|  | /* | 
|  | * | 
|  | * Optimized version of the copy_user() routine. | 
|  | * It is used to copy date across the kernel/user boundary. | 
|  | * | 
|  | * The source and destination are always on opposite side of | 
|  | * the boundary. When reading from user space we must catch | 
|  | * faults on loads. When writing to user space we must catch | 
|  | * errors on stores. Note that because of the nature of the copy | 
|  | * we don't need to worry about overlapping regions. | 
|  | * | 
|  | * | 
|  | * Inputs: | 
|  | *	in0	address of source buffer | 
|  | *	in1	address of destination buffer | 
|  | *	in2	number of bytes to copy | 
|  | * | 
|  | * Outputs: | 
|  | *	ret0	0 in case of success. The number of bytes NOT copied in | 
|  | *		case of error. | 
|  | * | 
|  | * Copyright (C) 2000-2001 Hewlett-Packard Co | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | * | 
|  | * Fixme: | 
|  | *	- handle the case where we have more than 16 bytes and the alignment | 
|  | *	  are different. | 
|  | *	- more benchmarking | 
|  | *	- fix extraneous stop bit introduced by the EX() macro. | 
|  | */ | 
|  |  | 
|  | #include <asm/asmmacro.h> | 
|  |  | 
|  | // | 
|  | // Tuneable parameters | 
|  | // | 
|  | #define COPY_BREAK	16	// we do byte copy below (must be >=16) | 
|  | #define PIPE_DEPTH	21	// pipe depth | 
|  |  | 
|  | #define EPI		p[PIPE_DEPTH-1] | 
|  |  | 
|  | // | 
|  | // arguments | 
|  | // | 
|  | #define dst		in0 | 
|  | #define src		in1 | 
|  | #define len		in2 | 
|  |  | 
|  | // | 
|  | // local registers | 
|  | // | 
|  | #define t1		r2	// rshift in bytes | 
|  | #define t2		r3	// lshift in bytes | 
|  | #define rshift		r14	// right shift in bits | 
|  | #define lshift		r15	// left shift in bits | 
|  | #define word1		r16 | 
|  | #define word2		r17 | 
|  | #define cnt		r18 | 
|  | #define len2		r19 | 
|  | #define saved_lc	r20 | 
|  | #define saved_pr	r21 | 
|  | #define tmp		r22 | 
|  | #define val		r23 | 
|  | #define src1		r24 | 
|  | #define dst1		r25 | 
|  | #define src2		r26 | 
|  | #define dst2		r27 | 
|  | #define len1		r28 | 
|  | #define enddst		r29 | 
|  | #define endsrc		r30 | 
|  | #define saved_pfs	r31 | 
|  |  | 
|  | GLOBAL_ENTRY(__copy_user) | 
|  | .prologue | 
|  | .save ar.pfs, saved_pfs | 
|  | alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7) | 
|  |  | 
|  | .rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH] | 
|  | .rotp p[PIPE_DEPTH] | 
|  |  | 
|  | adds len2=-1,len	// br.ctop is repeat/until | 
|  | mov ret0=r0 | 
|  |  | 
|  | ;;			// RAW of cfm when len=0 | 
|  | cmp.eq p8,p0=r0,len	// check for zero length | 
|  | .save ar.lc, saved_lc | 
|  | mov saved_lc=ar.lc	// preserve ar.lc (slow) | 
|  | (p8)	br.ret.spnt.many rp	// empty mempcy() | 
|  | ;; | 
|  | add enddst=dst,len	// first byte after end of source | 
|  | add endsrc=src,len	// first byte after end of destination | 
|  | .save pr, saved_pr | 
|  | mov saved_pr=pr		// preserve predicates | 
|  |  | 
|  | .body | 
|  |  | 
|  | mov dst1=dst		// copy because of rotation | 
|  | mov ar.ec=PIPE_DEPTH | 
|  | mov pr.rot=1<<16	// p16=true all others are false | 
|  |  | 
|  | mov src1=src		// copy because of rotation | 
|  | mov ar.lc=len2		// initialize lc for small count | 
|  | cmp.lt p10,p7=COPY_BREAK,len	// if len > COPY_BREAK then long copy | 
|  |  | 
|  | xor tmp=src,dst		// same alignment test prepare | 
|  | (p10)	br.cond.dptk .long_copy_user | 
|  | ;;			// RAW pr.rot/p16 ? | 
|  | // | 
|  | // Now we do the byte by byte loop with software pipeline | 
|  | // | 
|  | // p7 is necessarily false by now | 
|  | 1: | 
|  | EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) | 
|  | EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) | 
|  | br.ctop.dptk.few 1b | 
|  | ;; | 
|  | mov ar.lc=saved_lc | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | mov ar.pfs=saved_pfs		// restore ar.ec | 
|  | br.ret.sptk.many rp		// end of short memcpy | 
|  |  | 
|  | // | 
|  | // Not 8-byte aligned | 
|  | // | 
|  | .diff_align_copy_user: | 
|  | // At this point we know we have more than 16 bytes to copy | 
|  | // and also that src and dest do _not_ have the same alignment. | 
|  | and src2=0x7,src1				// src offset | 
|  | and dst2=0x7,dst1				// dst offset | 
|  | ;; | 
|  | // The basic idea is that we copy byte-by-byte at the head so | 
|  | // that we can reach 8-byte alignment for both src1 and dst1. | 
|  | // Then copy the body using software pipelined 8-byte copy, | 
|  | // shifting the two back-to-back words right and left, then copy | 
|  | // the tail by copying byte-by-byte. | 
|  | // | 
|  | // Fault handling. If the byte-by-byte at the head fails on the | 
|  | // load, then restart and finish the pipleline by copying zeros | 
|  | // to the dst1. Then copy zeros for the rest of dst1. | 
|  | // If 8-byte software pipeline fails on the load, do the same as | 
|  | // failure_in3 does. If the byte-by-byte at the tail fails, it is | 
|  | // handled simply by failure_in_pipe1. | 
|  | // | 
|  | // The case p14 represents the source has more bytes in the | 
|  | // the first word (by the shifted part), whereas the p15 needs to | 
|  | // copy some bytes from the 2nd word of the source that has the | 
|  | // tail of the 1st of the destination. | 
|  | // | 
|  |  | 
|  | // | 
|  | // Optimization. If dst1 is 8-byte aligned (quite common), we don't need | 
|  | // to copy the head to dst1, to start 8-byte copy software pipeline. | 
|  | // We know src1 is not 8-byte aligned in this case. | 
|  | // | 
|  | cmp.eq p14,p15=r0,dst2 | 
|  | (p15)	br.cond.spnt 1f | 
|  | ;; | 
|  | sub t1=8,src2 | 
|  | mov t2=src2 | 
|  | ;; | 
|  | shl rshift=t2,3 | 
|  | sub len1=len,t1					// set len1 | 
|  | ;; | 
|  | sub lshift=64,rshift | 
|  | ;; | 
|  | br.cond.spnt .word_copy_user | 
|  | ;; | 
|  | 1: | 
|  | cmp.leu	p14,p15=src2,dst2 | 
|  | sub t1=dst2,src2 | 
|  | ;; | 
|  | .pred.rel "mutex", p14, p15 | 
|  | (p14)	sub word1=8,src2				// (8 - src offset) | 
|  | (p15)	sub t1=r0,t1					// absolute value | 
|  | (p15)	sub word1=8,dst2				// (8 - dst offset) | 
|  | ;; | 
|  | // For the case p14, we don't need to copy the shifted part to | 
|  | // the 1st word of destination. | 
|  | sub t2=8,t1 | 
|  | (p14)	sub word1=word1,t1 | 
|  | ;; | 
|  | sub len1=len,word1				// resulting len | 
|  | (p15)	shl rshift=t1,3					// in bits | 
|  | (p14)	shl rshift=t2,3 | 
|  | ;; | 
|  | (p14)	sub len1=len1,t1 | 
|  | adds cnt=-1,word1 | 
|  | ;; | 
|  | sub lshift=64,rshift | 
|  | mov ar.ec=PIPE_DEPTH | 
|  | mov pr.rot=1<<16	// p16=true all others are false | 
|  | mov ar.lc=cnt | 
|  | ;; | 
|  | 2: | 
|  | EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1) | 
|  | EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) | 
|  | br.ctop.dptk.few 2b | 
|  | ;; | 
|  | clrrrb | 
|  | ;; | 
|  | .word_copy_user: | 
|  | cmp.gtu p9,p0=16,len1 | 
|  | (p9)	br.cond.spnt 4f			// if (16 > len1) skip 8-byte copy | 
|  | ;; | 
|  | shr.u cnt=len1,3		// number of 64-bit words | 
|  | ;; | 
|  | adds cnt=-1,cnt | 
|  | ;; | 
|  | .pred.rel "mutex", p14, p15 | 
|  | (p14)	sub src1=src1,t2 | 
|  | (p15)	sub src1=src1,t1 | 
|  | // | 
|  | // Now both src1 and dst1 point to an 8-byte aligned address. And | 
|  | // we have more than 8 bytes to copy. | 
|  | // | 
|  | mov ar.lc=cnt | 
|  | mov ar.ec=PIPE_DEPTH | 
|  | mov pr.rot=1<<16	// p16=true all others are false | 
|  | ;; | 
|  | 3: | 
|  | // | 
|  | // The pipleline consists of 3 stages: | 
|  | // 1 (p16):	Load a word from src1 | 
|  | // 2 (EPI_1):	Shift right pair, saving to tmp | 
|  | // 3 (EPI):	Store tmp to dst1 | 
|  | // | 
|  | // To make it simple, use at least 2 (p16) loops to set up val1[n] | 
|  | // because we need 2 back-to-back val1[] to get tmp. | 
|  | // Note that this implies EPI_2 must be p18 or greater. | 
|  | // | 
|  |  | 
|  | #define EPI_1		p[PIPE_DEPTH-2] | 
|  | #define SWITCH(pred, shift)	cmp.eq pred,p0=shift,rshift | 
|  | #define CASE(pred, shift)	\ | 
|  | (pred)	br.cond.spnt .copy_user_bit##shift | 
|  | #define BODY(rshift)						\ | 
|  | .copy_user_bit##rshift:						\ | 
|  | 1:								\ | 
|  | EX(.failure_out,(EPI) st8 [dst1]=tmp,8);		\ | 
|  | (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\ | 
|  | EX(3f,(p16) ld8 val1[1]=[src1],8);			\ | 
|  | (p16)	mov val1[0]=r0;						\ | 
|  | br.ctop.dptk 1b;					\ | 
|  | ;;							\ | 
|  | br.cond.sptk.many .diff_align_do_tail;			\ | 
|  | 2:								\ | 
|  | (EPI)	st8 [dst1]=tmp,8;					\ | 
|  | (EPI_1)	shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\ | 
|  | 3:								\ | 
|  | (p16)	mov val1[1]=r0;						\ | 
|  | (p16)	mov val1[0]=r0;						\ | 
|  | br.ctop.dptk 2b;					\ | 
|  | ;;							\ | 
|  | br.cond.sptk.many .failure_in2 | 
|  |  | 
|  | // | 
|  | // Since the instruction 'shrp' requires a fixed 128-bit value | 
|  | // specifying the bits to shift, we need to provide 7 cases | 
|  | // below. | 
|  | // | 
|  | SWITCH(p6, 8) | 
|  | SWITCH(p7, 16) | 
|  | SWITCH(p8, 24) | 
|  | SWITCH(p9, 32) | 
|  | SWITCH(p10, 40) | 
|  | SWITCH(p11, 48) | 
|  | SWITCH(p12, 56) | 
|  | ;; | 
|  | CASE(p6, 8) | 
|  | CASE(p7, 16) | 
|  | CASE(p8, 24) | 
|  | CASE(p9, 32) | 
|  | CASE(p10, 40) | 
|  | CASE(p11, 48) | 
|  | CASE(p12, 56) | 
|  | ;; | 
|  | BODY(8) | 
|  | BODY(16) | 
|  | BODY(24) | 
|  | BODY(32) | 
|  | BODY(40) | 
|  | BODY(48) | 
|  | BODY(56) | 
|  | ;; | 
|  | .diff_align_do_tail: | 
|  | .pred.rel "mutex", p14, p15 | 
|  | (p14)	sub src1=src1,t1 | 
|  | (p14)	adds dst1=-8,dst1 | 
|  | (p15)	sub dst1=dst1,t1 | 
|  | ;; | 
|  | 4: | 
|  | // Tail correction. | 
|  | // | 
|  | // The problem with this piplelined loop is that the last word is not | 
|  | // loaded and thus parf of the last word written is not correct. | 
|  | // To fix that, we simply copy the tail byte by byte. | 
|  |  | 
|  | sub len1=endsrc,src1,1 | 
|  | clrrrb | 
|  | ;; | 
|  | mov ar.ec=PIPE_DEPTH | 
|  | mov pr.rot=1<<16	// p16=true all others are false | 
|  | mov ar.lc=len1 | 
|  | ;; | 
|  | 5: | 
|  | EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) | 
|  | EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) | 
|  | br.ctop.dptk.few 5b | 
|  | ;; | 
|  | mov ar.lc=saved_lc | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | mov ar.pfs=saved_pfs | 
|  | br.ret.sptk.many rp | 
|  |  | 
|  | // | 
|  | // Beginning of long mempcy (i.e. > 16 bytes) | 
|  | // | 
|  | .long_copy_user: | 
|  | tbit.nz p6,p7=src1,0	// odd alignment | 
|  | and tmp=7,tmp | 
|  | ;; | 
|  | cmp.eq p10,p8=r0,tmp | 
|  | mov len1=len		// copy because of rotation | 
|  | (p8)	br.cond.dpnt .diff_align_copy_user | 
|  | ;; | 
|  | // At this point we know we have more than 16 bytes to copy | 
|  | // and also that both src and dest have the same alignment | 
|  | // which may not be the one we want. So for now we must move | 
|  | // forward slowly until we reach 16byte alignment: no need to | 
|  | // worry about reaching the end of buffer. | 
|  | // | 
|  | EX(.failure_in1,(p6) ld1 val1[0]=[src1],1)	// 1-byte aligned | 
|  | (p6)	adds len1=-1,len1;; | 
|  | tbit.nz p7,p0=src1,1 | 
|  | ;; | 
|  | EX(.failure_in1,(p7) ld2 val1[1]=[src1],2)	// 2-byte aligned | 
|  | (p7)	adds len1=-2,len1;; | 
|  | tbit.nz p8,p0=src1,2 | 
|  | ;; | 
|  | // | 
|  | // Stop bit not required after ld4 because if we fail on ld4 | 
|  | // we have never executed the ld1, therefore st1 is not executed. | 
|  | // | 
|  | EX(.failure_in1,(p8) ld4 val2[0]=[src1],4)	// 4-byte aligned | 
|  | ;; | 
|  | EX(.failure_out,(p6) st1 [dst1]=val1[0],1) | 
|  | tbit.nz p9,p0=src1,3 | 
|  | ;; | 
|  | // | 
|  | // Stop bit not required after ld8 because if we fail on ld8 | 
|  | // we have never executed the ld2, therefore st2 is not executed. | 
|  | // | 
|  | EX(.failure_in1,(p9) ld8 val2[1]=[src1],8)	// 8-byte aligned | 
|  | EX(.failure_out,(p7) st2 [dst1]=val1[1],2) | 
|  | (p8)	adds len1=-4,len1 | 
|  | ;; | 
|  | EX(.failure_out, (p8) st4 [dst1]=val2[0],4) | 
|  | (p9)	adds len1=-8,len1;; | 
|  | shr.u cnt=len1,4		// number of 128-bit (2x64bit) words | 
|  | ;; | 
|  | EX(.failure_out, (p9) st8 [dst1]=val2[1],8) | 
|  | tbit.nz p6,p0=len1,3 | 
|  | cmp.eq p7,p0=r0,cnt | 
|  | adds tmp=-1,cnt			// br.ctop is repeat/until | 
|  | (p7)	br.cond.dpnt .dotail		// we have less than 16 bytes left | 
|  | ;; | 
|  | adds src2=8,src1 | 
|  | adds dst2=8,dst1 | 
|  | mov ar.lc=tmp | 
|  | ;; | 
|  | // | 
|  | // 16bytes/iteration | 
|  | // | 
|  | 2: | 
|  | EX(.failure_in3,(p16) ld8 val1[0]=[src1],16) | 
|  | (p16)	ld8 val2[0]=[src2],16 | 
|  |  | 
|  | EX(.failure_out, (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16) | 
|  | (EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16 | 
|  | br.ctop.dptk 2b | 
|  | ;;			// RAW on src1 when fall through from loop | 
|  | // | 
|  | // Tail correction based on len only | 
|  | // | 
|  | // No matter where we come from (loop or test) the src1 pointer | 
|  | // is 16 byte aligned AND we have less than 16 bytes to copy. | 
|  | // | 
|  | .dotail: | 
|  | EX(.failure_in1,(p6) ld8 val1[0]=[src1],8)	// at least 8 bytes | 
|  | tbit.nz p7,p0=len1,2 | 
|  | ;; | 
|  | EX(.failure_in1,(p7) ld4 val1[1]=[src1],4)	// at least 4 bytes | 
|  | tbit.nz p8,p0=len1,1 | 
|  | ;; | 
|  | EX(.failure_in1,(p8) ld2 val2[0]=[src1],2)	// at least 2 bytes | 
|  | tbit.nz p9,p0=len1,0 | 
|  | ;; | 
|  | EX(.failure_out, (p6) st8 [dst1]=val1[0],8) | 
|  | ;; | 
|  | EX(.failure_in1,(p9) ld1 val2[1]=[src1])	// only 1 byte left | 
|  | mov ar.lc=saved_lc | 
|  | ;; | 
|  | EX(.failure_out,(p7) st4 [dst1]=val1[1],4) | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | ;; | 
|  | EX(.failure_out, (p8)	st2 [dst1]=val2[0],2) | 
|  | mov ar.pfs=saved_pfs | 
|  | ;; | 
|  | EX(.failure_out, (p9)	st1 [dst1]=val2[1]) | 
|  | br.ret.sptk.many rp | 
|  |  | 
|  |  | 
|  | // | 
|  | // Here we handle the case where the byte by byte copy fails | 
|  | // on the load. | 
|  | // Several factors make the zeroing of the rest of the buffer kind of | 
|  | // tricky: | 
|  | //	- the pipeline: loads/stores are not in sync (pipeline) | 
|  | // | 
|  | //	  In the same loop iteration, the dst1 pointer does not directly | 
|  | //	  reflect where the faulty load was. | 
|  | // | 
|  | //	- pipeline effect | 
|  | //	  When you get a fault on load, you may have valid data from | 
|  | //	  previous loads not yet store in transit. Such data must be | 
|  | //	  store normally before moving onto zeroing the rest. | 
|  | // | 
|  | //	- single/multi dispersal independence. | 
|  | // | 
|  | // solution: | 
|  | //	- we don't disrupt the pipeline, i.e. data in transit in | 
|  | //	  the software pipeline will be eventually move to memory. | 
|  | //	  We simply replace the load with a simple mov and keep the | 
|  | //	  pipeline going. We can't really do this inline because | 
|  | //	  p16 is always reset to 1 when lc > 0. | 
|  | // | 
|  | .failure_in_pipe1: | 
|  | sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
|  | 1: | 
|  | (p16)	mov val1[0]=r0 | 
|  | (EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1 | 
|  | br.ctop.dptk 1b | 
|  | ;; | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | mov ar.lc=saved_lc | 
|  | mov ar.pfs=saved_pfs | 
|  | br.ret.sptk.many rp | 
|  |  | 
|  | // | 
|  | // This is the case where the byte by byte copy fails on the load | 
|  | // when we copy the head. We need to finish the pipeline and copy | 
|  | // zeros for the rest of the destination. Since this happens | 
|  | // at the top we still need to fill the body and tail. | 
|  | .failure_in_pipe2: | 
|  | sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
|  | 2: | 
|  | (p16)	mov val1[0]=r0 | 
|  | (EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1 | 
|  | br.ctop.dptk 2b | 
|  | ;; | 
|  | sub len=enddst,dst1,1		// precompute len | 
|  | br.cond.dptk.many .failure_in1bis | 
|  | ;; | 
|  |  | 
|  | // | 
|  | // Here we handle the head & tail part when we check for alignment. | 
|  | // The following code handles only the load failures. The | 
|  | // main diffculty comes from the fact that loads/stores are | 
|  | // scheduled. So when you fail on a load, the stores corresponding | 
|  | // to previous successful loads must be executed. | 
|  | // | 
|  | // However some simplifications are possible given the way | 
|  | // things work. | 
|  | // | 
|  | // 1) HEAD | 
|  | // Theory of operation: | 
|  | // | 
|  | //  Page A   | Page B | 
|  | //  ---------|----- | 
|  | //          1|8 x | 
|  | //	  1 2|8 x | 
|  | //	    4|8 x | 
|  | //	  1 4|8 x | 
|  | //        2 4|8 x | 
|  | //      1 2 4|8 x | 
|  | //	     |1 | 
|  | //	     |2 x | 
|  | //	     |4 x | 
|  | // | 
|  | // page_size >= 4k (2^12).  (x means 4, 2, 1) | 
|  | // Here we suppose Page A exists and Page B does not. | 
|  | // | 
|  | // As we move towards eight byte alignment we may encounter faults. | 
|  | // The numbers on each page show the size of the load (current alignment). | 
|  | // | 
|  | // Key point: | 
|  | //	- if you fail on 1, 2, 4 then you have never executed any smaller | 
|  | //	  size loads, e.g. failing ld4 means no ld1 nor ld2 executed | 
|  | //	  before. | 
|  | // | 
|  | // This allows us to simplify the cleanup code, because basically you | 
|  | // only have to worry about "pending" stores in the case of a failing | 
|  | // ld8(). Given the way the code is written today, this means only | 
|  | // worry about st2, st4. There we can use the information encapsulated | 
|  | // into the predicates. | 
|  | // | 
|  | // Other key point: | 
|  | //	- if you fail on the ld8 in the head, it means you went straight | 
|  | //	  to it, i.e. 8byte alignment within an unexisting page. | 
|  | // Again this comes from the fact that if you crossed just for the ld8 then | 
|  | // you are 8byte aligned but also 16byte align, therefore you would | 
|  | // either go for the 16byte copy loop OR the ld8 in the tail part. | 
|  | // The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible | 
|  | // because it would mean you had 15bytes to copy in which case you | 
|  | // would have defaulted to the byte by byte copy. | 
|  | // | 
|  | // | 
|  | // 2) TAIL | 
|  | // Here we now we have less than 16 bytes AND we are either 8 or 16 byte | 
|  | // aligned. | 
|  | // | 
|  | // Key point: | 
|  | // This means that we either: | 
|  | //		- are right on a page boundary | 
|  | //	OR | 
|  | //		- are at more than 16 bytes from a page boundary with | 
|  | //		  at most 15 bytes to copy: no chance of crossing. | 
|  | // | 
|  | // This allows us to assume that if we fail on a load we haven't possibly | 
|  | // executed any of the previous (tail) ones, so we don't need to do | 
|  | // any stores. For instance, if we fail on ld2, this means we had | 
|  | // 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4. | 
|  | // | 
|  | // This means that we are in a situation similar the a fault in the | 
|  | // head part. That's nice! | 
|  | // | 
|  | .failure_in1: | 
|  | sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
|  | sub len=endsrc,src1,1 | 
|  | // | 
|  | // we know that ret0 can never be zero at this point | 
|  | // because we failed why trying to do a load, i.e. there is still | 
|  | // some work to do. | 
|  | // The failure_in1bis and length problem is taken care of at the | 
|  | // calling side. | 
|  | // | 
|  | ;; | 
|  | .failure_in1bis:		// from (.failure_in3) | 
|  | mov ar.lc=len		// Continue with a stupid byte store. | 
|  | ;; | 
|  | 5: | 
|  | st1 [dst1]=r0,1 | 
|  | br.cloop.dptk 5b | 
|  | ;; | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | mov ar.lc=saved_lc | 
|  | mov ar.pfs=saved_pfs | 
|  | br.ret.sptk.many rp | 
|  |  | 
|  | // | 
|  | // Here we simply restart the loop but instead | 
|  | // of doing loads we fill the pipeline with zeroes | 
|  | // We can't simply store r0 because we may have valid | 
|  | // data in transit in the pipeline. | 
|  | // ar.lc and ar.ec are setup correctly at this point | 
|  | // | 
|  | // we MUST use src1/endsrc here and not dst1/enddst because | 
|  | // of the pipeline effect. | 
|  | // | 
|  | .failure_in3: | 
|  | sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
|  | ;; | 
|  | 2: | 
|  | (p16)	mov val1[0]=r0 | 
|  | (p16)	mov val2[0]=r0 | 
|  | (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16 | 
|  | (EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16 | 
|  | br.ctop.dptk 2b | 
|  | ;; | 
|  | cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ? | 
|  | sub len=enddst,dst1,1		// precompute len | 
|  | (p6)	br.cond.dptk .failure_in1bis | 
|  | ;; | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | mov ar.lc=saved_lc | 
|  | mov ar.pfs=saved_pfs | 
|  | br.ret.sptk.many rp | 
|  |  | 
|  | .failure_in2: | 
|  | sub ret0=endsrc,src1 | 
|  | cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ? | 
|  | sub len=enddst,dst1,1		// precompute len | 
|  | (p6)	br.cond.dptk .failure_in1bis | 
|  | ;; | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | mov ar.lc=saved_lc | 
|  | mov ar.pfs=saved_pfs | 
|  | br.ret.sptk.many rp | 
|  |  | 
|  | // | 
|  | // handling of failures on stores: that's the easy part | 
|  | // | 
|  | .failure_out: | 
|  | sub ret0=enddst,dst1 | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | mov ar.lc=saved_lc | 
|  |  | 
|  | mov ar.pfs=saved_pfs | 
|  | br.ret.sptk.many rp | 
|  | END(__copy_user) |