| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2020 Google LLC |
| * Author: Quentin Perret <qperret@google.com> |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_pgtable.h> |
| #include <asm/kvm_pkvm.h> |
| #include <asm/stage2_pgtable.h> |
| |
| #include <hyp/fault.h> |
| |
| #include <nvhe/gfp.h> |
| #include <nvhe/memory.h> |
| #include <nvhe/mem_protect.h> |
| #include <nvhe/mm.h> |
| |
| #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP) |
| |
| struct host_mmu host_mmu; |
| |
| static struct hyp_pool host_s2_pool; |
| |
| static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm); |
| #define current_vm (*this_cpu_ptr(&__current_vm)) |
| |
| static void guest_lock_component(struct pkvm_hyp_vm *vm) |
| { |
| hyp_spin_lock(&vm->lock); |
| current_vm = vm; |
| } |
| |
| static void guest_unlock_component(struct pkvm_hyp_vm *vm) |
| { |
| current_vm = NULL; |
| hyp_spin_unlock(&vm->lock); |
| } |
| |
| static void host_lock_component(void) |
| { |
| hyp_spin_lock(&host_mmu.lock); |
| } |
| |
| static void host_unlock_component(void) |
| { |
| hyp_spin_unlock(&host_mmu.lock); |
| } |
| |
| static void hyp_lock_component(void) |
| { |
| hyp_spin_lock(&pkvm_pgd_lock); |
| } |
| |
| static void hyp_unlock_component(void) |
| { |
| hyp_spin_unlock(&pkvm_pgd_lock); |
| } |
| |
| static void *host_s2_zalloc_pages_exact(size_t size) |
| { |
| void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size)); |
| |
| hyp_split_page(hyp_virt_to_page(addr)); |
| |
| /* |
| * The size of concatenated PGDs is always a power of two of PAGE_SIZE, |
| * so there should be no need to free any of the tail pages to make the |
| * allocation exact. |
| */ |
| WARN_ON(size != (PAGE_SIZE << get_order(size))); |
| |
| return addr; |
| } |
| |
| static void *host_s2_zalloc_page(void *pool) |
| { |
| return hyp_alloc_pages(pool, 0); |
| } |
| |
| static void host_s2_get_page(void *addr) |
| { |
| hyp_get_page(&host_s2_pool, addr); |
| } |
| |
| static void host_s2_put_page(void *addr) |
| { |
| hyp_put_page(&host_s2_pool, addr); |
| } |
| |
| static void host_s2_free_unlinked_table(void *addr, s8 level) |
| { |
| kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level); |
| } |
| |
| static int prepare_s2_pool(void *pgt_pool_base) |
| { |
| unsigned long nr_pages, pfn; |
| int ret; |
| |
| pfn = hyp_virt_to_pfn(pgt_pool_base); |
| nr_pages = host_s2_pgtable_pages(); |
| ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0); |
| if (ret) |
| return ret; |
| |
| host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) { |
| .zalloc_pages_exact = host_s2_zalloc_pages_exact, |
| .zalloc_page = host_s2_zalloc_page, |
| .free_unlinked_table = host_s2_free_unlinked_table, |
| .phys_to_virt = hyp_phys_to_virt, |
| .virt_to_phys = hyp_virt_to_phys, |
| .page_count = hyp_page_count, |
| .get_page = host_s2_get_page, |
| .put_page = host_s2_put_page, |
| }; |
| |
| return 0; |
| } |
| |
| static void prepare_host_vtcr(void) |
| { |
| u32 parange, phys_shift; |
| |
| /* The host stage 2 is id-mapped, so use parange for T0SZ */ |
| parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val); |
| phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange); |
| |
| host_mmu.arch.mmu.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val, |
| id_aa64mmfr1_el1_sys_val, phys_shift); |
| } |
| |
| static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot); |
| |
| int kvm_host_prepare_stage2(void *pgt_pool_base) |
| { |
| struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; |
| int ret; |
| |
| prepare_host_vtcr(); |
| hyp_spin_lock_init(&host_mmu.lock); |
| mmu->arch = &host_mmu.arch; |
| |
| ret = prepare_s2_pool(pgt_pool_base); |
| if (ret) |
| return ret; |
| |
| ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu, |
| &host_mmu.mm_ops, KVM_HOST_S2_FLAGS, |
| host_stage2_force_pte_cb); |
| if (ret) |
| return ret; |
| |
| mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd); |
| mmu->pgt = &host_mmu.pgt; |
| atomic64_set(&mmu->vmid.id, 0); |
| |
| return 0; |
| } |
| |
| static bool guest_stage2_force_pte_cb(u64 addr, u64 end, |
| enum kvm_pgtable_prot prot) |
| { |
| return true; |
| } |
| |
| static void *guest_s2_zalloc_pages_exact(size_t size) |
| { |
| void *addr = hyp_alloc_pages(¤t_vm->pool, get_order(size)); |
| |
| WARN_ON(size != (PAGE_SIZE << get_order(size))); |
| hyp_split_page(hyp_virt_to_page(addr)); |
| |
| return addr; |
| } |
| |
| static void guest_s2_free_pages_exact(void *addr, unsigned long size) |
| { |
| u8 order = get_order(size); |
| unsigned int i; |
| |
| for (i = 0; i < (1 << order); i++) |
| hyp_put_page(¤t_vm->pool, addr + (i * PAGE_SIZE)); |
| } |
| |
| static void *guest_s2_zalloc_page(void *mc) |
| { |
| struct hyp_page *p; |
| void *addr; |
| |
| addr = hyp_alloc_pages(¤t_vm->pool, 0); |
| if (addr) |
| return addr; |
| |
| addr = pop_hyp_memcache(mc, hyp_phys_to_virt); |
| if (!addr) |
| return addr; |
| |
| memset(addr, 0, PAGE_SIZE); |
| p = hyp_virt_to_page(addr); |
| p->refcount = 1; |
| p->order = 0; |
| |
| return addr; |
| } |
| |
| static void guest_s2_get_page(void *addr) |
| { |
| hyp_get_page(¤t_vm->pool, addr); |
| } |
| |
| static void guest_s2_put_page(void *addr) |
| { |
| hyp_put_page(¤t_vm->pool, addr); |
| } |
| |
| static void clean_dcache_guest_page(void *va, size_t size) |
| { |
| __clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); |
| hyp_fixmap_unmap(); |
| } |
| |
| static void invalidate_icache_guest_page(void *va, size_t size) |
| { |
| __invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); |
| hyp_fixmap_unmap(); |
| } |
| |
| int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd) |
| { |
| struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu; |
| unsigned long nr_pages; |
| int ret; |
| |
| nr_pages = kvm_pgtable_stage2_pgd_size(mmu->vtcr) >> PAGE_SHIFT; |
| ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0); |
| if (ret) |
| return ret; |
| |
| hyp_spin_lock_init(&vm->lock); |
| vm->mm_ops = (struct kvm_pgtable_mm_ops) { |
| .zalloc_pages_exact = guest_s2_zalloc_pages_exact, |
| .free_pages_exact = guest_s2_free_pages_exact, |
| .zalloc_page = guest_s2_zalloc_page, |
| .phys_to_virt = hyp_phys_to_virt, |
| .virt_to_phys = hyp_virt_to_phys, |
| .page_count = hyp_page_count, |
| .get_page = guest_s2_get_page, |
| .put_page = guest_s2_put_page, |
| .dcache_clean_inval_poc = clean_dcache_guest_page, |
| .icache_inval_pou = invalidate_icache_guest_page, |
| }; |
| |
| guest_lock_component(vm); |
| ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, |
| guest_stage2_force_pte_cb); |
| guest_unlock_component(vm); |
| if (ret) |
| return ret; |
| |
| vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd); |
| |
| return 0; |
| } |
| |
| void reclaim_pgtable_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc) |
| { |
| struct hyp_page *page; |
| void *addr; |
| |
| /* Dump all pgtable pages in the hyp_pool */ |
| guest_lock_component(vm); |
| kvm_pgtable_stage2_destroy(&vm->pgt); |
| vm->kvm.arch.mmu.pgd_phys = 0ULL; |
| guest_unlock_component(vm); |
| |
| /* Drain the hyp_pool into the memcache */ |
| addr = hyp_alloc_pages(&vm->pool, 0); |
| while (addr) { |
| page = hyp_virt_to_page(addr); |
| page->refcount = 0; |
| page->order = 0; |
| push_hyp_memcache(mc, addr, hyp_virt_to_phys); |
| WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1)); |
| addr = hyp_alloc_pages(&vm->pool, 0); |
| } |
| } |
| |
| int __pkvm_prot_finalize(void) |
| { |
| struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; |
| struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); |
| |
| if (params->hcr_el2 & HCR_VM) |
| return -EPERM; |
| |
| params->vttbr = kvm_get_vttbr(mmu); |
| params->vtcr = mmu->vtcr; |
| params->hcr_el2 |= HCR_VM; |
| |
| /* |
| * The CMO below not only cleans the updated params to the |
| * PoC, but also provides the DSB that ensures ongoing |
| * page-table walks that have started before we trapped to EL2 |
| * have completed. |
| */ |
| kvm_flush_dcache_to_poc(params, sizeof(*params)); |
| |
| write_sysreg(params->hcr_el2, hcr_el2); |
| __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch); |
| |
| /* |
| * Make sure to have an ISB before the TLB maintenance below but only |
| * when __load_stage2() doesn't include one already. |
| */ |
| asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); |
| |
| /* Invalidate stale HCR bits that may be cached in TLBs */ |
| __tlbi(vmalls12e1); |
| dsb(nsh); |
| isb(); |
| |
| return 0; |
| } |
| |
| static int host_stage2_unmap_dev_all(void) |
| { |
| struct kvm_pgtable *pgt = &host_mmu.pgt; |
| struct memblock_region *reg; |
| u64 addr = 0; |
| int i, ret; |
| |
| /* Unmap all non-memory regions to recycle the pages */ |
| for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) { |
| reg = &hyp_memory[i]; |
| ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr); |
| if (ret) |
| return ret; |
| } |
| return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr); |
| } |
| |
| struct kvm_mem_range { |
| u64 start; |
| u64 end; |
| }; |
| |
| static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range) |
| { |
| int cur, left = 0, right = hyp_memblock_nr; |
| struct memblock_region *reg; |
| phys_addr_t end; |
| |
| range->start = 0; |
| range->end = ULONG_MAX; |
| |
| /* The list of memblock regions is sorted, binary search it */ |
| while (left < right) { |
| cur = (left + right) >> 1; |
| reg = &hyp_memory[cur]; |
| end = reg->base + reg->size; |
| if (addr < reg->base) { |
| right = cur; |
| range->end = reg->base; |
| } else if (addr >= end) { |
| left = cur + 1; |
| range->start = end; |
| } else { |
| range->start = reg->base; |
| range->end = end; |
| return reg; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| bool addr_is_memory(phys_addr_t phys) |
| { |
| struct kvm_mem_range range; |
| |
| return !!find_mem_range(phys, &range); |
| } |
| |
| static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range) |
| { |
| return range->start <= addr && addr < range->end; |
| } |
| |
| static int check_range_allowed_memory(u64 start, u64 end) |
| { |
| struct memblock_region *reg; |
| struct kvm_mem_range range; |
| |
| /* |
| * Callers can't check the state of a range that overlaps memory and |
| * MMIO regions, so ensure [start, end[ is in the same kvm_mem_range. |
| */ |
| reg = find_mem_range(start, &range); |
| if (!is_in_mem_range(end - 1, &range)) |
| return -EINVAL; |
| |
| if (!reg || reg->flags & MEMBLOCK_NOMAP) |
| return -EPERM; |
| |
| return 0; |
| } |
| |
| static bool range_is_memory(u64 start, u64 end) |
| { |
| struct kvm_mem_range r; |
| |
| if (!find_mem_range(start, &r)) |
| return false; |
| |
| return is_in_mem_range(end - 1, &r); |
| } |
| |
| static inline int __host_stage2_idmap(u64 start, u64 end, |
| enum kvm_pgtable_prot prot) |
| { |
| return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start, |
| prot, &host_s2_pool, 0); |
| } |
| |
| /* |
| * The pool has been provided with enough pages to cover all of memory with |
| * page granularity, but it is difficult to know how much of the MMIO range |
| * we will need to cover upfront, so we may need to 'recycle' the pages if we |
| * run out. |
| */ |
| #define host_stage2_try(fn, ...) \ |
| ({ \ |
| int __ret; \ |
| hyp_assert_lock_held(&host_mmu.lock); \ |
| __ret = fn(__VA_ARGS__); \ |
| if (__ret == -ENOMEM) { \ |
| __ret = host_stage2_unmap_dev_all(); \ |
| if (!__ret) \ |
| __ret = fn(__VA_ARGS__); \ |
| } \ |
| __ret; \ |
| }) |
| |
| static inline bool range_included(struct kvm_mem_range *child, |
| struct kvm_mem_range *parent) |
| { |
| return parent->start <= child->start && child->end <= parent->end; |
| } |
| |
| static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range) |
| { |
| struct kvm_mem_range cur; |
| kvm_pte_t pte; |
| s8 level; |
| int ret; |
| |
| hyp_assert_lock_held(&host_mmu.lock); |
| ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level); |
| if (ret) |
| return ret; |
| |
| if (kvm_pte_valid(pte)) |
| return -EAGAIN; |
| |
| if (pte) { |
| WARN_ON(addr_is_memory(addr) && hyp_phys_to_page(addr)->host_state != PKVM_NOPAGE); |
| return -EPERM; |
| } |
| |
| do { |
| u64 granule = kvm_granule_size(level); |
| cur.start = ALIGN_DOWN(addr, granule); |
| cur.end = cur.start + granule; |
| level++; |
| } while ((level <= KVM_PGTABLE_LAST_LEVEL) && |
| !(kvm_level_supports_block_mapping(level) && |
| range_included(&cur, range))); |
| |
| *range = cur; |
| |
| return 0; |
| } |
| |
| int host_stage2_idmap_locked(phys_addr_t addr, u64 size, |
| enum kvm_pgtable_prot prot) |
| { |
| return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot); |
| } |
| |
| static void __host_update_page_state(phys_addr_t addr, u64 size, enum pkvm_page_state state) |
| { |
| phys_addr_t end = addr + size; |
| |
| for (; addr < end; addr += PAGE_SIZE) |
| hyp_phys_to_page(addr)->host_state = state; |
| } |
| |
| int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id) |
| { |
| int ret; |
| |
| if (!addr_is_memory(addr)) |
| return -EPERM; |
| |
| ret = host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt, |
| addr, size, &host_s2_pool, owner_id); |
| if (ret) |
| return ret; |
| |
| /* Don't forget to update the vmemmap tracking for the host */ |
| if (owner_id == PKVM_ID_HOST) |
| __host_update_page_state(addr, size, PKVM_PAGE_OWNED); |
| else |
| __host_update_page_state(addr, size, PKVM_NOPAGE); |
| |
| return 0; |
| } |
| |
| static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot) |
| { |
| /* |
| * Block mappings must be used with care in the host stage-2 as a |
| * kvm_pgtable_stage2_map() operation targeting a page in the range of |
| * an existing block will delete the block under the assumption that |
| * mappings in the rest of the block range can always be rebuilt lazily. |
| * That assumption is correct for the host stage-2 with RWX mappings |
| * targeting memory or RW mappings targeting MMIO ranges (see |
| * host_stage2_idmap() below which implements some of the host memory |
| * abort logic). However, this is not safe for any other mappings where |
| * the host stage-2 page-table is in fact the only place where this |
| * state is stored. In all those cases, it is safer to use page-level |
| * mappings, hence avoiding to lose the state because of side-effects in |
| * kvm_pgtable_stage2_map(). |
| */ |
| if (range_is_memory(addr, end)) |
| return prot != PKVM_HOST_MEM_PROT; |
| else |
| return prot != PKVM_HOST_MMIO_PROT; |
| } |
| |
| static int host_stage2_idmap(u64 addr) |
| { |
| struct kvm_mem_range range; |
| bool is_memory = !!find_mem_range(addr, &range); |
| enum kvm_pgtable_prot prot; |
| int ret; |
| |
| prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT; |
| |
| host_lock_component(); |
| ret = host_stage2_adjust_range(addr, &range); |
| if (ret) |
| goto unlock; |
| |
| ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot); |
| unlock: |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt) |
| { |
| struct kvm_vcpu_fault_info fault; |
| u64 esr, addr; |
| int ret = 0; |
| |
| esr = read_sysreg_el2(SYS_ESR); |
| if (!__get_fault_info(esr, &fault)) { |
| /* |
| * We've presumably raced with a page-table change which caused |
| * AT to fail, try again. |
| */ |
| return; |
| } |
| |
| addr = (fault.hpfar_el2 & HPFAR_MASK) << 8; |
| ret = host_stage2_idmap(addr); |
| BUG_ON(ret && ret != -EAGAIN); |
| } |
| |
| struct check_walk_data { |
| enum pkvm_page_state desired; |
| enum pkvm_page_state (*get_page_state)(kvm_pte_t pte, u64 addr); |
| }; |
| |
| static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx, |
| enum kvm_pgtable_walk_flags visit) |
| { |
| struct check_walk_data *d = ctx->arg; |
| |
| return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM; |
| } |
| |
| static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size, |
| struct check_walk_data *data) |
| { |
| struct kvm_pgtable_walker walker = { |
| .cb = __check_page_state_visitor, |
| .arg = data, |
| .flags = KVM_PGTABLE_WALK_LEAF, |
| }; |
| |
| return kvm_pgtable_walk(pgt, addr, size, &walker); |
| } |
| |
| static int __host_check_page_state_range(u64 addr, u64 size, |
| enum pkvm_page_state state) |
| { |
| u64 end = addr + size; |
| int ret; |
| |
| ret = check_range_allowed_memory(addr, end); |
| if (ret) |
| return ret; |
| |
| hyp_assert_lock_held(&host_mmu.lock); |
| for (; addr < end; addr += PAGE_SIZE) { |
| if (hyp_phys_to_page(addr)->host_state != state) |
| return -EPERM; |
| } |
| |
| return 0; |
| } |
| |
| static int __host_set_page_state_range(u64 addr, u64 size, |
| enum pkvm_page_state state) |
| { |
| if (hyp_phys_to_page(addr)->host_state == PKVM_NOPAGE) { |
| int ret = host_stage2_idmap_locked(addr, size, PKVM_HOST_MEM_PROT); |
| |
| if (ret) |
| return ret; |
| } |
| |
| __host_update_page_state(addr, size, state); |
| |
| return 0; |
| } |
| |
| static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte, u64 addr) |
| { |
| if (!kvm_pte_valid(pte)) |
| return PKVM_NOPAGE; |
| |
| return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte)); |
| } |
| |
| static int __hyp_check_page_state_range(u64 addr, u64 size, |
| enum pkvm_page_state state) |
| { |
| struct check_walk_data d = { |
| .desired = state, |
| .get_page_state = hyp_get_page_state, |
| }; |
| |
| hyp_assert_lock_held(&pkvm_pgd_lock); |
| return check_page_state_range(&pkvm_pgtable, addr, size, &d); |
| } |
| |
| static enum pkvm_page_state guest_get_page_state(kvm_pte_t pte, u64 addr) |
| { |
| if (!kvm_pte_valid(pte)) |
| return PKVM_NOPAGE; |
| |
| return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte)); |
| } |
| |
| static int __guest_check_page_state_range(struct pkvm_hyp_vcpu *vcpu, u64 addr, |
| u64 size, enum pkvm_page_state state) |
| { |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| struct check_walk_data d = { |
| .desired = state, |
| .get_page_state = guest_get_page_state, |
| }; |
| |
| hyp_assert_lock_held(&vm->lock); |
| return check_page_state_range(&vm->pgt, addr, size, &d); |
| } |
| |
| int __pkvm_host_share_hyp(u64 pfn) |
| { |
| u64 phys = hyp_pfn_to_phys(pfn); |
| void *virt = __hyp_va(phys); |
| enum kvm_pgtable_prot prot; |
| u64 size = PAGE_SIZE; |
| int ret; |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED); |
| if (ret) |
| goto unlock; |
| if (IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) { |
| ret = __hyp_check_page_state_range((u64)virt, size, PKVM_NOPAGE); |
| if (ret) |
| goto unlock; |
| } |
| |
| prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_SHARED_BORROWED); |
| WARN_ON(pkvm_create_mappings_locked(virt, virt + size, prot)); |
| WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED)); |
| |
| unlock: |
| hyp_unlock_component(); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_host_unshare_hyp(u64 pfn) |
| { |
| u64 phys = hyp_pfn_to_phys(pfn); |
| u64 virt = (u64)__hyp_va(phys); |
| u64 size = PAGE_SIZE; |
| int ret; |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED); |
| if (ret) |
| goto unlock; |
| ret = __hyp_check_page_state_range(virt, size, PKVM_PAGE_SHARED_BORROWED); |
| if (ret) |
| goto unlock; |
| if (hyp_page_count((void *)virt)) { |
| ret = -EBUSY; |
| goto unlock; |
| } |
| |
| WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, virt, size) != size); |
| WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_OWNED)); |
| |
| unlock: |
| hyp_unlock_component(); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages) |
| { |
| u64 phys = hyp_pfn_to_phys(pfn); |
| u64 size = PAGE_SIZE * nr_pages; |
| void *virt = __hyp_va(phys); |
| enum kvm_pgtable_prot prot; |
| int ret; |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED); |
| if (ret) |
| goto unlock; |
| if (IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) { |
| ret = __hyp_check_page_state_range((u64)virt, size, PKVM_NOPAGE); |
| if (ret) |
| goto unlock; |
| } |
| |
| prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED); |
| WARN_ON(pkvm_create_mappings_locked(virt, virt + size, prot)); |
| WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HYP)); |
| |
| unlock: |
| hyp_unlock_component(); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages) |
| { |
| u64 phys = hyp_pfn_to_phys(pfn); |
| u64 size = PAGE_SIZE * nr_pages; |
| u64 virt = (u64)__hyp_va(phys); |
| int ret; |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| ret = __hyp_check_page_state_range(virt, size, PKVM_PAGE_OWNED); |
| if (ret) |
| goto unlock; |
| if (IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) { |
| ret = __host_check_page_state_range(phys, size, PKVM_NOPAGE); |
| if (ret) |
| goto unlock; |
| } |
| |
| WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, virt, size) != size); |
| WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HOST)); |
| |
| unlock: |
| hyp_unlock_component(); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int hyp_pin_shared_mem(void *from, void *to) |
| { |
| u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); |
| u64 end = PAGE_ALIGN((u64)to); |
| u64 size = end - start; |
| int ret; |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| ret = __host_check_page_state_range(__hyp_pa(start), size, |
| PKVM_PAGE_SHARED_OWNED); |
| if (ret) |
| goto unlock; |
| |
| ret = __hyp_check_page_state_range(start, size, |
| PKVM_PAGE_SHARED_BORROWED); |
| if (ret) |
| goto unlock; |
| |
| for (cur = start; cur < end; cur += PAGE_SIZE) |
| hyp_page_ref_inc(hyp_virt_to_page(cur)); |
| |
| unlock: |
| hyp_unlock_component(); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| void hyp_unpin_shared_mem(void *from, void *to) |
| { |
| u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); |
| u64 end = PAGE_ALIGN((u64)to); |
| |
| host_lock_component(); |
| hyp_lock_component(); |
| |
| for (cur = start; cur < end; cur += PAGE_SIZE) |
| hyp_page_ref_dec(hyp_virt_to_page(cur)); |
| |
| hyp_unlock_component(); |
| host_unlock_component(); |
| } |
| |
| int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages) |
| { |
| u64 phys = hyp_pfn_to_phys(pfn); |
| u64 size = PAGE_SIZE * nr_pages; |
| int ret; |
| |
| host_lock_component(); |
| ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED); |
| if (!ret) |
| ret = __host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages) |
| { |
| u64 phys = hyp_pfn_to_phys(pfn); |
| u64 size = PAGE_SIZE * nr_pages; |
| int ret; |
| |
| host_lock_component(); |
| ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED); |
| if (!ret) |
| ret = __host_set_page_state_range(phys, size, PKVM_PAGE_OWNED); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| int __pkvm_host_share_guest(u64 pfn, u64 gfn, struct pkvm_hyp_vcpu *vcpu, |
| enum kvm_pgtable_prot prot) |
| { |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| u64 phys = hyp_pfn_to_phys(pfn); |
| u64 ipa = hyp_pfn_to_phys(gfn); |
| struct hyp_page *page; |
| int ret; |
| |
| if (prot & ~KVM_PGTABLE_PROT_RWX) |
| return -EINVAL; |
| |
| ret = check_range_allowed_memory(phys, phys + PAGE_SIZE); |
| if (ret) |
| return ret; |
| |
| host_lock_component(); |
| guest_lock_component(vm); |
| |
| ret = __guest_check_page_state_range(vcpu, ipa, PAGE_SIZE, PKVM_NOPAGE); |
| if (ret) |
| goto unlock; |
| |
| page = hyp_phys_to_page(phys); |
| switch (page->host_state) { |
| case PKVM_PAGE_OWNED: |
| WARN_ON(__host_set_page_state_range(phys, PAGE_SIZE, PKVM_PAGE_SHARED_OWNED)); |
| break; |
| case PKVM_PAGE_SHARED_OWNED: |
| if (page->host_share_guest_count) |
| break; |
| /* Only host to np-guest multi-sharing is tolerated */ |
| WARN_ON(1); |
| fallthrough; |
| default: |
| ret = -EPERM; |
| goto unlock; |
| } |
| |
| WARN_ON(kvm_pgtable_stage2_map(&vm->pgt, ipa, PAGE_SIZE, phys, |
| pkvm_mkstate(prot, PKVM_PAGE_SHARED_BORROWED), |
| &vcpu->vcpu.arch.pkvm_memcache, 0)); |
| page->host_share_guest_count++; |
| |
| unlock: |
| guest_unlock_component(vm); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| static int __check_host_shared_guest(struct pkvm_hyp_vm *vm, u64 *__phys, u64 ipa) |
| { |
| enum pkvm_page_state state; |
| struct hyp_page *page; |
| kvm_pte_t pte; |
| u64 phys; |
| s8 level; |
| int ret; |
| |
| ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level); |
| if (ret) |
| return ret; |
| if (!kvm_pte_valid(pte)) |
| return -ENOENT; |
| if (level != KVM_PGTABLE_LAST_LEVEL) |
| return -E2BIG; |
| |
| state = guest_get_page_state(pte, ipa); |
| if (state != PKVM_PAGE_SHARED_BORROWED) |
| return -EPERM; |
| |
| phys = kvm_pte_to_phys(pte); |
| ret = check_range_allowed_memory(phys, phys + PAGE_SIZE); |
| if (WARN_ON(ret)) |
| return ret; |
| |
| page = hyp_phys_to_page(phys); |
| if (page->host_state != PKVM_PAGE_SHARED_OWNED) |
| return -EPERM; |
| if (WARN_ON(!page->host_share_guest_count)) |
| return -EINVAL; |
| |
| *__phys = phys; |
| |
| return 0; |
| } |
| |
| int __pkvm_host_unshare_guest(u64 gfn, struct pkvm_hyp_vm *vm) |
| { |
| u64 ipa = hyp_pfn_to_phys(gfn); |
| struct hyp_page *page; |
| u64 phys; |
| int ret; |
| |
| host_lock_component(); |
| guest_lock_component(vm); |
| |
| ret = __check_host_shared_guest(vm, &phys, ipa); |
| if (ret) |
| goto unlock; |
| |
| ret = kvm_pgtable_stage2_unmap(&vm->pgt, ipa, PAGE_SIZE); |
| if (ret) |
| goto unlock; |
| |
| page = hyp_phys_to_page(phys); |
| page->host_share_guest_count--; |
| if (!page->host_share_guest_count) |
| WARN_ON(__host_set_page_state_range(phys, PAGE_SIZE, PKVM_PAGE_OWNED)); |
| |
| unlock: |
| guest_unlock_component(vm); |
| host_unlock_component(); |
| |
| return ret; |
| } |
| |
| static void assert_host_shared_guest(struct pkvm_hyp_vm *vm, u64 ipa) |
| { |
| u64 phys; |
| int ret; |
| |
| if (!IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) |
| return; |
| |
| host_lock_component(); |
| guest_lock_component(vm); |
| |
| ret = __check_host_shared_guest(vm, &phys, ipa); |
| |
| guest_unlock_component(vm); |
| host_unlock_component(); |
| |
| WARN_ON(ret && ret != -ENOENT); |
| } |
| |
| int __pkvm_host_relax_perms_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu, enum kvm_pgtable_prot prot) |
| { |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| u64 ipa = hyp_pfn_to_phys(gfn); |
| int ret; |
| |
| if (pkvm_hyp_vm_is_protected(vm)) |
| return -EPERM; |
| |
| if (prot & ~KVM_PGTABLE_PROT_RWX) |
| return -EINVAL; |
| |
| assert_host_shared_guest(vm, ipa); |
| guest_lock_component(vm); |
| ret = kvm_pgtable_stage2_relax_perms(&vm->pgt, ipa, prot, 0); |
| guest_unlock_component(vm); |
| |
| return ret; |
| } |
| |
| int __pkvm_host_wrprotect_guest(u64 gfn, struct pkvm_hyp_vm *vm) |
| { |
| u64 ipa = hyp_pfn_to_phys(gfn); |
| int ret; |
| |
| if (pkvm_hyp_vm_is_protected(vm)) |
| return -EPERM; |
| |
| assert_host_shared_guest(vm, ipa); |
| guest_lock_component(vm); |
| ret = kvm_pgtable_stage2_wrprotect(&vm->pgt, ipa, PAGE_SIZE); |
| guest_unlock_component(vm); |
| |
| return ret; |
| } |
| |
| int __pkvm_host_test_clear_young_guest(u64 gfn, bool mkold, struct pkvm_hyp_vm *vm) |
| { |
| u64 ipa = hyp_pfn_to_phys(gfn); |
| int ret; |
| |
| if (pkvm_hyp_vm_is_protected(vm)) |
| return -EPERM; |
| |
| assert_host_shared_guest(vm, ipa); |
| guest_lock_component(vm); |
| ret = kvm_pgtable_stage2_test_clear_young(&vm->pgt, ipa, PAGE_SIZE, mkold); |
| guest_unlock_component(vm); |
| |
| return ret; |
| } |
| |
| int __pkvm_host_mkyoung_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu) |
| { |
| struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); |
| u64 ipa = hyp_pfn_to_phys(gfn); |
| |
| if (pkvm_hyp_vm_is_protected(vm)) |
| return -EPERM; |
| |
| assert_host_shared_guest(vm, ipa); |
| guest_lock_component(vm); |
| kvm_pgtable_stage2_mkyoung(&vm->pgt, ipa, 0); |
| guest_unlock_component(vm); |
| |
| return 0; |
| } |