(lag, load); | 
|  | } | 
|  |  | 
|  | se->vruntime = vruntime - lag; | 
|  |  | 
|  | if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) { | 
|  | se->deadline += se->vruntime; | 
|  | se->rel_deadline = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When joining the competition; the existing tasks will be, | 
|  | * on average, halfway through their slice, as such start tasks | 
|  | * off with half a slice to ease into the competition. | 
|  | */ | 
|  | if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) | 
|  | vslice /= 2; | 
|  |  | 
|  | /* | 
|  | * EEVDF: vd_i = ve_i + r_i/w_i | 
|  | */ | 
|  | se->deadline = se->vruntime + vslice; | 
|  | } | 
|  |  | 
|  | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); | 
|  | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); | 
|  |  | 
|  | static inline bool cfs_bandwidth_used(void); | 
|  |  | 
|  | static void | 
|  | requeue_delayed_entity(struct sched_entity *se); | 
|  |  | 
|  | static void | 
|  | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|  | { | 
|  | bool curr = cfs_rq->curr == se; | 
|  |  | 
|  | /* | 
|  | * If we're the current task, we must renormalise before calling | 
|  | * update_curr(). | 
|  | */ | 
|  | if (curr) | 
|  | place_entity(cfs_rq, se, flags); | 
|  |  | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | /* | 
|  | * When enqueuing a sched_entity, we must: | 
|  | *   - Update loads to have both entity and cfs_rq synced with now. | 
|  | *   - For group_entity, update its runnable_weight to reflect the new | 
|  | *     h_nr_running of its group cfs_rq. | 
|  | *   - For group_entity, update its weight to reflect the new share of | 
|  | *     its group cfs_rq | 
|  | *   - Add its new weight to cfs_rq->load.weight | 
|  | */ | 
|  | update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); | 
|  | se_update_runnable(se); | 
|  | /* | 
|  | * XXX update_load_avg() above will have attached us to the pelt sum; | 
|  | * but update_cfs_group() here will re-adjust the weight and have to | 
|  | * undo/redo all that. Seems wasteful. | 
|  | */ | 
|  | update_cfs_group(se); | 
|  |  | 
|  | /* | 
|  | * XXX now that the entity has been re-weighted, and it's lag adjusted, | 
|  | * we can place the entity. | 
|  | */ | 
|  | if (!curr) | 
|  | place_entity(cfs_rq, se, flags); | 
|  |  | 
|  | account_entity_enqueue(cfs_rq, se); | 
|  |  | 
|  | /* Entity has migrated, no longer consider this task hot */ | 
|  | if (flags & ENQUEUE_MIGRATED) | 
|  | se->exec_start = 0; | 
|  |  | 
|  | check_schedstat_required(); | 
|  | update_stats_enqueue_fair(cfs_rq, se, flags); | 
|  | if (!curr) | 
|  | __enqueue_entity(cfs_rq, se); | 
|  | se->on_rq = 1; | 
|  |  | 
|  | if (cfs_rq->nr_running == 1) { | 
|  | check_enqueue_throttle(cfs_rq); | 
|  | if (!throttled_hierarchy(cfs_rq)) { | 
|  | list_add_leaf_cfs_rq(cfs_rq); | 
|  | } else { | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  |  | 
|  | if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) | 
|  | cfs_rq->throttled_clock = rq_clock(rq); | 
|  | if (!cfs_rq->throttled_clock_self) | 
|  | cfs_rq->throttled_clock_self = rq_clock(rq); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __clear_buddies_next(struct sched_entity *se) | 
|  | { | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  | if (cfs_rq->next != se) | 
|  | break; | 
|  |  | 
|  | cfs_rq->next = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | if (cfs_rq->next == se) | 
|  | __clear_buddies_next(se); | 
|  | } | 
|  |  | 
|  | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); | 
|  |  | 
|  | static inline void finish_delayed_dequeue_entity(struct sched_entity *se) | 
|  | { | 
|  | se->sched_delayed = 0; | 
|  | if (sched_feat(DELAY_ZERO) && se->vlag > 0) | 
|  | se->vlag = 0; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|  | { | 
|  | bool sleep = flags & DEQUEUE_SLEEP; | 
|  |  | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | if (flags & DEQUEUE_DELAYED) { | 
|  | SCHED_WARN_ON(!se->sched_delayed); | 
|  | } else { | 
|  | bool delay = sleep; | 
|  | /* | 
|  | * DELAY_DEQUEUE relies on spurious wakeups, special task | 
|  | * states must not suffer spurious wakeups, excempt them. | 
|  | */ | 
|  | if (flags & DEQUEUE_SPECIAL) | 
|  | delay = false; | 
|  |  | 
|  | SCHED_WARN_ON(delay && se->sched_delayed); | 
|  |  | 
|  | if (sched_feat(DELAY_DEQUEUE) && delay && | 
|  | !entity_eligible(cfs_rq, se)) { | 
|  | if (cfs_rq->next == se) | 
|  | cfs_rq->next = NULL; | 
|  | update_load_avg(cfs_rq, se, 0); | 
|  | se->sched_delayed = 1; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | int action = UPDATE_TG; | 
|  | if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) | 
|  | action |= DO_DETACH; | 
|  |  | 
|  | /* | 
|  | * When dequeuing a sched_entity, we must: | 
|  | *   - Update loads to have both entity and cfs_rq synced with now. | 
|  | *   - For group_entity, update its runnable_weight to reflect the new | 
|  | *     h_nr_running of its group cfs_rq. | 
|  | *   - Subtract its previous weight from cfs_rq->load.weight. | 
|  | *   - For group entity, update its weight to reflect the new share | 
|  | *     of its group cfs_rq. | 
|  | */ | 
|  | update_load_avg(cfs_rq, se, action); | 
|  | se_update_runnable(se); | 
|  |  | 
|  | update_stats_dequeue_fair(cfs_rq, se, flags); | 
|  |  | 
|  | clear_buddies(cfs_rq, se); | 
|  |  | 
|  | update_entity_lag(cfs_rq, se); | 
|  | if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { | 
|  | se->deadline -= se->vruntime; | 
|  | se->rel_deadline = 1; | 
|  | } | 
|  |  | 
|  | if (se != cfs_rq->curr) | 
|  | __dequeue_entity(cfs_rq, se); | 
|  | se->on_rq = 0; | 
|  | account_entity_dequeue(cfs_rq, se); | 
|  |  | 
|  | /* return excess runtime on last dequeue */ | 
|  | return_cfs_rq_runtime(cfs_rq); | 
|  |  | 
|  | update_cfs_group(se); | 
|  |  | 
|  | /* | 
|  | * Now advance min_vruntime if @se was the entity holding it back, | 
|  | * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be | 
|  | * put back on, and if we advance min_vruntime, we'll be placed back | 
|  | * further than we started -- i.e. we'll be penalized. | 
|  | */ | 
|  | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) | 
|  | update_min_vruntime(cfs_rq); | 
|  |  | 
|  | if (flags & DEQUEUE_DELAYED) | 
|  | finish_delayed_dequeue_entity(se); | 
|  |  | 
|  | if (cfs_rq->nr_running == 0) | 
|  | update_idle_cfs_rq_clock_pelt(cfs_rq); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | clear_buddies(cfs_rq, se); | 
|  |  | 
|  | /* 'current' is not kept within the tree. */ | 
|  | if (se->on_rq) { | 
|  | /* | 
|  | * Any task has to be enqueued before it get to execute on | 
|  | * a CPU. So account for the time it spent waiting on the | 
|  | * runqueue. | 
|  | */ | 
|  | update_stats_wait_end_fair(cfs_rq, se); | 
|  | __dequeue_entity(cfs_rq, se); | 
|  | update_load_avg(cfs_rq, se, UPDATE_TG); | 
|  | /* | 
|  | * HACK, stash a copy of deadline at the point of pick in vlag, | 
|  | * which isn't used until dequeue. | 
|  | */ | 
|  | se->vlag = se->deadline; | 
|  | } | 
|  |  | 
|  | update_stats_curr_start(cfs_rq, se); | 
|  | SCHED_WARN_ON(cfs_rq->curr); | 
|  | cfs_rq->curr = se; | 
|  |  | 
|  | /* | 
|  | * Track our maximum slice length, if the CPU's load is at | 
|  | * least twice that of our own weight (i.e. don't track it | 
|  | * when there are only lesser-weight tasks around): | 
|  | */ | 
|  | if (schedstat_enabled() && | 
|  | rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { | 
|  | struct sched_statistics *stats; | 
|  |  | 
|  | stats = __schedstats_from_se(se); | 
|  | __schedstat_set(stats->slice_max, | 
|  | max((u64)stats->slice_max, | 
|  | se->sum_exec_runtime - se->prev_sum_exec_runtime)); | 
|  | } | 
|  |  | 
|  | se->prev_sum_exec_runtime = se->sum_exec_runtime; | 
|  | } | 
|  |  | 
|  | static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); | 
|  |  | 
|  | /* | 
|  | * Pick the next process, keeping these things in mind, in this order: | 
|  | * 1) keep things fair between processes/task groups | 
|  | * 2) pick the "next" process, since someone really wants that to run | 
|  | * 3) pick the "last" process, for cache locality | 
|  | * 4) do not run the "skip" process, if something else is available | 
|  | */ | 
|  | static struct sched_entity * | 
|  | pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) | 
|  | { | 
|  | /* | 
|  | * Enabling NEXT_BUDDY will affect latency but not fairness. | 
|  | */ | 
|  | if (sched_feat(NEXT_BUDDY) && | 
|  | cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { | 
|  | /* ->next will never be delayed */ | 
|  | SCHED_WARN_ON(cfs_rq->next->sched_delayed); | 
|  | return cfs_rq->next; | 
|  | } | 
|  |  | 
|  | struct sched_entity *se = pick_eevdf(cfs_rq); | 
|  | if (se->sched_delayed) { | 
|  | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); | 
|  | SCHED_WARN_ON(se->sched_delayed); | 
|  | SCHED_WARN_ON(se->on_rq); | 
|  | return NULL; | 
|  | } | 
|  | return se; | 
|  | } | 
|  |  | 
|  | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); | 
|  |  | 
|  | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | 
|  | { | 
|  | /* | 
|  | * If still on the runqueue then deactivate_task() | 
|  | * was not called and update_curr() has to be done: | 
|  | */ | 
|  | if (prev->on_rq) | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | /* throttle cfs_rqs exceeding runtime */ | 
|  | check_cfs_rq_runtime(cfs_rq); | 
|  |  | 
|  | if (prev->on_rq) { | 
|  | update_stats_wait_start_fair(cfs_rq, prev); | 
|  | /* Put 'current' back into the tree. */ | 
|  | __enqueue_entity(cfs_rq, prev); | 
|  | /* in !on_rq case, update occurred at dequeue */ | 
|  | update_load_avg(cfs_rq, prev, 0); | 
|  | } | 
|  | SCHED_WARN_ON(cfs_rq->curr != prev); | 
|  | cfs_rq->curr = NULL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | 
|  | { | 
|  | /* | 
|  | * Update run-time statistics of the 'current'. | 
|  | */ | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | /* | 
|  | * Ensure that runnable average is periodically updated. | 
|  | */ | 
|  | update_load_avg(cfs_rq, curr, UPDATE_TG); | 
|  | update_cfs_group(curr); | 
|  |  | 
|  | #ifdef CONFIG_SCHED_HRTICK | 
|  | /* | 
|  | * queued ticks are scheduled to match the slice, so don't bother | 
|  | * validating it and just reschedule. | 
|  | */ | 
|  | if (queued) { | 
|  | resched_curr(rq_of(cfs_rq)); | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * don't let the period tick interfere with the hrtick preemption | 
|  | */ | 
|  | if (!sched_feat(DOUBLE_TICK) && | 
|  | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | 
|  | return; | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************** | 
|  | * CFS bandwidth control machinery | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  |  | 
|  | #ifdef CONFIG_JUMP_LABEL | 
|  | static struct static_key __cfs_bandwidth_used; | 
|  |  | 
|  | static inline bool cfs_bandwidth_used(void) | 
|  | { | 
|  | return static_key_false(&__cfs_bandwidth_used); | 
|  | } | 
|  |  | 
|  | void cfs_bandwidth_usage_inc(void) | 
|  | { | 
|  | static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); | 
|  | } | 
|  |  | 
|  | void cfs_bandwidth_usage_dec(void) | 
|  | { | 
|  | static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); | 
|  | } | 
|  | #else /* CONFIG_JUMP_LABEL */ | 
|  | static bool cfs_bandwidth_used(void) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void cfs_bandwidth_usage_inc(void) {} | 
|  | void cfs_bandwidth_usage_dec(void) {} | 
|  | #endif /* CONFIG_JUMP_LABEL */ | 
|  |  | 
|  | /* | 
|  | * default period for cfs group bandwidth. | 
|  | * default: 0.1s, units: nanoseconds | 
|  | */ | 
|  | static inline u64 default_cfs_period(void) | 
|  | { | 
|  | return 100000000ULL; | 
|  | } | 
|  |  | 
|  | static inline u64 sched_cfs_bandwidth_slice(void) | 
|  | { | 
|  | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Replenish runtime according to assigned quota. We use sched_clock_cpu | 
|  | * directly instead of rq->clock to avoid adding additional synchronization | 
|  | * around rq->lock. | 
|  | * | 
|  | * requires cfs_b->lock | 
|  | */ | 
|  | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) | 
|  | { | 
|  | s64 runtime; | 
|  |  | 
|  | if (unlikely(cfs_b->quota == RUNTIME_INF)) | 
|  | return; | 
|  |  | 
|  | cfs_b->runtime += cfs_b->quota; | 
|  | runtime = cfs_b->runtime_snap - cfs_b->runtime; | 
|  | if (runtime > 0) { | 
|  | cfs_b->burst_time += runtime; | 
|  | cfs_b->nr_burst++; | 
|  | } | 
|  |  | 
|  | cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); | 
|  | cfs_b->runtime_snap = cfs_b->runtime; | 
|  | } | 
|  |  | 
|  | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | 
|  | { | 
|  | return &tg->cfs_bandwidth; | 
|  | } | 
|  |  | 
|  | /* returns 0 on failure to allocate runtime */ | 
|  | static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, | 
|  | struct cfs_rq *cfs_rq, u64 target_runtime) | 
|  | { | 
|  | u64 min_amount, amount = 0; | 
|  |  | 
|  | lockdep_assert_held(&cfs_b->lock); | 
|  |  | 
|  | /* note: this is a positive sum as runtime_remaining <= 0 */ | 
|  | min_amount = target_runtime - cfs_rq->runtime_remaining; | 
|  |  | 
|  | if (cfs_b->quota == RUNTIME_INF) | 
|  | amount = min_amount; | 
|  | else { | 
|  | start_cfs_bandwidth(cfs_b); | 
|  |  | 
|  | if (cfs_b->runtime > 0) { | 
|  | amount = min(cfs_b->runtime, min_amount); | 
|  | cfs_b->runtime -= amount; | 
|  | cfs_b->idle = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | cfs_rq->runtime_remaining += amount; | 
|  |  | 
|  | return cfs_rq->runtime_remaining > 0; | 
|  | } | 
|  |  | 
|  | /* returns 0 on failure to allocate runtime */ | 
|  | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|  | int ret; | 
|  |  | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) | 
|  | { | 
|  | /* dock delta_exec before expiring quota (as it could span periods) */ | 
|  | cfs_rq->runtime_remaining -= delta_exec; | 
|  |  | 
|  | if (likely(cfs_rq->runtime_remaining > 0)) | 
|  | return; | 
|  |  | 
|  | if (cfs_rq->throttled) | 
|  | return; | 
|  | /* | 
|  | * if we're unable to extend our runtime we resched so that the active | 
|  | * hierarchy can be throttled | 
|  | */ | 
|  | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | 
|  | resched_curr(rq_of(cfs_rq)); | 
|  | } | 
|  |  | 
|  | static __always_inline | 
|  | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) | 
|  | { | 
|  | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) | 
|  | return; | 
|  |  | 
|  | __account_cfs_rq_runtime(cfs_rq, delta_exec); | 
|  | } | 
|  |  | 
|  | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_bandwidth_used() && cfs_rq->throttled; | 
|  | } | 
|  |  | 
|  | /* check whether cfs_rq, or any parent, is throttled */ | 
|  | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_bandwidth_used() && cfs_rq->throttle_count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that neither of the group entities corresponding to src_cpu or | 
|  | * dest_cpu are members of a throttled hierarchy when performing group | 
|  | * load-balance operations. | 
|  | */ | 
|  | static inline int throttled_lb_pair(struct task_group *tg, | 
|  | int src_cpu, int dest_cpu) | 
|  | { | 
|  | struct cfs_rq *src_cfs_rq, *dest_cfs_rq; | 
|  |  | 
|  | src_cfs_rq = tg->cfs_rq[src_cpu]; | 
|  | dest_cfs_rq = tg->cfs_rq[dest_cpu]; | 
|  |  | 
|  | return throttled_hierarchy(src_cfs_rq) || | 
|  | throttled_hierarchy(dest_cfs_rq); | 
|  | } | 
|  |  | 
|  | static int tg_unthrottle_up(struct task_group *tg, void *data) | 
|  | { | 
|  | struct rq *rq = data; | 
|  | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|  |  | 
|  | cfs_rq->throttle_count--; | 
|  | if (!cfs_rq->throttle_count) { | 
|  | cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - | 
|  | cfs_rq->throttled_clock_pelt; | 
|  |  | 
|  | /* Add cfs_rq with load or one or more already running entities to the list */ | 
|  | if (!cfs_rq_is_decayed(cfs_rq)) | 
|  | list_add_leaf_cfs_rq(cfs_rq); | 
|  |  | 
|  | if (cfs_rq->throttled_clock_self) { | 
|  | u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; | 
|  |  | 
|  | cfs_rq->throttled_clock_self = 0; | 
|  |  | 
|  | if (SCHED_WARN_ON((s64)delta < 0)) | 
|  | delta = 0; | 
|  |  | 
|  | cfs_rq->throttled_clock_self_time += delta; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tg_throttle_down(struct task_group *tg, void *data) | 
|  | { | 
|  | struct rq *rq = data; | 
|  | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|  |  | 
|  | /* group is entering throttled state, stop time */ | 
|  | if (!cfs_rq->throttle_count) { | 
|  | cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); | 
|  | list_del_leaf_cfs_rq(cfs_rq); | 
|  |  | 
|  | SCHED_WARN_ON(cfs_rq->throttled_clock_self); | 
|  | if (cfs_rq->nr_running) | 
|  | cfs_rq->throttled_clock_self = rq_clock(rq); | 
|  | } | 
|  | cfs_rq->throttle_count++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|  | struct sched_entity *se; | 
|  | long task_delta, idle_task_delta, dequeue = 1; | 
|  | long rq_h_nr_running = rq->cfs.h_nr_running; | 
|  |  | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | /* This will start the period timer if necessary */ | 
|  | if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { | 
|  | /* | 
|  | * We have raced with bandwidth becoming available, and if we | 
|  | * actually throttled the timer might not unthrottle us for an | 
|  | * entire period. We additionally needed to make sure that any | 
|  | * subsequent check_cfs_rq_runtime calls agree not to throttle | 
|  | * us, as we may commit to do cfs put_prev+pick_next, so we ask | 
|  | * for 1ns of runtime rather than just check cfs_b. | 
|  | */ | 
|  | dequeue = 0; | 
|  | } else { | 
|  | list_add_tail_rcu(&cfs_rq->throttled_list, | 
|  | &cfs_b->throttled_cfs_rq); | 
|  | } | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  |  | 
|  | if (!dequeue) | 
|  | return false;  /* Throttle no longer required. */ | 
|  |  | 
|  | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | 
|  |  | 
|  | /* freeze hierarchy runnable averages while throttled */ | 
|  | rcu_read_lock(); | 
|  | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | task_delta = cfs_rq->h_nr_running; | 
|  | idle_task_delta = cfs_rq->idle_h_nr_running; | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | 
|  | int flags; | 
|  |  | 
|  | /* throttled entity or throttle-on-deactivate */ | 
|  | if (!se->on_rq) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * Abuse SPECIAL to avoid delayed dequeue in this instance. | 
|  | * This avoids teaching dequeue_entities() about throttled | 
|  | * entities and keeps things relatively simple. | 
|  | */ | 
|  | flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; | 
|  | if (se->sched_delayed) | 
|  | flags |= DEQUEUE_DELAYED; | 
|  | dequeue_entity(qcfs_rq, se, flags); | 
|  |  | 
|  | if (cfs_rq_is_idle(group_cfs_rq(se))) | 
|  | idle_task_delta = cfs_rq->h_nr_running; | 
|  |  | 
|  | qcfs_rq->h_nr_running -= task_delta; | 
|  | qcfs_rq->idle_h_nr_running -= idle_task_delta; | 
|  |  | 
|  | if (qcfs_rq->load.weight) { | 
|  | /* Avoid re-evaluating load for this entity: */ | 
|  | se = parent_entity(se); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | 
|  | /* throttled entity or throttle-on-deactivate */ | 
|  | if (!se->on_rq) | 
|  | goto done; | 
|  |  | 
|  | update_load_avg(qcfs_rq, se, 0); | 
|  | se_update_runnable(se); | 
|  |  | 
|  | if (cfs_rq_is_idle(group_cfs_rq(se))) | 
|  | idle_task_delta = cfs_rq->h_nr_running; | 
|  |  | 
|  | qcfs_rq->h_nr_running -= task_delta; | 
|  | qcfs_rq->idle_h_nr_running -= idle_task_delta; | 
|  | } | 
|  |  | 
|  | /* At this point se is NULL and we are at root level*/ | 
|  | sub_nr_running(rq, task_delta); | 
|  |  | 
|  | /* Stop the fair server if throttling resulted in no runnable tasks */ | 
|  | if (rq_h_nr_running && !rq->cfs.h_nr_running) | 
|  | dl_server_stop(&rq->fair_server); | 
|  | done: | 
|  | /* | 
|  | * Note: distribution will already see us throttled via the | 
|  | * throttled-list.  rq->lock protects completion. | 
|  | */ | 
|  | cfs_rq->throttled = 1; | 
|  | SCHED_WARN_ON(cfs_rq->throttled_clock); | 
|  | if (cfs_rq->nr_running) | 
|  | cfs_rq->throttled_clock = rq_clock(rq); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|  | struct sched_entity *se; | 
|  | long task_delta, idle_task_delta; | 
|  | long rq_h_nr_running = rq->cfs.h_nr_running; | 
|  |  | 
|  | se = cfs_rq->tg->se[cpu_of(rq)]; | 
|  |  | 
|  | cfs_rq->throttled = 0; | 
|  |  | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | if (cfs_rq->throttled_clock) { | 
|  | cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; | 
|  | cfs_rq->throttled_clock = 0; | 
|  | } | 
|  | list_del_rcu(&cfs_rq->throttled_list); | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  |  | 
|  | /* update hierarchical throttle state */ | 
|  | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | 
|  |  | 
|  | if (!cfs_rq->load.weight) { | 
|  | if (!cfs_rq->on_list) | 
|  | return; | 
|  | /* | 
|  | * Nothing to run but something to decay (on_list)? | 
|  | * Complete the branch. | 
|  | */ | 
|  | for_each_sched_entity(se) { | 
|  | if (list_add_leaf_cfs_rq(cfs_rq_of(se))) | 
|  | break; | 
|  | } | 
|  | goto unthrottle_throttle; | 
|  | } | 
|  |  | 
|  | task_delta = cfs_rq->h_nr_running; | 
|  | idle_task_delta = cfs_rq->idle_h_nr_running; | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | if (se->on_rq) { | 
|  | SCHED_WARN_ON(se->sched_delayed); | 
|  | break; | 
|  | } | 
|  | enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); | 
|  |  | 
|  | if (cfs_rq_is_idle(group_cfs_rq(se))) | 
|  | idle_task_delta = cfs_rq->h_nr_running; | 
|  |  | 
|  | qcfs_rq->h_nr_running += task_delta; | 
|  | qcfs_rq->idle_h_nr_running += idle_task_delta; | 
|  |  | 
|  | /* end evaluation on encountering a throttled cfs_rq */ | 
|  | if (cfs_rq_throttled(qcfs_rq)) | 
|  | goto unthrottle_throttle; | 
|  | } | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | update_load_avg(qcfs_rq, se, UPDATE_TG); | 
|  | se_update_runnable(se); | 
|  |  | 
|  | if (cfs_rq_is_idle(group_cfs_rq(se))) | 
|  | idle_task_delta = cfs_rq->h_nr_running; | 
|  |  | 
|  | qcfs_rq->h_nr_running += task_delta; | 
|  | qcfs_rq->idle_h_nr_running += idle_task_delta; | 
|  |  | 
|  | /* end evaluation on encountering a throttled cfs_rq */ | 
|  | if (cfs_rq_throttled(qcfs_rq)) | 
|  | goto unthrottle_throttle; | 
|  | } | 
|  |  | 
|  | /* Start the fair server if un-throttling resulted in new runnable tasks */ | 
|  | if (!rq_h_nr_running && rq->cfs.h_nr_running) | 
|  | dl_server_start(&rq->fair_server); | 
|  |  | 
|  | /* At this point se is NULL and we are at root level*/ | 
|  | add_nr_running(rq, task_delta); | 
|  |  | 
|  | unthrottle_throttle: | 
|  | assert_list_leaf_cfs_rq(rq); | 
|  |  | 
|  | /* Determine whether we need to wake up potentially idle CPU: */ | 
|  | if (rq->curr == rq->idle && rq->cfs.nr_running) | 
|  | resched_curr(rq); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static void __cfsb_csd_unthrottle(void *arg) | 
|  | { | 
|  | struct cfs_rq *cursor, *tmp; | 
|  | struct rq *rq = arg; | 
|  | struct rq_flags rf; | 
|  |  | 
|  | rq_lock(rq, &rf); | 
|  |  | 
|  | /* | 
|  | * Iterating over the list can trigger several call to | 
|  | * update_rq_clock() in unthrottle_cfs_rq(). | 
|  | * Do it once and skip the potential next ones. | 
|  | */ | 
|  | update_rq_clock(rq); | 
|  | rq_clock_start_loop_update(rq); | 
|  |  | 
|  | /* | 
|  | * Since we hold rq lock we're safe from concurrent manipulation of | 
|  | * the CSD list. However, this RCU critical section annotates the | 
|  | * fact that we pair with sched_free_group_rcu(), so that we cannot | 
|  | * race with group being freed in the window between removing it | 
|  | * from the list and advancing to the next entry in the list. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  |  | 
|  | list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, | 
|  | throttled_csd_list) { | 
|  | list_del_init(&cursor->throttled_csd_list); | 
|  |  | 
|  | if (cfs_rq_throttled(cursor)) | 
|  | unthrottle_cfs_rq(cursor); | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | rq_clock_stop_loop_update(rq); | 
|  | rq_unlock(rq, &rf); | 
|  | } | 
|  |  | 
|  | static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  | bool first; | 
|  |  | 
|  | if (rq == this_rq()) { | 
|  | unthrottle_cfs_rq(cfs_rq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Already enqueued */ | 
|  | if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) | 
|  | return; | 
|  |  | 
|  | first = list_empty(&rq->cfsb_csd_list); | 
|  | list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); | 
|  | if (first) | 
|  | smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); | 
|  | } | 
|  | #else | 
|  | static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | unthrottle_cfs_rq(cfs_rq); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | lockdep_assert_rq_held(rq_of(cfs_rq)); | 
|  |  | 
|  | if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || | 
|  | cfs_rq->runtime_remaining <= 0)) | 
|  | return; | 
|  |  | 
|  | __unthrottle_cfs_rq_async(cfs_rq); | 
|  | } | 
|  |  | 
|  | static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) | 
|  | { | 
|  | int this_cpu = smp_processor_id(); | 
|  | u64 runtime, remaining = 1; | 
|  | bool throttled = false; | 
|  | struct cfs_rq *cfs_rq, *tmp; | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  | LIST_HEAD(local_unthrottle); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | 
|  | throttled_list) { | 
|  | rq = rq_of(cfs_rq); | 
|  |  | 
|  | if (!remaining) { | 
|  | throttled = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rq_lock_irqsave(rq, &rf); | 
|  | if (!cfs_rq_throttled(cfs_rq)) | 
|  | goto next; | 
|  |  | 
|  | /* Already queued for async unthrottle */ | 
|  | if (!list_empty(&cfs_rq->throttled_csd_list)) | 
|  | goto next; | 
|  |  | 
|  | /* By the above checks, this should never be true */ | 
|  | SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); | 
|  |  | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | runtime = -cfs_rq->runtime_remaining + 1; | 
|  | if (runtime > cfs_b->runtime) | 
|  | runtime = cfs_b->runtime; | 
|  | cfs_b->runtime -= runtime; | 
|  | remaining = cfs_b->runtime; | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  |  | 
|  | cfs_rq->runtime_remaining += runtime; | 
|  |  | 
|  | /* we check whether we're throttled above */ | 
|  | if (cfs_rq->runtime_remaining > 0) { | 
|  | if (cpu_of(rq) != this_cpu) { | 
|  | unthrottle_cfs_rq_async(cfs_rq); | 
|  | } else { | 
|  | /* | 
|  | * We currently only expect to be unthrottling | 
|  | * a single cfs_rq locally. | 
|  | */ | 
|  | SCHED_WARN_ON(!list_empty(&local_unthrottle)); | 
|  | list_add_tail(&cfs_rq->throttled_csd_list, | 
|  | &local_unthrottle); | 
|  | } | 
|  | } else { | 
|  | throttled = true; | 
|  | } | 
|  |  | 
|  | next: | 
|  | rq_unlock_irqrestore(rq, &rf); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, | 
|  | throttled_csd_list) { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  |  | 
|  | rq_lock_irqsave(rq, &rf); | 
|  |  | 
|  | list_del_init(&cfs_rq->throttled_csd_list); | 
|  |  | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | unthrottle_cfs_rq(cfs_rq); | 
|  |  | 
|  | rq_unlock_irqrestore(rq, &rf); | 
|  | } | 
|  | SCHED_WARN_ON(!list_empty(&local_unthrottle)); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return throttled; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Responsible for refilling a task_group's bandwidth and unthrottling its | 
|  | * cfs_rqs as appropriate. If there has been no activity within the last | 
|  | * period the timer is deactivated until scheduling resumes; cfs_b->idle is | 
|  | * used to track this state. | 
|  | */ | 
|  | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) | 
|  | { | 
|  | int throttled; | 
|  |  | 
|  | /* no need to continue the timer with no bandwidth constraint */ | 
|  | if (cfs_b->quota == RUNTIME_INF) | 
|  | goto out_deactivate; | 
|  |  | 
|  | throttled = !list_empty(&cfs_b->throttled_cfs_rq); | 
|  | cfs_b->nr_periods += overrun; | 
|  |  | 
|  | /* Refill extra burst quota even if cfs_b->idle */ | 
|  | __refill_cfs_bandwidth_runtime(cfs_b); | 
|  |  | 
|  | /* | 
|  | * idle depends on !throttled (for the case of a large deficit), and if | 
|  | * we're going inactive then everything else can be deferred | 
|  | */ | 
|  | if (cfs_b->idle && !throttled) | 
|  | goto out_deactivate; | 
|  |  | 
|  | if (!throttled) { | 
|  | /* mark as potentially idle for the upcoming period */ | 
|  | cfs_b->idle = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* account preceding periods in which throttling occurred */ | 
|  | cfs_b->nr_throttled += overrun; | 
|  |  | 
|  | /* | 
|  | * This check is repeated as we release cfs_b->lock while we unthrottle. | 
|  | */ | 
|  | while (throttled && cfs_b->runtime > 0) { | 
|  | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); | 
|  | /* we can't nest cfs_b->lock while distributing bandwidth */ | 
|  | throttled = distribute_cfs_runtime(cfs_b); | 
|  | raw_spin_lock_irqsave(&cfs_b->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While we are ensured activity in the period following an | 
|  | * unthrottle, this also covers the case in which the new bandwidth is | 
|  | * insufficient to cover the existing bandwidth deficit.  (Forcing the | 
|  | * timer to remain active while there are any throttled entities.) | 
|  | */ | 
|  | cfs_b->idle = 0; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_deactivate: | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* a cfs_rq won't donate quota below this amount */ | 
|  | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | 
|  | /* minimum remaining period time to redistribute slack quota */ | 
|  | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | 
|  | /* how long we wait to gather additional slack before distributing */ | 
|  | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | 
|  |  | 
|  | /* | 
|  | * Are we near the end of the current quota period? | 
|  | * | 
|  | * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the | 
|  | * hrtimer base being cleared by hrtimer_start. In the case of | 
|  | * migrate_hrtimers, base is never cleared, so we are fine. | 
|  | */ | 
|  | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) | 
|  | { | 
|  | struct hrtimer *refresh_timer = &cfs_b->period_timer; | 
|  | s64 remaining; | 
|  |  | 
|  | /* if the call-back is running a quota refresh is already occurring */ | 
|  | if (hrtimer_callback_running(refresh_timer)) | 
|  | return 1; | 
|  |  | 
|  | /* is a quota refresh about to occur? */ | 
|  | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | 
|  | if (remaining < (s64)min_expire) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | 
|  | { | 
|  | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | 
|  |  | 
|  | /* if there's a quota refresh soon don't bother with slack */ | 
|  | if (runtime_refresh_within(cfs_b, min_left)) | 
|  | return; | 
|  |  | 
|  | /* don't push forwards an existing deferred unthrottle */ | 
|  | if (cfs_b->slack_started) | 
|  | return; | 
|  | cfs_b->slack_started = true; | 
|  |  | 
|  | hrtimer_start(&cfs_b->slack_timer, | 
|  | ns_to_ktime(cfs_bandwidth_slack_period), | 
|  | HRTIMER_MODE_REL); | 
|  | } | 
|  |  | 
|  | /* we know any runtime found here is valid as update_curr() precedes return */ | 
|  | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|  | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | 
|  |  | 
|  | if (slack_runtime <= 0) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | if (cfs_b->quota != RUNTIME_INF) { | 
|  | cfs_b->runtime += slack_runtime; | 
|  |  | 
|  | /* we are under rq->lock, defer unthrottling using a timer */ | 
|  | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | 
|  | !list_empty(&cfs_b->throttled_cfs_rq)) | 
|  | start_cfs_slack_bandwidth(cfs_b); | 
|  | } | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  |  | 
|  | /* even if it's not valid for return we don't want to try again */ | 
|  | cfs_rq->runtime_remaining -= slack_runtime; | 
|  | } | 
|  |  | 
|  | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (!cfs_bandwidth_used()) | 
|  | return; | 
|  |  | 
|  | if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) | 
|  | return; | 
|  |  | 
|  | __return_cfs_rq_runtime(cfs_rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is done with a timer (instead of inline with bandwidth return) since | 
|  | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | 
|  | */ | 
|  | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | 
|  | { | 
|  | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* confirm we're still not at a refresh boundary */ | 
|  | raw_spin_lock_irqsave(&cfs_b->lock, flags); | 
|  | cfs_b->slack_started = false; | 
|  |  | 
|  | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { | 
|  | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) | 
|  | runtime = cfs_b->runtime; | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); | 
|  |  | 
|  | if (!runtime) | 
|  | return; | 
|  |  | 
|  | distribute_cfs_runtime(cfs_b); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a group wakes up we want to make sure that its quota is not already | 
|  | * expired/exceeded, otherwise it may be allowed to steal additional ticks of | 
|  | * runtime as update_curr() throttling can not trigger until it's on-rq. | 
|  | */ | 
|  | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (!cfs_bandwidth_used()) | 
|  | return; | 
|  |  | 
|  | /* an active group must be handled by the update_curr()->put() path */ | 
|  | if (!cfs_rq->runtime_enabled || cfs_rq->curr) | 
|  | return; | 
|  |  | 
|  | /* ensure the group is not already throttled */ | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | return; | 
|  |  | 
|  | /* update runtime allocation */ | 
|  | account_cfs_rq_runtime(cfs_rq, 0); | 
|  | if (cfs_rq->runtime_remaining <= 0) | 
|  | throttle_cfs_rq(cfs_rq); | 
|  | } | 
|  |  | 
|  | static void sync_throttle(struct task_group *tg, int cpu) | 
|  | { | 
|  | struct cfs_rq *pcfs_rq, *cfs_rq; | 
|  |  | 
|  | if (!cfs_bandwidth_used()) | 
|  | return; | 
|  |  | 
|  | if (!tg->parent) | 
|  | return; | 
|  |  | 
|  | cfs_rq = tg->cfs_rq[cpu]; | 
|  | pcfs_rq = tg->parent->cfs_rq[cpu]; | 
|  |  | 
|  | cfs_rq->throttle_count = pcfs_rq->throttle_count; | 
|  | cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); | 
|  | } | 
|  |  | 
|  | /* conditionally throttle active cfs_rq's from put_prev_entity() */ | 
|  | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (!cfs_bandwidth_used()) | 
|  | return false; | 
|  |  | 
|  | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * it's possible for a throttled entity to be forced into a running | 
|  | * state (e.g. set_curr_task), in this case we're finished. | 
|  | */ | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | return true; | 
|  |  | 
|  | return throttle_cfs_rq(cfs_rq); | 
|  | } | 
|  |  | 
|  | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) | 
|  | { | 
|  | struct cfs_bandwidth *cfs_b = | 
|  | container_of(timer, struct cfs_bandwidth, slack_timer); | 
|  |  | 
|  | do_sched_cfs_slack_timer(cfs_b); | 
|  |  | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | extern const u64 max_cfs_quota_period; | 
|  |  | 
|  | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) | 
|  | { | 
|  | struct cfs_bandwidth *cfs_b = | 
|  | container_of(timer, struct cfs_bandwidth, period_timer); | 
|  | unsigned long flags; | 
|  | int overrun; | 
|  | int idle = 0; | 
|  | int count = 0; | 
|  |  | 
|  | raw_spin_lock_irqsave(&cfs_b->lock, flags); | 
|  | for (;;) { | 
|  | overrun = hrtimer_forward_now(timer, cfs_b->period); | 
|  | if (!overrun) | 
|  | break; | 
|  |  | 
|  | idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); | 
|  |  | 
|  | if (++count > 3) { | 
|  | u64 new, old = ktime_to_ns(cfs_b->period); | 
|  |  | 
|  | /* | 
|  | * Grow period by a factor of 2 to avoid losing precision. | 
|  | * Precision loss in the quota/period ratio can cause __cfs_schedulable | 
|  | * to fail. | 
|  | */ | 
|  | new = old * 2; | 
|  | if (new < max_cfs_quota_period) { | 
|  | cfs_b->period = ns_to_ktime(new); | 
|  | cfs_b->quota *= 2; | 
|  | cfs_b->burst *= 2; | 
|  |  | 
|  | pr_warn_ratelimited( | 
|  | "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", | 
|  | smp_processor_id(), | 
|  | div_u64(new, NSEC_PER_USEC), | 
|  | div_u64(cfs_b->quota, NSEC_PER_USEC)); | 
|  | } else { | 
|  | pr_warn_ratelimited( | 
|  | "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", | 
|  | smp_processor_id(), | 
|  | div_u64(old, NSEC_PER_USEC), | 
|  | div_u64(cfs_b->quota, NSEC_PER_USEC)); | 
|  | } | 
|  |  | 
|  | /* reset count so we don't come right back in here */ | 
|  | count = 0; | 
|  | } | 
|  | } | 
|  | if (idle) | 
|  | cfs_b->period_active = 0; | 
|  | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); | 
|  |  | 
|  | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 
|  | } | 
|  |  | 
|  | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) | 
|  | { | 
|  | raw_spin_lock_init(&cfs_b->lock); | 
|  | cfs_b->runtime = 0; | 
|  | cfs_b->quota = RUNTIME_INF; | 
|  | cfs_b->period = ns_to_ktime(default_cfs_period()); | 
|  | cfs_b->burst = 0; | 
|  | cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; | 
|  |  | 
|  | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | 
|  | hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); | 
|  | cfs_b->period_timer.function = sched_cfs_period_timer; | 
|  |  | 
|  | /* Add a random offset so that timers interleave */ | 
|  | hrtimer_set_expires(&cfs_b->period_timer, | 
|  | get_random_u32_below(cfs_b->period)); | 
|  | hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | cfs_b->slack_timer.function = sched_cfs_slack_timer; | 
|  | cfs_b->slack_started = false; | 
|  | } | 
|  |  | 
|  | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | cfs_rq->runtime_enabled = 0; | 
|  | INIT_LIST_HEAD(&cfs_rq->throttled_list); | 
|  | INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); | 
|  | } | 
|  |  | 
|  | void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
|  | { | 
|  | lockdep_assert_held(&cfs_b->lock); | 
|  |  | 
|  | if (cfs_b->period_active) | 
|  | return; | 
|  |  | 
|  | cfs_b->period_active = 1; | 
|  | hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); | 
|  | hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); | 
|  | } | 
|  |  | 
|  | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
|  | { | 
|  | int __maybe_unused i; | 
|  |  | 
|  | /* init_cfs_bandwidth() was not called */ | 
|  | if (!cfs_b->throttled_cfs_rq.next) | 
|  | return; | 
|  |  | 
|  | hrtimer_cancel(&cfs_b->period_timer); | 
|  | hrtimer_cancel(&cfs_b->slack_timer); | 
|  |  | 
|  | /* | 
|  | * It is possible that we still have some cfs_rq's pending on a CSD | 
|  | * list, though this race is very rare. In order for this to occur, we | 
|  | * must have raced with the last task leaving the group while there | 
|  | * exist throttled cfs_rq(s), and the period_timer must have queued the | 
|  | * CSD item but the remote cpu has not yet processed it. To handle this, | 
|  | * we can simply flush all pending CSD work inline here. We're | 
|  | * guaranteed at this point that no additional cfs_rq of this group can | 
|  | * join a CSD list. | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  | for_each_possible_cpu(i) { | 
|  | struct rq *rq = cpu_rq(i); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (list_empty(&rq->cfsb_csd_list)) | 
|  | continue; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __cfsb_csd_unthrottle(rq); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Both these CPU hotplug callbacks race against unregister_fair_sched_group() | 
|  | * | 
|  | * The race is harmless, since modifying bandwidth settings of unhooked group | 
|  | * bits doesn't do much. | 
|  | */ | 
|  |  | 
|  | /* cpu online callback */ | 
|  | static void __maybe_unused update_runtime_enabled(struct rq *rq) | 
|  | { | 
|  | struct task_group *tg; | 
|  |  | 
|  | lockdep_assert_rq_held(rq); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(tg, &task_groups, list) { | 
|  | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
|  | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|  |  | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* cpu offline callback */ | 
|  | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) | 
|  | { | 
|  | struct task_group *tg; | 
|  |  | 
|  | lockdep_assert_rq_held(rq); | 
|  |  | 
|  | /* | 
|  | * The rq clock has already been updated in the | 
|  | * set_rq_offline(), so we should skip updating | 
|  | * the rq clock again in unthrottle_cfs_rq(). | 
|  | */ | 
|  | rq_clock_start_loop_update(rq); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(tg, &task_groups, list) { | 
|  | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|  |  | 
|  | if (!cfs_rq->runtime_enabled) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * clock_task is not advancing so we just need to make sure | 
|  | * there's some valid quota amount | 
|  | */ | 
|  | cfs_rq->runtime_remaining = 1; | 
|  | /* | 
|  | * Offline rq is schedulable till CPU is completely disabled | 
|  | * in take_cpu_down(), so we prevent new cfs throttling here. | 
|  | */ | 
|  | cfs_rq->runtime_enabled = 0; | 
|  |  | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | unthrottle_cfs_rq(cfs_rq); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | rq_clock_stop_loop_update(rq); | 
|  | } | 
|  |  | 
|  | bool cfs_task_bw_constrained(struct task_struct *p) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
|  |  | 
|  | if (!cfs_bandwidth_used()) | 
|  | return false; | 
|  |  | 
|  | if (cfs_rq->runtime_enabled || | 
|  | tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | /* called from pick_next_task_fair() */ | 
|  | static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | int cpu = cpu_of(rq); | 
|  |  | 
|  | if (!cfs_bandwidth_used()) | 
|  | return; | 
|  |  | 
|  | if (!tick_nohz_full_cpu(cpu)) | 
|  | return; | 
|  |  | 
|  | if (rq->nr_running != 1) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | *  We know there is only one task runnable and we've just picked it. The | 
|  | *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will | 
|  | *  be otherwise able to stop the tick. Just need to check if we are using | 
|  | *  bandwidth control. | 
|  | */ | 
|  | if (cfs_task_bw_constrained(p)) | 
|  | tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #else /* CONFIG_CFS_BANDWIDTH */ | 
|  |  | 
|  | static inline bool cfs_bandwidth_used(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} | 
|  | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } | 
|  | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} | 
|  | static inline void sync_throttle(struct task_group *tg, int cpu) {} | 
|  | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 
|  |  | 
|  | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int throttled_lb_pair(struct task_group *tg, | 
|  | int src_cpu, int dest_cpu) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} | 
|  | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 
|  | #endif | 
|  |  | 
|  | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | 
|  | static inline void update_runtime_enabled(struct rq *rq) {} | 
|  | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  | bool cfs_task_bw_constrained(struct task_struct *p) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  | #endif /* CONFIG_CFS_BANDWIDTH */ | 
|  |  | 
|  | #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) | 
|  | static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} | 
|  | #endif | 
|  |  | 
|  | /************************************************** | 
|  | * CFS operations on tasks: | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SCHED_HRTICK | 
|  | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | SCHED_WARN_ON(task_rq(p) != rq); | 
|  |  | 
|  | if (rq->cfs.h_nr_running > 1) { | 
|  | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 
|  | u64 slice = se->slice; | 
|  | s64 delta = slice - ran; | 
|  |  | 
|  | if (delta < 0) { | 
|  | if (task_current(rq, p)) | 
|  | resched_curr(rq); | 
|  | return; | 
|  | } | 
|  | hrtick_start(rq, delta); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called from enqueue/dequeue and updates the hrtick when the | 
|  | * current task is from our class and nr_running is low enough | 
|  | * to matter. | 
|  | */ | 
|  | static void hrtick_update(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  |  | 
|  | if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) | 
|  | return; | 
|  |  | 
|  | hrtick_start_fair(rq, curr); | 
|  | } | 
|  | #else /* !CONFIG_SCHED_HRTICK */ | 
|  | static inline void | 
|  | hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void hrtick_update(struct rq *rq) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static inline bool cpu_overutilized(int cpu) | 
|  | { | 
|  | unsigned long  rq_util_min, rq_util_max; | 
|  |  | 
|  | if (!sched_energy_enabled()) | 
|  | return false; | 
|  |  | 
|  | rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); | 
|  | rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); | 
|  |  | 
|  | /* Return true only if the utilization doesn't fit CPU's capacity */ | 
|  | return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * overutilized value make sense only if EAS is enabled | 
|  | */ | 
|  | static inline bool is_rd_overutilized(struct root_domain *rd) | 
|  | { | 
|  | return !sched_energy_enabled() || READ_ONCE(rd->overutilized); | 
|  | } | 
|  |  | 
|  | static inline void set_rd_overutilized(struct root_domain *rd, bool flag) | 
|  | { | 
|  | if (!sched_energy_enabled()) | 
|  | return; | 
|  |  | 
|  | WRITE_ONCE(rd->overutilized, flag); | 
|  | trace_sched_overutilized_tp(rd, flag); | 
|  | } | 
|  |  | 
|  | static inline void check_update_overutilized_status(struct rq *rq) | 
|  | { | 
|  | /* | 
|  | * overutilized field is used for load balancing decisions only | 
|  | * if energy aware scheduler is being used | 
|  | */ | 
|  |  | 
|  | if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) | 
|  | set_rd_overutilized(rq->rd, 1); | 
|  | } | 
|  | #else | 
|  | static inline void check_update_overutilized_status(struct rq *rq) { } | 
|  | #endif | 
|  |  | 
|  | /* Runqueue only has SCHED_IDLE tasks enqueued */ | 
|  | static int sched_idle_rq(struct rq *rq) | 
|  | { | 
|  | return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && | 
|  | rq->nr_running); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static int sched_idle_cpu(int cpu) | 
|  | { | 
|  | return sched_idle_rq(cpu_rq(cpu)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void | 
|  | requeue_delayed_entity(struct sched_entity *se) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | /* | 
|  | * se->sched_delayed should imply: se->on_rq == 1. | 
|  | * Because a delayed entity is one that is still on | 
|  | * the runqueue competing until elegibility. | 
|  | */ | 
|  | SCHED_WARN_ON(!se->sched_delayed); | 
|  | SCHED_WARN_ON(!se->on_rq); | 
|  |  | 
|  | if (sched_feat(DELAY_ZERO)) { | 
|  | update_entity_lag(cfs_rq, se); | 
|  | if (se->vlag > 0) { | 
|  | cfs_rq->nr_running--; | 
|  | if (se != cfs_rq->curr) | 
|  | __dequeue_entity(cfs_rq, se); | 
|  | se->vlag = 0; | 
|  | place_entity(cfs_rq, se, 0); | 
|  | if (se != cfs_rq->curr) | 
|  | __enqueue_entity(cfs_rq, se); | 
|  | cfs_rq->nr_running++; | 
|  | } | 
|  | } | 
|  |  | 
|  | update_load_avg(cfs_rq, se, 0); | 
|  | se->sched_delayed = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The enqueue_task method is called before nr_running is | 
|  | * increased. Here we update the fair scheduling stats and | 
|  | * then put the task into the rbtree: | 
|  | */ | 
|  | static void | 
|  | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &p->se; | 
|  | int idle_h_nr_running = task_has_idle_policy(p); | 
|  | int task_new = !(flags & ENQUEUE_WAKEUP); | 
|  | int rq_h_nr_running = rq->cfs.h_nr_running; | 
|  | u64 slice = 0; | 
|  |  | 
|  | /* | 
|  | * The code below (indirectly) updates schedutil which looks at | 
|  | * the cfs_rq utilization to select a frequency. | 
|  | * Let's add the task's estimated utilization to the cfs_rq's | 
|  | * estimated utilization, before we update schedutil. | 
|  | */ | 
|  | if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) | 
|  | util_est_enqueue(&rq->cfs, p); | 
|  |  | 
|  | if (flags & ENQUEUE_DELAYED) { | 
|  | requeue_delayed_entity(se); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If in_iowait is set, the code below may not trigger any cpufreq | 
|  | * utilization updates, so do it here explicitly with the IOWAIT flag | 
|  | * passed. | 
|  | */ | 
|  | if (p->in_iowait) | 
|  | cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | if (se->on_rq) { | 
|  | if (se->sched_delayed) | 
|  | requeue_delayed_entity(se); | 
|  | break; | 
|  | } | 
|  | cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | /* | 
|  | * Basically set the slice of group entries to the min_slice of | 
|  | * their respective cfs_rq. This ensures the group can service | 
|  | * its entities in the desired time-frame. | 
|  | */ | 
|  | if (slice) { | 
|  | se->slice = slice; | 
|  | se->custom_slice = 1; | 
|  | } | 
|  | enqueue_entity(cfs_rq, se, flags); | 
|  | slice = cfs_rq_min_slice(cfs_rq); | 
|  |  | 
|  | cfs_rq->h_nr_running++; | 
|  | cfs_rq->idle_h_nr_running += idle_h_nr_running; | 
|  |  | 
|  | if (cfs_rq_is_idle(cfs_rq)) | 
|  | idle_h_nr_running = 1; | 
|  |  | 
|  | /* end evaluation on encountering a throttled cfs_rq */ | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | goto enqueue_throttle; | 
|  |  | 
|  | flags = ENQUEUE_WAKEUP; | 
|  | } | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | update_load_avg(cfs_rq, se, UPDATE_TG); | 
|  | se_update_runnable(se); | 
|  | update_cfs_group(se); | 
|  |  | 
|  | se->slice = slice; | 
|  | slice = cfs_rq_min_slice(cfs_rq); | 
|  |  | 
|  | cfs_rq->h_nr_running++; | 
|  | cfs_rq->idle_h_nr_running += idle_h_nr_running; | 
|  |  | 
|  | if (cfs_rq_is_idle(cfs_rq)) | 
|  | idle_h_nr_running = 1; | 
|  |  | 
|  | /* end evaluation on encountering a throttled cfs_rq */ | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | goto enqueue_throttle; | 
|  | } | 
|  |  | 
|  | if (!rq_h_nr_running && rq->cfs.h_nr_running) { | 
|  | /* Account for idle runtime */ | 
|  | if (!rq->nr_running) | 
|  | dl_server_update_idle_time(rq, rq->curr); | 
|  | dl_server_start(&rq->fair_server); | 
|  | } | 
|  |  | 
|  | /* At this point se is NULL and we are at root level*/ | 
|  | add_nr_running(rq, 1); | 
|  |  | 
|  | /* | 
|  | * Since new tasks are assigned an initial util_avg equal to | 
|  | * half of the spare capacity of their CPU, tiny tasks have the | 
|  | * ability to cross the overutilized threshold, which will | 
|  | * result in the load balancer ruining all the task placement | 
|  | * done by EAS. As a way to mitigate that effect, do not account | 
|  | * for the first enqueue operation of new tasks during the | 
|  | * overutilized flag detection. | 
|  | * | 
|  | * A better way of solving this problem would be to wait for | 
|  | * the PELT signals of tasks to converge before taking them | 
|  | * into account, but that is not straightforward to implement, | 
|  | * and the following generally works well enough in practice. | 
|  | */ | 
|  | if (!task_new) | 
|  | check_update_overutilized_status(rq); | 
|  |  | 
|  | enqueue_throttle: | 
|  | assert_list_leaf_cfs_rq(rq); | 
|  |  | 
|  | hrtick_update(rq); | 
|  | } | 
|  |  | 
|  | static void set_next_buddy(struct sched_entity *se); | 
|  |  | 
|  | /* | 
|  | * Basically dequeue_task_fair(), except it can deal with dequeue_entity() | 
|  | * failing half-way through and resume the dequeue later. | 
|  | * | 
|  | * Returns: | 
|  | * -1 - dequeue delayed | 
|  | *  0 - dequeue throttled | 
|  | *  1 - dequeue complete | 
|  | */ | 
|  | static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) | 
|  | { | 
|  | bool was_sched_idle = sched_idle_rq(rq); | 
|  | int rq_h_nr_running = rq->cfs.h_nr_running; | 
|  | bool task_sleep = flags & DEQUEUE_SLEEP; | 
|  | bool task_delayed = flags & DEQUEUE_DELAYED; | 
|  | struct task_struct *p = NULL; | 
|  | int idle_h_nr_running = 0; | 
|  | int h_nr_running = 0; | 
|  | struct cfs_rq *cfs_rq; | 
|  | u64 slice = 0; | 
|  |  | 
|  | if (entity_is_task(se)) { | 
|  | p = task_of(se); | 
|  | h_nr_running = 1; | 
|  | idle_h_nr_running = task_has_idle_policy(p); | 
|  | } else { | 
|  | cfs_rq = group_cfs_rq(se); | 
|  | slice = cfs_rq_min_slice(cfs_rq); | 
|  | } | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | if (!dequeue_entity(cfs_rq, se, flags)) { | 
|  | if (p && &p->se == se) | 
|  | return -1; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | cfs_rq->h_nr_running -= h_nr_running; | 
|  | cfs_rq->idle_h_nr_running -= idle_h_nr_running; | 
|  |  | 
|  | if (cfs_rq_is_idle(cfs_rq)) | 
|  | idle_h_nr_running = h_nr_running; | 
|  |  | 
|  | /* end evaluation on encountering a throttled cfs_rq */ | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | return 0; | 
|  |  | 
|  | /* Don't dequeue parent if it has other entities besides us */ | 
|  | if (cfs_rq->load.weight) { | 
|  | slice = cfs_rq_min_slice(cfs_rq); | 
|  |  | 
|  | /* Avoid re-evaluating load for this entity: */ | 
|  | se = parent_entity(se); | 
|  | /* | 
|  | * Bias pick_next to pick a task from this cfs_rq, as | 
|  | * p is sleeping when it is within its sched_slice. | 
|  | */ | 
|  | if (task_sleep && se && !throttled_hierarchy(cfs_rq)) | 
|  | set_next_buddy(se); | 
|  | break; | 
|  | } | 
|  | flags |= DEQUEUE_SLEEP; | 
|  | flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); | 
|  | } | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | update_load_avg(cfs_rq, se, UPDATE_TG); | 
|  | se_update_runnable(se); | 
|  | update_cfs_group(se); | 
|  |  | 
|  | se->slice = slice; | 
|  | slice = cfs_rq_min_slice(cfs_rq); | 
|  |  | 
|  | cfs_rq->h_nr_running -= h_nr_running; | 
|  | cfs_rq->idle_h_nr_running -= idle_h_nr_running; | 
|  |  | 
|  | if (cfs_rq_is_idle(cfs_rq)) | 
|  | idle_h_nr_running = h_nr_running; | 
|  |  | 
|  | /* end evaluation on encountering a throttled cfs_rq */ | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | sub_nr_running(rq, h_nr_running); | 
|  |  | 
|  | if (rq_h_nr_running && !rq->cfs.h_nr_running) | 
|  | dl_server_stop(&rq->fair_server); | 
|  |  | 
|  | /* balance early to pull high priority tasks */ | 
|  | if (unlikely(!was_sched_idle && sched_idle_rq(rq))) | 
|  | rq->next_balance = jiffies; | 
|  |  | 
|  | if (p && task_delayed) { | 
|  | SCHED_WARN_ON(!task_sleep); | 
|  | SCHED_WARN_ON(p->on_rq != 1); | 
|  |  | 
|  | /* Fix-up what dequeue_task_fair() skipped */ | 
|  | hrtick_update(rq); | 
|  |  | 
|  | /* Fix-up what block_task() skipped. */ | 
|  | __block_task(rq, p); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The dequeue_task method is called before nr_running is | 
|  | * decreased. We remove the task from the rbtree and | 
|  | * update the fair scheduling stats: | 
|  | */ | 
|  | static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) | 
|  | util_est_dequeue(&rq->cfs, p); | 
|  |  | 
|  | if (dequeue_entities(rq, &p->se, flags) < 0) { | 
|  | util_est_update(&rq->cfs, p, DEQUEUE_SLEEP); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); | 
|  | hrtick_update(rq); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ | 
|  | static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); | 
|  | static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); | 
|  | static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  |  | 
|  | static struct { | 
|  | cpumask_var_t idle_cpus_mask; | 
|  | atomic_t nr_cpus; | 
|  | int has_blocked;		/* Idle CPUS has blocked load */ | 
|  | int needs_update;		/* Newly idle CPUs need their next_balance collated */ | 
|  | unsigned long next_balance;     /* in jiffy units */ | 
|  | unsigned long next_blocked;	/* Next update of blocked load in jiffies */ | 
|  | } nohz ____cacheline_aligned; | 
|  |  | 
|  | #endif /* CONFIG_NO_HZ_COMMON */ | 
|  |  | 
|  | static unsigned long cpu_load(struct rq *rq) | 
|  | { | 
|  | return cfs_rq_load_avg(&rq->cfs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpu_load_without - compute CPU load without any contributions from *p | 
|  | * @cpu: the CPU which load is requested | 
|  | * @p: the task which load should be discounted | 
|  | * | 
|  | * The load of a CPU is defined by the load of tasks currently enqueued on that | 
|  | * CPU as well as tasks which are currently sleeping after an execution on that | 
|  | * CPU. | 
|  | * | 
|  | * This method returns the load of the specified CPU by discounting the load of | 
|  | * the specified task, whenever the task is currently contributing to the CPU | 
|  | * load. | 
|  | */ | 
|  | static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | unsigned int load; | 
|  |  | 
|  | /* Task has no contribution or is new */ | 
|  | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | 
|  | return cpu_load(rq); | 
|  |  | 
|  | cfs_rq = &rq->cfs; | 
|  | load = READ_ONCE(cfs_rq->avg.load_avg); | 
|  |  | 
|  | /* Discount task's util from CPU's util */ | 
|  | lsub_positive(&load, task_h_load(p)); | 
|  |  | 
|  | return load; | 
|  | } | 
|  |  | 
|  | static unsigned long cpu_runnable(struct rq *rq) | 
|  | { | 
|  | return cfs_rq_runnable_avg(&rq->cfs); | 
|  | } | 
|  |  | 
|  | static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | unsigned int runnable; | 
|  |  | 
|  | /* Task has no contribution or is new */ | 
|  | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | 
|  | return cpu_runnable(rq); | 
|  |  | 
|  | cfs_rq = &rq->cfs; | 
|  | runnable = READ_ONCE(cfs_rq->avg.runnable_avg); | 
|  |  | 
|  | /* Discount task's runnable from CPU's runnable */ | 
|  | lsub_positive(&runnable, p->se.avg.runnable_avg); | 
|  |  | 
|  | return runnable; | 
|  | } | 
|  |  | 
|  | static unsigned long capacity_of(int cpu) | 
|  | { | 
|  | return cpu_rq(cpu)->cpu_capacity; | 
|  | } | 
|  |  | 
|  | static void record_wakee(struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * Only decay a single time; tasks that have less then 1 wakeup per | 
|  | * jiffy will not have built up many flips. | 
|  | */ | 
|  | if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { | 
|  | current->wakee_flips >>= 1; | 
|  | current->wakee_flip_decay_ts = jiffies; | 
|  | } | 
|  |  | 
|  | if (current->last_wakee != p) { | 
|  | current->last_wakee = p; | 
|  | current->wakee_flips++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Detect M:N waker/wakee relationships via a switching-frequency heuristic. | 
|  | * | 
|  | * A waker of many should wake a different task than the one last awakened | 
|  | * at a frequency roughly N times higher than one of its wakees. | 
|  | * | 
|  | * In order to determine whether we should let the load spread vs consolidating | 
|  | * to shared cache, we look for a minimum 'flip' frequency of llc_size in one | 
|  | * partner, and a factor of lls_size higher frequency in the other. | 
|  | * | 
|  | * With both conditions met, we can be relatively sure that the relationship is | 
|  | * non-monogamous, with partner count exceeding socket size. | 
|  | * | 
|  | * Waker/wakee being client/server, worker/dispatcher, interrupt source or | 
|  | * whatever is irrelevant, spread criteria is apparent partner count exceeds | 
|  | * socket size. | 
|  | */ | 
|  | static int wake_wide(struct task_struct *p) | 
|  | { | 
|  | unsigned int master = current->wakee_flips; | 
|  | unsigned int slave = p->wakee_flips; | 
|  | int factor = __this_cpu_read(sd_llc_size); | 
|  |  | 
|  | if (master < slave) | 
|  | swap(master, slave); | 
|  | if (slave < factor || master < slave * factor) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The purpose of wake_affine() is to quickly determine on which CPU we can run | 
|  | * soonest. For the purpose of speed we only consider the waking and previous | 
|  | * CPU. | 
|  | * | 
|  | * wake_affine_idle() - only considers 'now', it check if the waking CPU is | 
|  | *			cache-affine and is (or	will be) idle. | 
|  | * | 
|  | * wake_affine_weight() - considers the weight to reflect the average | 
|  | *			  scheduling latency of the CPUs. This seems to work | 
|  | *			  for the overloaded case. | 
|  | */ | 
|  | static int | 
|  | wake_affine_idle(int this_cpu, int prev_cpu, int sync) | 
|  | { | 
|  | /* | 
|  | * If this_cpu is idle, it implies the wakeup is from interrupt | 
|  | * context. Only allow the move if cache is shared. Otherwise an | 
|  | * interrupt intensive workload could force all tasks onto one | 
|  | * node depending on the IO topology or IRQ affinity settings. | 
|  | * | 
|  | * If the prev_cpu is idle and cache affine then avoid a migration. | 
|  | * There is no guarantee that the cache hot data from an interrupt | 
|  | * is more important than cache hot data on the prev_cpu and from | 
|  | * a cpufreq perspective, it's better to have higher utilisation | 
|  | * on one CPU. | 
|  | */ | 
|  | if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) | 
|  | return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; | 
|  |  | 
|  | if (sync && cpu_rq(this_cpu)->nr_running == 1) | 
|  | return this_cpu; | 
|  |  | 
|  | if (available_idle_cpu(prev_cpu)) | 
|  | return prev_cpu; | 
|  |  | 
|  | return nr_cpumask_bits; | 
|  | } | 
|  |  | 
|  | static int | 
|  | wake_affine_weight(struct sched_domain *sd, struct task_struct *p, | 
|  | int this_cpu, int prev_cpu, int sync) | 
|  | { | 
|  | s64 this_eff_load, prev_eff_load; | 
|  | unsigned long task_load; | 
|  |  | 
|  | this_eff_load = cpu_load(cpu_rq(this_cpu)); | 
|  |  | 
|  | if (sync) { | 
|  | unsigned long current_load = task_h_load(current); | 
|  |  | 
|  | if (current_load > this_eff_load) | 
|  | return this_cpu; | 
|  |  | 
|  | this_eff_load -= current_load; | 
|  | } | 
|  |  | 
|  | task_load = task_h_load(p); | 
|  |  | 
|  | this_eff_load += task_load; | 
|  | if (sched_feat(WA_BIAS)) | 
|  | this_eff_load *= 100; | 
|  | this_eff_load *= capacity_of(prev_cpu); | 
|  |  | 
|  | prev_eff_load = cpu_load(cpu_rq(prev_cpu)); | 
|  | prev_eff_load -= task_load; | 
|  | if (sched_feat(WA_BIAS)) | 
|  | prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; | 
|  | prev_eff_load *= capacity_of(this_cpu); | 
|  |  | 
|  | /* | 
|  | * If sync, adjust the weight of prev_eff_load such that if | 
|  | * prev_eff == this_eff that select_idle_sibling() will consider | 
|  | * stacking the wakee on top of the waker if no other CPU is | 
|  | * idle. | 
|  | */ | 
|  | if (sync) | 
|  | prev_eff_load += 1; | 
|  |  | 
|  | return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; | 
|  | } | 
|  |  | 
|  | static int wake_affine(struct sched_domain *sd, struct task_struct *p, | 
|  | int this_cpu, int prev_cpu, int sync) | 
|  | { | 
|  | int target = nr_cpumask_bits; | 
|  |  | 
|  | if (sched_feat(WA_IDLE)) | 
|  | target = wake_affine_idle(this_cpu, prev_cpu, sync); | 
|  |  | 
|  | if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) | 
|  | target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); | 
|  |  | 
|  | schedstat_inc(p->stats.nr_wakeups_affine_attempts); | 
|  | if (target != this_cpu) | 
|  | return prev_cpu; | 
|  |  | 
|  | schedstat_inc(sd->ttwu_move_affine); | 
|  | schedstat_inc(p->stats.nr_wakeups_affine); | 
|  | return target; | 
|  | } | 
|  |  | 
|  | static struct sched_group * | 
|  | sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); | 
|  |  | 
|  | /* | 
|  | * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. | 
|  | */ | 
|  | static int | 
|  | sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | 
|  | { | 
|  | unsigned long load, min_load = ULONG_MAX; | 
|  | unsigned int min_exit_latency = UINT_MAX; | 
|  | u64 latest_idle_timestamp = 0; | 
|  | int least_loaded_cpu = this_cpu; | 
|  | int shallowest_idle_cpu = -1; | 
|  | int i; | 
|  |  | 
|  | /* Check if we have any choice: */ | 
|  | if (group->group_weight == 1) | 
|  | return cpumask_first(sched_group_span(group)); | 
|  |  | 
|  | /* Traverse only the allowed CPUs */ | 
|  | for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { | 
|  | struct rq *rq = cpu_rq(i); | 
|  |  | 
|  | if (!sched_core_cookie_match(rq, p)) | 
|  | continue; | 
|  |  | 
|  | if (sched_idle_cpu(i)) | 
|  | return i; | 
|  |  | 
|  | if (available_idle_cpu(i)) { | 
|  | struct cpuidle_state *idle = idle_get_state(rq); | 
|  | if (idle && idle->exit_latency < min_exit_latency) { | 
|  | /* | 
|  | * We give priority to a CPU whose idle state | 
|  | * has the smallest exit latency irrespective | 
|  | * of any idle timestamp. | 
|  | */ | 
|  | min_exit_latency = idle->exit_latency; | 
|  | latest_idle_timestamp = rq->idle_stamp; | 
|  | shallowest_idle_cpu = i; | 
|  | } else if ((!idle || idle->exit_latency == min_exit_latency) && | 
|  | rq->idle_stamp > latest_idle_timestamp) { | 
|  | /* | 
|  | * If equal or no active idle state, then | 
|  | * the most recently idled CPU might have | 
|  | * a warmer cache. | 
|  | */ | 
|  | latest_idle_timestamp = rq->idle_stamp; | 
|  | shallowest_idle_cpu = i; | 
|  | } | 
|  | } else if (shallowest_idle_cpu == -1) { | 
|  | load = cpu_load(cpu_rq(i)); | 
|  | if (load < min_load) { | 
|  | min_load = load; | 
|  | least_loaded_cpu = i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; | 
|  | } | 
|  |  | 
|  | static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, | 
|  | int cpu, int prev_cpu, int sd_flag) | 
|  | { | 
|  | int new_cpu = cpu; | 
|  |  | 
|  | if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) | 
|  | return prev_cpu; | 
|  |  | 
|  | /* | 
|  | * We need task's util for cpu_util_without, sync it up to | 
|  | * prev_cpu's last_update_time. | 
|  | */ | 
|  | if (!(sd_flag & SD_BALANCE_FORK)) | 
|  | sync_entity_load_avg(&p->se); | 
|  |  | 
|  | while (sd) { | 
|  | struct sched_group *group; | 
|  | struct sched_domain *tmp; | 
|  | int weight; | 
|  |  | 
|  | if (!(sd->flags & sd_flag)) { | 
|  | sd = sd->child; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | group = sched_balance_find_dst_group(sd, p, cpu); | 
|  | if (!group) { | 
|  | sd = sd->child; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); | 
|  | if (new_cpu == cpu) { | 
|  | /* Now try balancing at a lower domain level of 'cpu': */ | 
|  | sd = sd->child; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Now try balancing at a lower domain level of 'new_cpu': */ | 
|  | cpu = new_cpu; | 
|  | weight = sd->span_weight; | 
|  | sd = NULL; | 
|  | for_each_domain(cpu, tmp) { | 
|  | if (weight <= tmp->span_weight) | 
|  | break; | 
|  | if (tmp->flags & sd_flag) | 
|  | sd = tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | return new_cpu; | 
|  | } | 
|  |  | 
|  | static inline int __select_idle_cpu(int cpu, struct task_struct *p) | 
|  | { | 
|  | if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && | 
|  | sched_cpu_cookie_match(cpu_rq(cpu), p)) | 
|  | return cpu; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | DEFINE_STATIC_KEY_FALSE(sched_smt_present); | 
|  | EXPORT_SYMBOL_GPL(sched_smt_present); | 
|  |  | 
|  | static inline void set_idle_cores(int cpu, int val) | 
|  | { | 
|  | struct sched_domain_shared *sds; | 
|  |  | 
|  | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | 
|  | if (sds) | 
|  | WRITE_ONCE(sds->has_idle_cores, val); | 
|  | } | 
|  |  | 
|  | static inline bool test_idle_cores(int cpu) | 
|  | { | 
|  | struct sched_domain_shared *sds; | 
|  |  | 
|  | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | 
|  | if (sds) | 
|  | return READ_ONCE(sds->has_idle_cores); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scans the local SMT mask to see if the entire core is idle, and records this | 
|  | * information in sd_llc_shared->has_idle_cores. | 
|  | * | 
|  | * Since SMT siblings share all cache levels, inspecting this limited remote | 
|  | * state should be fairly cheap. | 
|  | */ | 
|  | void __update_idle_core(struct rq *rq) | 
|  | { | 
|  | int core = cpu_of(rq); | 
|  | int cpu; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (test_idle_cores(core)) | 
|  | goto unlock; | 
|  |  | 
|  | for_each_cpu(cpu, cpu_smt_mask(core)) { | 
|  | if (cpu == core) | 
|  | continue; | 
|  |  | 
|  | if (!available_idle_cpu(cpu)) | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | set_idle_cores(core, 1); | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan the entire LLC domain for idle cores; this dynamically switches off if | 
|  | * there are no idle cores left in the system; tracked through | 
|  | * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. | 
|  | */ | 
|  | static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) | 
|  | { | 
|  | bool idle = true; | 
|  | int cpu; | 
|  |  | 
|  | for_each_cpu(cpu, cpu_smt_mask(core)) { | 
|  | if (!available_idle_cpu(cpu)) { | 
|  | idle = false; | 
|  | if (*idle_cpu == -1) { | 
|  | if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { | 
|  | *idle_cpu = cpu; | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) | 
|  | *idle_cpu = cpu; | 
|  | } | 
|  |  | 
|  | if (idle) | 
|  | return core; | 
|  |  | 
|  | cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan the local SMT mask for idle CPUs. | 
|  | */ | 
|  | static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { | 
|  | if (cpu == target) | 
|  | continue; | 
|  | /* | 
|  | * Check if the CPU is in the LLC scheduling domain of @target. | 
|  | * Due to isolcpus, there is no guarantee that all the siblings are in the domain. | 
|  | */ | 
|  | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) | 
|  | continue; | 
|  | if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_SCHED_SMT */ | 
|  |  | 
|  | static inline void set_idle_cores(int cpu, int val) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline bool test_idle_cores(int cpu) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) | 
|  | { | 
|  | return __select_idle_cpu(core, p); | 
|  | } | 
|  |  | 
|  | static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SCHED_SMT */ | 
|  |  | 
|  | /* | 
|  | * Scan the LLC domain for idle CPUs; this is dynamically regulated by | 
|  | * comparing the average scan cost (tracked in sd->avg_scan_cost) against the | 
|  | * average idle time for this rq (as found in rq->avg_idle). | 
|  | */ | 
|  | static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) | 
|  | { | 
|  | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); | 
|  | int i, cpu, idle_cpu = -1, nr = INT_MAX; | 
|  | struct sched_domain_shared *sd_share; | 
|  |  | 
|  | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); | 
|  |  | 
|  | if (sched_feat(SIS_UTIL)) { | 
|  | sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); | 
|  | if (sd_share) { | 
|  | /* because !--nr is the condition to stop scan */ | 
|  | nr = READ_ONCE(sd_share->nr_idle_scan) + 1; | 
|  | /* overloaded LLC is unlikely to have idle cpu/core */ | 
|  | if (nr == 1) | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (static_branch_unlikely(&sched_cluster_active)) { | 
|  | struct sched_group *sg = sd->groups; | 
|  |  | 
|  | if (sg->flags & SD_CLUSTER) { | 
|  | for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { | 
|  | if (!cpumask_test_cpu(cpu, cpus)) | 
|  | continue; | 
|  |  | 
|  | if (has_idle_core) { | 
|  | i = select_idle_core(p, cpu, cpus, &idle_cpu); | 
|  | if ((unsigned int)i < nr_cpumask_bits) | 
|  | return i; | 
|  | } else { | 
|  | if (--nr <= 0) | 
|  | return -1; | 
|  | idle_cpu = __select_idle_cpu(cpu, p); | 
|  | if ((unsigned int)idle_cpu < nr_cpumask_bits) | 
|  | return idle_cpu; | 
|  | } | 
|  | } | 
|  | cpumask_andnot(cpus, cpus, sched_group_span(sg)); | 
|  | } | 
|  | } | 
|  |  | 
|  | for_each_cpu_wrap(cpu, cpus, target + 1) { | 
|  | if (has_idle_core) { | 
|  | i = select_idle_core(p, cpu, cpus, &idle_cpu); | 
|  | if ((unsigned int)i < nr_cpumask_bits) | 
|  | return i; | 
|  |  | 
|  | } else { | 
|  | if (--nr <= 0) | 
|  | return -1; | 
|  | idle_cpu = __select_idle_cpu(cpu, p); | 
|  | if ((unsigned int)idle_cpu < nr_cpumask_bits) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (has_idle_core) | 
|  | set_idle_cores(target, false); | 
|  |  | 
|  | return idle_cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which | 
|  | * the task fits. If no CPU is big enough, but there are idle ones, try to | 
|  | * maximize capacity. | 
|  | */ | 
|  | static int | 
|  | select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) | 
|  | { | 
|  | unsigned long task_util, util_min, util_max, best_cap = 0; | 
|  | int fits, best_fits = 0; | 
|  | int cpu, best_cpu = -1; | 
|  | struct cpumask *cpus; | 
|  |  | 
|  | cpus = this_cpu_cpumask_var_ptr(select_rq_mask); | 
|  | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); | 
|  |  | 
|  | task_util = task_util_est(p); | 
|  | util_min = uclamp_eff_value(p, UCLAMP_MIN); | 
|  | util_max = uclamp_eff_value(p, UCLAMP_MAX); | 
|  |  | 
|  | for_each_cpu_wrap(cpu, cpus, target) { | 
|  | unsigned long cpu_cap = capacity_of(cpu); | 
|  |  | 
|  | if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) | 
|  | continue; | 
|  |  | 
|  | fits = util_fits_cpu(task_util, util_min, util_max, cpu); | 
|  |  | 
|  | /* This CPU fits with all requirements */ | 
|  | if (fits > 0) | 
|  | return cpu; | 
|  | /* | 
|  | * Only the min performance hint (i.e. uclamp_min) doesn't fit. | 
|  | * Look for the CPU with best capacity. | 
|  | */ | 
|  | else if (fits < 0) | 
|  | cpu_cap = get_actual_cpu_capacity(cpu); | 
|  |  | 
|  | /* | 
|  | * First, select CPU which fits better (-1 being better than 0). | 
|  | * Then, select the one with best capacity at same level. | 
|  | */ | 
|  | if ((fits < best_fits) || | 
|  | ((fits == best_fits) && (cpu_cap > best_cap))) { | 
|  | best_cap = cpu_cap; | 
|  | best_cpu = cpu; | 
|  | best_fits = fits; | 
|  | } | 
|  | } | 
|  |  | 
|  | return best_cpu; | 
|  | } | 
|  |  | 
|  | static inline bool asym_fits_cpu(unsigned long util, | 
|  | unsigned long util_min, | 
|  | unsigned long util_max, | 
|  | int cpu) | 
|  | { | 
|  | if (sched_asym_cpucap_active()) | 
|  | /* | 
|  | * Return true only if the cpu fully fits the task requirements | 
|  | * which include the utilization and the performance hints. | 
|  | */ | 
|  | return (util_fits_cpu(util, util_min, util_max, cpu) > 0); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try and locate an idle core/thread in the LLC cache domain. | 
|  | */ | 
|  | static int select_idle_sibling(struct task_struct *p, int prev, int target) | 
|  | { | 
|  | bool has_idle_core = false; | 
|  | struct sched_domain *sd; | 
|  | unsigned long task_util, util_min, util_max; | 
|  | int i, recent_used_cpu, prev_aff = -1; | 
|  |  | 
|  | /* | 
|  | * On asymmetric system, update task utilization because we will check | 
|  | * that the task fits with CPU's capacity. | 
|  | */ | 
|  | if (sched_asym_cpucap_active()) { | 
|  | sync_entity_load_avg(&p->se); | 
|  | task_util = task_util_est(p); | 
|  | util_min = uclamp_eff_value(p, UCLAMP_MIN); | 
|  | util_max = uclamp_eff_value(p, UCLAMP_MAX); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * per-cpu select_rq_mask usage | 
|  | */ | 
|  | lockdep_assert_irqs_disabled(); | 
|  |  | 
|  | if ((available_idle_cpu(target) || sched_idle_cpu(target)) && | 
|  | asym_fits_cpu(task_util, util_min, util_max, target)) | 
|  | return target; | 
|  |  | 
|  | /* | 
|  | * If the previous CPU is cache affine and idle, don't be stupid: | 
|  | */ | 
|  | if (prev != target && cpus_share_cache(prev, target) && | 
|  | (available_idle_cpu(prev) || sched_idle_cpu(prev)) && | 
|  | asym_fits_cpu(task_util, util_min, util_max, prev)) { | 
|  |  | 
|  | if (!static_branch_unlikely(&sched_cluster_active) || | 
|  | cpus_share_resources(prev, target)) | 
|  | return prev; | 
|  |  | 
|  | prev_aff = prev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow a per-cpu kthread to stack with the wakee if the | 
|  | * kworker thread and the tasks previous CPUs are the same. | 
|  | * The assumption is that the wakee queued work for the | 
|  | * per-cpu kthread that is now complete and the wakeup is | 
|  | * essentially a sync wakeup. An obvious example of this | 
|  | * pattern is IO completions. | 
|  | */ | 
|  | if (is_per_cpu_kthread(current) && | 
|  | in_task() && | 
|  | prev == smp_processor_id() && | 
|  | this_rq()->nr_running <= 1 && | 
|  | asym_fits_cpu(task_util, util_min, util_max, prev)) { | 
|  | return prev; | 
|  | } | 
|  |  | 
|  | /* Check a recently used CPU as a potential idle candidate: */ | 
|  | recent_used_cpu = p->recent_used_cpu; | 
|  | p->recent_used_cpu = prev; | 
|  | if (recent_used_cpu != prev && | 
|  | recent_used_cpu != target && | 
|  | cpus_share_cache(recent_used_cpu, target) && | 
|  | (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && | 
|  | cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && | 
|  | asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { | 
|  |  | 
|  | if (!static_branch_unlikely(&sched_cluster_active) || | 
|  | cpus_share_resources(recent_used_cpu, target)) | 
|  | return recent_used_cpu; | 
|  |  | 
|  | } else { | 
|  | recent_used_cpu = -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For asymmetric CPU capacity systems, our domain of interest is | 
|  | * sd_asym_cpucapacity rather than sd_llc. | 
|  | */ | 
|  | if (sched_asym_cpucap_active()) { | 
|  | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); | 
|  | /* | 
|  | * On an asymmetric CPU capacity system where an exclusive | 
|  | * cpuset defines a symmetric island (i.e. one unique | 
|  | * capacity_orig value through the cpuset), the key will be set | 
|  | * but the CPUs within that cpuset will not have a domain with | 
|  | * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric | 
|  | * capacity path. | 
|  | */ | 
|  | if (sd) { | 
|  | i = select_idle_capacity(p, sd, target); | 
|  | return ((unsigned)i < nr_cpumask_bits) ? i : target; | 
|  | } | 
|  | } | 
|  |  | 
|  | sd = rcu_dereference(per_cpu(sd_llc, target)); | 
|  | if (!sd) | 
|  | return target; | 
|  |  | 
|  | if (sched_smt_active()) { | 
|  | has_idle_core = test_idle_cores(target); | 
|  |  | 
|  | if (!has_idle_core && cpus_share_cache(prev, target)) { | 
|  | i = select_idle_smt(p, sd, prev); | 
|  | if ((unsigned int)i < nr_cpumask_bits) | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | i = select_idle_cpu(p, sd, has_idle_core, target); | 
|  | if ((unsigned)i < nr_cpumask_bits) | 
|  | return i; | 
|  |  | 
|  | /* | 
|  | * For cluster machines which have lower sharing cache like L2 or | 
|  | * LLC Tag, we tend to find an idle CPU in the target's cluster | 
|  | * first. But prev_cpu or recent_used_cpu may also be a good candidate, | 
|  | * use them if possible when no idle CPU found in select_idle_cpu(). | 
|  | */ | 
|  | if ((unsigned int)prev_aff < nr_cpumask_bits) | 
|  | return prev_aff; | 
|  | if ((unsigned int)recent_used_cpu < nr_cpumask_bits) | 
|  | return recent_used_cpu; | 
|  |  | 
|  | return target; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. | 
|  | * @cpu: the CPU to get the utilization for | 
|  | * @p: task for which the CPU utilization should be predicted or NULL | 
|  | * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL | 
|  | * @boost: 1 to enable boosting, otherwise 0 | 
|  | * | 
|  | * The unit of the return value must be the same as the one of CPU capacity | 
|  | * so that CPU utilization can be compared with CPU capacity. | 
|  | * | 
|  | * CPU utilization is the sum of running time of runnable tasks plus the | 
|  | * recent utilization of currently non-runnable tasks on that CPU. | 
|  | * It represents the amount of CPU capacity currently used by CFS tasks in | 
|  | * the range [0..max CPU capacity] with max CPU capacity being the CPU | 
|  | * capacity at f_max. | 
|  | * | 
|  | * The estimated CPU utilization is defined as the maximum between CPU | 
|  | * utilization and sum of the estimated utilization of the currently | 
|  | * runnable tasks on that CPU. It preserves a utilization "snapshot" of | 
|  | * previously-executed tasks, which helps better deduce how busy a CPU will | 
|  | * be when a long-sleeping task wakes up. The contribution to CPU utilization | 
|  | * of such a task would be significantly decayed at this point of time. | 
|  | * | 
|  | * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). | 
|  | * CPU contention for CFS tasks can be detected by CPU runnable > CPU | 
|  | * utilization. Boosting is implemented in cpu_util() so that internal | 
|  | * users (e.g. EAS) can use it next to external users (e.g. schedutil), | 
|  | * latter via cpu_util_cfs_boost(). | 
|  | * | 
|  | * CPU utilization can be higher than the current CPU capacity | 
|  | * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because | 
|  | * of rounding errors as well as task migrations or wakeups of new tasks. | 
|  | * CPU utilization has to be capped to fit into the [0..max CPU capacity] | 
|  | * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) | 
|  | * could be seen as over-utilized even though CPU1 has 20% of spare CPU | 
|  | * capacity. CPU utilization is allowed to overshoot current CPU capacity | 
|  | * though since this is useful for predicting the CPU capacity required | 
|  | * after task migrations (scheduler-driven DVFS). | 
|  | * | 
|  | * Return: (Boosted) (estimated) utilization for the specified CPU. | 
|  | */ | 
|  | static unsigned long | 
|  | cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; | 
|  | unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); | 
|  | unsigned long runnable; | 
|  |  | 
|  | if (boost) { | 
|  | runnable = READ_ONCE(cfs_rq->avg.runnable_avg); | 
|  | util = max(util, runnable); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its | 
|  | * contribution. If @p migrates from another CPU to @cpu add its | 
|  | * contribution. In all the other cases @cpu is not impacted by the | 
|  | * migration so its util_avg is already correct. | 
|  | */ | 
|  | if (p && task_cpu(p) == cpu && dst_cpu != cpu) | 
|  | lsub_positive(&util, task_util(p)); | 
|  | else if (p && task_cpu(p) != cpu && dst_cpu == cpu) | 
|  | util += task_util(p); | 
|  |  | 
|  | if (sched_feat(UTIL_EST)) { | 
|  | unsigned long util_est; | 
|  |  | 
|  | util_est = READ_ONCE(cfs_rq->avg.util_est); | 
|  |  | 
|  | /* | 
|  | * During wake-up @p isn't enqueued yet and doesn't contribute | 
|  | * to any cpu_rq(cpu)->cfs.avg.util_est. | 
|  | * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p | 
|  | * has been enqueued. | 
|  | * | 
|  | * During exec (@dst_cpu = -1) @p is enqueued and does | 
|  | * contribute to cpu_rq(cpu)->cfs.util_est. | 
|  | * Remove it to "simulate" cpu_util without @p's contribution. | 
|  | * | 
|  | * Despite the task_on_rq_queued(@p) check there is still a | 
|  | * small window for a possible race when an exec | 
|  | * select_task_rq_fair() races with LB's detach_task(). | 
|  | * | 
|  | *   detach_task() | 
|  | *     deactivate_task() | 
|  | *       p->on_rq = TASK_ON_RQ_MIGRATING; | 
|  | *       -------------------------------- A | 
|  | *       dequeue_task()                    \ | 
|  | *         dequeue_task_fair()              + Race Time | 
|  | *           util_est_dequeue()            / | 
|  | *       -------------------------------- B | 
|  | * | 
|  | * The additional check "current == p" is required to further | 
|  | * reduce the race window. | 
|  | */ | 
|  | if (dst_cpu == cpu) | 
|  | util_est += _task_util_est(p); | 
|  | else if (p && unlikely(task_on_rq_queued(p) || current == p)) | 
|  | lsub_positive(&util_est, _task_util_est(p)); | 
|  |  | 
|  | util = max(util, util_est); | 
|  | } | 
|  |  | 
|  | return min(util, arch_scale_cpu_capacity(cpu)); | 
|  | } | 
|  |  | 
|  | unsigned long cpu_util_cfs(int cpu) | 
|  | { | 
|  | return cpu_util(cpu, NULL, -1, 0); | 
|  | } | 
|  |  | 
|  | unsigned long cpu_util_cfs_boost(int cpu) | 
|  | { | 
|  | return cpu_util(cpu, NULL, -1, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpu_util_without: compute cpu utilization without any contributions from *p | 
|  | * @cpu: the CPU which utilization is requested | 
|  | * @p: the task which utilization should be discounted | 
|  | * | 
|  | * The utilization of a CPU is defined by the utilization of tasks currently | 
|  | * enqueued on that CPU as well as tasks which are currently sleeping after an | 
|  | * execution on that CPU. | 
|  | * | 
|  | * This method returns the utilization of the specified CPU by discounting the | 
|  | * utilization of the specified task, whenever the task is currently | 
|  | * contributing to the CPU utilization. | 
|  | */ | 
|  | static unsigned long cpu_util_without(int cpu, struct task_struct *p) | 
|  | { | 
|  | /* Task has no contribution or is new */ | 
|  | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | 
|  | p = NULL; | 
|  |  | 
|  | return cpu_util(cpu, p, -1, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function computes an effective utilization for the given CPU, to be | 
|  | * used for frequency selection given the linear relation: f = u * f_max. | 
|  | * | 
|  | * The scheduler tracks the following metrics: | 
|  | * | 
|  | *   cpu_util_{cfs,rt,dl,irq}() | 
|  | *   cpu_bw_dl() | 
|  | * | 
|  | * Where the cfs,rt and dl util numbers are tracked with the same metric and | 
|  | * synchronized windows and are thus directly comparable. | 
|  | * | 
|  | * The cfs,rt,dl utilization are the running times measured with rq->clock_task | 
|  | * which excludes things like IRQ and steal-time. These latter are then accrued | 
|  | * in the IRQ utilization. | 
|  | * | 
|  | * The DL bandwidth number OTOH is not a measured metric but a value computed | 
|  | * based on the task model parameters and gives the minimal utilization | 
|  | * required to meet deadlines. | 
|  | */ | 
|  | unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, | 
|  | unsigned long *min, | 
|  | unsigned long *max) | 
|  | { | 
|  | unsigned long util, irq, scale; | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | scale = arch_scale_cpu_capacity(cpu); | 
|  |  | 
|  | /* | 
|  | * Early check to see if IRQ/steal time saturates the CPU, can be | 
|  | * because of inaccuracies in how we track these -- see | 
|  | * update_irq_load_avg(). | 
|  | */ | 
|  | irq = cpu_util_irq(rq); | 
|  | if (unlikely(irq >= scale)) { | 
|  | if (min) | 
|  | *min = scale; | 
|  | if (max) | 
|  | *max = scale; | 
|  | return scale; | 
|  | } | 
|  |  | 
|  | if (min) { | 
|  | /* | 
|  | * The minimum utilization returns the highest level between: | 
|  | * - the computed DL bandwidth needed with the IRQ pressure which | 
|  | *   steals time to the deadline task. | 
|  | * - The minimum performance requirement for CFS and/or RT. | 
|  | */ | 
|  | *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); | 
|  |  | 
|  | /* | 
|  | * When an RT task is runnable and uclamp is not used, we must | 
|  | * ensure that the task will run at maximum compute capacity. | 
|  | */ | 
|  | if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) | 
|  | *min = max(*min, scale); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because the time spend on RT/DL tasks is visible as 'lost' time to | 
|  | * CFS tasks and we use the same metric to track the effective | 
|  | * utilization (PELT windows are synchronized) we can directly add them | 
|  | * to obtain the CPU's actual utilization. | 
|  | */ | 
|  | util = util_cfs + cpu_util_rt(rq); | 
|  | util += cpu_util_dl(rq); | 
|  |  | 
|  | /* | 
|  | * The maximum hint is a soft bandwidth requirement, which can be lower | 
|  | * than the actual utilization because of uclamp_max requirements. | 
|  | */ | 
|  | if (max) | 
|  | *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); | 
|  |  | 
|  | if (util >= scale) | 
|  | return scale; | 
|  |  | 
|  | /* | 
|  | * There is still idle time; further improve the number by using the | 
|  | * IRQ metric. Because IRQ/steal time is hidden from the task clock we | 
|  | * need to scale the task numbers: | 
|  | * | 
|  | *              max - irq | 
|  | *   U' = irq + --------- * U | 
|  | *                 max | 
|  | */ | 
|  | util = scale_irq_capacity(util, irq, scale); | 
|  | util += irq; | 
|  |  | 
|  | return min(scale, util); | 
|  | } | 
|  |  | 
|  | unsigned long sched_cpu_util(int cpu) | 
|  | { | 
|  | return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * energy_env - Utilization landscape for energy estimation. | 
|  | * @task_busy_time: Utilization contribution by the task for which we test the | 
|  | *                  placement. Given by eenv_task_busy_time(). | 
|  | * @pd_busy_time:   Utilization of the whole perf domain without the task | 
|  | *                  contribution. Given by eenv_pd_busy_time(). | 
|  | * @cpu_cap:        Maximum CPU capacity for the perf domain. | 
|  | * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap). | 
|  | */ | 
|  | struct energy_env { | 
|  | unsigned long task_busy_time; | 
|  | unsigned long pd_busy_time; | 
|  | unsigned long cpu_cap; | 
|  | unsigned long pd_cap; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Compute the task busy time for compute_energy(). This time cannot be | 
|  | * injected directly into effective_cpu_util() because of the IRQ scaling. | 
|  | * The latter only makes sense with the most recent CPUs where the task has | 
|  | * run. | 
|  | */ | 
|  | static inline void eenv_task_busy_time(struct energy_env *eenv, | 
|  | struct task_struct *p, int prev_cpu) | 
|  | { | 
|  | unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); | 
|  | unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); | 
|  |  | 
|  | if (unlikely(irq >= max_cap)) | 
|  | busy_time = max_cap; | 
|  | else | 
|  | busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); | 
|  |  | 
|  | eenv->task_busy_time = busy_time; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the perf_domain (PD) busy time for compute_energy(). Based on the | 
|  | * utilization for each @pd_cpus, it however doesn't take into account | 
|  | * clamping since the ratio (utilization / cpu_capacity) is already enough to | 
|  | * scale the EM reported power consumption at the (eventually clamped) | 
|  | * cpu_capacity. | 
|  | * | 
|  | * The contribution of the task @p for which we want to estimate the | 
|  | * energy cost is removed (by cpu_util()) and must be calculated | 
|  | * separately (see eenv_task_busy_time). This ensures: | 
|  | * | 
|  | *   - A stable PD utilization, no matter which CPU of that PD we want to place | 
|  | *     the task on. | 
|  | * | 
|  | *   - A fair comparison between CPUs as the task contribution (task_util()) | 
|  | *     will always be the same no matter which CPU utilization we rely on | 
|  | *     (util_avg or util_est). | 
|  | * | 
|  | * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't | 
|  | * exceed @eenv->pd_cap. | 
|  | */ | 
|  | static inline void eenv_pd_busy_time(struct energy_env *eenv, | 
|  | struct cpumask *pd_cpus, | 
|  | struct task_struct *p) | 
|  | { | 
|  | unsigned long busy_time = 0; | 
|  | int cpu; | 
|  |  | 
|  | for_each_cpu(cpu, pd_cpus) { | 
|  | unsigned long util = cpu_util(cpu, p, -1, 0); | 
|  |  | 
|  | busy_time += effective_cpu_util(cpu, util, NULL, NULL); | 
|  | } | 
|  |  | 
|  | eenv->pd_busy_time = min(eenv->pd_cap, busy_time); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the maximum utilization for compute_energy() when the task @p | 
|  | * is placed on the cpu @dst_cpu. | 
|  | * | 
|  | * Returns the maximum utilization among @eenv->cpus. This utilization can't | 
|  | * exceed @eenv->cpu_cap. | 
|  | */ | 
|  | static inline unsigned long | 
|  | eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, | 
|  | struct task_struct *p, int dst_cpu) | 
|  | { | 
|  | unsigned long max_util = 0; | 
|  | int cpu; | 
|  |  | 
|  | for_each_cpu(cpu, pd_cpus) { | 
|  | struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; | 
|  | unsigned long util = cpu_util(cpu, p, dst_cpu, 1); | 
|  | unsigned long eff_util, min, max; | 
|  |  | 
|  | /* | 
|  | * Performance domain frequency: utilization clamping | 
|  | * must be considered since it affects the selection | 
|  | * of the performance domain frequency. | 
|  | * NOTE: in case RT tasks are running, by default the min | 
|  | * utilization can be max OPP. | 
|  | */ | 
|  | eff_util = effective_cpu_util(cpu, util, &min, &max); | 
|  |  | 
|  | /* Task's uclamp can modify min and max value */ | 
|  | if (tsk && uclamp_is_used()) { | 
|  | min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); | 
|  |  | 
|  | /* | 
|  | * If there is no active max uclamp constraint, | 
|  | * directly use task's one, otherwise keep max. | 
|  | */ | 
|  | if (uclamp_rq_is_idle(cpu_rq(cpu))) | 
|  | max = uclamp_eff_value(p, UCLAMP_MAX); | 
|  | else | 
|  | max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); | 
|  | } | 
|  |  | 
|  | eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); | 
|  | max_util = max(max_util, eff_util); | 
|  | } | 
|  |  | 
|  | return min(max_util, eenv->cpu_cap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute_energy(): Use the Energy Model to estimate the energy that @pd would | 
|  | * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task | 
|  | * contribution is ignored. | 
|  | */ | 
|  | static inline unsigned long | 
|  | compute_energy(struct energy_env *eenv, struct perf_domain *pd, | 
|  | struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) | 
|  | { | 
|  | unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); | 
|  | unsigned long busy_time = eenv->pd_busy_time; | 
|  | unsigned long energy; | 
|  |  | 
|  | if (dst_cpu >= 0) | 
|  | busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); | 
|  |  | 
|  | energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); | 
|  |  | 
|  | trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); | 
|  |  | 
|  | return energy; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the | 
|  | * waking task. find_energy_efficient_cpu() looks for the CPU with maximum | 
|  | * spare capacity in each performance domain and uses it as a potential | 
|  | * candidate to execute the task. Then, it uses the Energy Model to figure | 
|  | * out which of the CPU candidates is the most energy-efficient. | 
|  | * | 
|  | * The rationale for this heuristic is as follows. In a performance domain, | 
|  | * all the most energy efficient CPU candidates (according to the Energy | 
|  | * Model) are those for which we'll request a low frequency. When there are | 
|  | * several CPUs for which the frequency request will be the same, we don't | 
|  | * have enough data to break the tie between them, because the Energy Model | 
|  | * only includes active power costs. With this model, if we assume that | 
|  | * frequency requests follow utilization (e.g. using schedutil), the CPU with | 
|  | * the maximum spare capacity in a performance domain is guaranteed to be among | 
|  | * the best candidates of the performance domain. | 
|  | * | 
|  | * In practice, it could be preferable from an energy standpoint to pack | 
|  | * small tasks on a CPU in order to let other CPUs go in deeper idle states, | 
|  | * but that could also hurt our chances to go cluster idle, and we have no | 
|  | * ways to tell with the current Energy Model if this is actually a good | 
|  | * idea or not. So, find_energy_efficient_cpu() basically favors | 
|  | * cluster-packing, and spreading inside a cluster. That should at least be | 
|  | * a good thing for latency, and this is consistent with the idea that most | 
|  | * of the energy savings of EAS come from the asymmetry of the system, and | 
|  | * not so much from breaking the tie between identical CPUs. That's also the | 
|  | * reason why EAS is enabled in the topology code only for systems where | 
|  | * SD_ASYM_CPUCAPACITY is set. | 
|  | * | 
|  | * NOTE: Forkees are not accepted in the energy-aware wake-up path because | 
|  | * they don't have any useful utilization data yet and it's not possible to | 
|  | * forecast their impact on energy consumption. Consequently, they will be | 
|  | * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out | 
|  | * to be energy-inefficient in some use-cases. The alternative would be to | 
|  | * bias new tasks towards specific types of CPUs first, or to try to infer | 
|  | * their util_avg from the parent task, but those heuristics could hurt | 
|  | * other use-cases too. So, until someone finds a better way to solve this, | 
|  | * let's keep things simple by re-using the existing slow path. | 
|  | */ | 
|  | static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) | 
|  | { | 
|  | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); | 
|  | unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; | 
|  | unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; | 
|  | unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; | 
|  | struct root_domain *rd = this_rq()->rd; | 
|  | int cpu, best_energy_cpu, target = -1; | 
|  | int prev_fits = -1, best_fits = -1; | 
|  | unsigned long best_actual_cap = 0; | 
|  | unsigned long prev_actual_cap = 0; | 
|  | struct sched_domain *sd; | 
|  | struct perf_domain *pd; | 
|  | struct energy_env eenv; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | pd = rcu_dereference(rd->pd); | 
|  | if (!pd) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * Energy-aware wake-up happens on the lowest sched_domain starting | 
|  | * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. | 
|  | */ | 
|  | sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); | 
|  | while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) | 
|  | sd = sd->parent; | 
|  | if (!sd) | 
|  | goto unlock; | 
|  |  | 
|  | target = prev_cpu; | 
|  |  | 
|  | sync_entity_load_avg(&p->se); | 
|  | if (!task_util_est(p) && p_util_min == 0) | 
|  | goto unlock; | 
|  |  | 
|  | eenv_task_busy_time(&eenv, p, prev_cpu); | 
|  |  | 
|  | for (; pd; pd = pd->next) { | 
|  | unsigned long util_min = p_util_min, util_max = p_util_max; | 
|  | unsigned long cpu_cap, cpu_actual_cap, util; | 
|  | long prev_spare_cap = -1, max_spare_cap = -1; | 
|  | unsigned long rq_util_min, rq_util_max; | 
|  | unsigned long cur_delta, base_energy; | 
|  | int max_spare_cap_cpu = -1; | 
|  | int fits, max_fits = -1; | 
|  |  | 
|  | cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); | 
|  |  | 
|  | if (cpumask_empty(cpus)) | 
|  | continue; | 
|  |  | 
|  | /* Account external pressure for the energy estimation */ | 
|  | cpu = cpumask_first(cpus); | 
|  | cpu_actual_cap = get_actual_cpu_capacity(cpu); | 
|  |  | 
|  | eenv.cpu_cap = cpu_actual_cap; | 
|  | eenv.pd_cap = 0; | 
|  |  | 
|  | for_each_cpu(cpu, cpus) { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | eenv.pd_cap += cpu_actual_cap; | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) | 
|  | continue; | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, p->cpus_ptr)) | 
|  | continue; | 
|  |  | 
|  | util = cpu_util(cpu, p, cpu, 0); | 
|  | cpu_cap = capacity_of(cpu); | 
|  |  | 
|  | /* | 
|  | * Skip CPUs that cannot satisfy the capacity request. | 
|  | * IOW, placing the task there would make the CPU | 
|  | * overutilized. Take uclamp into account to see how | 
|  | * much capacity we can get out of the CPU; this is | 
|  | * aligned with sched_cpu_util(). | 
|  | */ | 
|  | if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { | 
|  | /* | 
|  | * Open code uclamp_rq_util_with() except for | 
|  | * the clamp() part. I.e.: apply max aggregation | 
|  | * only. util_fits_cpu() logic requires to | 
|  | * operate on non clamped util but must use the | 
|  | * max-aggregated uclamp_{min, max}. | 
|  | */ | 
|  | rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); | 
|  | rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); | 
|  |  | 
|  | util_min = max(rq_util_min, p_util_min); | 
|  | util_max = max(rq_util_max, p_util_max); | 
|  | } | 
|  |  | 
|  | fits = util_fits_cpu(util, util_min, util_max, cpu); | 
|  | if (!fits) | 
|  | continue; | 
|  |  | 
|  | lsub_positive(&cpu_cap, util); | 
|  |  | 
|  | if (cpu == prev_cpu) { | 
|  | /* Always use prev_cpu as a candidate. */ | 
|  | prev_spare_cap = cpu_cap; | 
|  | prev_fits = fits; | 
|  | } else if ((fits > max_fits) || | 
|  | ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { | 
|  | /* | 
|  | * Find the CPU with the maximum spare capacity | 
|  | * among the remaining CPUs in the performance | 
|  | * domain. | 
|  | */ | 
|  | max_spare_cap = cpu_cap; | 
|  | max_spare_cap_cpu = cpu; | 
|  | max_fits = fits; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) | 
|  | continue; | 
|  |  | 
|  | eenv_pd_busy_time(&eenv, cpus, p); | 
|  | /* Compute the 'base' energy of the pd, without @p */ | 
|  | base_energy = compute_energy(&eenv, pd, cpus, p, -1); | 
|  |  | 
|  | /* Evaluate the energy impact of using prev_cpu. */ | 
|  | if (prev_spare_cap > -1) { | 
|  | prev_delta = compute_energy(&eenv, pd, cpus, p, | 
|  | prev_cpu); | 
|  | /* CPU utilization has changed */ | 
|  | if (prev_delta < base_energy) | 
|  | goto unlock; | 
|  | prev_delta -= base_energy; | 
|  | prev_actual_cap = cpu_actual_cap; | 
|  | best_delta = min(best_delta, prev_delta); | 
|  | } | 
|  |  | 
|  | /* Evaluate the energy impact of using max_spare_cap_cpu. */ | 
|  | if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { | 
|  | /* Current best energy cpu fits better */ | 
|  | if (max_fits < best_fits) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Both don't fit performance hint (i.e. uclamp_min) | 
|  | * but best energy cpu has better capacity. | 
|  | */ | 
|  | if ((max_fits < 0) && | 
|  | (cpu_actual_cap <= best_actual_cap)) | 
|  | continue; | 
|  |  | 
|  | cur_delta = compute_energy(&eenv, pd, cpus, p, | 
|  | max_spare_cap_cpu); | 
|  | /* CPU utilization has changed */ | 
|  | if (cur_delta < base_energy) | 
|  | goto unlock; | 
|  | cur_delta -= base_energy; | 
|  |  | 
|  | /* | 
|  | * Both fit for the task but best energy cpu has lower | 
|  | * energy impact. | 
|  | */ | 
|  | if ((max_fits > 0) && (best_fits > 0) && | 
|  | (cur_delta >= best_delta)) | 
|  | continue; | 
|  |  | 
|  | best_delta = cur_delta; | 
|  | best_energy_cpu = max_spare_cap_cpu; | 
|  | best_fits = max_fits; | 
|  | best_actual_cap = cpu_actual_cap; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if ((best_fits > prev_fits) || | 
|  | ((best_fits > 0) && (best_delta < prev_delta)) || | 
|  | ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) | 
|  | target = best_energy_cpu; | 
|  |  | 
|  | return target; | 
|  |  | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return target; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * select_task_rq_fair: Select target runqueue for the waking task in domains | 
|  | * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, | 
|  | * SD_BALANCE_FORK, or SD_BALANCE_EXEC. | 
|  | * | 
|  | * Balances load by selecting the idlest CPU in the idlest group, or under | 
|  | * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. | 
|  | * | 
|  | * Returns the target CPU number. | 
|  | */ | 
|  | static int | 
|  | select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) | 
|  | { | 
|  | int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); | 
|  | struct sched_domain *tmp, *sd = NULL; | 
|  | int cpu = smp_processor_id(); | 
|  | int new_cpu = prev_cpu; | 
|  | int want_affine = 0; | 
|  | /* SD_flags and WF_flags share the first nibble */ | 
|  | int sd_flag = wake_flags & 0xF; | 
|  |  | 
|  | /* | 
|  | * required for stable ->cpus_allowed | 
|  | */ | 
|  | lockdep_assert_held(&p->pi_lock); | 
|  | if (wake_flags & WF_TTWU) { | 
|  | record_wakee(p); | 
|  |  | 
|  | if ((wake_flags & WF_CURRENT_CPU) && | 
|  | cpumask_test_cpu(cpu, p->cpus_ptr)) | 
|  | return cpu; | 
|  |  | 
|  | if (!is_rd_overutilized(this_rq()->rd)) { | 
|  | new_cpu = find_energy_efficient_cpu(p, prev_cpu); | 
|  | if (new_cpu >= 0) | 
|  | return new_cpu; | 
|  | new_cpu = prev_cpu; | 
|  | } | 
|  |  | 
|  | want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_domain(cpu, tmp) { | 
|  | /* | 
|  | * If both 'cpu' and 'prev_cpu' are part of this domain, | 
|  | * cpu is a valid SD_WAKE_AFFINE target. | 
|  | */ | 
|  | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | 
|  | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | 
|  | if (cpu != prev_cpu) | 
|  | new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); | 
|  |  | 
|  | sd = NULL; /* Prefer wake_affine over balance flags */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Usually only true for WF_EXEC and WF_FORK, as sched_domains | 
|  | * usually do not have SD_BALANCE_WAKE set. That means wakeup | 
|  | * will usually go to the fast path. | 
|  | */ | 
|  | if (tmp->flags & sd_flag) | 
|  | sd = tmp; | 
|  | else if (!want_affine) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(sd)) { | 
|  | /* Slow path */ | 
|  | new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); | 
|  | } else if (wake_flags & WF_TTWU) { /* XXX always ? */ | 
|  | /* Fast path */ | 
|  | new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return new_cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called immediately before a task is migrated to a new CPU; task_cpu(p) and | 
|  | * cfs_rq_of(p) references at time of call are still valid and identify the | 
|  | * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. | 
|  | */ | 
|  | static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | if (!task_on_rq_migrating(p)) { | 
|  | remove_entity_load_avg(se); | 
|  |  | 
|  | /* | 
|  | * Here, the task's PELT values have been updated according to | 
|  | * the current rq's clock. But if that clock hasn't been | 
|  | * updated in a while, a substantial idle time will be missed, | 
|  | * leading to an inflation after wake-up on the new rq. | 
|  | * | 
|  | * Estimate the missing time from the cfs_rq last_update_time | 
|  | * and update sched_avg to improve the PELT continuity after | 
|  | * migration. | 
|  | */ | 
|  | migrate_se_pelt_lag(se); | 
|  | } | 
|  |  | 
|  | /* Tell new CPU we are migrated */ | 
|  | se->avg.last_update_time = 0; | 
|  |  | 
|  | update_scan_period(p, new_cpu); | 
|  | } | 
|  |  | 
|  | static void task_dead_fair(struct task_struct *p) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | if (se->sched_delayed) { | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = task_rq_lock(p, &rf); | 
|  | if (se->sched_delayed) { | 
|  | update_rq_clock(rq); | 
|  | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); | 
|  | } | 
|  | task_rq_unlock(rq, p, &rf); | 
|  | } | 
|  |  | 
|  | remove_entity_load_avg(se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the max capacity the task is allowed to run at for misfit detection. | 
|  | */ | 
|  | static void set_task_max_allowed_capacity(struct task_struct *p) | 
|  | { | 
|  | struct asym_cap_data *entry; | 
|  |  | 
|  | if (!sched_asym_cpucap_active()) | 
|  | return; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(entry, &asym_cap_list, link) { | 
|  | cpumask_t *cpumask; | 
|  |  | 
|  | cpumask = cpu_capacity_span(entry); | 
|  | if (!cpumask_intersects(p->cpus_ptr, cpumask)) | 
|  | continue; | 
|  |  | 
|  | p->max_allowed_capacity = entry->capacity; | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) | 
|  | { | 
|  | set_cpus_allowed_common(p, ctx); | 
|  | set_task_max_allowed_capacity(p); | 
|  | } | 
|  |  | 
|  | static int | 
|  | balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | 
|  | { | 
|  | if (sched_fair_runnable(rq)) | 
|  | return 1; | 
|  |  | 
|  | return sched_balance_newidle(rq, rf) != 0; | 
|  | } | 
|  | #else | 
|  | static inline void set_task_max_allowed_capacity(struct task_struct *p) {} | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static void set_next_buddy(struct sched_entity *se) | 
|  | { | 
|  | for_each_sched_entity(se) { | 
|  | if (SCHED_WARN_ON(!se->on_rq)) | 
|  | return; | 
|  | if (se_is_idle(se)) | 
|  | return; | 
|  | cfs_rq_of(se)->next = se; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preempt the current task with a newly woken task if needed: | 
|  | */ | 
|  | static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | struct sched_entity *se = &curr->se, *pse = &p->se; | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
|  | int cse_is_idle, pse_is_idle; | 
|  |  | 
|  | if (unlikely(se == pse)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * This is possible from callers such as attach_tasks(), in which we | 
|  | * unconditionally wakeup_preempt() after an enqueue (which may have | 
|  | * lead to a throttle).  This both saves work and prevents false | 
|  | * next-buddy nomination below. | 
|  | */ | 
|  | if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | 
|  | return; | 
|  |  | 
|  | if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { | 
|  | set_next_buddy(pse); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can come here with TIF_NEED_RESCHED already set from new task | 
|  | * wake up path. | 
|  | * | 
|  | * Note: this also catches the edge-case of curr being in a throttled | 
|  | * group (e.g. via set_curr_task), since update_curr() (in the | 
|  | * enqueue of curr) will have resulted in resched being set.  This | 
|  | * prevents us from potentially nominating it as a false LAST_BUDDY | 
|  | * below. | 
|  | */ | 
|  | if (test_tsk_need_resched(curr)) | 
|  | return; | 
|  |  | 
|  | if (!sched_feat(WAKEUP_PREEMPTION)) | 
|  | return; | 
|  |  | 
|  | find_matching_se(&se, &pse); | 
|  | WARN_ON_ONCE(!pse); | 
|  |  | 
|  | cse_is_idle = se_is_idle(se); | 
|  | pse_is_idle = se_is_idle(pse); | 
|  |  | 
|  | /* | 
|  | * Preempt an idle entity in favor of a non-idle entity (and don't preempt | 
|  | * in the inverse case). | 
|  | */ | 
|  | if (cse_is_idle && !pse_is_idle) | 
|  | goto preempt; | 
|  | if (cse_is_idle != pse_is_idle) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * BATCH and IDLE tasks do not preempt others. | 
|  | */ | 
|  | if (unlikely(!normal_policy(p->policy))) | 
|  | return; | 
|  |  | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | update_curr(cfs_rq); | 
|  | /* | 
|  | * If @p has a shorter slice than current and @p is eligible, override | 
|  | * current's slice protection in order to allow preemption. | 
|  | * | 
|  | * Note that even if @p does not turn out to be the most eligible | 
|  | * task at this moment, current's slice protection will be lost. | 
|  | */ | 
|  | if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline) | 
|  | se->vlag = se->deadline + 1; | 
|  |  | 
|  | /* | 
|  | * If @p has become the most eligible task, force preemption. | 
|  | */ | 
|  | if (pick_eevdf(cfs_rq) == pse) | 
|  | goto preempt; | 
|  |  | 
|  | return; | 
|  |  | 
|  | preempt: | 
|  | resched_curr(rq); | 
|  | } | 
|  |  | 
|  | static struct task_struct *pick_task_fair(struct rq *rq) | 
|  | { | 
|  | struct sched_entity *se; | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | again: | 
|  | cfs_rq = &rq->cfs; | 
|  | if (!cfs_rq->nr_running) | 
|  | return NULL; | 
|  |  | 
|  | do { | 
|  | /* Might not have done put_prev_entity() */ | 
|  | if (cfs_rq->curr && cfs_rq->curr->on_rq) | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | if (unlikely(check_cfs_rq_runtime(cfs_rq))) | 
|  | goto again; | 
|  |  | 
|  | se = pick_next_entity(rq, cfs_rq); | 
|  | if (!se) | 
|  | goto again; | 
|  | cfs_rq = group_cfs_rq(se); | 
|  | } while (cfs_rq); | 
|  |  | 
|  | return task_of(se); | 
|  | } | 
|  |  | 
|  | static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); | 
|  | static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); | 
|  |  | 
|  | struct task_struct * | 
|  | pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | 
|  | { | 
|  | struct sched_entity *se; | 
|  | struct task_struct *p; | 
|  | int new_tasks; | 
|  |  | 
|  | again: | 
|  | p = pick_task_fair(rq); | 
|  | if (!p) | 
|  | goto idle; | 
|  | se = &p->se; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | if (prev->sched_class != &fair_sched_class) | 
|  | goto simple; | 
|  |  | 
|  | __put_prev_set_next_dl_server(rq, prev, p); | 
|  |  | 
|  | /* | 
|  | * Because of the set_next_buddy() in dequeue_task_fair() it is rather | 
|  | * likely that a next task is from the same cgroup as the current. | 
|  | * | 
|  | * Therefore attempt to avoid putting and setting the entire cgroup | 
|  | * hierarchy, only change the part that actually changes. | 
|  | * | 
|  | * Since we haven't yet done put_prev_entity and if the selected task | 
|  | * is a different task than we started out with, try and touch the | 
|  | * least amount of cfs_rqs. | 
|  | */ | 
|  | if (prev != p) { | 
|  | struct sched_entity *pse = &prev->se; | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | while (!(cfs_rq = is_same_group(se, pse))) { | 
|  | int se_depth = se->depth; | 
|  | int pse_depth = pse->depth; | 
|  |  | 
|  | if (se_depth <= pse_depth) { | 
|  | put_prev_entity(cfs_rq_of(pse), pse); | 
|  | pse = parent_entity(pse); | 
|  | } | 
|  | if (se_depth >= pse_depth) { | 
|  | set_next_entity(cfs_rq_of(se), se); | 
|  | se = parent_entity(se); | 
|  | } | 
|  | } | 
|  |  | 
|  | put_prev_entity(cfs_rq, pse); | 
|  | set_next_entity(cfs_rq, se); | 
|  |  | 
|  | __set_next_task_fair(rq, p, true); | 
|  | } | 
|  |  | 
|  | return p; | 
|  |  | 
|  | simple: | 
|  | #endif | 
|  | put_prev_set_next_task(rq, prev, p); | 
|  | return p; | 
|  |  | 
|  | idle: | 
|  | if (!rf) | 
|  | return NULL; | 
|  |  | 
|  | new_tasks = sched_balance_newidle(rq, rf); | 
|  |  | 
|  | /* | 
|  | * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is | 
|  | * possible for any higher priority task to appear. In that case we | 
|  | * must re-start the pick_next_entity() loop. | 
|  | */ | 
|  | if (new_tasks < 0) | 
|  | return RETRY_TASK; | 
|  |  | 
|  | if (new_tasks > 0) | 
|  | goto again; | 
|  |  | 
|  | /* | 
|  | * rq is about to be idle, check if we need to update the | 
|  | * lost_idle_time of clock_pelt | 
|  | */ | 
|  | update_idle_rq_clock_pelt(rq); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | return pick_next_task_fair(rq, prev, NULL); | 
|  | } | 
|  |  | 
|  | static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) | 
|  | { | 
|  | return !!dl_se->rq->cfs.nr_running; | 
|  | } | 
|  |  | 
|  | static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) | 
|  | { | 
|  | return pick_task_fair(dl_se->rq); | 
|  | } | 
|  |  | 
|  | void fair_server_init(struct rq *rq) | 
|  | { | 
|  | struct sched_dl_entity *dl_se = &rq->fair_server; | 
|  |  | 
|  | init_dl_entity(dl_se); | 
|  |  | 
|  | dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for a descheduled task: | 
|  | */ | 
|  | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) | 
|  | { | 
|  | struct sched_entity *se = &prev->se; | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | put_prev_entity(cfs_rq, se); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_yield() is very simple | 
|  | */ | 
|  | static void yield_task_fair(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
|  | struct sched_entity *se = &curr->se; | 
|  |  | 
|  | /* | 
|  | * Are we the only task in the tree? | 
|  | */ | 
|  | if (unlikely(rq->nr_running == 1)) | 
|  | return; | 
|  |  | 
|  | clear_buddies(cfs_rq, se); | 
|  |  | 
|  | update_rq_clock(rq); | 
|  | /* | 
|  | * Update run-time statistics of the 'current'. | 
|  | */ | 
|  | update_curr(cfs_rq); | 
|  | /* | 
|  | * Tell update_rq_clock() that we've just updated, | 
|  | * so we don't do microscopic update in schedule() | 
|  | * and double the fastpath cost. | 
|  | */ | 
|  | rq_clock_skip_update(rq); | 
|  |  | 
|  | se->deadline += calc_delta_fair(se->slice, se); | 
|  | } | 
|  |  | 
|  | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | /* throttled hierarchies are not runnable */ | 
|  | if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) | 
|  | return false; | 
|  |  | 
|  | /* Tell the scheduler that we'd really like se to run next. */ | 
|  | set_next_buddy(se); | 
|  |  | 
|  | yield_task_fair(rq); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /************************************************** | 
|  | * Fair scheduling class load-balancing methods. | 
|  | * | 
|  | * BASICS | 
|  | * | 
|  | * The purpose of load-balancing is to achieve the same basic fairness the | 
|  | * per-CPU scheduler provides, namely provide a proportional amount of compute | 
|  | * time to each task. This is expressed in the following equation: | 
|  | * | 
|  | *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1) | 
|  | * | 
|  | * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight | 
|  | * W_i,0 is defined as: | 
|  | * | 
|  | *   W_i,0 = \Sum_j w_i,j                                             (2) | 
|  | * | 
|  | * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight | 
|  | * is derived from the nice value as per sched_prio_to_weight[]. | 
|  | * | 
|  | * The weight average is an exponential decay average of the instantaneous | 
|  | * weight: | 
|  | * | 
|  | *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3) | 
|  | * | 
|  | * C_i is the compute capacity of CPU i, typically it is the | 
|  | * fraction of 'recent' time available for SCHED_OTHER task execution. But it | 
|  | * can also include other factors [XXX]. | 
|  | * | 
|  | * To achieve this balance we define a measure of imbalance which follows | 
|  | * directly from (1): | 
|  | * | 
|  | *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4) | 
|  | * | 
|  | * We them move tasks around to minimize the imbalance. In the continuous | 
|  | * function space it is obvious this converges, in the discrete case we get | 
|  | * a few fun cases generally called infeasible weight scenarios. | 
|  | * | 
|  | * [XXX expand on: | 
|  | *     - infeasible weights; | 
|  | *     - local vs global optima in the discrete case. ] | 
|  | * | 
|  | * | 
|  | * SCHED DOMAINS | 
|  | * | 
|  | * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) | 
|  | * for all i,j solution, we create a tree of CPUs that follows the hardware | 
|  | * topology where each level pairs two lower groups (or better). This results | 
|  | * in O(log n) layers. Furthermore we reduce the number of CPUs going up the | 
|  | * tree to only the first of the previous level and we decrease the frequency | 
|  | * of load-balance at each level inversely proportional to the number of CPUs in | 
|  | * the groups. | 
|  | * | 
|  | * This yields: | 
|  | * | 
|  | *     log_2 n     1     n | 
|  | *   \Sum       { --- * --- * 2^i } = O(n)                            (5) | 
|  | *     i = 0      2^i   2^i | 
|  | *                               `- size of each group | 
|  | *         |         |     `- number of CPUs doing load-balance | 
|  | *         |         `- freq | 
|  | *         `- sum over all levels | 
|  | * | 
|  | * Coupled with a limit on how many tasks we can migrate every balance pass, | 
|  | * this makes (5) the runtime complexity of the balancer. | 
|  | * | 
|  | * An important property here is that each CPU is still (indirectly) connected | 
|  | * to every other CPU in at most O(log n) steps: | 
|  | * | 
|  | * The adjacency matrix of the resulting graph is given by: | 
|  | * | 
|  | *             log_2 n | 
|  | *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6) | 
|  | *             k = 0 | 
|  | * | 
|  | * And you'll find that: | 
|  | * | 
|  | *   A^(log_2 n)_i,j != 0  for all i,j                                (7) | 
|  | * | 
|  | * Showing there's indeed a path between every CPU in at most O(log n) steps. | 
|  | * The task movement gives a factor of O(m), giving a convergence complexity | 
|  | * of: | 
|  | * | 
|  | *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8) | 
|  | * | 
|  | * | 
|  | * WORK CONSERVING | 
|  | * | 
|  | * In order to avoid CPUs going idle while there's still work to do, new idle | 
|  | * balancing is more aggressive and has the newly idle CPU iterate up the domain | 
|  | * tree itself instead of relying on other CPUs to bring it work. | 
|  | * | 
|  | * This adds some complexity to both (5) and (8) but it reduces the total idle | 
|  | * time. | 
|  | * | 
|  | * [XXX more?] | 
|  | * | 
|  | * | 
|  | * CGROUPS | 
|  | * | 
|  | * Cgroups make a horror show out of (2), instead of a simple sum we get: | 
|  | * | 
|  | *                                s_k,i | 
|  | *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9) | 
|  | *                                 S_k | 
|  | * | 
|  | * Where | 
|  | * | 
|  | *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10) | 
|  | * | 
|  | * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. | 
|  | * | 
|  | * The big problem is S_k, its a global sum needed to compute a local (W_i) | 
|  | * property. | 
|  | * | 
|  | * [XXX write more on how we solve this.. _after_ merging pjt's patches that | 
|  | *      rewrite all of this once again.] | 
|  | */ | 
|  |  | 
|  | static unsigned long __read_mostly max_load_balance_interval = HZ/10; | 
|  |  | 
|  | enum fbq_type { regular, remote, all }; | 
|  |  | 
|  | /* | 
|  | * 'group_type' describes the group of CPUs at the moment of load balancing. | 
|  | * | 
|  | * The enum is ordered by pulling priority, with the group with lowest priority | 
|  | * first so the group_type can simply be compared when selecting the busiest | 
|  | * group. See update_sd_pick_busiest(). | 
|  | */ | 
|  | enum group_type { | 
|  | /* The group has spare capacity that can be used to run more tasks.  */ | 
|  | group_has_spare = 0, | 
|  | /* | 
|  | * The group is fully used and the tasks don't compete for more CPU | 
|  | * cycles. Nevertheless, some tasks might wait before running. | 
|  | */ | 
|  | group_fully_busy, | 
|  | /* | 
|  | * One task doesn't fit with CPU's capacity and must be migrated to a | 
|  | * more powerful CPU. | 
|  | */ | 
|  | group_misfit_task, | 
|  | /* | 
|  | * Balance SMT group that's fully busy. Can benefit from migration | 
|  | * a task on SMT with busy sibling to another CPU on idle core. | 
|  | */ | 
|  | group_smt_balance, | 
|  | /* | 
|  | * SD_ASYM_PACKING only: One local CPU with higher capacity is available, | 
|  | * and the task should be migrated to it instead of running on the | 
|  | * current CPU. | 
|  | */ | 
|  | group_asym_packing, | 
|  | /* | 
|  | * The tasks' affinity constraints previously prevented the scheduler | 
|  | * from balancing the load across the system. | 
|  | */ | 
|  | group_imbalanced, | 
|  | /* | 
|  | * The CPU is overloaded and can't provide expected CPU cycles to all | 
|  | * tasks. | 
|  | */ | 
|  | group_overloaded | 
|  | }; | 
|  |  | 
|  | enum migration_type { | 
|  | migrate_load = 0, | 
|  | migrate_util, | 
|  | migrate_task, | 
|  | migrate_misfit | 
|  | }; | 
|  |  | 
|  | #define LBF_ALL_PINNED	0x01 | 
|  | #define LBF_NEED_BREAK	0x02 | 
|  | #define LBF_DST_PINNED  0x04 | 
|  | #define LBF_SOME_PINNED	0x08 | 
|  | #define LBF_ACTIVE_LB	0x10 | 
|  |  | 
|  | struct lb_env { | 
|  | struct sched_domain	*sd; | 
|  |  | 
|  | struct rq		*src_rq; | 
|  | int			src_cpu; | 
|  |  | 
|  | int			dst_cpu; | 
|  | struct rq		*dst_rq; | 
|  |  | 
|  | struct cpumask		*dst_grpmask; | 
|  | int			new_dst_cpu; | 
|  | enum cpu_idle_type	idle; | 
|  | long			imbalance; | 
|  | /* The set of CPUs under consideration for load-balancing */ | 
|  | struct cpumask		*cpus; | 
|  |  | 
|  | unsigned int		flags; | 
|  |  | 
|  | unsigned int		loop; | 
|  | unsigned int		loop_break; | 
|  | unsigned int		loop_max; | 
|  |  | 
|  | enum fbq_type		fbq_type; | 
|  | enum migration_type	migration_type; | 
|  | struct list_head	tasks; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Is this task likely cache-hot: | 
|  | */ | 
|  | static int task_hot(struct task_struct *p, struct lb_env *env) | 
|  | { | 
|  | s64 delta; | 
|  |  | 
|  | lockdep_assert_rq_held(env->src_rq); | 
|  |  | 
|  | if (p->sched_class != &fair_sched_class) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(task_has_idle_policy(p))) | 
|  | return 0; | 
|  |  | 
|  | /* SMT siblings share cache */ | 
|  | if (env->sd->flags & SD_SHARE_CPUCAPACITY) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Buddy candidates are cache hot: | 
|  | */ | 
|  | if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && | 
|  | (&p->se == cfs_rq_of(&p->se)->next)) | 
|  | return 1; | 
|  |  | 
|  | if (sysctl_sched_migration_cost == -1) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Don't migrate task if the task's cookie does not match | 
|  | * with the destination CPU's core cookie. | 
|  | */ | 
|  | if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) | 
|  | return 1; | 
|  |  | 
|  | if (sysctl_sched_migration_cost == 0) | 
|  | return 0; | 
|  |  | 
|  | delta = rq_clock_task(env->src_rq) - p->se.exec_start; | 
|  |  | 
|  | return delta < (s64)sysctl_sched_migration_cost; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | /* | 
|  | * Returns 1, if task migration degrades locality | 
|  | * Returns 0, if task migration improves locality i.e migration preferred. | 
|  | * Returns -1, if task migration is not affected by locality. | 
|  | */ | 
|  | static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) | 
|  | { | 
|  | struct numa_group *numa_group = rcu_dereference(p->numa_group); | 
|  | unsigned long src_weight, dst_weight; | 
|  | int src_nid, dst_nid, dist; | 
|  |  | 
|  | if (!static_branch_likely(&sched_numa_balancing)) | 
|  | return -1; | 
|  |  | 
|  | if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) | 
|  | return -1; | 
|  |  | 
|  | src_nid = cpu_to_node(env->src_cpu); | 
|  | dst_nid = cpu_to_node(env->dst_cpu); | 
|  |  | 
|  | if (src_nid == dst_nid) | 
|  | return -1; | 
|  |  | 
|  | /* Migrating away from the preferred node is always bad. */ | 
|  | if (src_nid == p->numa_preferred_nid) { | 
|  | if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) | 
|  | return 1; | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Encourage migration to the preferred node. */ | 
|  | if (dst_nid == p->numa_preferred_nid) | 
|  | return 0; | 
|  |  | 
|  | /* Leaving a core idle is often worse than degrading locality. */ | 
|  | if (env->idle == CPU_IDLE) | 
|  | return -1; | 
|  |  | 
|  | dist = node_distance(src_nid, dst_nid); | 
|  | if (numa_group) { | 
|  | src_weight = group_weight(p, src_nid, dist); | 
|  | dst_weight = group_weight(p, dst_nid, dist); | 
|  | } else { | 
|  | src_weight = task_weight(p, src_nid, dist); | 
|  | dst_weight = task_weight(p, dst_nid, dist); | 
|  | } | 
|  |  | 
|  | return dst_weight < src_weight; | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline int migrate_degrades_locality(struct task_struct *p, | 
|  | struct lb_env *env) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
|  | */ | 
|  | static | 
|  | int can_migrate_task(struct task_struct *p, struct lb_env *env) | 
|  | { | 
|  | int tsk_cache_hot; | 
|  |  | 
|  | lockdep_assert_rq_held(env->src_rq); | 
|  |  | 
|  | /* | 
|  | * We do not migrate tasks that are: | 
|  | * 1) throttled_lb_pair, or | 
|  | * 2) cannot be migrated to this CPU due to cpus_ptr, or | 
|  | * 3) running (obviously), or | 
|  | * 4) are cache-hot on their current CPU. | 
|  | */ | 
|  | if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) | 
|  | return 0; | 
|  |  | 
|  | /* Disregard percpu kthreads; they are where they need to be. */ | 
|  | if (kthread_is_per_cpu(p)) | 
|  | return 0; | 
|  |  | 
|  | if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { | 
|  | int cpu; | 
|  |  | 
|  | schedstat_inc(p->stats.nr_failed_migrations_affine); | 
|  |  | 
|  | env->flags |= LBF_SOME_PINNED; | 
|  |  | 
|  | /* | 
|  | * Remember if this task can be migrated to any other CPU in | 
|  | * our sched_group. We may want to revisit it if we couldn't | 
|  | * meet load balance goals by pulling other tasks on src_cpu. | 
|  | * | 
|  | * Avoid computing new_dst_cpu | 
|  | * - for NEWLY_IDLE | 
|  | * - if we have already computed one in current iteration | 
|  | * - if it's an active balance | 
|  | */ | 
|  | if (env->idle == CPU_NEWLY_IDLE || | 
|  | env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) | 
|  | return 0; | 
|  |  | 
|  | /* Prevent to re-select dst_cpu via env's CPUs: */ | 
|  | for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { | 
|  | if (cpumask_test_cpu(cpu, p->cpus_ptr)) { | 
|  | env->flags |= LBF_DST_PINNED; | 
|  | env->new_dst_cpu = cpu; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Record that we found at least one task that could run on dst_cpu */ | 
|  | env->flags &= ~LBF_ALL_PINNED; | 
|  |  | 
|  | if (task_on_cpu(env->src_rq, p)) { | 
|  | schedstat_inc(p->stats.nr_failed_migrations_running); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Aggressive migration if: | 
|  | * 1) active balance | 
|  | * 2) destination numa is preferred | 
|  | * 3) task is cache cold, or | 
|  | * 4) too many balance attempts have failed. | 
|  | */ | 
|  | if (env->flags & LBF_ACTIVE_LB) | 
|  | return 1; | 
|  |  | 
|  | tsk_cache_hot = migrate_degrades_locality(p, env); | 
|  | if (tsk_cache_hot == -1) | 
|  | tsk_cache_hot = task_hot(p, env); | 
|  |  | 
|  | if (tsk_cache_hot <= 0 || | 
|  | env->sd->nr_balance_failed > env->sd->cache_nice_tries) { | 
|  | if (tsk_cache_hot == 1) { | 
|  | schedstat_inc(env->sd->lb_hot_gained[env->idle]); | 
|  | schedstat_inc(p->stats.nr_forced_migrations); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | schedstat_inc(p->stats.nr_failed_migrations_hot); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * detach_task() -- detach the task for the migration specified in env | 
|  | */ | 
|  | static void detach_task(struct task_struct *p, struct lb_env *env) | 
|  | { | 
|  | lockdep_assert_rq_held(env->src_rq); | 
|  |  | 
|  | deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); | 
|  | set_task_cpu(p, env->dst_cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as | 
|  | * part of active balancing operations within "domain". | 
|  | * | 
|  | * Returns a task if successful and NULL otherwise. | 
|  | */ | 
|  | static struct task_struct *detach_one_task(struct lb_env *env) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | lockdep_assert_rq_held(env->src_rq); | 
|  |  | 
|  | list_for_each_entry_reverse(p, | 
|  | &env->src_rq->cfs_tasks, se.group_node) { | 
|  | if (!can_migrate_task(p, env)) | 
|  | continue; | 
|  |  | 
|  | detach_task(p, env); | 
|  |  | 
|  | /* | 
|  | * Right now, this is only the second place where | 
|  | * lb_gained[env->idle] is updated (other is detach_tasks) | 
|  | * so we can safely collect stats here rather than | 
|  | * inside detach_tasks(). | 
|  | */ | 
|  | schedstat_inc(env->sd->lb_gained[env->idle]); | 
|  | return p; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * detach_tasks() -- tries to detach up to imbalance load/util/tasks from | 
|  | * busiest_rq, as part of a balancing operation within domain "sd". | 
|  | * | 
|  | * Returns number of detached tasks if successful and 0 otherwise. | 
|  | */ | 
|  | static int detach_tasks(struct lb_env *env) | 
|  | { | 
|  | struct list_head *tasks = &env->src_rq->cfs_tasks; | 
|  | unsigned long util, load; | 
|  | struct task_struct *p; | 
|  | int detached = 0; | 
|  |  | 
|  | lockdep_assert_rq_held(env->src_rq); | 
|  |  | 
|  | /* | 
|  | * Source run queue has been emptied by another CPU, clear | 
|  | * LBF_ALL_PINNED flag as we will not test any task. | 
|  | */ | 
|  | if (env->src_rq->nr_running <= 1) { | 
|  | env->flags &= ~LBF_ALL_PINNED; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (env->imbalance <= 0) | 
|  | return 0; | 
|  |  | 
|  | while (!list_empty(tasks)) { | 
|  | /* | 
|  | * We don't want to steal all, otherwise we may be treated likewise, | 
|  | * which could at worst lead to a livelock crash. | 
|  | */ | 
|  | if (env->idle && env->src_rq->nr_running <= 1) | 
|  | break; | 
|  |  | 
|  | env->loop++; | 
|  | /* We've more or less seen every task there is, call it quits */ | 
|  | if (env->loop > env->loop_max) | 
|  | break; | 
|  |  | 
|  | /* take a breather every nr_migrate tasks */ | 
|  | if (env->loop > env->loop_break) { | 
|  | env->loop_break += SCHED_NR_MIGRATE_BREAK; | 
|  | env->flags |= LBF_NEED_BREAK; | 
|  | break; | 
|  | } | 
|  |  | 
|  | p = list_last_entry(tasks, struct task_struct, se.group_node); | 
|  |  | 
|  | if (!can_migrate_task(p, env)) | 
|  | goto next; | 
|  |  | 
|  | switch (env->migration_type) { | 
|  | case migrate_load: | 
|  | /* | 
|  | * Depending of the number of CPUs and tasks and the | 
|  | * cgroup hierarchy, task_h_load() can return a null | 
|  | * value. Make sure that env->imbalance decreases | 
|  | * otherwise detach_tasks() will stop only after | 
|  | * detaching up to loop_max tasks. | 
|  | */ | 
|  | load = max_t(unsigned long, task_h_load(p), 1); | 
|  |  | 
|  | if (sched_feat(LB_MIN) && | 
|  | load < 16 && !env->sd->nr_balance_failed) | 
|  | goto next; | 
|  |  | 
|  | /* | 
|  | * Make sure that we don't migrate too much load. | 
|  | * Nevertheless, let relax the constraint if | 
|  | * scheduler fails to find a good waiting task to | 
|  | * migrate. | 
|  | */ | 
|  | if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) | 
|  | goto next; | 
|  |  | 
|  | env->imbalance -= load; | 
|  | break; | 
|  |  | 
|  | case migrate_util: | 
|  | util = task_util_est(p); | 
|  |  | 
|  | if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) | 
|  | goto next; | 
|  |  | 
|  | env->imbalance -= util; | 
|  | break; | 
|  |  | 
|  | case migrate_task: | 
|  | env->imbalance--; | 
|  | break; | 
|  |  | 
|  | case migrate_misfit: | 
|  | /* This is not a misfit task */ | 
|  | if (task_fits_cpu(p, env->src_cpu)) | 
|  | goto next; | 
|  |  | 
|  | env->imbalance = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | detach_task(p, env); | 
|  | list_add(&p->se.group_node, &env->tasks); | 
|  |  | 
|  | detached++; | 
|  |  | 
|  | #ifdef CONFIG_PREEMPTION | 
|  | /* | 
|  | * NEWIDLE balancing is a source of latency, so preemptible | 
|  | * kernels will stop after the first task is detached to minimize | 
|  | * the critical section. | 
|  | */ | 
|  | if (env->idle == CPU_NEWLY_IDLE) | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We only want to steal up to the prescribed amount of | 
|  | * load/util/tasks. | 
|  | */ | 
|  | if (env->imbalance <= 0) | 
|  | break; | 
|  |  | 
|  | continue; | 
|  | next: | 
|  | list_move(&p->se.group_node, tasks); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Right now, this is one of only two places we collect this stat | 
|  | * so we can safely collect detach_one_task() stats here rather | 
|  | * than inside detach_one_task(). | 
|  | */ | 
|  | schedstat_add(env->sd->lb_gained[env->idle], detached); | 
|  |  | 
|  | return detached; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * attach_task() -- attach the task detached by detach_task() to its new rq. | 
|  | */ | 
|  | static void attach_task(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | lockdep_assert_rq_held(rq); | 
|  |  | 
|  | WARN_ON_ONCE(task_rq(p) != rq); | 
|  | activate_task(rq, p, ENQUEUE_NOCLOCK); | 
|  | wakeup_preempt(rq, p, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * attach_one_task() -- attaches the task returned from detach_one_task() to | 
|  | * its new rq. | 
|  | */ | 
|  | static void attach_one_task(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct rq_flags rf; | 
|  |  | 
|  | rq_lock(rq, &rf); | 
|  | update_rq_clock(rq); | 
|  | attach_task(rq, p); | 
|  | rq_unlock(rq, &rf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * attach_tasks() -- attaches all tasks detached by detach_tasks() to their | 
|  | * new rq. | 
|  | */ | 
|  | static void attach_tasks(struct lb_env *env) | 
|  | { | 
|  | struct list_head *tasks = &env->tasks; | 
|  | struct task_struct *p; | 
|  | struct rq_flags rf; | 
|  |  | 
|  | rq_lock(env->dst_rq, &rf); | 
|  | update_rq_clock(env->dst_rq); | 
|  |  | 
|  | while (!list_empty(tasks)) { | 
|  | p = list_first_entry(tasks, struct task_struct, se.group_node); | 
|  | list_del_init(&p->se.group_node); | 
|  |  | 
|  | attach_task(env->dst_rq, p); | 
|  | } | 
|  |  | 
|  | rq_unlock(env->dst_rq, &rf); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (cfs_rq->avg.load_avg) | 
|  | return true; | 
|  |  | 
|  | if (cfs_rq->avg.util_avg) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool others_have_blocked(struct rq *rq) | 
|  | { | 
|  | if (cpu_util_rt(rq)) | 
|  | return true; | 
|  |  | 
|  | if (cpu_util_dl(rq)) | 
|  | return true; | 
|  |  | 
|  | if (hw_load_avg(rq)) | 
|  | return true; | 
|  |  | 
|  | if (cpu_util_irq(rq)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void update_blocked_load_tick(struct rq *rq) | 
|  | { | 
|  | WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); | 
|  | } | 
|  |  | 
|  | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) | 
|  | { | 
|  | if (!has_blocked) | 
|  | rq->has_blocked_load = 0; | 
|  | } | 
|  | #else | 
|  | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } | 
|  | static inline bool others_have_blocked(struct rq *rq) { return false; } | 
|  | static inline void update_blocked_load_tick(struct rq *rq) {} | 
|  | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} | 
|  | #endif | 
|  |  | 
|  | static bool __update_blocked_others(struct rq *rq, bool *done) | 
|  | { | 
|  | bool updated; | 
|  |  | 
|  | /* | 
|  | * update_load_avg() can call cpufreq_update_util(). Make sure that RT, | 
|  | * DL and IRQ signals have been updated before updating CFS. | 
|  | */ | 
|  | updated = update_other_load_avgs(rq); | 
|  |  | 
|  | if (others_have_blocked(rq)) | 
|  | *done = false; | 
|  |  | 
|  | return updated; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  |  | 
|  | static bool __update_blocked_fair(struct rq *rq, bool *done) | 
|  | { | 
|  | struct cfs_rq *cfs_rq, *pos; | 
|  | bool decayed = false; | 
|  | int cpu = cpu_of(rq); | 
|  |  | 
|  | /* | 
|  | * Iterates the task_group tree in a bottom up fashion, see | 
|  | * list_add_leaf_cfs_rq() for details. | 
|  | */ | 
|  | for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { | 
|  | struct sched_entity *se; | 
|  |  | 
|  | if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { | 
|  | update_tg_load_avg(cfs_rq); | 
|  |  | 
|  | if (cfs_rq->nr_running == 0) | 
|  | update_idle_cfs_rq_clock_pelt(cfs_rq); | 
|  |  | 
|  | if (cfs_rq == &rq->cfs) | 
|  | decayed = true; | 
|  | } | 
|  |  | 
|  | /* Propagate pending load changes to the parent, if any: */ | 
|  | se = cfs_rq->tg->se[cpu]; | 
|  | if (se && !skip_blocked_update(se)) | 
|  | update_load_avg(cfs_rq_of(se), se, UPDATE_TG); | 
|  |  | 
|  | /* | 
|  | * There can be a lot of idle CPU cgroups.  Don't let fully | 
|  | * decayed cfs_rqs linger on the list. | 
|  | */ | 
|  | if (cfs_rq_is_decayed(cfs_rq)) | 
|  | list_del_leaf_cfs_rq(cfs_rq); | 
|  |  | 
|  | /* Don't need periodic decay once load/util_avg are null */ | 
|  | if (cfs_rq_has_blocked(cfs_rq)) | 
|  | *done = false; | 
|  | } | 
|  |  | 
|  | return decayed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the hierarchical load factor for cfs_rq and all its ascendants. | 
|  | * This needs to be done in a top-down fashion because the load of a child | 
|  | * group is a fraction of its parents load. | 
|  | */ | 
|  | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; | 
|  | unsigned long now = jiffies; | 
|  | unsigned long load; | 
|  |  | 
|  | if (cfs_rq->last_h_load_update == now) | 
|  | return; | 
|  |  | 
|  | WRITE_ONCE(cfs_rq->h_load_next, NULL); | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | WRITE_ONCE(cfs_rq->h_load_next, se); | 
|  | if (cfs_rq->last_h_load_update == now) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!se) { | 
|  | cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); | 
|  | cfs_rq->last_h_load_update = now; | 
|  | } | 
|  |  | 
|  | while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { | 
|  | load = cfs_rq->h_load; | 
|  | load = div64_ul(load * se->avg.load_avg, | 
|  | cfs_rq_load_avg(cfs_rq) + 1); | 
|  | cfs_rq = group_cfs_rq(se); | 
|  | cfs_rq->h_load = load; | 
|  | cfs_rq->last_h_load_update = now; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long task_h_load(struct task_struct *p) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
|  |  | 
|  | update_cfs_rq_h_load(cfs_rq); | 
|  | return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, | 
|  | cfs_rq_load_avg(cfs_rq) + 1); | 
|  | } | 
|  | #else | 
|  | static bool __update_blocked_fair(struct rq *rq, bool *done) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = &rq->cfs; | 
|  | bool decayed; | 
|  |  | 
|  | decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); | 
|  | if (cfs_rq_has_blocked(cfs_rq)) | 
|  | *done = false; | 
|  |  | 
|  | return decayed; | 
|  | } | 
|  |  | 
|  | static unsigned long task_h_load(struct task_struct *p) | 
|  | { | 
|  | return p->se.avg.load_avg; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void sched_balance_update_blocked_averages(int cpu) | 
|  | { | 
|  | bool decayed = false, done = true; | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | struct rq_flags rf; | 
|  |  | 
|  | rq_lock_irqsave(rq, &rf); | 
|  | update_blocked_load_tick(rq); | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | decayed |= __update_blocked_others(rq, &done); | 
|  | decayed |= __update_blocked_fair(rq, &done); | 
|  |  | 
|  | update_blocked_load_status(rq, !done); | 
|  | if (decayed) | 
|  | cpufreq_update_util(rq, 0); | 
|  | rq_unlock_irqrestore(rq, &rf); | 
|  | } | 
|  |  | 
|  | /********** Helpers for sched_balance_find_src_group ************************/ | 
|  |  | 
|  | /* | 
|  | * sg_lb_stats - stats of a sched_group required for load-balancing: | 
|  | */ | 
|  | struct sg_lb_stats { | 
|  | unsigned long avg_load;			/* Avg load            over the CPUs of the group */ | 
|  | unsigned long group_load;		/* Total load          over the CPUs of the group */ | 
|  | unsigned long group_capacity;		/* Capacity            over the CPUs of the group */ | 
|  | unsigned long group_util;		/* Total utilization   over the CPUs of the group */ | 
|  | unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */ | 
|  | unsigned int sum_nr_running;		/* Nr of all tasks running in the group */ | 
|  | unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */ | 
|  | unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */ | 
|  | unsigned int group_weight; | 
|  | enum group_type group_type; | 
|  | unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */ | 
|  | unsigned int group_smt_balance;		/* Task on busy SMT be moved */ | 
|  | unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */ | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | unsigned int nr_numa_running; | 
|  | unsigned int nr_preferred_running; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * sd_lb_stats - stats of a sched_domain required for load-balancing: | 
|  | */ | 
|  | struct sd_lb_stats { | 
|  | struct sched_group *busiest;		/* Busiest group in this sd */ | 
|  | struct sched_group *local;		/* Local group in this sd */ | 
|  | unsigned long total_load;		/* Total load of all groups in sd */ | 
|  | unsigned long total_capacity;		/* Total capacity of all groups in sd */ | 
|  | unsigned long avg_load;			/* Average load across all groups in sd */ | 
|  | unsigned int prefer_sibling;		/* Tasks should go to sibling first */ | 
|  |  | 
|  | struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */ | 
|  | struct sg_lb_stats local_stat;		/* Statistics of the local group */ | 
|  | }; | 
|  |  | 
|  | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) | 
|  | { | 
|  | /* | 
|  | * Skimp on the clearing to avoid duplicate work. We can avoid clearing | 
|  | * local_stat because update_sg_lb_stats() does a full clear/assignment. | 
|  | * We must however set busiest_stat::group_type and | 
|  | * busiest_stat::idle_cpus to the worst busiest group because | 
|  | * update_sd_pick_busiest() reads these before assignment. | 
|  | */ | 
|  | *sds = (struct sd_lb_stats){ | 
|  | .busiest = NULL, | 
|  | .local = NULL, | 
|  | .total_load = 0UL, | 
|  | .total_capacity = 0UL, | 
|  | .busiest_stat = { | 
|  | .idle_cpus = UINT_MAX, | 
|  | .group_type = group_has_spare, | 
|  | }, | 
|  | }; | 
|  | } | 
|  |  | 
|  | static unsigned long scale_rt_capacity(int cpu) | 
|  | { | 
|  | unsigned long max = get_actual_cpu_capacity(cpu); | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long used, free; | 
|  | unsigned long irq; | 
|  |  | 
|  | irq = cpu_util_irq(rq); | 
|  |  | 
|  | if (unlikely(irq >= max)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * avg_rt.util_avg and avg_dl.util_avg track binary signals | 
|  | * (running and not running) with weights 0 and 1024 respectively. | 
|  | */ | 
|  | used = cpu_util_rt(rq); | 
|  | used += cpu_util_dl(rq); | 
|  |  | 
|  | if (unlikely(used >= max)) | 
|  | return 1; | 
|  |  | 
|  | free = max - used; | 
|  |  | 
|  | return scale_irq_capacity(free, irq, max); | 
|  | } | 
|  |  | 
|  | static void update_cpu_capacity(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | unsigned long capacity = scale_rt_capacity(cpu); | 
|  | struct sched_group *sdg = sd->groups; | 
|  |  | 
|  | if (!capacity) | 
|  | capacity = 1; | 
|  |  | 
|  | cpu_rq(cpu)->cpu_capacity = capacity; | 
|  | trace_sched_cpu_capacity_tp(cpu_rq(cpu)); | 
|  |  | 
|  | sdg->sgc->capacity = capacity; | 
|  | sdg->sgc->min_capacity = capacity; | 
|  | sdg->sgc->max_capacity = capacity; | 
|  | } | 
|  |  | 
|  | void update_group_capacity(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | struct sched_domain *child = sd->child; | 
|  | struct sched_group *group, *sdg = sd->groups; | 
|  | unsigned long capacity, min_capacity, max_capacity; | 
|  | unsigned long interval; | 
|  |  | 
|  | interval = msecs_to_jiffies(sd->balance_interval); | 
|  | interval = clamp(interval, 1UL, max_load_balance_interval); | 
|  | sdg->sgc->next_update = jiffies + interval; | 
|  |  | 
|  | if (!child) { | 
|  | update_cpu_capacity(sd, cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | capacity = 0; | 
|  | min_capacity = ULONG_MAX; | 
|  | max_capacity = 0; | 
|  |  | 
|  | if (child->flags & SD_OVERLAP) { | 
|  | /* | 
|  | * SD_OVERLAP domains cannot assume that child groups | 
|  | * span the current group. | 
|  | */ | 
|  |  | 
|  | for_each_cpu(cpu, sched_group_span(sdg)) { | 
|  | unsigned long cpu_cap = capacity_of(cpu); | 
|  |  | 
|  | capacity += cpu_cap; | 
|  | min_capacity = min(cpu_cap, min_capacity); | 
|  | max_capacity = max(cpu_cap, max_capacity); | 
|  | } | 
|  | } else  { | 
|  | /* | 
|  | * !SD_OVERLAP domains can assume that child groups | 
|  | * span the current group. | 
|  | */ | 
|  |  | 
|  | group = child->groups; | 
|  | do { | 
|  | struct sched_group_capacity *sgc = group->sgc; | 
|  |  | 
|  | capacity += sgc->capacity; | 
|  | min_capacity = min(sgc->min_capacity, min_capacity); | 
|  | max_capacity = max(sgc->max_capacity, max_capacity); | 
|  | group = group->next; | 
|  | } while (group != child->groups); | 
|  | } | 
|  |  | 
|  | sdg->sgc->capacity = capacity; | 
|  | sdg->sgc->min_capacity = min_capacity; | 
|  | sdg->sgc->max_capacity = max_capacity; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether the capacity of the rq has been noticeably reduced by side | 
|  | * activity. The imbalance_pct is used for the threshold. | 
|  | * Return true is the capacity is reduced | 
|  | */ | 
|  | static inline int | 
|  | check_cpu_capacity(struct rq *rq, struct sched_domain *sd) | 
|  | { | 
|  | return ((rq->cpu_capacity * sd->imbalance_pct) < | 
|  | (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); | 
|  | } | 
|  |  | 
|  | /* Check if the rq has a misfit task */ | 
|  | static inline bool check_misfit_status(struct rq *rq) | 
|  | { | 
|  | return rq->misfit_task_load; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Group imbalance indicates (and tries to solve) the problem where balancing | 
|  | * groups is inadequate due to ->cpus_ptr constraints. | 
|  | * | 
|  | * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a | 
|  | * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. | 
|  | * Something like: | 
|  | * | 
|  | *	{ 0 1 2 3 } { 4 5 6 7 } | 
|  | *	        *     * * * | 
|  | * | 
|  | * If we were to balance group-wise we'd place two tasks in the first group and | 
|  | * two tasks in the second group. Clearly this is undesired as it will overload | 
|  | * cpu 3 and leave one of the CPUs in the second group unused. | 
|  | * | 
|  | * The current solution to this issue is detecting the skew in the first group | 
|  | * by noticing the lower domain failed to reach balance and had difficulty | 
|  | * moving tasks due to affinity constraints. | 
|  | * | 
|  | * When this is so detected; this group becomes a candidate for busiest; see | 
|  | * update_sd_pick_busiest(). And calculate_imbalance() and | 
|  | * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it | 
|  | * to create an effective group imbalance. | 
|  | * | 
|  | * This is a somewhat tricky proposition since the next run might not find the | 
|  | * group imbalance and decide the groups need to be balanced again. A most | 
|  | * subtle and fragile situation. | 
|  | */ | 
|  |  | 
|  | static inline int sg_imbalanced(struct sched_group *group) | 
|  | { | 
|  | return group->sgc->imbalance; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * group_has_capacity returns true if the group has spare capacity that could | 
|  | * be used by some tasks. | 
|  | * We consider that a group has spare capacity if the number of task is | 
|  | * smaller than the number of CPUs or if the utilization is lower than the | 
|  | * available capacity for CFS tasks. | 
|  | * For the latter, we use a threshold to stabilize the state, to take into | 
|  | * account the variance of the tasks' load and to return true if the available | 
|  | * capacity in meaningful for the load balancer. | 
|  | * As an example, an available capacity of 1% can appear but it doesn't make | 
|  | * any benefit for the load balance. | 
|  | */ | 
|  | static inline bool | 
|  | group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) | 
|  | { | 
|  | if (sgs->sum_nr_running < sgs->group_weight) | 
|  | return true; | 
|  |  | 
|  | if ((sgs->group_capacity * imbalance_pct) < | 
|  | (sgs->group_runnable * 100)) | 
|  | return false; | 
|  |  | 
|  | if ((sgs->group_capacity * 100) > | 
|  | (sgs->group_util * imbalance_pct)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  group_is_overloaded returns true if the group has more tasks than it can | 
|  | *  handle. | 
|  | *  group_is_overloaded is not equals to !group_has_capacity because a group | 
|  | *  with the exact right number of tasks, has no more spare capacity but is not | 
|  | *  overloaded so both group_has_capacity and group_is_overloaded return | 
|  | *  false. | 
|  | */ | 
|  | static inline bool | 
|  | group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) | 
|  | { | 
|  | if (sgs->sum_nr_running <= sgs->group_weight) | 
|  | return false; | 
|  |  | 
|  | if ((sgs->group_capacity * 100) < | 
|  | (sgs->group_util * imbalance_pct)) | 
|  | return true; | 
|  |  | 
|  | if ((sgs->group_capacity * imbalance_pct) < | 
|  | (sgs->group_runnable * 100)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline enum | 
|  | group_type group_classify(unsigned int imbalance_pct, | 
|  | struct sched_group *group, | 
|  | struct sg_lb_stats *sgs) | 
|  | { | 
|  | if (group_is_overloaded(imbalance_pct, sgs)) | 
|  | return group_overloaded; | 
|  |  | 
|  | if (sg_imbalanced(group)) | 
|  | return group_imbalanced; | 
|  |  | 
|  | if (sgs->group_asym_packing) | 
|  | return group_asym_packing; | 
|  |  | 
|  | if (sgs->group_smt_balance) | 
|  | return group_smt_balance; | 
|  |  | 
|  | if (sgs->group_misfit_task_load) | 
|  | return group_misfit_task; | 
|  |  | 
|  | if (!group_has_capacity(imbalance_pct, sgs)) | 
|  | return group_fully_busy; | 
|  |  | 
|  | return group_has_spare; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sched_use_asym_prio - Check whether asym_packing priority must be used | 
|  | * @sd:		The scheduling domain of the load balancing | 
|  | * @cpu:	A CPU | 
|  | * | 
|  | * Always use CPU priority when balancing load between SMT siblings. When | 
|  | * balancing load between cores, it is not sufficient that @cpu is idle. Only | 
|  | * use CPU priority if the whole core is idle. | 
|  | * | 
|  | * Returns: True if the priority of @cpu must be followed. False otherwise. | 
|  | */ | 
|  | static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | if (!(sd->flags & SD_ASYM_PACKING)) | 
|  | return false; | 
|  |  | 
|  | if (!sched_smt_active()) | 
|  | return true; | 
|  |  | 
|  | return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); | 
|  | } | 
|  |  | 
|  | static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) | 
|  | { | 
|  | /* | 
|  | * First check if @dst_cpu can do asym_packing load balance. Only do it | 
|  | * if it has higher priority than @src_cpu. | 
|  | */ | 
|  | return sched_use_asym_prio(sd, dst_cpu) && | 
|  | sched_asym_prefer(dst_cpu, src_cpu); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sched_group_asym - Check if the destination CPU can do asym_packing balance | 
|  | * @env:	The load balancing environment | 
|  | * @sgs:	Load-balancing statistics of the candidate busiest group | 
|  | * @group:	The candidate busiest group | 
|  | * | 
|  | * @env::dst_cpu can do asym_packing if it has higher priority than the | 
|  | * preferred CPU of @group. | 
|  | * | 
|  | * Return: true if @env::dst_cpu can do with asym_packing load balance. False | 
|  | * otherwise. | 
|  | */ | 
|  | static inline bool | 
|  | sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) | 
|  | { | 
|  | /* | 
|  | * CPU priorities do not make sense for SMT cores with more than one | 
|  | * busy sibling. | 
|  | */ | 
|  | if ((group->flags & SD_SHARE_CPUCAPACITY) && | 
|  | (sgs->group_weight - sgs->idle_cpus != 1)) | 
|  | return false; | 
|  |  | 
|  | return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); | 
|  | } | 
|  |  | 
|  | /* One group has more than one SMT CPU while the other group does not */ | 
|  | static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, | 
|  | struct sched_group *sg2) | 
|  | { | 
|  | if (!sg1 || !sg2) | 
|  | return false; | 
|  |  | 
|  | return (sg1->flags & SD_SHARE_CPUCAPACITY) != | 
|  | (sg2->flags & SD_SHARE_CPUCAPACITY); | 
|  | } | 
|  |  | 
|  | static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, | 
|  | struct sched_group *group) | 
|  | { | 
|  | if (!env->idle) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * For SMT source group, it is better to move a task | 
|  | * to a CPU that doesn't have multiple tasks sharing its CPU capacity. | 
|  | * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY | 
|  | * will not be on. | 
|  | */ | 
|  | if (group->flags & SD_SHARE_CPUCAPACITY && | 
|  | sgs->sum_h_nr_running > 1) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline long sibling_imbalance(struct lb_env *env, | 
|  | struct sd_lb_stats *sds, | 
|  | struct sg_lb_stats *busiest, | 
|  | struct sg_lb_stats *local) | 
|  | { | 
|  | int ncores_busiest, ncores_local; | 
|  | long imbalance; | 
|  |  | 
|  | if (!env->idle || !busiest->sum_nr_running) | 
|  | return 0; | 
|  |  | 
|  | ncores_busiest = sds->busiest->cores; | 
|  | ncores_local = sds->local->cores; | 
|  |  | 
|  | if (ncores_busiest == ncores_local) { | 
|  | imbalance = busiest->sum_nr_running; | 
|  | lsub_positive(&imbalance, local->sum_nr_running); | 
|  | return imbalance; | 
|  | } | 
|  |  | 
|  | /* Balance such that nr_running/ncores ratio are same on both groups */ | 
|  | imbalance = ncores_local * busiest->sum_nr_running; | 
|  | lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); | 
|  | /* Normalize imbalance and do rounding on normalization */ | 
|  | imbalance = 2 * imbalance + ncores_local + ncores_busiest; | 
|  | imbalance /= ncores_local + ncores_busiest; | 
|  |  | 
|  | /* Take advantage of resource in an empty sched group */ | 
|  | if (imbalance <= 1 && local->sum_nr_running == 0 && | 
|  | busiest->sum_nr_running > 1) | 
|  | imbalance = 2; | 
|  |  | 
|  | return imbalance; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) | 
|  | { | 
|  | /* | 
|  | * When there is more than 1 task, the group_overloaded case already | 
|  | * takes care of cpu with reduced capacity | 
|  | */ | 
|  | if (rq->cfs.h_nr_running != 1) | 
|  | return false; | 
|  |  | 
|  | return check_cpu_capacity(rq, sd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | 
|  | * @env: The load balancing environment. | 
|  | * @sds: Load-balancing data with statistics of the local group. | 
|  | * @group: sched_group whose statistics are to be updated. | 
|  | * @sgs: variable to hold the statistics for this group. | 
|  | * @sg_overloaded: sched_group is overloaded | 
|  | * @sg_overutilized: sched_group is overutilized | 
|  | */ | 
|  | static inline void update_sg_lb_stats(struct lb_env *env, | 
|  | struct sd_lb_stats *sds, | 
|  | struct sched_group *group, | 
|  | struct sg_lb_stats *sgs, | 
|  | bool *sg_overloaded, | 
|  | bool *sg_overutilized) | 
|  | { | 
|  | int i, nr_running, local_group; | 
|  |  | 
|  | memset(sgs, 0, sizeof(*sgs)); | 
|  |  | 
|  | local_group = group == sds->local; | 
|  |  | 
|  | for_each_cpu_and(i, sched_group_span(group), env->cpus) { | 
|  | struct rq *rq = cpu_rq(i); | 
|  | unsigned long load = cpu_load(rq); | 
|  |  | 
|  | sgs->group_load += load; | 
|  | sgs->group_util += cpu_util_cfs(i); | 
|  | sgs->group_runnable += cpu_runnable(rq); | 
|  | sgs->sum_h_nr_running += rq->cfs.h_nr_running; | 
|  |  | 
|  | nr_running = rq->nr_running; | 
|  | sgs->sum_nr_running += nr_running; | 
|  |  | 
|  | if (nr_running > 1) | 
|  | *sg_overloaded = 1; | 
|  |  | 
|  | if (cpu_overutilized(i)) | 
|  | *sg_overutilized = 1; | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | sgs->nr_numa_running += rq->nr_numa_running; | 
|  | sgs->nr_preferred_running += rq->nr_preferred_running; | 
|  | #endif | 
|  | /* | 
|  | * No need to call idle_cpu() if nr_running is not 0 | 
|  | */ | 
|  | if (!nr_running && idle_cpu(i)) { | 
|  | sgs->idle_cpus++; | 
|  | /* Idle cpu can't have misfit task */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (local_group) | 
|  | continue; | 
|  |  | 
|  | if (env->sd->flags & SD_ASYM_CPUCAPACITY) { | 
|  | /* Check for a misfit task on the cpu */ | 
|  | if (sgs->group_misfit_task_load < rq->misfit_task_load) { | 
|  | sgs->group_misfit_task_load = rq->misfit_task_load; | 
|  | *sg_overloaded = 1; | 
|  | } | 
|  | } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { | 
|  | /* Check for a task running on a CPU with reduced capacity */ | 
|  | if (sgs->group_misfit_task_load < load) | 
|  | sgs->group_misfit_task_load = load; | 
|  | } | 
|  | } | 
|  |  | 
|  | sgs->group_capacity = group->sgc->capacity; | 
|  |  | 
|  | sgs->group_weight = group->group_weight; | 
|  |  | 
|  | /* Check if dst CPU is idle and preferred to this group */ | 
|  | if (!local_group && env->idle && sgs->sum_h_nr_running && | 
|  | sched_group_asym(env, sgs, group)) | 
|  | sgs->group_asym_packing = 1; | 
|  |  | 
|  | /* Check for loaded SMT group to be balanced to dst CPU */ | 
|  | if (!local_group && smt_balance(env, sgs, group)) | 
|  | sgs->group_smt_balance = 1; | 
|  |  | 
|  | sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); | 
|  |  | 
|  | /* Computing avg_load makes sense only when group is overloaded */ | 
|  | if (sgs->group_type == group_overloaded) | 
|  | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / | 
|  | sgs->group_capacity; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_sd_pick_busiest - return 1 on busiest group | 
|  | * @env: The load balancing environment. | 
|  | * @sds: sched_domain statistics | 
|  | * @sg: sched_group candidate to be checked for being the busiest | 
|  | * @sgs: sched_group statistics | 
|  | * | 
|  | * Determine if @sg is a busier group than the previously selected | 
|  | * busiest group. | 
|  | * | 
|  | * Return: %true if @sg is a busier group than the previously selected | 
|  | * busiest group. %false otherwise. | 
|  | */ | 
|  | static bool update_sd_pick_busiest(struct lb_env *env, | 
|  | struct sd_lb_stats *sds, | 
|  | struct sched_group *sg, | 
|  | struct sg_lb_stats *sgs) | 
|  | { | 
|  | struct sg_lb_stats *busiest = &sds->busiest_stat; | 
|  |  | 
|  | /* Make sure that there is at least one task to pull */ | 
|  | if (!sgs->sum_h_nr_running) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Don't try to pull misfit tasks we can't help. | 
|  | * We can use max_capacity here as reduction in capacity on some | 
|  | * CPUs in the group should either be possible to resolve | 
|  | * internally or be covered by avg_load imbalance (eventually). | 
|  | */ | 
|  | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && | 
|  | (sgs->group_type == group_misfit_task) && | 
|  | (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || | 
|  | sds->local_stat.group_type != group_has_spare)) | 
|  | return false; | 
|  |  | 
|  | if (sgs->group_type > busiest->group_type) | 
|  | return true; | 
|  |  | 
|  | if (sgs->group_type < busiest->group_type) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The candidate and the current busiest group are the same type of | 
|  | * group. Let check which one is the busiest according to the type. | 
|  | */ | 
|  |  | 
|  | switch (sgs->group_type) { | 
|  | case group_overloaded: | 
|  | /* Select the overloaded group with highest avg_load. */ | 
|  | return sgs->avg_load > busiest->avg_load; | 
|  |  | 
|  | case group_imbalanced: | 
|  | /* | 
|  | * Select the 1st imbalanced group as we don't have any way to | 
|  | * choose one more than another. | 
|  | */ | 
|  | return false; | 
|  |  | 
|  | case group_asym_packing: | 
|  | /* Prefer to move from lowest priority CPU's work */ | 
|  | return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); | 
|  |  | 
|  | case group_misfit_task: | 
|  | /* | 
|  | * If we have more than one misfit sg go with the biggest | 
|  | * misfit. | 
|  | */ | 
|  | return sgs->group_misfit_task_load > busiest->group_misfit_task_load; | 
|  |  | 
|  | case group_smt_balance: | 
|  | /* | 
|  | * Check if we have spare CPUs on either SMT group to | 
|  | * choose has spare or fully busy handling. | 
|  | */ | 
|  | if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) | 
|  | goto has_spare; | 
|  |  | 
|  | fallthrough; | 
|  |  | 
|  | case group_fully_busy: | 
|  | /* | 
|  | * Select the fully busy group with highest avg_load. In | 
|  | * theory, there is no need to pull task from such kind of | 
|  | * group because tasks have all compute capacity that they need | 
|  | * but we can still improve the overall throughput by reducing | 
|  | * contention when accessing shared HW resources. | 
|  | * | 
|  | * XXX for now avg_load is not computed and always 0 so we | 
|  | * select the 1st one, except if @sg is composed of SMT | 
|  | * siblings. | 
|  | */ | 
|  |  | 
|  | if (sgs->avg_load < busiest->avg_load) | 
|  | return false; | 
|  |  | 
|  | if (sgs->avg_load == busiest->avg_load) { | 
|  | /* | 
|  | * SMT sched groups need more help than non-SMT groups. | 
|  | * If @sg happens to also be SMT, either choice is good. | 
|  | */ | 
|  | if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case group_has_spare: | 
|  | /* | 
|  | * Do not pick sg with SMT CPUs over sg with pure CPUs, | 
|  | * as we do not want to pull task off SMT core with one task | 
|  | * and make the core idle. | 
|  | */ | 
|  | if (smt_vs_nonsmt_groups(sds->busiest, sg)) { | 
|  | if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) | 
|  | return false; | 
|  | else | 
|  | return true; | 
|  | } | 
|  | has_spare: | 
|  |  | 
|  | /* | 
|  | * Select not overloaded group with lowest number of idle CPUs | 
|  | * and highest number of running tasks. We could also compare | 
|  | * the spare capacity which is more stable but it can end up | 
|  | * that the group has less spare capacity but finally more idle | 
|  | * CPUs which means less opportunity to pull tasks. | 
|  | */ | 
|  | if (sgs->idle_cpus > busiest->idle_cpus) | 
|  | return false; | 
|  | else if ((sgs->idle_cpus == busiest->idle_cpus) && | 
|  | (sgs->sum_nr_running <= busiest->sum_nr_running)) | 
|  | return false; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Candidate sg has no more than one task per CPU and has higher | 
|  | * per-CPU capacity. Migrating tasks to less capable CPUs may harm | 
|  | * throughput. Maximize throughput, power/energy consequences are not | 
|  | * considered. | 
|  | */ | 
|  | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && | 
|  | (sgs->group_type <= group_fully_busy) && | 
|  | (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | 
|  | { | 
|  | if (sgs->sum_h_nr_running > sgs->nr_numa_running) | 
|  | return regular; | 
|  | if (sgs->sum_h_nr_running > sgs->nr_preferred_running) | 
|  | return remote; | 
|  | return all; | 
|  | } | 
|  |  | 
|  | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | 
|  | { | 
|  | if (rq->nr_running > rq->nr_numa_running) | 
|  | return regular; | 
|  | if (rq->nr_running > rq->nr_preferred_running) | 
|  | return remote; | 
|  | return all; | 
|  | } | 
|  | #else | 
|  | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | 
|  | { | 
|  | return all; | 
|  | } | 
|  |  | 
|  | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | 
|  | { | 
|  | return regular; | 
|  | } | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  |  | 
|  | struct sg_lb_stats; | 
|  |  | 
|  | /* | 
|  | * task_running_on_cpu - return 1 if @p is running on @cpu. | 
|  | */ | 
|  |  | 
|  | static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) | 
|  | { | 
|  | /* Task has no contribution or is new */ | 
|  | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | 
|  | return 0; | 
|  |  | 
|  | if (task_on_rq_queued(p)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idle_cpu_without - would a given CPU be idle without p ? | 
|  | * @cpu: the processor on which idleness is tested. | 
|  | * @p: task which should be ignored. | 
|  | * | 
|  | * Return: 1 if the CPU would be idle. 0 otherwise. | 
|  | */ | 
|  | static int idle_cpu_without(int cpu, struct task_struct *p) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | if (rq->curr != rq->idle && rq->curr != p) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * rq->nr_running can't be used but an updated version without the | 
|  | * impact of p on cpu must be used instead. The updated nr_running | 
|  | * be computed and tested before calling idle_cpu_without(). | 
|  | */ | 
|  |  | 
|  | if (rq->ttwu_pending) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. | 
|  | * @sd: The sched_domain level to look for idlest group. | 
|  | * @group: sched_group whose statistics are to be updated. | 
|  | * @sgs: variable to hold the statistics for this group. | 
|  | * @p: The task for which we look for the idlest group/CPU. | 
|  | */ | 
|  | static inline void update_sg_wakeup_stats(struct sched_domain *sd, | 
|  | struct sched_group *group, | 
|  | struct sg_lb_stats *sgs, | 
|  | struct task_struct *p) | 
|  | { | 
|  | int i, nr_running; | 
|  |  | 
|  | memset(sgs, 0, sizeof(*sgs)); | 
|  |  | 
|  | /* Assume that task can't fit any CPU of the group */ | 
|  | if (sd->flags & SD_ASYM_CPUCAPACITY) | 
|  | sgs->group_misfit_task_load = 1; | 
|  |  | 
|  | for_each_cpu(i, sched_group_span(group)) { | 
|  | struct rq *rq = cpu_rq(i); | 
|  | unsigned int local; | 
|  |  | 
|  | sgs->group_load += cpu_load_without(rq, p); | 
|  | sgs->group_util += cpu_util_without(i, p); | 
|  | sgs->group_runnable += cpu_runnable_without(rq, p); | 
|  | local = task_running_on_cpu(i, p); | 
|  | sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; | 
|  |  | 
|  | nr_running = rq->nr_running - local; | 
|  | sgs->sum_nr_running += nr_running; | 
|  |  | 
|  | /* | 
|  | * No need to call idle_cpu_without() if nr_running is not 0 | 
|  | */ | 
|  | if (!nr_running && idle_cpu_without(i, p)) | 
|  | sgs->idle_cpus++; | 
|  |  | 
|  | /* Check if task fits in the CPU */ | 
|  | if (sd->flags & SD_ASYM_CPUCAPACITY && | 
|  | sgs->group_misfit_task_load && | 
|  | task_fits_cpu(p, i)) | 
|  | sgs->group_misfit_task_load = 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | sgs->group_capacity = group->sgc->capacity; | 
|  |  | 
|  | sgs->group_weight = group->group_weight; | 
|  |  | 
|  | sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); | 
|  |  | 
|  | /* | 
|  | * Computing avg_load makes sense only when group is fully busy or | 
|  | * overloaded | 
|  | */ | 
|  | if (sgs->group_type == group_fully_busy || | 
|  | sgs->group_type == group_overloaded) | 
|  | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / | 
|  | sgs->group_capacity; | 
|  | } | 
|  |  | 
|  | static bool update_pick_idlest(struct sched_group *idlest, | 
|  | struct sg_lb_stats *idlest_sgs, | 
|  | struct sched_group *group, | 
|  | struct sg_lb_stats *sgs) | 
|  | { | 
|  | if (sgs->group_type < idlest_sgs->group_type) | 
|  | return true; | 
|  |  | 
|  | if (sgs->group_type > idlest_sgs->group_type) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The candidate and the current idlest group are the same type of | 
|  | * group. Let check which one is the idlest according to the type. | 
|  | */ | 
|  |  | 
|  | switch (sgs->group_type) { | 
|  | case group_overloaded: | 
|  | case group_fully_busy: | 
|  | /* Select the group with lowest avg_load. */ | 
|  | if (idlest_sgs->avg_load <= sgs->avg_load) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case group_imbalanced: | 
|  | case group_asym_packing: | 
|  | case group_smt_balance: | 
|  | /* Those types are not used in the slow wakeup path */ | 
|  | return false; | 
|  |  | 
|  | case group_misfit_task: | 
|  | /* Select group with the highest max capacity */ | 
|  | if (idlest->sgc->max_capacity >= group->sgc->max_capacity) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case group_has_spare: | 
|  | /* Select group with most idle CPUs */ | 
|  | if (idlest_sgs->idle_cpus > sgs->idle_cpus) | 
|  | return false; | 
|  |  | 
|  | /* Select group with lowest group_util */ | 
|  | if (idlest_sgs->idle_cpus == sgs->idle_cpus && | 
|  | idlest_sgs->group_util <= sgs->group_util) | 
|  | return false; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_balance_find_dst_group() finds and returns the least busy CPU group within the | 
|  | * domain. | 
|  | * | 
|  | * Assumes p is allowed on at least one CPU in sd. | 
|  | */ | 
|  | static struct sched_group * | 
|  | sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | 
|  | { | 
|  | struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; | 
|  | struct sg_lb_stats local_sgs, tmp_sgs; | 
|  | struct sg_lb_stats *sgs; | 
|  | unsigned long imbalance; | 
|  | struct sg_lb_stats idlest_sgs = { | 
|  | .avg_load = UINT_MAX, | 
|  | .group_type = group_overloaded, | 
|  | }; | 
|  |  | 
|  | do { | 
|  | int local_group; | 
|  |  | 
|  | /* Skip over this group if it has no CPUs allowed */ | 
|  | if (!cpumask_intersects(sched_group_span(group), | 
|  | p->cpus_ptr)) | 
|  | continue; | 
|  |  | 
|  | /* Skip over this group if no cookie matched */ | 
|  | if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) | 
|  | continue; | 
|  |  | 
|  | local_group = cpumask_test_cpu(this_cpu, | 
|  | sched_group_span(group)); | 
|  |  | 
|  | if (local_group) { | 
|  | sgs = &local_sgs; | 
|  | local = group; | 
|  | } else { | 
|  | sgs = &tmp_sgs; | 
|  | } | 
|  |  | 
|  | update_sg_wakeup_stats(sd, group, sgs, p); | 
|  |  | 
|  | if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { | 
|  | idlest = group; | 
|  | idlest_sgs = *sgs; | 
|  | } | 
|  |  | 
|  | } while (group = group->next, group != sd->groups); | 
|  |  | 
|  |  | 
|  | /* There is no idlest group to push tasks to */ | 
|  | if (!idlest) | 
|  | return NULL; | 
|  |  | 
|  | /* The local group has been skipped because of CPU affinity */ | 
|  | if (!local) | 
|  | return idlest; | 
|  |  | 
|  | /* | 
|  | * If the local group is idler than the selected idlest group | 
|  | * don't try and push the task. | 
|  | */ | 
|  | if (local_sgs.group_type < idlest_sgs.group_type) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * If the local group is busier than the selected idlest group | 
|  | * try and push the task. | 
|  | */ | 
|  | if (local_sgs.group_type > idlest_sgs.group_type) | 
|  | return idlest; | 
|  |  | 
|  | switch (local_sgs.group_type) { | 
|  | case group_overloaded: | 
|  | case group_fully_busy: | 
|  |  | 
|  | /* Calculate allowed imbalance based on load */ | 
|  | imbalance = scale_load_down(NICE_0_LOAD) * | 
|  | (sd->imbalance_pct-100) / 100; | 
|  |  | 
|  | /* | 
|  | * When comparing groups across NUMA domains, it's possible for | 
|  | * the local domain to be very lightly loaded relative to the | 
|  | * remote domains but "imbalance" skews the comparison making | 
|  | * remote CPUs look much more favourable. When considering | 
|  | * cross-domain, add imbalance to the load on the remote node | 
|  | * and consider staying local. | 
|  | */ | 
|  |  | 
|  | if ((sd->flags & SD_NUMA) && | 
|  | ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * If the local group is less loaded than the selected | 
|  | * idlest group don't try and push any tasks. | 
|  | */ | 
|  | if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) | 
|  | return NULL; | 
|  |  | 
|  | if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) | 
|  | return NULL; | 
|  | break; | 
|  |  | 
|  | case group_imbalanced: | 
|  | case group_asym_packing: | 
|  | case group_smt_balance: | 
|  | /* Those type are not used in the slow wakeup path */ | 
|  | return NULL; | 
|  |  | 
|  | case group_misfit_task: | 
|  | /* Select group with the highest max capacity */ | 
|  | if (local->sgc->max_capacity >= idlest->sgc->max_capacity) | 
|  | return NULL; | 
|  | break; | 
|  |  | 
|  | case group_has_spare: | 
|  | #ifdef CONFIG_NUMA | 
|  | if (sd->flags & SD_NUMA) { | 
|  | int imb_numa_nr = sd->imb_numa_nr; | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | int idlest_cpu; | 
|  | /* | 
|  | * If there is spare capacity at NUMA, try to select | 
|  | * the preferred node | 
|  | */ | 
|  | if (cpu_to_node(this_cpu) == p->numa_preferred_nid) | 
|  | return NULL; | 
|  |  | 
|  | idlest_cpu = cpumask_first(sched_group_span(idlest)); | 
|  | if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) | 
|  | return idlest; | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  | /* | 
|  | * Otherwise, keep the task close to the wakeup source | 
|  | * and improve locality if the number of running tasks | 
|  | * would remain below threshold where an imbalance is | 
|  | * allowed while accounting for the possibility the | 
|  | * task is pinned to a subset of CPUs. If there is a | 
|  | * real need of migration, periodic load balance will | 
|  | * take care of it. | 
|  | */ | 
|  | if (p->nr_cpus_allowed != NR_CPUS) { | 
|  | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); | 
|  |  | 
|  | cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); | 
|  | imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); | 
|  | } | 
|  |  | 
|  | imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); | 
|  | if (!adjust_numa_imbalance(imbalance, | 
|  | local_sgs.sum_nr_running + 1, | 
|  | imb_numa_nr)) { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | /* | 
|  | * Select group with highest number of idle CPUs. We could also | 
|  | * compare the utilization which is more stable but it can end | 
|  | * up that the group has less spare capacity but finally more | 
|  | * idle CPUs which means more opportunity to run task. | 
|  | */ | 
|  | if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) | 
|  | return NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return idlest; | 
|  | } | 
|  |  | 
|  | static void update_idle_cpu_scan(struct lb_env *env, | 
|  | unsigned long sum_util) | 
|  | { | 
|  | struct sched_domain_shared *sd_share; | 
|  | int llc_weight, pct; | 
|  | u64 x, y, tmp; | 
|  | /* | 
|  | * Update the number of CPUs to scan in LLC domain, which could | 
|  | * be used as a hint in select_idle_cpu(). The update of sd_share | 
|  | * could be expensive because it is within a shared cache line. | 
|  | * So the write of this hint only occurs during periodic load | 
|  | * balancing, rather than CPU_NEWLY_IDLE, because the latter | 
|  | * can fire way more frequently than the former. | 
|  | */ | 
|  | if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) | 
|  | return; | 
|  |  | 
|  | llc_weight = per_cpu(sd_llc_size, env->dst_cpu); | 
|  | if (env->sd->span_weight != llc_weight) | 
|  | return; | 
|  |  | 
|  | sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); | 
|  | if (!sd_share) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The number of CPUs to search drops as sum_util increases, when | 
|  | * sum_util hits 85% or above, the scan stops. | 
|  | * The reason to choose 85% as the threshold is because this is the | 
|  | * imbalance_pct(117) when a LLC sched group is overloaded. | 
|  | * | 
|  | * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1] | 
|  | * and y'= y / SCHED_CAPACITY_SCALE | 
|  | * | 
|  | * x is the ratio of sum_util compared to the CPU capacity: | 
|  | * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) | 
|  | * y' is the ratio of CPUs to be scanned in the LLC domain, | 
|  | * and the number of CPUs to scan is calculated by: | 
|  | * | 
|  | * nr_scan = llc_weight * y'                                    [2] | 
|  | * | 
|  | * When x hits the threshold of overloaded, AKA, when | 
|  | * x = 100 / pct, y drops to 0. According to [1], | 
|  | * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 | 
|  | * | 
|  | * Scale x by SCHED_CAPACITY_SCALE: | 
|  | * x' = sum_util / llc_weight;                                  [3] | 
|  | * | 
|  | * and finally [1] becomes: | 
|  | * y = SCHED_CAPACITY_SCALE - | 
|  | *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4] | 
|  | * | 
|  | */ | 
|  | /* equation [3] */ | 
|  | x = sum_util; | 
|  | do_div(x, llc_weight); | 
|  |  | 
|  | /* equation [4] */ | 
|  | pct = env->sd->imbalance_pct; | 
|  | tmp = x * x * pct * pct; | 
|  | do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); | 
|  | tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); | 
|  | y = SCHED_CAPACITY_SCALE - tmp; | 
|  |  | 
|  | /* equation [2] */ | 
|  | y *= llc_weight; | 
|  | do_div(y, SCHED_CAPACITY_SCALE); | 
|  | if ((int)y != sd_share->nr_idle_scan) | 
|  | WRITE_ONCE(sd_share->nr_idle_scan, (int)y); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. | 
|  | * @env: The load balancing environment. | 
|  | * @sds: variable to hold the statistics for this sched_domain. | 
|  | */ | 
|  |  | 
|  | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) | 
|  | { | 
|  | struct sched_group *sg = env->sd->groups; | 
|  | struct sg_lb_stats *local = &sds->local_stat; | 
|  | struct sg_lb_stats tmp_sgs; | 
|  | unsigned long sum_util = 0; | 
|  | bool sg_overloaded = 0, sg_overutilized = 0; | 
|  |  | 
|  | do { | 
|  | struct sg_lb_stats *sgs = &tmp_sgs; | 
|  | int local_group; | 
|  |  | 
|  | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); | 
|  | if (local_group) { | 
|  | sds->local = sg; | 
|  | sgs = local; | 
|  |  | 
|  | if (env->idle != CPU_NEWLY_IDLE || | 
|  | time_after_eq(jiffies, sg->sgc->next_update)) | 
|  | update_group_capacity(env->sd, env->dst_cpu); | 
|  | } | 
|  |  | 
|  | update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); | 
|  |  | 
|  | if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { | 
|  | sds->busiest = sg; | 
|  | sds->busiest_stat = *sgs; | 
|  | } | 
|  |  | 
|  | /* Now, start updating sd_lb_stats */ | 
|  | sds->total_load += sgs->group_load; | 
|  | sds->total_capacity += sgs->group_capacity; | 
|  |  | 
|  | sum_util += sgs->group_util; | 
|  | sg = sg->next; | 
|  | } while (sg != env->sd->groups); | 
|  |  | 
|  | /* | 
|  | * Indicate that the child domain of the busiest group prefers tasks | 
|  | * go to a child's sibling domains first. NB the flags of a sched group | 
|  | * are those of the child domain. | 
|  | */ | 
|  | if (sds->busiest) | 
|  | sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); | 
|  |  | 
|  |  | 
|  | if (env->sd->flags & SD_NUMA) | 
|  | env->fbq_type = fbq_classify_group(&sds->busiest_stat); | 
|  |  | 
|  | if (!env->sd->parent) { | 
|  | /* update overload indicator if we are at root domain */ | 
|  | set_rd_overloaded(env->dst_rq->rd, sg_overloaded); | 
|  |  | 
|  | /* Update over-utilization (tipping point, U >= 0) indicator */ | 
|  | set_rd_overutilized(env->dst_rq->rd, sg_overutilized); | 
|  | } else if (sg_overutilized) { | 
|  | set_rd_overutilized(env->dst_rq->rd, sg_overutilized); | 
|  | } | 
|  |  | 
|  | update_idle_cpu_scan(env, sum_util); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * calculate_imbalance - Calculate the amount of imbalance present within the | 
|  | *			 groups of a given sched_domain during load balance. | 
|  | * @env: load balance environment | 
|  | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | 
|  | */ | 
|  | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) | 
|  | { | 
|  | struct sg_lb_stats *local, *busiest; | 
|  |  | 
|  | local = &sds->local_stat; | 
|  | busiest = &sds->busiest_stat; | 
|  |  | 
|  | if (busiest->group_type == group_misfit_task) { | 
|  | if (env->sd->flags & SD_ASYM_CPUCAPACITY) { | 
|  | /* Set imbalance to allow misfit tasks to be balanced. */ | 
|  | env->migration_type = migrate_misfit; | 
|  | env->imbalance = 1; | 
|  | } else { | 
|  | /* | 
|  | * Set load imbalance to allow moving task from cpu | 
|  | * with reduced capacity. | 
|  | */ | 
|  | env->migration_type = migrate_load; | 
|  | env->imbalance = busiest->group_misfit_task_load; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (busiest->group_type == group_asym_packing) { | 
|  | /* | 
|  | * In case of asym capacity, we will try to migrate all load to | 
|  | * the preferred CPU. | 
|  | */ | 
|  | env->migration_type = migrate_task; | 
|  | env->imbalance = busiest->sum_h_nr_running; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (busiest->group_type == group_smt_balance) { | 
|  | /* Reduce number of tasks sharing CPU capacity */ | 
|  | env->migration_type = migrate_task; | 
|  | env->imbalance = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (busiest->group_type == group_imbalanced) { | 
|  | /* | 
|  | * In the group_imb case we cannot rely on group-wide averages | 
|  | * to ensure CPU-load equilibrium, try to move any task to fix | 
|  | * the imbalance. The next load balance will take care of | 
|  | * balancing back the system. | 
|  | */ | 
|  | env->migration_type = migrate_task; | 
|  | env->imbalance = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to use spare capacity of local group without overloading it or | 
|  | * emptying busiest. | 
|  | */ | 
|  | if (local->group_type == group_has_spare) { | 
|  | if ((busiest->group_type > group_fully_busy) && | 
|  | !(env->sd->flags & SD_SHARE_LLC)) { | 
|  | /* | 
|  | * If busiest is overloaded, try to fill spare | 
|  | * capacity. This might end up creating spare capacity | 
|  | * in busiest or busiest still being overloaded but | 
|  | * there is no simple way to directly compute the | 
|  | * amount of load to migrate in order to balance the | 
|  | * system. | 
|  | */ | 
|  | env->migration_type = migrate_util; | 
|  | env->imbalance = max(local->group_capacity, local->group_util) - | 
|  | local->group_util; | 
|  |  | 
|  | /* | 
|  | * In some cases, the group's utilization is max or even | 
|  | * higher than capacity because of migrations but the | 
|  | * local CPU is (newly) idle. There is at least one | 
|  | * waiting task in this overloaded busiest group. Let's | 
|  | * try to pull it. | 
|  | */ | 
|  | if (env->idle && env->imbalance == 0) { | 
|  | env->migration_type = migrate_task; | 
|  | env->imbalance = 1; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (busiest->group_weight == 1 || sds->prefer_sibling) { | 
|  | /* | 
|  | * When prefer sibling, evenly spread running tasks on | 
|  | * groups. | 
|  | */ | 
|  | env->migration_type = migrate_task; | 
|  | env->imbalance = sibling_imbalance(env, sds, busiest, local); | 
|  | } else { | 
|  |  | 
|  | /* | 
|  | * If there is no overload, we just want to even the number of | 
|  | * idle CPUs. | 
|  | */ | 
|  | env->migration_type = migrate_task; | 
|  | env->imbalance = max_t(long, 0, | 
|  | (local->idle_cpus - busiest->idle_cpus)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* Consider allowing a small imbalance between NUMA groups */ | 
|  | if (env->sd->flags & SD_NUMA) { | 
|  | env->imbalance = adjust_numa_imbalance(env->imbalance, | 
|  | local->sum_nr_running + 1, | 
|  | env->sd->imb_numa_nr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Number of tasks to move to restore balance */ | 
|  | env->imbalance >>= 1; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Local is fully busy but has to take more load to relieve the | 
|  | * busiest group | 
|  | */ | 
|  | if (local->group_type < group_overloaded) { | 
|  | /* | 
|  | * Local will become overloaded so the avg_load metrics are | 
|  | * finally needed. | 
|  | */ | 
|  |  | 
|  | local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / | 
|  | local->group_capacity; | 
|  |  | 
|  | /* | 
|  | * If the local group is more loaded than the selected | 
|  | * busiest group don't try to pull any tasks. | 
|  | */ | 
|  | if (local->avg_load >= busiest->avg_load) { | 
|  | env->imbalance = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / | 
|  | sds->total_capacity; | 
|  |  | 
|  | /* | 
|  | * If the local group is more loaded than the average system | 
|  | * load, don't try to pull any tasks. | 
|  | */ | 
|  | if (local->avg_load >= sds->avg_load) { | 
|  | env->imbalance = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Both group are or will become overloaded and we're trying to get all | 
|  | * the CPUs to the average_load, so we don't want to push ourselves | 
|  | * above the average load, nor do we wish to reduce the max loaded CPU | 
|  | * below the average load. At the same time, we also don't want to | 
|  | * reduce the group load below the group capacity. Thus we look for | 
|  | * the minimum possible imbalance. | 
|  | */ | 
|  | env->migration_type = migrate_load; | 
|  | env->imbalance = min( | 
|  | (busiest->avg_load - sds->avg_load) * busiest->group_capacity, | 
|  | (sds->avg_load - local->avg_load) * local->group_capacity | 
|  | ) / SCHED_CAPACITY_SCALE; | 
|  | } | 
|  |  | 
|  | /******* sched_balance_find_src_group() helpers end here *********************/ | 
|  |  | 
|  | /* | 
|  | * Decision matrix according to the local and busiest group type: | 
|  | * | 
|  | * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded | 
|  | * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced | 
|  | * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced | 
|  | * misfit_task      force     N/A        N/A    N/A  N/A        N/A | 
|  | * asym_packing     force     force      N/A    N/A  force      force | 
|  | * imbalanced       force     force      N/A    N/A  force      force | 
|  | * overloaded       force     force      N/A    N/A  force      avg_load | 
|  | * | 
|  | * N/A :      Not Applicable because already filtered while updating | 
|  | *            statistics. | 
|  | * balanced : The system is balanced for these 2 groups. | 
|  | * force :    Calculate the imbalance as load migration is probably needed. | 
|  | * avg_load : Only if imbalance is significant enough. | 
|  | * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite | 
|  | *            different in groups. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * sched_balance_find_src_group - Returns the busiest group within the sched_domain | 
|  | * if there is an imbalance. | 
|  | * @env: The load balancing environment. | 
|  | * | 
|  | * Also calculates the amount of runnable load which should be moved | 
|  | * to restore balance. | 
|  | * | 
|  | * Return:	- The busiest group if imbalance exists. | 
|  | */ | 
|  | static struct sched_group *sched_balance_find_src_group(struct lb_env *env) | 
|  | { | 
|  | struct sg_lb_stats *local, *busiest; | 
|  | struct sd_lb_stats sds; | 
|  |  | 
|  | init_sd_lb_stats(&sds); | 
|  |  | 
|  | /* | 
|  | * Compute the various statistics relevant for load balancing at | 
|  | * this level. | 
|  | */ | 
|  | update_sd_lb_stats(env, &sds); | 
|  |  | 
|  | /* There is no busy sibling group to pull tasks from */ | 
|  | if (!sds.busiest) | 
|  | goto out_balanced; | 
|  |  | 
|  | busiest = &sds.busiest_stat; | 
|  |  | 
|  | /* Misfit tasks should be dealt with regardless of the avg load */ | 
|  | if (busiest->group_type == group_misfit_task) | 
|  | goto force_balance; | 
|  |  | 
|  | if (!is_rd_overutilized(env->dst_rq->rd) && | 
|  | rcu_dereference(env->dst_rq->rd->pd)) | 
|  | goto out_balanced; | 
|  |  | 
|  | /* ASYM feature bypasses nice load balance check */ | 
|  | if (busiest->group_type == group_asym_packing) | 
|  | goto force_balance; | 
|  |  | 
|  | /* | 
|  | * If the busiest group is imbalanced the below checks don't | 
|  | * work because they assume all things are equal, which typically | 
|  | * isn't true due to cpus_ptr constraints and the like. | 
|  | */ | 
|  | if (busiest->group_type == group_imbalanced) | 
|  | goto force_balance; | 
|  |  | 
|  | local = &sds.local_stat; | 
|  | /* | 
|  | * If the local group is busier than the selected busiest group | 
|  | * don't try and pull any tasks. | 
|  | */ | 
|  | if (local->group_type > busiest->group_type) | 
|  | goto out_balanced; | 
|  |  | 
|  | /* | 
|  | * When groups are overloaded, use the avg_load to ensure fairness | 
|  | * between tasks. | 
|  | */ | 
|  | if (local->group_type == group_overloaded) { | 
|  | /* | 
|  | * If the local group is more loaded than the selected | 
|  | * busiest group don't try to pull any tasks. | 
|  | */ | 
|  | if (local->avg_load >= busiest->avg_load) | 
|  | goto out_balanced; | 
|  |  | 
|  | /* XXX broken for overlapping NUMA groups */ | 
|  | sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / | 
|  | sds.total_capacity; | 
|  |  | 
|  | /* | 
|  | * Don't pull any tasks if this group is already above the | 
|  | * domain average load. | 
|  | */ | 
|  | if (local->avg_load >= sds.avg_load) | 
|  | goto out_balanced; | 
|  |  | 
|  | /* | 
|  | * If the busiest group is more loaded, use imbalance_pct to be | 
|  | * conservative. | 
|  | */ | 
|  | if (100 * busiest->avg_load <= | 
|  | env->sd->imbalance_pct * local->avg_load) | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to move all excess tasks to a sibling domain of the busiest | 
|  | * group's child domain. | 
|  | */ | 
|  | if (sds.prefer_sibling && local->group_type == group_has_spare && | 
|  | sibling_imbalance(env, &sds, busiest, local) > 1) | 
|  | goto force_balance; | 
|  |  | 
|  | if (busiest->group_type != group_overloaded) { | 
|  | if (!env->idle) { | 
|  | /* | 
|  | * If the busiest group is not overloaded (and as a | 
|  | * result the local one too) but this CPU is already | 
|  | * busy, let another idle CPU try to pull task. | 
|  | */ | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | if (busiest->group_type == group_smt_balance && | 
|  | smt_vs_nonsmt_groups(sds.local, sds.busiest)) { | 
|  | /* Let non SMT CPU pull from SMT CPU sharing with sibling */ | 
|  | goto force_balance; | 
|  | } | 
|  |  | 
|  | if (busiest->group_weight > 1 && | 
|  | local->idle_cpus <= (busiest->idle_cpus + 1)) { | 
|  | /* | 
|  | * If the busiest group is not overloaded | 
|  | * and there is no imbalance between this and busiest | 
|  | * group wrt idle CPUs, it is balanced. The imbalance | 
|  | * becomes significant if the diff is greater than 1 | 
|  | * otherwise we might end up to just move the imbalance | 
|  | * on another group. Of course this applies only if | 
|  | * there is more than 1 CPU per group. | 
|  | */ | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | if (busiest->sum_h_nr_running == 1) { | 
|  | /* | 
|  | * busiest doesn't have any tasks waiting to run | 
|  | */ | 
|  | goto out_balanced; | 
|  | } | 
|  | } | 
|  |  | 
|  | force_balance: | 
|  | /* Looks like there is an imbalance. Compute it */ | 
|  | calculate_imbalance(env, &sds); | 
|  | return env->imbalance ? sds.busiest : NULL; | 
|  |  | 
|  | out_balanced: | 
|  | env->imbalance = 0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. | 
|  | */ | 
|  | static struct rq *sched_balance_find_src_rq(struct lb_env *env, | 
|  | struct sched_group *group) | 
|  | { | 
|  | struct rq *busiest = NULL, *rq; | 
|  | unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; | 
|  | unsigned int busiest_nr = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_and(i, sched_group_span(group), env->cpus) { | 
|  | unsigned long capacity, load, util; | 
|  | unsigned int nr_running; | 
|  | enum fbq_type rt; | 
|  |  | 
|  | rq = cpu_rq(i); | 
|  | rt = fbq_classify_rq(rq); | 
|  |  | 
|  | /* | 
|  | * We classify groups/runqueues into three groups: | 
|  | *  - regular: there are !numa tasks | 
|  | *  - remote:  there are numa tasks that run on the 'wrong' node | 
|  | *  - all:     there is no distinction | 
|  | * | 
|  | * In order to avoid migrating ideally placed numa tasks, | 
|  | * ignore those when there's better options. | 
|  | * | 
|  | * If we ignore the actual busiest queue to migrate another | 
|  | * task, the next balance pass can still reduce the busiest | 
|  | * queue by moving tasks around inside the node. | 
|  | * | 
|  | * If we cannot move enough load due to this classification | 
|  | * the next pass will adjust the group classification and | 
|  | * allow migration of more tasks. | 
|  | * | 
|  | * Both cases only affect the total convergence complexity. | 
|  | */ | 
|  | if (rt > env->fbq_type) | 
|  | continue; | 
|  |  | 
|  | nr_running = rq->cfs.h_nr_running; | 
|  | if (!nr_running) | 
|  | continue; | 
|  |  | 
|  | capacity = capacity_of(i); | 
|  |  | 
|  | /* | 
|  | * For ASYM_CPUCAPACITY domains, don't pick a CPU that could | 
|  | * eventually lead to active_balancing high->low capacity. | 
|  | * Higher per-CPU capacity is considered better than balancing | 
|  | * average load. | 
|  | */ | 
|  | if (env->sd->flags & SD_ASYM_CPUCAPACITY && | 
|  | !capacity_greater(capacity_of(env->dst_cpu), capacity) && | 
|  | nr_running == 1) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Make sure we only pull tasks from a CPU of lower priority | 
|  | * when balancing between SMT siblings. | 
|  | * | 
|  | * If balancing between cores, let lower priority CPUs help | 
|  | * SMT cores with more than one busy sibling. | 
|  | */ | 
|  | if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) | 
|  | continue; | 
|  |  | 
|  | switch (env->migration_type) { | 
|  | case migrate_load: | 
|  | /* | 
|  | * When comparing with load imbalance, use cpu_load() | 
|  | * which is not scaled with the CPU capacity. | 
|  | */ | 
|  | load = cpu_load(rq); | 
|  |  | 
|  | if (nr_running == 1 && load > env->imbalance && | 
|  | !check_cpu_capacity(rq, env->sd)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * For the load comparisons with the other CPUs, | 
|  | * consider the cpu_load() scaled with the CPU | 
|  | * capacity, so that the load can be moved away | 
|  | * from the CPU that is potentially running at a | 
|  | * lower capacity. | 
|  | * | 
|  | * Thus we're looking for max(load_i / capacity_i), | 
|  | * crosswise multiplication to rid ourselves of the | 
|  | * division works out to: | 
|  | * load_i * capacity_j > load_j * capacity_i; | 
|  | * where j is our previous maximum. | 
|  | */ | 
|  | if (load * busiest_capacity > busiest_load * capacity) { | 
|  | busiest_load = load; | 
|  | busiest_capacity = capacity; | 
|  | busiest = rq; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case migrate_util: | 
|  | util = cpu_util_cfs_boost(i); | 
|  |  | 
|  | /* | 
|  | * Don't try to pull utilization from a CPU with one | 
|  | * running task. Whatever its utilization, we will fail | 
|  | * detach the task. | 
|  | */ | 
|  | if (nr_running <= 1) | 
|  | continue; | 
|  |  | 
|  | if (busiest_util < util) { | 
|  | busiest_util = util; | 
|  | busiest = rq; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case migrate_task: | 
|  | if (busiest_nr < nr_running) { | 
|  | busiest_nr = nr_running; | 
|  | busiest = rq; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case migrate_misfit: | 
|  | /* | 
|  | * For ASYM_CPUCAPACITY domains with misfit tasks we | 
|  | * simply seek the "biggest" misfit task. | 
|  | */ | 
|  | if (rq->misfit_task_load > busiest_load) { | 
|  | busiest_load = rq->misfit_task_load; | 
|  | busiest = rq; | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | return busiest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 
|  | * so long as it is large enough. | 
|  | */ | 
|  | #define MAX_PINNED_INTERVAL	512 | 
|  |  | 
|  | static inline bool | 
|  | asym_active_balance(struct lb_env *env) | 
|  | { | 
|  | /* | 
|  | * ASYM_PACKING needs to force migrate tasks from busy but lower | 
|  | * priority CPUs in order to pack all tasks in the highest priority | 
|  | * CPUs. When done between cores, do it only if the whole core if the | 
|  | * whole core is idle. | 
|  | * | 
|  | * If @env::src_cpu is an SMT core with busy siblings, let | 
|  | * the lower priority @env::dst_cpu help it. Do not follow | 
|  | * CPU priority. | 
|  | */ | 
|  | return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && | 
|  | (sched_asym_prefer(env->dst_cpu, env->src_cpu) || | 
|  | !sched_use_asym_prio(env->sd, env->src_cpu)); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | imbalanced_active_balance(struct lb_env *env) | 
|  | { | 
|  | struct sched_domain *sd = env->sd; | 
|  |  | 
|  | /* | 
|  | * The imbalanced case includes the case of pinned tasks preventing a fair | 
|  | * distribution of the load on the system but also the even distribution of the | 
|  | * threads on a system with spare capacity | 
|  | */ | 
|  | if ((env->migration_type == migrate_task) && | 
|  | (sd->nr_balance_failed > sd->cache_nice_tries+2)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int need_active_balance(struct lb_env *env) | 
|  | { | 
|  | struct sched_domain *sd = env->sd; | 
|  |  | 
|  | if (asym_active_balance(env)) | 
|  | return 1; | 
|  |  | 
|  | if (imbalanced_active_balance(env)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. | 
|  | * It's worth migrating the task if the src_cpu's capacity is reduced | 
|  | * because of other sched_class or IRQs if more capacity stays | 
|  | * available on dst_cpu. | 
|  | */ | 
|  | if (env->idle && | 
|  | (env->src_rq->cfs.h_nr_running == 1)) { | 
|  | if ((check_cpu_capacity(env->src_rq, sd)) && | 
|  | (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (env->migration_type == migrate_misfit) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int active_load_balance_cpu_stop(void *data); | 
|  |  | 
|  | static int should_we_balance(struct lb_env *env) | 
|  | { | 
|  | struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); | 
|  | struct sched_group *sg = env->sd->groups; | 
|  | int cpu, idle_smt = -1; | 
|  |  | 
|  | /* | 
|  | * Ensure the balancing environment is consistent; can happen | 
|  | * when the softirq triggers 'during' hotplug. | 
|  | */ | 
|  | if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * In the newly idle case, we will allow all the CPUs | 
|  | * to do the newly idle load balance. | 
|  | * | 
|  | * However, we bail out if we already have tasks or a wakeup pending, | 
|  | * to optimize wakeup latency. | 
|  | */ | 
|  | if (env->idle == CPU_NEWLY_IDLE) { | 
|  | if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | cpumask_copy(swb_cpus, group_balance_mask(sg)); | 
|  | /* Try to find first idle CPU */ | 
|  | for_each_cpu_and(cpu, swb_cpus, env->cpus) { | 
|  | if (!idle_cpu(cpu)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Don't balance to idle SMT in busy core right away when | 
|  | * balancing cores, but remember the first idle SMT CPU for | 
|  | * later consideration.  Find CPU on an idle core first. | 
|  | */ | 
|  | if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { | 
|  | if (idle_smt == -1) | 
|  | idle_smt = cpu; | 
|  | /* | 
|  | * If the core is not idle, and first SMT sibling which is | 
|  | * idle has been found, then its not needed to check other | 
|  | * SMT siblings for idleness: | 
|  | */ | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); | 
|  | #endif | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Are we the first idle core in a non-SMT domain or higher, | 
|  | * or the first idle CPU in a SMT domain? | 
|  | */ | 
|  | return cpu == env->dst_cpu; | 
|  | } | 
|  |  | 
|  | /* Are we the first idle CPU with busy siblings? */ | 
|  | if (idle_smt != -1) | 
|  | return idle_smt == env->dst_cpu; | 
|  |  | 
|  | /* Are we the first CPU of this group ? */ | 
|  | return group_balance_cpu(sg) == env->dst_cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | * tasks if there is an imbalance. | 
|  | */ | 
|  | static int sched_balance_rq(int this_cpu, struct rq *this_rq, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | int *continue_balancing) | 
|  | { | 
|  | int ld_moved, cur_ld_moved, active_balance = 0; | 
|  | struct sched_domain *sd_parent = sd->parent; | 
|  | struct sched_group *group; | 
|  | struct rq *busiest; | 
|  | struct rq_flags rf; | 
|  | struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); | 
|  | struct lb_env env = { | 
|  | .sd		= sd, | 
|  | .dst_cpu	= this_cpu, | 
|  | .dst_rq		= this_rq, | 
|  | .dst_grpmask    = group_balance_mask(sd->groups), | 
|  | .idle		= idle, | 
|  | .loop_break	= SCHED_NR_MIGRATE_BREAK, | 
|  | .cpus		= cpus, | 
|  | .fbq_type	= all, | 
|  | .tasks		= LIST_HEAD_INIT(env.tasks), | 
|  | }; | 
|  |  | 
|  | cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); | 
|  |  | 
|  | schedstat_inc(sd->lb_count[idle]); | 
|  |  | 
|  | redo: | 
|  | if (!should_we_balance(&env)) { | 
|  | *continue_balancing = 0; | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | group = sched_balance_find_src_group(&env); | 
|  | if (!group) { | 
|  | schedstat_inc(sd->lb_nobusyg[idle]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | busiest = sched_balance_find_src_rq(&env, group); | 
|  | if (!busiest) { | 
|  | schedstat_inc(sd->lb_nobusyq[idle]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(busiest == env.dst_rq); | 
|  |  | 
|  | schedstat_add(sd->lb_imbalance[idle], env.imbalance); | 
|  |  | 
|  | env.src_cpu = busiest->cpu; | 
|  | env.src_rq = busiest; | 
|  |  | 
|  | ld_moved = 0; | 
|  | /* Clear this flag as soon as we find a pullable task */ | 
|  | env.flags |= LBF_ALL_PINNED; | 
|  | if (busiest->nr_running > 1) { | 
|  | /* | 
|  | * Attempt to move tasks. If sched_balance_find_src_group has found | 
|  | * an imbalance but busiest->nr_running <= 1, the group is | 
|  | * still unbalanced. ld_moved simply stays zero, so it is | 
|  | * correctly treated as an imbalance. | 
|  | */ | 
|  | env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running); | 
|  |  | 
|  | more_balance: | 
|  | rq_lock_irqsave(busiest, &rf); | 
|  | update_rq_clock(busiest); | 
|  |  | 
|  | /* | 
|  | * cur_ld_moved - load moved in current iteration | 
|  | * ld_moved     - cumulative load moved across iterations | 
|  | */ | 
|  | cur_ld_moved = detach_tasks(&env); | 
|  |  | 
|  | /* | 
|  | * We've detached some tasks from busiest_rq. Every | 
|  | * task is masked "TASK_ON_RQ_MIGRATING", so we can safely | 
|  | * unlock busiest->lock, and we are able to be sure | 
|  | * that nobody can manipulate the tasks in parallel. | 
|  | * See task_rq_lock() family for the details. | 
|  | */ | 
|  |  | 
|  | rq_unlock(busiest, &rf); | 
|  |  | 
|  | if (cur_ld_moved) { | 
|  | attach_tasks(&env); | 
|  | ld_moved += cur_ld_moved; | 
|  | } | 
|  |  | 
|  | local_irq_restore(rf.flags); | 
|  |  | 
|  | if (env.flags & LBF_NEED_BREAK) { | 
|  | env.flags &= ~LBF_NEED_BREAK; | 
|  | goto more_balance; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Revisit (affine) tasks on src_cpu that couldn't be moved to | 
|  | * us and move them to an alternate dst_cpu in our sched_group | 
|  | * where they can run. The upper limit on how many times we | 
|  | * iterate on same src_cpu is dependent on number of CPUs in our | 
|  | * sched_group. | 
|  | * | 
|  | * This changes load balance semantics a bit on who can move | 
|  | * load to a given_cpu. In addition to the given_cpu itself | 
|  | * (or a ilb_cpu acting on its behalf where given_cpu is | 
|  | * nohz-idle), we now have balance_cpu in a position to move | 
|  | * load to given_cpu. In rare situations, this may cause | 
|  | * conflicts (balance_cpu and given_cpu/ilb_cpu deciding | 
|  | * _independently_ and at _same_ time to move some load to | 
|  | * given_cpu) causing excess load to be moved to given_cpu. | 
|  | * This however should not happen so much in practice and | 
|  | * moreover subsequent load balance cycles should correct the | 
|  | * excess load moved. | 
|  | */ | 
|  | if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { | 
|  |  | 
|  | /* Prevent to re-select dst_cpu via env's CPUs */ | 
|  | __cpumask_clear_cpu(env.dst_cpu, env.cpus); | 
|  |  | 
|  | env.dst_rq	 = cpu_rq(env.new_dst_cpu); | 
|  | env.dst_cpu	 = env.new_dst_cpu; | 
|  | env.flags	&= ~LBF_DST_PINNED; | 
|  | env.loop	 = 0; | 
|  | env.loop_break	 = SCHED_NR_MIGRATE_BREAK; | 
|  |  | 
|  | /* | 
|  | * Go back to "more_balance" rather than "redo" since we | 
|  | * need to continue with same src_cpu. | 
|  | */ | 
|  | goto more_balance; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We failed to reach balance because of affinity. | 
|  | */ | 
|  | if (sd_parent) { | 
|  | int *group_imbalance = &sd_parent->groups->sgc->imbalance; | 
|  |  | 
|  | if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) | 
|  | *group_imbalance = 1; | 
|  | } | 
|  |  | 
|  | /* All tasks on this runqueue were pinned by CPU affinity */ | 
|  | if (unlikely(env.flags & LBF_ALL_PINNED)) { | 
|  | __cpumask_clear_cpu(cpu_of(busiest), cpus); | 
|  | /* | 
|  | * Attempting to continue load balancing at the current | 
|  | * sched_domain level only makes sense if there are | 
|  | * active CPUs remaining as possible busiest CPUs to | 
|  | * pull load from which are not contained within the | 
|  | * destination group that is receiving any migrated | 
|  | * load. | 
|  | */ | 
|  | if (!cpumask_subset(cpus, env.dst_grpmask)) { | 
|  | env.loop = 0; | 
|  | env.loop_break = SCHED_NR_MIGRATE_BREAK; | 
|  | goto redo; | 
|  | } | 
|  | goto out_all_pinned; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ld_moved) { | 
|  | schedstat_inc(sd->lb_failed[idle]); | 
|  | /* | 
|  | * Increment the failure counter only on periodic balance. | 
|  | * We do not want newidle balance, which can be very | 
|  | * frequent, pollute the failure counter causing | 
|  | * excessive cache_hot migrations and active balances. | 
|  | * | 
|  | * Similarly for migration_misfit which is not related to | 
|  | * load/util migration, don't pollute nr_balance_failed. | 
|  | */ | 
|  | if (idle != CPU_NEWLY_IDLE && | 
|  | env.migration_type != migrate_misfit) | 
|  | sd->nr_balance_failed++; | 
|  |  | 
|  | if (need_active_balance(&env)) { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_rq_lock_irqsave(busiest, flags); | 
|  |  | 
|  | /* | 
|  | * Don't kick the active_load_balance_cpu_stop, | 
|  | * if the curr task on busiest CPU can't be | 
|  | * moved to this_cpu: | 
|  | */ | 
|  | if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { | 
|  | raw_spin_rq_unlock_irqrestore(busiest, flags); | 
|  | goto out_one_pinned; | 
|  | } | 
|  |  | 
|  | /* Record that we found at least one task that could run on this_cpu */ | 
|  | env.flags &= ~LBF_ALL_PINNED; | 
|  |  | 
|  | /* | 
|  | * ->active_balance synchronizes accesses to | 
|  | * ->active_balance_work.  Once set, it's cleared | 
|  | * only after active load balance is finished. | 
|  | */ | 
|  | if (!busiest->active_balance) { | 
|  | busiest->active_balance = 1; | 
|  | busiest->push_cpu = this_cpu; | 
|  | active_balance = 1; | 
|  | } | 
|  |  | 
|  | preempt_disable(); | 
|  | raw_spin_rq_unlock_irqrestore(busiest, flags); | 
|  | if (active_balance) { | 
|  | stop_one_cpu_nowait(cpu_of(busiest), | 
|  | active_load_balance_cpu_stop, busiest, | 
|  | &busiest->active_balance_work); | 
|  | } | 
|  | preempt_enable(); | 
|  | } | 
|  | } else { | 
|  | sd->nr_balance_failed = 0; | 
|  | } | 
|  |  | 
|  | if (likely(!active_balance) || need_active_balance(&env)) { | 
|  | /* We were unbalanced, so reset the balancing interval */ | 
|  | sd->balance_interval = sd->min_interval; | 
|  | } | 
|  |  | 
|  | goto out; | 
|  |  | 
|  | out_balanced: | 
|  | /* | 
|  | * We reach balance although we may have faced some affinity | 
|  | * constraints. Clear the imbalance flag only if other tasks got | 
|  | * a chance to move and fix the imbalance. | 
|  | */ | 
|  | if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { | 
|  | int *group_imbalance = &sd_parent->groups->sgc->imbalance; | 
|  |  | 
|  | if (*group_imbalance) | 
|  | *group_imbalance = 0; | 
|  | } | 
|  |  | 
|  | out_all_pinned: | 
|  | /* | 
|  | * We reach balance because all tasks are pinned at this level so | 
|  | * we can't migrate them. Let the imbalance flag set so parent level | 
|  | * can try to migrate them. | 
|  | */ | 
|  | schedstat_inc(sd->lb_balanced[idle]); | 
|  |  | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | out_one_pinned: | 
|  | ld_moved = 0; | 
|  |  | 
|  | /* | 
|  | * sched_balance_newidle() disregards balance intervals, so we could | 
|  | * repeatedly reach this code, which would lead to balance_interval | 
|  | * skyrocketing in a short amount of time. Skip the balance_interval | 
|  | * increase logic to avoid that. | 
|  | * | 
|  | * Similarly misfit migration which is not necessarily an indication of | 
|  | * the system being busy and requires lb to backoff to let it settle | 
|  | * down. | 
|  | */ | 
|  | if (env.idle == CPU_NEWLY_IDLE || | 
|  | env.migration_type == migrate_misfit) | 
|  | goto out; | 
|  |  | 
|  | /* tune up the balancing interval */ | 
|  | if ((env.flags & LBF_ALL_PINNED && | 
|  | sd->balance_interval < MAX_PINNED_INTERVAL) || | 
|  | sd->balance_interval < sd->max_interval) | 
|  | sd->balance_interval *= 2; | 
|  | out: | 
|  | return ld_moved; | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) | 
|  | { | 
|  | unsigned long interval = sd->balance_interval; | 
|  |  | 
|  | if (cpu_busy) | 
|  | interval *= sd->busy_factor; | 
|  |  | 
|  | /* scale ms to jiffies */ | 
|  | interval = msecs_to_jiffies(interval); | 
|  |  | 
|  | /* | 
|  | * Reduce likelihood of busy balancing at higher domains racing with | 
|  | * balancing at lower domains by preventing their balancing periods | 
|  | * from being multiples of each other. | 
|  | */ | 
|  | if (cpu_busy) | 
|  | interval -= 1; | 
|  |  | 
|  | interval = clamp(interval, 1UL, max_load_balance_interval); | 
|  |  | 
|  | return interval; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_next_balance(struct sched_domain *sd, unsigned long *next_balance) | 
|  | { | 
|  | unsigned long interval, next; | 
|  |  | 
|  | /* used by idle balance, so cpu_busy = 0 */ | 
|  | interval = get_sd_balance_interval(sd, 0); | 
|  | next = sd->last_balance + interval; | 
|  |  | 
|  | if (time_after(*next_balance, next)) | 
|  | *next_balance = next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * active_load_balance_cpu_stop is run by the CPU stopper. It pushes | 
|  | * running tasks off the busiest CPU onto idle CPUs. It requires at | 
|  | * least 1 task to be running on each physical CPU where possible, and | 
|  | * avoids physical / logical imbalances. | 
|  | */ | 
|  | static int active_load_balance_cpu_stop(void *data) | 
|  | { | 
|  | struct rq *busiest_rq = data; | 
|  | int busiest_cpu = cpu_of(busiest_rq); | 
|  | int target_cpu = busiest_rq->push_cpu; | 
|  | struct rq *target_rq = cpu_rq(target_cpu); | 
|  | struct sched_domain *sd; | 
|  | struct task_struct *p = NULL; | 
|  | struct rq_flags rf; | 
|  |  | 
|  | rq_lock_irq(busiest_rq, &rf); | 
|  | /* | 
|  | * Between queueing the stop-work and running it is a hole in which | 
|  | * CPUs can become inactive. We should not move tasks from or to | 
|  | * inactive CPUs. | 
|  | */ | 
|  | if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Make sure the requested CPU hasn't gone down in the meantime: */ | 
|  | if (unlikely(busiest_cpu != smp_processor_id() || | 
|  | !busiest_rq->active_balance)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Is there any task to move? */ | 
|  | if (busiest_rq->nr_running <= 1) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * This condition is "impossible", if it occurs | 
|  | * we need to fix it. Originally reported by | 
|  | * Bjorn Helgaas on a 128-CPU setup. | 
|  | */ | 
|  | WARN_ON_ONCE(busiest_rq == target_rq); | 
|  |  | 
|  | /* Search for an sd spanning us and the target CPU. */ | 
|  | rcu_read_lock(); | 
|  | for_each_domain(target_cpu, sd) { | 
|  | if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (likely(sd)) { | 
|  | struct lb_env env = { | 
|  | .sd		= sd, | 
|  | .dst_cpu	= target_cpu, | 
|  | .dst_rq		= target_rq, | 
|  | .src_cpu	= busiest_rq->cpu, | 
|  | .src_rq		= busiest_rq, | 
|  | .idle		= CPU_IDLE, | 
|  | .flags		= LBF_ACTIVE_LB, | 
|  | }; | 
|  |  | 
|  | schedstat_inc(sd->alb_count); | 
|  | update_rq_clock(busiest_rq); | 
|  |  | 
|  | p = detach_one_task(&env); | 
|  | if (p) { | 
|  | schedstat_inc(sd->alb_pushed); | 
|  | /* Active balancing done, reset the failure counter. */ | 
|  | sd->nr_balance_failed = 0; | 
|  | } else { | 
|  | schedstat_inc(sd->alb_failed); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | out_unlock: | 
|  | busiest_rq->active_balance = 0; | 
|  | rq_unlock(busiest_rq, &rf); | 
|  |  | 
|  | if (p) | 
|  | attach_one_task(target_rq, p); | 
|  |  | 
|  | local_irq_enable(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This flag serializes load-balancing passes over large domains | 
|  | * (above the NODE topology level) - only one load-balancing instance | 
|  | * may run at a time, to reduce overhead on very large systems with | 
|  | * lots of CPUs and large NUMA distances. | 
|  | * | 
|  | * - Note that load-balancing passes triggered while another one | 
|  | *   is executing are skipped and not re-tried. | 
|  | * | 
|  | * - Also note that this does not serialize rebalance_domains() | 
|  | *   execution, as non-SD_SERIALIZE domains will still be | 
|  | *   load-balanced in parallel. | 
|  | */ | 
|  | static atomic_t sched_balance_running = ATOMIC_INIT(0); | 
|  |  | 
|  | /* | 
|  | * Scale the max sched_balance_rq interval with the number of CPUs in the system. | 
|  | * This trades load-balance latency on larger machines for less cross talk. | 
|  | */ | 
|  | void update_max_interval(void) | 
|  | { | 
|  | max_load_balance_interval = HZ*num_online_cpus()/10; | 
|  | } | 
|  |  | 
|  | static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) | 
|  | { | 
|  | if (cost > sd->max_newidle_lb_cost) { | 
|  | /* | 
|  | * Track max cost of a domain to make sure to not delay the | 
|  | * next wakeup on the CPU. | 
|  | */ | 
|  | sd->max_newidle_lb_cost = cost; | 
|  | sd->last_decay_max_lb_cost = jiffies; | 
|  | } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { | 
|  | /* | 
|  | * Decay the newidle max times by ~1% per second to ensure that | 
|  | * it is not outdated and the current max cost is actually | 
|  | * shorter. | 
|  | */ | 
|  | sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; | 
|  | sd->last_decay_max_lb_cost = jiffies; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It checks each scheduling domain to see if it is due to be balanced, | 
|  | * and initiates a balancing operation if so. | 
|  | * | 
|  | * Balancing parameters are set up in init_sched_domains. | 
|  | */ | 
|  | static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) | 
|  | { | 
|  | int continue_balancing = 1; | 
|  | int cpu = rq->cpu; | 
|  | int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); | 
|  | unsigned long interval; | 
|  | struct sched_domain *sd; | 
|  | /* Earliest time when we have to do rebalance again */ | 
|  | unsigned long next_balance = jiffies + 60*HZ; | 
|  | int update_next_balance = 0; | 
|  | int need_serialize, need_decay = 0; | 
|  | u64 max_cost = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_domain(cpu, sd) { | 
|  | /* | 
|  | * Decay the newidle max times here because this is a regular | 
|  | * visit to all the domains. | 
|  | */ | 
|  | need_decay = update_newidle_cost(sd, 0); | 
|  | max_cost += sd->max_newidle_lb_cost; | 
|  |  | 
|  | /* | 
|  | * Stop the load balance at this level. There is another | 
|  | * CPU in our sched group which is doing load balancing more | 
|  | * actively. | 
|  | */ | 
|  | if (!continue_balancing) { | 
|  | if (need_decay) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  |  | 
|  | interval = get_sd_balance_interval(sd, busy); | 
|  |  | 
|  | need_serialize = sd->flags & SD_SERIALIZE; | 
|  | if (need_serialize) { | 
|  | if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (time_after_eq(jiffies, sd->last_balance + interval)) { | 
|  | if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { | 
|  | /* | 
|  | * The LBF_DST_PINNED logic could have changed | 
|  | * env->dst_cpu, so we can't know our idle | 
|  | * state even if we migrated tasks. Update it. | 
|  | */ | 
|  | idle = idle_cpu(cpu); | 
|  | busy = !idle && !sched_idle_cpu(cpu); | 
|  | } | 
|  | sd->last_balance = jiffies; | 
|  | interval = get_sd_balance_interval(sd, busy); | 
|  | } | 
|  | if (need_serialize) | 
|  | atomic_set_release(&sched_balance_running, 0); | 
|  | out: | 
|  | if (time_after(next_balance, sd->last_balance + interval)) { | 
|  | next_balance = sd->last_balance + interval; | 
|  | update_next_balance = 1; | 
|  | } | 
|  | } | 
|  | if (need_decay) { | 
|  | /* | 
|  | * Ensure the rq-wide value also decays but keep it at a | 
|  | * reasonable floor to avoid funnies with rq->avg_idle. | 
|  | */ | 
|  | rq->max_idle_balance_cost = | 
|  | max((u64)sysctl_sched_migration_cost, max_cost); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * next_balance will be updated only when there is a need. | 
|  | * When the cpu is attached to null domain for ex, it will not be | 
|  | * updated. | 
|  | */ | 
|  | if (likely(update_next_balance)) | 
|  | rq->next_balance = next_balance; | 
|  |  | 
|  | } | 
|  |  | 
|  | static inline int on_null_domain(struct rq *rq) | 
|  | { | 
|  | return unlikely(!rcu_dereference_sched(rq->sd)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | /* | 
|  | * NOHZ idle load balancing (ILB) details: | 
|  | * | 
|  | * - When one of the busy CPUs notices that there may be an idle rebalancing | 
|  | *   needed, they will kick the idle load balancer, which then does idle | 
|  | *   load balancing for all the idle CPUs. | 
|  | * | 
|  | * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set | 
|  | *   anywhere yet. | 
|  | */ | 
|  | static inline int find_new_ilb(void) | 
|  | { | 
|  | const struct cpumask *hk_mask; | 
|  | int ilb_cpu; | 
|  |  | 
|  | hk_mask = housekeeping_cpumask(HK_TYPE_MISC); | 
|  |  | 
|  | for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { | 
|  |  | 
|  | if (ilb_cpu == smp_processor_id()) | 
|  | continue; | 
|  |  | 
|  | if (idle_cpu(ilb_cpu)) | 
|  | return ilb_cpu; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU | 
|  | * SMP function call (IPI). | 
|  | * | 
|  | * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). | 
|  | */ | 
|  | static void kick_ilb(unsigned int flags) | 
|  | { | 
|  | int ilb_cpu; | 
|  |  | 
|  | /* | 
|  | * Increase nohz.next_balance only when if full ilb is triggered but | 
|  | * not if we only update stats. | 
|  | */ | 
|  | if (flags & NOHZ_BALANCE_KICK) | 
|  | nohz.next_balance = jiffies+1; | 
|  |  | 
|  | ilb_cpu = find_new_ilb(); | 
|  | if (ilb_cpu < 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Don't bother if no new NOHZ balance work items for ilb_cpu, | 
|  | * i.e. all bits in flags are already set in ilb_cpu. | 
|  | */ | 
|  | if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets | 
|  | * the first flag owns it; cleared by nohz_csd_func(). | 
|  | */ | 
|  | flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); | 
|  | if (flags & NOHZ_KICK_MASK) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * This way we generate an IPI on the target CPU which | 
|  | * is idle, and the softirq performing NOHZ idle load balancing | 
|  | * will be run before returning from the IPI. | 
|  | */ | 
|  | smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Current decision point for kicking the idle load balancer in the presence | 
|  | * of idle CPUs in the system. | 
|  | */ | 
|  | static void nohz_balancer_kick(struct rq *rq) | 
|  | { | 
|  | unsigned long now = jiffies; | 
|  | struct sched_domain_shared *sds; | 
|  | struct sched_domain *sd; | 
|  | int nr_busy, i, cpu = rq->cpu; | 
|  | unsigned int flags = 0; | 
|  |  | 
|  | if (unlikely(rq->idle_balance)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We may be recently in ticked or tickless idle mode. At the first | 
|  | * busy tick after returning from idle, we will update the busy stats. | 
|  | */ | 
|  | nohz_balance_exit_idle(rq); | 
|  |  | 
|  | /* | 
|  | * None are in tickless mode and hence no need for NOHZ idle load | 
|  | * balancing: | 
|  | */ | 
|  | if (likely(!atomic_read(&nohz.nr_cpus))) | 
|  | return; | 
|  |  | 
|  | if (READ_ONCE(nohz.has_blocked) && | 
|  | time_after(now, READ_ONCE(nohz.next_blocked))) | 
|  | flags = NOHZ_STATS_KICK; | 
|  |  | 
|  | if (time_before(now, nohz.next_balance)) | 
|  | goto out; | 
|  |  | 
|  | if (rq->nr_running >= 2) { | 
|  | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | sd = rcu_dereference(rq->sd); | 
|  | if (sd) { | 
|  | /* | 
|  | * If there's a runnable CFS task and the current CPU has reduced | 
|  | * capacity, kick the ILB to see if there's a better CPU to run on: | 
|  | */ | 
|  | if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { | 
|  | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); | 
|  | if (sd) { | 
|  | /* | 
|  | * When ASYM_PACKING; see if there's a more preferred CPU | 
|  | * currently idle; in which case, kick the ILB to move tasks | 
|  | * around. | 
|  | * | 
|  | * When balancing between cores, all the SMT siblings of the | 
|  | * preferred CPU must be idle. | 
|  | */ | 
|  | for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { | 
|  | if (sched_asym(sd, i, cpu)) { | 
|  | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); | 
|  | if (sd) { | 
|  | /* | 
|  | * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU | 
|  | * to run the misfit task on. | 
|  | */ | 
|  | if (check_misfit_status(rq)) { | 
|  | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For asymmetric systems, we do not want to nicely balance | 
|  | * cache use, instead we want to embrace asymmetry and only | 
|  | * ensure tasks have enough CPU capacity. | 
|  | * | 
|  | * Skip the LLC logic because it's not relevant in that case. | 
|  | */ | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | 
|  | if (sds) { | 
|  | /* | 
|  | * If there is an imbalance between LLC domains (IOW we could | 
|  | * increase the overall cache utilization), we need a less-loaded LLC | 
|  | * domain to pull some load from. Likewise, we may need to spread | 
|  | * load within the current LLC domain (e.g. packed SMT cores but | 
|  | * other CPUs are idle). We can't really know from here how busy | 
|  | * the others are - so just get a NOHZ balance going if it looks | 
|  | * like this LLC domain has tasks we could move. | 
|  | */ | 
|  | nr_busy = atomic_read(&sds->nr_busy_cpus); | 
|  | if (nr_busy > 1) { | 
|  | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | out: | 
|  | if (READ_ONCE(nohz.needs_update)) | 
|  | flags |= NOHZ_NEXT_KICK; | 
|  |  | 
|  | if (flags) | 
|  | kick_ilb(flags); | 
|  | } | 
|  |  | 
|  | static void set_cpu_sd_state_busy(int cpu) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | sd = rcu_dereference(per_cpu(sd_llc, cpu)); | 
|  |  | 
|  | if (!sd || !sd->nohz_idle) | 
|  | goto unlock; | 
|  | sd->nohz_idle = 0; | 
|  |  | 
|  | atomic_inc(&sd->shared->nr_busy_cpus); | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | void nohz_balance_exit_idle(struct rq *rq) | 
|  | { | 
|  | SCHED_WARN_ON(rq != this_rq()); | 
|  |  | 
|  | if (likely(!rq->nohz_tick_stopped)) | 
|  | return; | 
|  |  | 
|  | rq->nohz_tick_stopped = 0; | 
|  | cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); | 
|  | atomic_dec(&nohz.nr_cpus); | 
|  |  | 
|  | set_cpu_sd_state_busy(rq->cpu); | 
|  | } | 
|  |  | 
|  | static void set_cpu_sd_state_idle(int cpu) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | sd = rcu_dereference(per_cpu(sd_llc, cpu)); | 
|  |  | 
|  | if (!sd || sd->nohz_idle) | 
|  | goto unlock; | 
|  | sd->nohz_idle = 1; | 
|  |  | 
|  | atomic_dec(&sd->shared->nr_busy_cpus); | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine will record that the CPU is going idle with tick stopped. | 
|  | * This info will be used in performing idle load balancing in the future. | 
|  | */ | 
|  | void nohz_balance_enter_idle(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | SCHED_WARN_ON(cpu != smp_processor_id()); | 
|  |  | 
|  | /* If this CPU is going down, then nothing needs to be done: */ | 
|  | if (!cpu_active(cpu)) | 
|  | return; | 
|  |  | 
|  | /* Spare idle load balancing on CPUs that don't want to be disturbed: */ | 
|  | if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Can be set safely without rq->lock held | 
|  | * If a clear happens, it will have evaluated last additions because | 
|  | * rq->lock is held during the check and the clear | 
|  | */ | 
|  | rq->has_blocked_load = 1; | 
|  |  | 
|  | /* | 
|  | * The tick is still stopped but load could have been added in the | 
|  | * meantime. We set the nohz.has_blocked flag to trig a check of the | 
|  | * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear | 
|  | * of nohz.has_blocked can only happen after checking the new load | 
|  | */ | 
|  | if (rq->nohz_tick_stopped) | 
|  | goto out; | 
|  |  | 
|  | /* If we're a completely isolated CPU, we don't play: */ | 
|  | if (on_null_domain(rq)) | 
|  | return; | 
|  |  | 
|  | rq->nohz_tick_stopped = 1; | 
|  |  | 
|  | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); | 
|  | atomic_inc(&nohz.nr_cpus); | 
|  |  | 
|  | /* | 
|  | * Ensures that if nohz_idle_balance() fails to observe our | 
|  | * @idle_cpus_mask store, it must observe the @has_blocked | 
|  | * and @needs_update stores. | 
|  | */ | 
|  | smp_mb__after_atomic(); | 
|  |  | 
|  | set_cpu_sd_state_idle(cpu); | 
|  |  | 
|  | WRITE_ONCE(nohz.needs_update, 1); | 
|  | out: | 
|  | /* | 
|  | * Each time a cpu enter idle, we assume that it has blocked load and | 
|  | * enable the periodic update of the load of idle CPUs | 
|  | */ | 
|  | WRITE_ONCE(nohz.has_blocked, 1); | 
|  | } | 
|  |  | 
|  | static bool update_nohz_stats(struct rq *rq) | 
|  | { | 
|  | unsigned int cpu = rq->cpu; | 
|  |  | 
|  | if (!rq->has_blocked_load) | 
|  | return false; | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) | 
|  | return false; | 
|  |  | 
|  | if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) | 
|  | return true; | 
|  |  | 
|  | sched_balance_update_blocked_averages(cpu); | 
|  |  | 
|  | return rq->has_blocked_load; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Internal function that runs load balance for all idle CPUs. The load balance | 
|  | * can be a simple update of blocked load or a complete load balance with | 
|  | * tasks movement depending of flags. | 
|  | */ | 
|  | static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) | 
|  | { | 
|  | /* Earliest time when we have to do rebalance again */ | 
|  | unsigned long now = jiffies; | 
|  | unsigned long next_balance = now + 60*HZ; | 
|  | bool has_blocked_load = false; | 
|  | int update_next_balance = 0; | 
|  | int this_cpu = this_rq->cpu; | 
|  | int balance_cpu; | 
|  | struct rq *rq; | 
|  |  | 
|  | SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); | 
|  |  | 
|  | /* | 
|  | * We assume there will be no idle load after this update and clear | 
|  | * the has_blocked flag. If a cpu enters idle in the mean time, it will | 
|  | * set the has_blocked flag and trigger another update of idle load. | 
|  | * Because a cpu that becomes idle, is added to idle_cpus_mask before | 
|  | * setting the flag, we are sure to not clear the state and not | 
|  | * check the load of an idle cpu. | 
|  | * | 
|  | * Same applies to idle_cpus_mask vs needs_update. | 
|  | */ | 
|  | if (flags & NOHZ_STATS_KICK) | 
|  | WRITE_ONCE(nohz.has_blocked, 0); | 
|  | if (flags & NOHZ_NEXT_KICK) | 
|  | WRITE_ONCE(nohz.needs_update, 0); | 
|  |  | 
|  | /* | 
|  | * Ensures that if we miss the CPU, we must see the has_blocked | 
|  | * store from nohz_balance_enter_idle(). | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* | 
|  | * Start with the next CPU after this_cpu so we will end with this_cpu and let a | 
|  | * chance for other idle cpu to pull load. | 
|  | */ | 
|  | for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) { | 
|  | if (!idle_cpu(balance_cpu)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If this CPU gets work to do, stop the load balancing | 
|  | * work being done for other CPUs. Next load | 
|  | * balancing owner will pick it up. | 
|  | */ | 
|  | if (need_resched()) { | 
|  | if (flags & NOHZ_STATS_KICK) | 
|  | has_blocked_load = true; | 
|  | if (flags & NOHZ_NEXT_KICK) | 
|  | WRITE_ONCE(nohz.needs_update, 1); | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | rq = cpu_rq(balance_cpu); | 
|  |  | 
|  | if (flags & NOHZ_STATS_KICK) | 
|  | has_blocked_load |= update_nohz_stats(rq); | 
|  |  | 
|  | /* | 
|  | * If time for next balance is due, | 
|  | * do the balance. | 
|  | */ | 
|  | if (time_after_eq(jiffies, rq->next_balance)) { | 
|  | struct rq_flags rf; | 
|  |  | 
|  | rq_lock_irqsave(rq, &rf); | 
|  | update_rq_clock(rq); | 
|  | rq_unlock_irqrestore(rq, &rf); | 
|  |  | 
|  | if (flags & NOHZ_BALANCE_KICK) | 
|  | sched_balance_domains(rq, CPU_IDLE); | 
|  | } | 
|  |  | 
|  | if (time_after(next_balance, rq->next_balance)) { | 
|  | next_balance = rq->next_balance; | 
|  | update_next_balance = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * next_balance will be updated only when there is a need. | 
|  | * When the CPU is attached to null domain for ex, it will not be | 
|  | * updated. | 
|  | */ | 
|  | if (likely(update_next_balance)) | 
|  | nohz.next_balance = next_balance; | 
|  |  | 
|  | if (flags & NOHZ_STATS_KICK) | 
|  | WRITE_ONCE(nohz.next_blocked, | 
|  | now + msecs_to_jiffies(LOAD_AVG_PERIOD)); | 
|  |  | 
|  | abort: | 
|  | /* There is still blocked load, enable periodic update */ | 
|  | if (has_blocked_load) | 
|  | WRITE_ONCE(nohz.has_blocked, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the | 
|  | * rebalancing for all the CPUs for whom scheduler ticks are stopped. | 
|  | */ | 
|  | static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) | 
|  | { | 
|  | unsigned int flags = this_rq->nohz_idle_balance; | 
|  |  | 
|  | if (!flags) | 
|  | return false; | 
|  |  | 
|  | this_rq->nohz_idle_balance = 0; | 
|  |  | 
|  | if (idle != CPU_IDLE) | 
|  | return false; | 
|  |  | 
|  | _nohz_idle_balance(this_rq, flags); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we need to directly run the ILB for updating blocked load before | 
|  | * entering idle state. Here we run ILB directly without issuing IPIs. | 
|  | * | 
|  | * Note that when this function is called, the tick may not yet be stopped on | 
|  | * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and | 
|  | * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates | 
|  | * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle | 
|  | * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is | 
|  | * called from this function on (this) CPU that's not yet in the mask. That's | 
|  | * OK because the goal of nohz_run_idle_balance() is to run ILB only for | 
|  | * updating the blocked load of already idle CPUs without waking up one of | 
|  | * those idle CPUs and outside the preempt disable / IRQ off phase of the local | 
|  | * cpu about to enter idle, because it can take a long time. | 
|  | */ | 
|  | void nohz_run_idle_balance(int cpu) | 
|  | { | 
|  | unsigned int flags; | 
|  |  | 
|  | flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); | 
|  |  | 
|  | /* | 
|  | * Update the blocked load only if no SCHED_SOFTIRQ is about to happen | 
|  | * (i.e. NOHZ_STATS_KICK set) and will do the same. | 
|  | */ | 
|  | if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) | 
|  | _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); | 
|  | } | 
|  |  | 
|  | static void nohz_newidle_balance(struct rq *this_rq) | 
|  | { | 
|  | int this_cpu = this_rq->cpu; | 
|  |  | 
|  | /* | 
|  | * This CPU doesn't want to be disturbed by scheduler | 
|  | * housekeeping | 
|  | */ | 
|  | if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) | 
|  | return; | 
|  |  | 
|  | /* Will wake up very soon. No time for doing anything else*/ | 
|  | if (this_rq->avg_idle < sysctl_sched_migration_cost) | 
|  | return; | 
|  |  | 
|  | /* Don't need to update blocked load of idle CPUs*/ | 
|  | if (!READ_ONCE(nohz.has_blocked) || | 
|  | time_before(jiffies, READ_ONCE(nohz.next_blocked))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Set the need to trigger ILB in order to update blocked load | 
|  | * before entering idle state. | 
|  | */ | 
|  | atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_NO_HZ_COMMON */ | 
|  | static inline void nohz_balancer_kick(struct rq *rq) { } | 
|  |  | 
|  | static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void nohz_newidle_balance(struct rq *this_rq) { } | 
|  | #endif /* CONFIG_NO_HZ_COMMON */ | 
|  |  | 
|  | /* | 
|  | * sched_balance_newidle is called by schedule() if this_cpu is about to become | 
|  | * idle. Attempts to pull tasks from other CPUs. | 
|  | * | 
|  | * Returns: | 
|  | *   < 0 - we released the lock and there are !fair tasks present | 
|  | *     0 - failed, no new tasks | 
|  | *   > 0 - success, new (fair) tasks present | 
|  | */ | 
|  | static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) | 
|  | { | 
|  | unsigned long next_balance = jiffies + HZ; | 
|  | int this_cpu = this_rq->cpu; | 
|  | int continue_balancing = 1; | 
|  | u64 t0, t1, curr_cost = 0; | 
|  | struct sched_domain *sd; | 
|  | int pulled_task = 0; | 
|  |  | 
|  | update_misfit_status(NULL, this_rq); | 
|  |  | 
|  | /* | 
|  | * There is a task waiting to run. No need to search for one. | 
|  | * Return 0; the task will be enqueued when switching to idle. | 
|  | */ | 
|  | if (this_rq->ttwu_pending) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We must set idle_stamp _before_ calling sched_balance_rq() | 
|  | * for CPU_NEWLY_IDLE, such that we measure the this duration | 
|  | * as idle time. | 
|  | */ | 
|  | this_rq->idle_stamp = rq_clock(this_rq); | 
|  |  | 
|  | /* | 
|  | * Do not pull tasks towards !active CPUs... | 
|  | */ | 
|  | if (!cpu_active(this_cpu)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * This is OK, because current is on_cpu, which avoids it being picked | 
|  | * for load-balance and preemption/IRQs are still disabled avoiding | 
|  | * further scheduler activity on it and we're being very careful to | 
|  | * re-start the picking loop. | 
|  | */ | 
|  | rq_unpin_lock(this_rq, rf); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | sd = rcu_dereference_check_sched_domain(this_rq->sd); | 
|  |  | 
|  | if (!get_rd_overloaded(this_rq->rd) || | 
|  | (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { | 
|  |  | 
|  | if (sd) | 
|  | update_next_balance(sd, &next_balance); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | raw_spin_rq_unlock(this_rq); | 
|  |  | 
|  | t0 = sched_clock_cpu(this_cpu); | 
|  | sched_balance_update_blocked_averages(this_cpu); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_domain(this_cpu, sd) { | 
|  | u64 domain_cost; | 
|  |  | 
|  | update_next_balance(sd, &next_balance); | 
|  |  | 
|  | if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) | 
|  | break; | 
|  |  | 
|  | if (sd->flags & SD_BALANCE_NEWIDLE) { | 
|  |  | 
|  | pulled_task = sched_balance_rq(this_cpu, this_rq, | 
|  | sd, CPU_NEWLY_IDLE, | 
|  | &continue_balancing); | 
|  |  | 
|  | t1 = sched_clock_cpu(this_cpu); | 
|  | domain_cost = t1 - t0; | 
|  | update_newidle_cost(sd, domain_cost); | 
|  |  | 
|  | curr_cost += domain_cost; | 
|  | t0 = t1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stop searching for tasks to pull if there are | 
|  | * now runnable tasks on this rq. | 
|  | */ | 
|  | if (pulled_task || !continue_balancing) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | raw_spin_rq_lock(this_rq); | 
|  |  | 
|  | if (curr_cost > this_rq->max_idle_balance_cost) | 
|  | this_rq->max_idle_balance_cost = curr_cost; | 
|  |  | 
|  | /* | 
|  | * While browsing the domains, we released the rq lock, a task could | 
|  | * have been enqueued in the meantime. Since we're not going idle, | 
|  | * pretend we pulled a task. | 
|  | */ | 
|  | if (this_rq->cfs.h_nr_running && !pulled_task) | 
|  | pulled_task = 1; | 
|  |  | 
|  | /* Is there a task of a high priority class? */ | 
|  | if (this_rq->nr_running != this_rq->cfs.h_nr_running) | 
|  | pulled_task = -1; | 
|  |  | 
|  | out: | 
|  | /* Move the next balance forward */ | 
|  | if (time_after(this_rq->next_balance, next_balance)) | 
|  | this_rq->next_balance = next_balance; | 
|  |  | 
|  | if (pulled_task) | 
|  | this_rq->idle_stamp = 0; | 
|  | else | 
|  | nohz_newidle_balance(this_rq); | 
|  |  | 
|  | rq_repin_lock(this_rq, rf); | 
|  |  | 
|  | return pulled_task; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This softirq handler is triggered via SCHED_SOFTIRQ from two places: | 
|  | * | 
|  | * - directly from the local scheduler_tick() for periodic load balancing | 
|  | * | 
|  | * - indirectly from a remote scheduler_tick() for NOHZ idle balancing | 
|  | *   through the SMP cross-call nohz_csd_func() | 
|  | */ | 
|  | static __latent_entropy void sched_balance_softirq(void) | 
|  | { | 
|  | struct rq *this_rq = this_rq(); | 
|  | enum cpu_idle_type idle = this_rq->idle_balance; | 
|  | /* | 
|  | * If this CPU has a pending NOHZ_BALANCE_KICK, then do the | 
|  | * balancing on behalf of the other idle CPUs whose ticks are | 
|  | * stopped. Do nohz_idle_balance *before* sched_balance_domains to | 
|  | * give the idle CPUs a chance to load balance. Else we may | 
|  | * load balance only within the local sched_domain hierarchy | 
|  | * and abort nohz_idle_balance altogether if we pull some load. | 
|  | */ | 
|  | if (nohz_idle_balance(this_rq, idle)) | 
|  | return; | 
|  |  | 
|  | /* normal load balance */ | 
|  | sched_balance_update_blocked_averages(this_rq->cpu); | 
|  | sched_balance_domains(this_rq, idle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 
|  | */ | 
|  | void sched_balance_trigger(struct rq *rq) | 
|  | { | 
|  | /* | 
|  | * Don't need to rebalance while attached to NULL domain or | 
|  | * runqueue CPU is not active | 
|  | */ | 
|  | if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) | 
|  | return; | 
|  |  | 
|  | if (time_after_eq(jiffies, rq->next_balance)) | 
|  | raise_softirq(SCHED_SOFTIRQ); | 
|  |  | 
|  | nohz_balancer_kick(rq); | 
|  | } | 
|  |  | 
|  | static void rq_online_fair(struct rq *rq) | 
|  | { | 
|  | update_sysctl(); | 
|  |  | 
|  | update_runtime_enabled(rq); | 
|  | } | 
|  |  | 
|  | static void rq_offline_fair(struct rq *rq) | 
|  | { | 
|  | update_sysctl(); | 
|  |  | 
|  | /* Ensure any throttled groups are reachable by pick_next_task */ | 
|  | unthrottle_offline_cfs_rqs(rq); | 
|  |  | 
|  | /* Ensure that we remove rq contribution to group share: */ | 
|  | clear_tg_offline_cfs_rqs(rq); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | #ifdef CONFIG_SCHED_CORE | 
|  | static inline bool | 
|  | __entity_slice_used(struct sched_entity *se, int min_nr_tasks) | 
|  | { | 
|  | u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 
|  | u64 slice = se->slice; | 
|  |  | 
|  | return (rtime * min_nr_tasks > slice); | 
|  | } | 
|  |  | 
|  | #define MIN_NR_TASKS_DURING_FORCEIDLE	2 | 
|  | static inline void task_tick_core(struct rq *rq, struct task_struct *curr) | 
|  | { | 
|  | if (!sched_core_enabled(rq)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If runqueue has only one task which used up its slice and | 
|  | * if the sibling is forced idle, then trigger schedule to | 
|  | * give forced idle task a chance. | 
|  | * | 
|  | * sched_slice() considers only this active rq and it gets the | 
|  | * whole slice. But during force idle, we have siblings acting | 
|  | * like a single runqueue and hence we need to consider runnable | 
|  | * tasks on this CPU and the forced idle CPU. Ideally, we should | 
|  | * go through the forced idle rq, but that would be a perf hit. | 
|  | * We can assume that the forced idle CPU has at least | 
|  | * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check | 
|  | * if we need to give up the CPU. | 
|  | */ | 
|  | if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && | 
|  | __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) | 
|  | resched_curr(rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. | 
|  | */ | 
|  | static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, | 
|  | bool forceidle) | 
|  | { | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | if (forceidle) { | 
|  | if (cfs_rq->forceidle_seq == fi_seq) | 
|  | break; | 
|  | cfs_rq->forceidle_seq = fi_seq; | 
|  | } | 
|  |  | 
|  | cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; | 
|  | } | 
|  | } | 
|  |  | 
|  | void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | if (p->sched_class != &fair_sched_class) | 
|  | return; | 
|  |  | 
|  | se_fi_update(se, rq->core->core_forceidle_seq, in_fi); | 
|  | } | 
|  |  | 
|  | bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, | 
|  | bool in_fi) | 
|  | { | 
|  | struct rq *rq = task_rq(a); | 
|  | const struct sched_entity *sea = &a->se; | 
|  | const struct sched_entity *seb = &b->se; | 
|  | struct cfs_rq *cfs_rqa; | 
|  | struct cfs_rq *cfs_rqb; | 
|  | s64 delta; | 
|  |  | 
|  | SCHED_WARN_ON(task_rq(b)->core != rq->core); | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* | 
|  | * Find an se in the hierarchy for tasks a and b, such that the se's | 
|  | * are immediate siblings. | 
|  | */ | 
|  | while (sea->cfs_rq->tg != seb->cfs_rq->tg) { | 
|  | int sea_depth = sea->depth; | 
|  | int seb_depth = seb->depth; | 
|  |  | 
|  | if (sea_depth >= seb_depth) | 
|  | sea = parent_entity(sea); | 
|  | if (sea_depth <= seb_depth) | 
|  | seb = parent_entity(seb); | 
|  | } | 
|  |  | 
|  | se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); | 
|  | se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); | 
|  |  | 
|  | cfs_rqa = sea->cfs_rq; | 
|  | cfs_rqb = seb->cfs_rq; | 
|  | #else | 
|  | cfs_rqa = &task_rq(a)->cfs; | 
|  | cfs_rqb = &task_rq(b)->cfs; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Find delta after normalizing se's vruntime with its cfs_rq's | 
|  | * min_vruntime_fi, which would have been updated in prior calls | 
|  | * to se_fi_update(). | 
|  | */ | 
|  | delta = (s64)(sea->vruntime - seb->vruntime) + | 
|  | (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); | 
|  |  | 
|  | return delta > 0; | 
|  | } | 
|  |  | 
|  | static int task_is_throttled_fair(struct task_struct *p, int cpu) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | cfs_rq = task_group(p)->cfs_rq[cpu]; | 
|  | #else | 
|  | cfs_rq = &cpu_rq(cpu)->cfs; | 
|  | #endif | 
|  | return throttled_hierarchy(cfs_rq); | 
|  | } | 
|  | #else | 
|  | static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * scheduler tick hitting a task of our scheduling class. | 
|  | * | 
|  | * NOTE: This function can be called remotely by the tick offload that | 
|  | * goes along full dynticks. Therefore no local assumption can be made | 
|  | * and everything must be accessed through the @rq and @curr passed in | 
|  | * parameters. | 
|  | */ | 
|  | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &curr->se; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | entity_tick(cfs_rq, se, queued); | 
|  | } | 
|  |  | 
|  | if (static_branch_unlikely(&sched_numa_balancing)) | 
|  | task_tick_numa(rq, curr); | 
|  |  | 
|  | update_misfit_status(curr, rq); | 
|  | check_update_overutilized_status(task_rq(curr)); | 
|  |  | 
|  | task_tick_core(rq, curr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called on fork with the child task as argument from the parent's context | 
|  | *  - child not yet on the tasklist | 
|  | *  - preemption disabled | 
|  | */ | 
|  | static void task_fork_fair(struct task_struct *p) | 
|  | { | 
|  | set_task_max_allowed_capacity(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Priority of the task has changed. Check to see if we preempt | 
|  | * the current task. | 
|  | */ | 
|  | static void | 
|  | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | 
|  | { | 
|  | if (!task_on_rq_queued(p)) | 
|  | return; | 
|  |  | 
|  | if (rq->cfs.nr_running == 1) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Reschedule if we are currently running on this runqueue and | 
|  | * our priority decreased, or if we are not currently running on | 
|  | * this runqueue and our priority is higher than the current's | 
|  | */ | 
|  | if (task_current(rq, p)) { | 
|  | if (p->prio > oldprio) | 
|  | resched_curr(rq); | 
|  | } else | 
|  | wakeup_preempt(rq, p, 0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* | 
|  | * Propagate the changes of the sched_entity across the tg tree to make it | 
|  | * visible to the root | 
|  | */ | 
|  | static void propagate_entity_cfs_rq(struct sched_entity *se) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | return; | 
|  |  | 
|  | if (!throttled_hierarchy(cfs_rq)) | 
|  | list_add_leaf_cfs_rq(cfs_rq); | 
|  |  | 
|  | /* Start to propagate at parent */ | 
|  | se = se->parent; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | update_load_avg(cfs_rq, se, UPDATE_TG); | 
|  |  | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | break; | 
|  |  | 
|  | if (!throttled_hierarchy(cfs_rq)) | 
|  | list_add_leaf_cfs_rq(cfs_rq); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void propagate_entity_cfs_rq(struct sched_entity *se) { } | 
|  | #endif | 
|  |  | 
|  | static void detach_entity_cfs_rq(struct sched_entity *se) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * In case the task sched_avg hasn't been attached: | 
|  | * - A forked task which hasn't been woken up by wake_up_new_task(). | 
|  | * - A task which has been woken up by try_to_wake_up() but is | 
|  | *   waiting for actually being woken up by sched_ttwu_pending(). | 
|  | */ | 
|  | if (!se->avg.last_update_time) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | /* Catch up with the cfs_rq and remove our load when we leave */ | 
|  | update_load_avg(cfs_rq, se, 0); | 
|  | detach_entity_load_avg(cfs_rq, se); | 
|  | update_tg_load_avg(cfs_rq); | 
|  | propagate_entity_cfs_rq(se); | 
|  | } | 
|  |  | 
|  | static void attach_entity_cfs_rq(struct sched_entity *se) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | /* Synchronize entity with its cfs_rq */ | 
|  | update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); | 
|  | attach_entity_load_avg(cfs_rq, se); | 
|  | update_tg_load_avg(cfs_rq); | 
|  | propagate_entity_cfs_rq(se); | 
|  | } | 
|  |  | 
|  | static void detach_task_cfs_rq(struct task_struct *p) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | detach_entity_cfs_rq(se); | 
|  | } | 
|  |  | 
|  | static void attach_task_cfs_rq(struct task_struct *p) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | attach_entity_cfs_rq(se); | 
|  | } | 
|  |  | 
|  | static void switched_from_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | detach_task_cfs_rq(p); | 
|  | /* | 
|  | * Since this is called after changing class, this is a little weird | 
|  | * and we cannot use DEQUEUE_DELAYED. | 
|  | */ | 
|  | if (p->se.sched_delayed) { | 
|  | /* First, dequeue it from its new class' structures */ | 
|  | dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP); | 
|  | /* | 
|  | * Now, clean up the fair_sched_class side of things | 
|  | * related to sched_delayed being true and that wasn't done | 
|  | * due to the generic dequeue not using DEQUEUE_DELAYED. | 
|  | */ | 
|  | finish_delayed_dequeue_entity(&p->se); | 
|  | p->se.rel_deadline = 0; | 
|  | __block_task(rq, p); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void switched_to_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | SCHED_WARN_ON(p->se.sched_delayed); | 
|  |  | 
|  | attach_task_cfs_rq(p); | 
|  |  | 
|  | set_task_max_allowed_capacity(p); | 
|  |  | 
|  | if (task_on_rq_queued(p)) { | 
|  | /* | 
|  | * We were most likely switched from sched_rt, so | 
|  | * kick off the schedule if running, otherwise just see | 
|  | * if we can still preempt the current task. | 
|  | */ | 
|  | if (task_current(rq, p)) | 
|  | resched_curr(rq); | 
|  | else | 
|  | wakeup_preempt(rq, p, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (task_on_rq_queued(p)) { | 
|  | /* | 
|  | * Move the next running task to the front of the list, so our | 
|  | * cfs_tasks list becomes MRU one. | 
|  | */ | 
|  | list_move(&se->group_node, &rq->cfs_tasks); | 
|  | } | 
|  | #endif | 
|  | if (!first) | 
|  | return; | 
|  |  | 
|  | SCHED_WARN_ON(se->sched_delayed); | 
|  |  | 
|  | if (hrtick_enabled_fair(rq)) | 
|  | hrtick_start_fair(rq, p); | 
|  |  | 
|  | update_misfit_status(p, rq); | 
|  | sched_fair_update_stop_tick(rq, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for a task changing its policy or group. | 
|  | * | 
|  | * This routine is mostly called to set cfs_rq->curr field when a task | 
|  | * migrates between groups/classes. | 
|  | */ | 
|  | static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | set_next_entity(cfs_rq, se); | 
|  | /* ensure bandwidth has been allocated on our new cfs_rq */ | 
|  | account_cfs_rq_runtime(cfs_rq, 0); | 
|  | } | 
|  |  | 
|  | __set_next_task_fair(rq, p, first); | 
|  | } | 
|  |  | 
|  | void init_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | cfs_rq->tasks_timeline = RB_ROOT_CACHED; | 
|  | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | 
|  | #ifdef CONFIG_SMP | 
|  | raw_spin_lock_init(&cfs_rq->removed.lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static void task_change_group_fair(struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * We couldn't detach or attach a forked task which | 
|  | * hasn't been woken up by wake_up_new_task(). | 
|  | */ | 
|  | if (READ_ONCE(p->__state) == TASK_NEW) | 
|  | return; | 
|  |  | 
|  | detach_task_cfs_rq(p); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* Tell se's cfs_rq has been changed -- migrated */ | 
|  | p->se.avg.last_update_time = 0; | 
|  | #endif | 
|  | set_task_rq(p, task_cpu(p)); | 
|  | attach_task_cfs_rq(p); | 
|  | } | 
|  |  | 
|  | void free_fair_sched_group(struct task_group *tg) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | if (tg->cfs_rq) | 
|  | kfree(tg->cfs_rq[i]); | 
|  | if (tg->se) | 
|  | kfree(tg->se[i]); | 
|  | } | 
|  |  | 
|  | kfree(tg->cfs_rq); | 
|  | kfree(tg->se); | 
|  | } | 
|  |  | 
|  | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
|  | { | 
|  | struct sched_entity *se; | 
|  | struct cfs_rq *cfs_rq; | 
|  | int i; | 
|  |  | 
|  | tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); | 
|  | if (!tg->cfs_rq) | 
|  | goto err; | 
|  | tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); | 
|  | if (!tg->se) | 
|  | goto err; | 
|  |  | 
|  | tg->shares = NICE_0_LOAD; | 
|  |  | 
|  | init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | 
|  | GFP_KERNEL, cpu_to_node(i)); | 
|  | if (!cfs_rq) | 
|  | goto err; | 
|  |  | 
|  | se = kzalloc_node(sizeof(struct sched_entity_stats), | 
|  | GFP_KERNEL, cpu_to_node(i)); | 
|  | if (!se) | 
|  | goto err_free_rq; | 
|  |  | 
|  | init_cfs_rq(cfs_rq); | 
|  | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | 
|  | init_entity_runnable_average(se); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err_free_rq: | 
|  | kfree(cfs_rq); | 
|  | err: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void online_fair_sched_group(struct task_group *tg) | 
|  | { | 
|  | struct sched_entity *se; | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | rq = cpu_rq(i); | 
|  | se = tg->se[i]; | 
|  | rq_lock_irq(rq, &rf); | 
|  | update_rq_clock(rq); | 
|  | attach_entity_cfs_rq(se); | 
|  | sync_throttle(tg, i); | 
|  | rq_unlock_irq(rq, &rf); | 
|  | } | 
|  | } | 
|  |  | 
|  | void unregister_fair_sched_group(struct task_group *tg) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; | 
|  | struct sched_entity *se = tg->se[cpu]; | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | if (se) { | 
|  | if (se->sched_delayed) { | 
|  | guard(rq_lock_irqsave)(rq); | 
|  | if (se->sched_delayed) { | 
|  | update_rq_clock(rq); | 
|  | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); | 
|  | } | 
|  | list_del_leaf_cfs_rq(cfs_rq); | 
|  | } | 
|  | remove_entity_load_avg(se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only empty task groups can be destroyed; so we can speculatively | 
|  | * check on_list without danger of it being re-added. | 
|  | */ | 
|  | if (cfs_rq->on_list) { | 
|  | guard(rq_lock_irqsave)(rq); | 
|  | list_del_leaf_cfs_rq(cfs_rq); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | 
|  | struct sched_entity *se, int cpu, | 
|  | struct sched_entity *parent) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | cfs_rq->tg = tg; | 
|  | cfs_rq->rq = rq; | 
|  | init_cfs_rq_runtime(cfs_rq); | 
|  |  | 
|  | tg->cfs_rq[cpu] = cfs_rq; | 
|  | tg->se[cpu] = se; | 
|  |  | 
|  | /* se could be NULL for root_task_group */ | 
|  | if (!se) | 
|  | return; | 
|  |  | 
|  | if (!parent) { | 
|  | se->cfs_rq = &rq->cfs; | 
|  | se->depth = 0; | 
|  | } else { | 
|  | se->cfs_rq = parent->my_q; | 
|  | se->depth = parent->depth + 1; | 
|  | } | 
|  |  | 
|  | se->my_q = cfs_rq; | 
|  | /* guarantee group entities always have weight */ | 
|  | update_load_set(&se->load, NICE_0_LOAD); | 
|  | se->parent = parent; | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(shares_mutex); | 
|  |  | 
|  | static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | lockdep_assert_held(&shares_mutex); | 
|  |  | 
|  | /* | 
|  | * We can't change the weight of the root cgroup. | 
|  | */ | 
|  | if (!tg->se[0]) | 
|  | return -EINVAL; | 
|  |  | 
|  | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | 
|  |  | 
|  | if (tg->shares == shares) | 
|  | return 0; | 
|  |  | 
|  | tg->shares = shares; | 
|  | for_each_possible_cpu(i) { | 
|  | struct rq *rq = cpu_rq(i); | 
|  | struct sched_entity *se = tg->se[i]; | 
|  | struct rq_flags rf; | 
|  |  | 
|  | /* Propagate contribution to hierarchy */ | 
|  | rq_lock_irqsave(rq, &rf); | 
|  | update_rq_clock(rq); | 
|  | for_each_sched_entity(se) { | 
|  | update_load_avg(cfs_rq_of(se), se, UPDATE_TG); | 
|  | update_cfs_group(se); | 
|  | } | 
|  | rq_unlock_irqrestore(rq, &rf); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&shares_mutex); | 
|  | if (tg_is_idle(tg)) | 
|  | ret = -EINVAL; | 
|  | else | 
|  | ret = __sched_group_set_shares(tg, shares); | 
|  | mutex_unlock(&shares_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int sched_group_set_idle(struct task_group *tg, long idle) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (tg == &root_task_group) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (idle < 0 || idle > 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&shares_mutex); | 
|  |  | 
|  | if (tg->idle == idle) { | 
|  | mutex_unlock(&shares_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | tg->idle = idle; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | struct rq *rq = cpu_rq(i); | 
|  | struct sched_entity *se = tg->se[i]; | 
|  | struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; | 
|  | bool was_idle = cfs_rq_is_idle(grp_cfs_rq); | 
|  | long idle_task_delta; | 
|  | struct rq_flags rf; | 
|  |  | 
|  | rq_lock_irqsave(rq, &rf); | 
|  |  | 
|  | grp_cfs_rq->idle = idle; | 
|  | if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) | 
|  | goto next_cpu; | 
|  |  | 
|  | if (se->on_rq) { | 
|  | parent_cfs_rq = cfs_rq_of(se); | 
|  | if (cfs_rq_is_idle(grp_cfs_rq)) | 
|  | parent_cfs_rq->idle_nr_running++; | 
|  | else | 
|  | parent_cfs_rq->idle_nr_running--; | 
|  | } | 
|  |  | 
|  | idle_task_delta = grp_cfs_rq->h_nr_running - | 
|  | grp_cfs_rq->idle_h_nr_running; | 
|  | if (!cfs_rq_is_idle(grp_cfs_rq)) | 
|  | idle_task_delta *= -1; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | if (!se->on_rq) | 
|  | break; | 
|  |  | 
|  | cfs_rq->idle_h_nr_running += idle_task_delta; | 
|  |  | 
|  | /* Already accounted at parent level and above. */ | 
|  | if (cfs_rq_is_idle(cfs_rq)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | next_cpu: | 
|  | rq_unlock_irqrestore(rq, &rf); | 
|  | } | 
|  |  | 
|  | /* Idle groups have minimum weight. */ | 
|  | if (tg_is_idle(tg)) | 
|  | __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); | 
|  | else | 
|  | __sched_group_set_shares(tg, NICE_0_LOAD); | 
|  |  | 
|  | mutex_unlock(&shares_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  |  | 
|  | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) | 
|  | { | 
|  | struct sched_entity *se = &task->se; | 
|  | unsigned int rr_interval = 0; | 
|  |  | 
|  | /* | 
|  | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | 
|  | * idle runqueue: | 
|  | */ | 
|  | if (rq->cfs.load.weight) | 
|  | rr_interval = NS_TO_JIFFIES(se->slice); | 
|  |  | 
|  | return rr_interval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All the scheduling class methods: | 
|  | */ | 
|  | DEFINE_SCHED_CLASS(fair) = { | 
|  |  | 
|  | .enqueue_task		= enqueue_task_fair, | 
|  | .dequeue_task		= dequeue_task_fair, | 
|  | .yield_task		= yield_task_fair, | 
|  | .yield_to_task		= yield_to_task_fair, | 
|  |  | 
|  | .wakeup_preempt		= check_preempt_wakeup_fair, | 
|  |  | 
|  | .pick_task		= pick_task_fair, | 
|  | .pick_next_task		= __pick_next_task_fair, | 
|  | .put_prev_task		= put_prev_task_fair, | 
|  | .set_next_task          = set_next_task_fair, | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | .balance		= balance_fair, | 
|  | .select_task_rq		= select_task_rq_fair, | 
|  | .migrate_task_rq	= migrate_task_rq_fair, | 
|  |  | 
|  | .rq_online		= rq_online_fair, | 
|  | .rq_offline		= rq_offline_fair, | 
|  |  | 
|  | .task_dead		= task_dead_fair, | 
|  | .set_cpus_allowed	= set_cpus_allowed_fair, | 
|  | #endif | 
|  |  | 
|  | .task_tick		= task_tick_fair, | 
|  | .task_fork		= task_fork_fair, | 
|  |  | 
|  | .reweight_task		= reweight_task_fair, | 
|  | .prio_changed		= prio_changed_fair, | 
|  | .switched_from		= switched_from_fair, | 
|  | .switched_to		= switched_to_fair, | 
|  |  | 
|  | .get_rr_interval	= get_rr_interval_fair, | 
|  |  | 
|  | .update_curr		= update_curr_fair, | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | .task_change_group	= task_change_group_fair, | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_CORE | 
|  | .task_is_throttled	= task_is_throttled_fair, | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_UCLAMP_TASK | 
|  | .uclamp_enabled		= 1, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | void print_cfs_stats(struct seq_file *m, int cpu) | 
|  | { | 
|  | struct cfs_rq *cfs_rq, *pos; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) | 
|  | print_cfs_rq(m, cpu, cfs_rq); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | void show_numa_stats(struct task_struct *p, struct seq_file *m) | 
|  | { | 
|  | int node; | 
|  | unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; | 
|  | struct numa_group *ng; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ng = rcu_dereference(p->numa_group); | 
|  | for_each_online_node(node) { | 
|  | if (p->numa_faults) { | 
|  | tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; | 
|  | tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; | 
|  | } | 
|  | if (ng) { | 
|  | gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], | 
|  | gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | 
|  | } | 
|  | print_numa_stats(m, node, tsf, tpf, gsf, gpf); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  | #endif /* CONFIG_SCHED_DEBUG */ | 
|  |  | 
|  | __init void init_sched_fair_class(void) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); | 
|  | zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i)); | 
|  | zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), | 
|  | GFP_KERNEL, cpu_to_node(i)); | 
|  |  | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); | 
|  | INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | nohz.next_balance = jiffies; | 
|  | nohz.next_blocked = jiffies; | 
|  | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); | 
|  | #endif | 
|  | #endif /* SMP */ | 
|  |  | 
|  | } |