|  | /* | 
|  | *  linux/drivers/scsi/esas2r/esas2r_io.c | 
|  | *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers | 
|  | * | 
|  | *  Copyright (c) 2001-2013 ATTO Technology, Inc. | 
|  | *  (mailto:linuxdrivers@attotech.com)mpt3sas/mpt3sas_trigger_diag. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version 2 | 
|  | * of the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * NO WARRANTY | 
|  | * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR | 
|  | * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT | 
|  | * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, | 
|  | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is | 
|  | * solely responsible for determining the appropriateness of using and | 
|  | * distributing the Program and assumes all risks associated with its | 
|  | * exercise of rights under this Agreement, including but not limited to | 
|  | * the risks and costs of program errors, damage to or loss of data, | 
|  | * programs or equipment, and unavailability or interruption of operations. | 
|  | * | 
|  | * DISCLAIMER OF LIABILITY | 
|  | * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY | 
|  | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND | 
|  | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR | 
|  | * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | 
|  | * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED | 
|  | * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, | 
|  | * USA. | 
|  | */ | 
|  |  | 
|  | #include "esas2r.h" | 
|  |  | 
|  | void esas2r_start_request(struct esas2r_adapter *a, struct esas2r_request *rq) | 
|  | { | 
|  | struct esas2r_target *t = NULL; | 
|  | struct esas2r_request *startrq = rq; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (unlikely(test_bit(AF_DEGRADED_MODE, &a->flags) || | 
|  | test_bit(AF_POWER_DOWN, &a->flags))) { | 
|  | if (rq->vrq->scsi.function == VDA_FUNC_SCSI) | 
|  | rq->req_stat = RS_SEL2; | 
|  | else | 
|  | rq->req_stat = RS_DEGRADED; | 
|  | } else if (likely(rq->vrq->scsi.function == VDA_FUNC_SCSI)) { | 
|  | t = a->targetdb + rq->target_id; | 
|  |  | 
|  | if (unlikely(t >= a->targetdb_end | 
|  | || !(t->flags & TF_USED))) { | 
|  | rq->req_stat = RS_SEL; | 
|  | } else { | 
|  | /* copy in the target ID. */ | 
|  | rq->vrq->scsi.target_id = cpu_to_le16(t->virt_targ_id); | 
|  |  | 
|  | /* | 
|  | * Test if we want to report RS_SEL for missing target. | 
|  | * Note that if AF_DISC_PENDING is set than this will | 
|  | * go on the defer queue. | 
|  | */ | 
|  | if (unlikely(t->target_state != TS_PRESENT && | 
|  | !test_bit(AF_DISC_PENDING, &a->flags))) | 
|  | rq->req_stat = RS_SEL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(rq->req_stat != RS_PENDING)) { | 
|  | esas2r_complete_request(a, rq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | esas2r_trace("rq=%p", rq); | 
|  | esas2r_trace("rq->vrq->scsi.handle=%x", rq->vrq->scsi.handle); | 
|  |  | 
|  | if (rq->vrq->scsi.function == VDA_FUNC_SCSI) { | 
|  | esas2r_trace("rq->target_id=%d", rq->target_id); | 
|  | esas2r_trace("rq->vrq->scsi.flags=%x", rq->vrq->scsi.flags); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&a->queue_lock, flags); | 
|  |  | 
|  | if (likely(list_empty(&a->defer_list) && | 
|  | !test_bit(AF_CHPRST_PENDING, &a->flags) && | 
|  | !test_bit(AF_FLASHING, &a->flags) && | 
|  | !test_bit(AF_DISC_PENDING, &a->flags))) | 
|  | esas2r_local_start_request(a, startrq); | 
|  | else | 
|  | list_add_tail(&startrq->req_list, &a->defer_list); | 
|  |  | 
|  | spin_unlock_irqrestore(&a->queue_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Starts the specified request.  all requests have RS_PENDING set when this | 
|  | * routine is called.  The caller is usually esas2r_start_request, but | 
|  | * esas2r_do_deferred_processes will start request that are deferred. | 
|  | * | 
|  | * The caller must ensure that requests can be started. | 
|  | * | 
|  | * esas2r_start_request will defer a request if there are already requests | 
|  | * waiting or there is a chip reset pending.  once the reset condition clears, | 
|  | * esas2r_do_deferred_processes will call this function to start the request. | 
|  | * | 
|  | * When a request is started, it is placed on the active list and queued to | 
|  | * the controller. | 
|  | */ | 
|  | void esas2r_local_start_request(struct esas2r_adapter *a, | 
|  | struct esas2r_request *rq) | 
|  | { | 
|  | esas2r_trace_enter(); | 
|  | esas2r_trace("rq=%p", rq); | 
|  | esas2r_trace("rq->vrq:%p", rq->vrq); | 
|  | esas2r_trace("rq->vrq_md->phys_addr:%x", rq->vrq_md->phys_addr); | 
|  |  | 
|  | if (unlikely(rq->vrq->scsi.function == VDA_FUNC_FLASH | 
|  | && rq->vrq->flash.sub_func == VDA_FLASH_COMMIT)) | 
|  | set_bit(AF_FLASHING, &a->flags); | 
|  |  | 
|  | list_add_tail(&rq->req_list, &a->active_list); | 
|  | esas2r_start_vda_request(a, rq); | 
|  | esas2r_trace_exit(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void esas2r_start_vda_request(struct esas2r_adapter *a, | 
|  | struct esas2r_request *rq) | 
|  | { | 
|  | struct esas2r_inbound_list_source_entry *element; | 
|  | u32 dw; | 
|  |  | 
|  | rq->req_stat = RS_STARTED; | 
|  | /* | 
|  | * Calculate the inbound list entry location and the current state of | 
|  | * toggle bit. | 
|  | */ | 
|  | a->last_write++; | 
|  | if (a->last_write >= a->list_size) { | 
|  | a->last_write = 0; | 
|  | /* update the toggle bit */ | 
|  | if (test_bit(AF_COMM_LIST_TOGGLE, &a->flags)) | 
|  | clear_bit(AF_COMM_LIST_TOGGLE, &a->flags); | 
|  | else | 
|  | set_bit(AF_COMM_LIST_TOGGLE, &a->flags); | 
|  | } | 
|  |  | 
|  | element = | 
|  | (struct esas2r_inbound_list_source_entry *)a->inbound_list_md. | 
|  | virt_addr | 
|  | + a->last_write; | 
|  |  | 
|  | /* Set the VDA request size if it was never modified */ | 
|  | if (rq->vda_req_sz == RQ_SIZE_DEFAULT) | 
|  | rq->vda_req_sz = (u16)(a->max_vdareq_size / sizeof(u32)); | 
|  |  | 
|  | element->address = cpu_to_le64(rq->vrq_md->phys_addr); | 
|  | element->length = cpu_to_le32(rq->vda_req_sz); | 
|  |  | 
|  | /* Update the write pointer */ | 
|  | dw = a->last_write; | 
|  |  | 
|  | if (test_bit(AF_COMM_LIST_TOGGLE, &a->flags)) | 
|  | dw |= MU_ILW_TOGGLE; | 
|  |  | 
|  | esas2r_trace("rq->vrq->scsi.handle:%x", rq->vrq->scsi.handle); | 
|  | esas2r_trace("dw:%x", dw); | 
|  | esas2r_trace("rq->vda_req_sz:%x", rq->vda_req_sz); | 
|  | esas2r_write_register_dword(a, MU_IN_LIST_WRITE, dw); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build the scatter/gather list for an I/O request according to the | 
|  | * specifications placed in the s/g context.  The caller must initialize | 
|  | * context prior to the initial call by calling esas2r_sgc_init(). | 
|  | */ | 
|  | bool esas2r_build_sg_list_sge(struct esas2r_adapter *a, | 
|  | struct esas2r_sg_context *sgc) | 
|  | { | 
|  | struct esas2r_request *rq = sgc->first_req; | 
|  | union atto_vda_req *vrq = rq->vrq; | 
|  |  | 
|  | while (sgc->length) { | 
|  | u32 rem = 0; | 
|  | u64 addr; | 
|  | u32 len; | 
|  |  | 
|  | len = (*sgc->get_phys_addr)(sgc, &addr); | 
|  |  | 
|  | if (unlikely(len == 0)) | 
|  | return false; | 
|  |  | 
|  | /* if current length is more than what's left, stop there */ | 
|  | if (unlikely(len > sgc->length)) | 
|  | len = sgc->length; | 
|  |  | 
|  | another_entry: | 
|  | /* limit to a round number less than the maximum length */ | 
|  | if (len > SGE_LEN_MAX) { | 
|  | /* | 
|  | * Save the remainder of the split.  Whenever we limit | 
|  | * an entry we come back around to build entries out | 
|  | * of the leftover.  We do this to prevent multiple | 
|  | * calls to the get_phys_addr() function for an SGE | 
|  | * that is too large. | 
|  | */ | 
|  | rem = len - SGE_LEN_MAX; | 
|  | len = SGE_LEN_MAX; | 
|  | } | 
|  |  | 
|  | /* See if we need to allocate a new SGL */ | 
|  | if (unlikely(sgc->sge.a64.curr > sgc->sge.a64.limit)) { | 
|  | u8 sgelen; | 
|  | struct esas2r_mem_desc *sgl; | 
|  |  | 
|  | /* | 
|  | * If no SGls are available, return failure.  The | 
|  | * caller can call us later with the current context | 
|  | * to pick up here. | 
|  | */ | 
|  | sgl = esas2r_alloc_sgl(a); | 
|  |  | 
|  | if (unlikely(sgl == NULL)) | 
|  | return false; | 
|  |  | 
|  | /* Calculate the length of the last SGE filled in */ | 
|  | sgelen = (u8)((u8 *)sgc->sge.a64.curr | 
|  | - (u8 *)sgc->sge.a64.last); | 
|  |  | 
|  | /* | 
|  | * Copy the last SGE filled in to the first entry of | 
|  | * the new SGL to make room for the chain entry. | 
|  | */ | 
|  | memcpy(sgl->virt_addr, sgc->sge.a64.last, sgelen); | 
|  |  | 
|  | /* Figure out the new curr pointer in the new segment */ | 
|  | sgc->sge.a64.curr = | 
|  | (struct atto_vda_sge *)((u8 *)sgl->virt_addr + | 
|  | sgelen); | 
|  |  | 
|  | /* Set the limit pointer and build the chain entry */ | 
|  | sgc->sge.a64.limit = | 
|  | (struct atto_vda_sge *)((u8 *)sgl->virt_addr | 
|  | + sgl_page_size | 
|  | - sizeof(struct | 
|  | atto_vda_sge)); | 
|  | sgc->sge.a64.last->length = cpu_to_le32( | 
|  | SGE_CHAIN | SGE_ADDR_64); | 
|  | sgc->sge.a64.last->address = | 
|  | cpu_to_le64(sgl->phys_addr); | 
|  |  | 
|  | /* | 
|  | * Now, if there was a previous chain entry, then | 
|  | * update it to contain the length of this segment | 
|  | * and size of this chain.  otherwise this is the | 
|  | * first SGL, so set the chain_offset in the request. | 
|  | */ | 
|  | if (sgc->sge.a64.chain) { | 
|  | sgc->sge.a64.chain->length |= | 
|  | cpu_to_le32( | 
|  | ((u8 *)(sgc->sge.a64. | 
|  | last + 1) | 
|  | - (u8 *)rq->sg_table-> | 
|  | virt_addr) | 
|  | + sizeof(struct atto_vda_sge) * | 
|  | LOBIT(SGE_CHAIN_SZ)); | 
|  | } else { | 
|  | vrq->scsi.chain_offset = (u8) | 
|  | ((u8 *)sgc-> | 
|  | sge.a64.last - | 
|  | (u8 *)vrq); | 
|  |  | 
|  | /* | 
|  | * This is the first SGL, so set the | 
|  | * chain_offset and the VDA request size in | 
|  | * the request. | 
|  | */ | 
|  | rq->vda_req_sz = | 
|  | (vrq->scsi.chain_offset + | 
|  | sizeof(struct atto_vda_sge) + | 
|  | 3) | 
|  | / sizeof(u32); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remember this so when we get a new SGL filled in we | 
|  | * can update the length of this chain entry. | 
|  | */ | 
|  | sgc->sge.a64.chain = sgc->sge.a64.last; | 
|  |  | 
|  | /* Now link the new SGL onto the primary request. */ | 
|  | list_add(&sgl->next_desc, &rq->sg_table_head); | 
|  | } | 
|  |  | 
|  | /* Update last one filled in */ | 
|  | sgc->sge.a64.last = sgc->sge.a64.curr; | 
|  |  | 
|  | /* Build the new SGE and update the S/G context */ | 
|  | sgc->sge.a64.curr->length = cpu_to_le32(SGE_ADDR_64 | len); | 
|  | sgc->sge.a64.curr->address = cpu_to_le32(addr); | 
|  | sgc->sge.a64.curr++; | 
|  | sgc->cur_offset += len; | 
|  | sgc->length -= len; | 
|  |  | 
|  | /* | 
|  | * Check if we previously split an entry.  If so we have to | 
|  | * pick up where we left off. | 
|  | */ | 
|  | if (rem) { | 
|  | addr += len; | 
|  | len = rem; | 
|  | rem = 0; | 
|  | goto another_entry; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Mark the end of the SGL */ | 
|  | sgc->sge.a64.last->length |= cpu_to_le32(SGE_LAST); | 
|  |  | 
|  | /* | 
|  | * If there was a previous chain entry, update the length to indicate | 
|  | * the length of this last segment. | 
|  | */ | 
|  | if (sgc->sge.a64.chain) { | 
|  | sgc->sge.a64.chain->length |= cpu_to_le32( | 
|  | ((u8 *)(sgc->sge.a64.curr) - | 
|  | (u8 *)rq->sg_table->virt_addr)); | 
|  | } else { | 
|  | u16 reqsize; | 
|  |  | 
|  | /* | 
|  | * The entire VDA request was not used so lets | 
|  | * set the size of the VDA request to be DMA'd | 
|  | */ | 
|  | reqsize = | 
|  | ((u16)((u8 *)sgc->sge.a64.last - (u8 *)vrq) | 
|  | + sizeof(struct atto_vda_sge) + 3) / sizeof(u32); | 
|  |  | 
|  | /* | 
|  | * Only update the request size if it is bigger than what is | 
|  | * already there.  We can come in here twice for some management | 
|  | * commands. | 
|  | */ | 
|  | if (reqsize > rq->vda_req_sz) | 
|  | rq->vda_req_sz = reqsize; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Create PRD list for each I-block consumed by the command. This routine | 
|  | * determines how much data is required from each I-block being consumed | 
|  | * by the command. The first and last I-blocks can be partials and all of | 
|  | * the I-blocks in between are for a full I-block of data. | 
|  | * | 
|  | * The interleave size is used to determine the number of bytes in the 1st | 
|  | * I-block and the remaining I-blocks are what remeains. | 
|  | */ | 
|  | static bool esas2r_build_prd_iblk(struct esas2r_adapter *a, | 
|  | struct esas2r_sg_context *sgc) | 
|  | { | 
|  | struct esas2r_request *rq = sgc->first_req; | 
|  | u64 addr; | 
|  | u32 len; | 
|  | struct esas2r_mem_desc *sgl; | 
|  | u32 numchain = 1; | 
|  | u32 rem = 0; | 
|  |  | 
|  | while (sgc->length) { | 
|  | /* Get the next address/length pair */ | 
|  |  | 
|  | len = (*sgc->get_phys_addr)(sgc, &addr); | 
|  |  | 
|  | if (unlikely(len == 0)) | 
|  | return false; | 
|  |  | 
|  | /* If current length is more than what's left, stop there */ | 
|  |  | 
|  | if (unlikely(len > sgc->length)) | 
|  | len = sgc->length; | 
|  |  | 
|  | another_entry: | 
|  | /* Limit to a round number less than the maximum length */ | 
|  |  | 
|  | if (len > PRD_LEN_MAX) { | 
|  | /* | 
|  | * Save the remainder of the split.  whenever we limit | 
|  | * an entry we come back around to build entries out | 
|  | * of the leftover.  We do this to prevent multiple | 
|  | * calls to the get_phys_addr() function for an SGE | 
|  | * that is too large. | 
|  | */ | 
|  | rem = len - PRD_LEN_MAX; | 
|  | len = PRD_LEN_MAX; | 
|  | } | 
|  |  | 
|  | /* See if we need to allocate a new SGL */ | 
|  | if (sgc->sge.prd.sge_cnt == 0) { | 
|  | if (len == sgc->length) { | 
|  | /* | 
|  | * We only have 1 PRD entry left. | 
|  | * It can be placed where the chain | 
|  | * entry would have gone | 
|  | */ | 
|  |  | 
|  | /* Build the simple SGE */ | 
|  | sgc->sge.prd.curr->ctl_len = cpu_to_le32( | 
|  | PRD_DATA | len); | 
|  | sgc->sge.prd.curr->address = cpu_to_le64(addr); | 
|  |  | 
|  | /* Adjust length related fields */ | 
|  | sgc->cur_offset += len; | 
|  | sgc->length -= len; | 
|  |  | 
|  | /* We use the reserved chain entry for data */ | 
|  | numchain = 0; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (sgc->sge.prd.chain) { | 
|  | /* | 
|  | * Fill # of entries of current SGL in previous | 
|  | * chain the length of this current SGL may not | 
|  | * full. | 
|  | */ | 
|  |  | 
|  | sgc->sge.prd.chain->ctl_len |= cpu_to_le32( | 
|  | sgc->sge.prd.sgl_max_cnt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If no SGls are available, return failure.  The | 
|  | * caller can call us later with the current context | 
|  | * to pick up here. | 
|  | */ | 
|  |  | 
|  | sgl = esas2r_alloc_sgl(a); | 
|  |  | 
|  | if (unlikely(sgl == NULL)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Link the new SGL onto the chain | 
|  | * They are in reverse order | 
|  | */ | 
|  | list_add(&sgl->next_desc, &rq->sg_table_head); | 
|  |  | 
|  | /* | 
|  | * An SGL was just filled in and we are starting | 
|  | * a new SGL. Prime the chain of the ending SGL with | 
|  | * info that points to the new SGL. The length gets | 
|  | * filled in when the new SGL is filled or ended | 
|  | */ | 
|  |  | 
|  | sgc->sge.prd.chain = sgc->sge.prd.curr; | 
|  |  | 
|  | sgc->sge.prd.chain->ctl_len = cpu_to_le32(PRD_CHAIN); | 
|  | sgc->sge.prd.chain->address = | 
|  | cpu_to_le64(sgl->phys_addr); | 
|  |  | 
|  | /* | 
|  | * Start a new segment. | 
|  | * Take one away and save for chain SGE | 
|  | */ | 
|  |  | 
|  | sgc->sge.prd.curr = | 
|  | (struct atto_physical_region_description *)sgl | 
|  | -> | 
|  | virt_addr; | 
|  | sgc->sge.prd.sge_cnt = sgc->sge.prd.sgl_max_cnt - 1; | 
|  | } | 
|  |  | 
|  | sgc->sge.prd.sge_cnt--; | 
|  | /* Build the simple SGE */ | 
|  | sgc->sge.prd.curr->ctl_len = cpu_to_le32(PRD_DATA | len); | 
|  | sgc->sge.prd.curr->address = cpu_to_le64(addr); | 
|  |  | 
|  | /* Used another element.  Point to the next one */ | 
|  |  | 
|  | sgc->sge.prd.curr++; | 
|  |  | 
|  | /* Adjust length related fields */ | 
|  |  | 
|  | sgc->cur_offset += len; | 
|  | sgc->length -= len; | 
|  |  | 
|  | /* | 
|  | * Check if we previously split an entry.  If so we have to | 
|  | * pick up where we left off. | 
|  | */ | 
|  |  | 
|  | if (rem) { | 
|  | addr += len; | 
|  | len = rem; | 
|  | rem = 0; | 
|  | goto another_entry; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!list_empty(&rq->sg_table_head)) { | 
|  | if (sgc->sge.prd.chain) { | 
|  | sgc->sge.prd.chain->ctl_len |= | 
|  | cpu_to_le32(sgc->sge.prd.sgl_max_cnt | 
|  | - sgc->sge.prd.sge_cnt | 
|  | - numchain); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool esas2r_build_sg_list_prd(struct esas2r_adapter *a, | 
|  | struct esas2r_sg_context *sgc) | 
|  | { | 
|  | struct esas2r_request *rq = sgc->first_req; | 
|  | u32 len = sgc->length; | 
|  | struct esas2r_target *t = a->targetdb + rq->target_id; | 
|  | u8 is_i_o = 0; | 
|  | u16 reqsize; | 
|  | struct atto_physical_region_description *curr_iblk_chn; | 
|  | u8 *cdb = (u8 *)&rq->vrq->scsi.cdb[0]; | 
|  |  | 
|  | /* | 
|  | * extract LBA from command so we can determine | 
|  | * the I-Block boundary | 
|  | */ | 
|  |  | 
|  | if (rq->vrq->scsi.function == VDA_FUNC_SCSI | 
|  | && t->target_state == TS_PRESENT | 
|  | && !(t->flags & TF_PASS_THRU)) { | 
|  | u32 lbalo = 0; | 
|  |  | 
|  | switch (rq->vrq->scsi.cdb[0]) { | 
|  | case    READ_16: | 
|  | case    WRITE_16: | 
|  | { | 
|  | lbalo = | 
|  | MAKEDWORD(MAKEWORD(cdb[9], | 
|  | cdb[8]), | 
|  | MAKEWORD(cdb[7], | 
|  | cdb[6])); | 
|  | is_i_o = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case    READ_12: | 
|  | case    WRITE_12: | 
|  | case    READ_10: | 
|  | case    WRITE_10: | 
|  | { | 
|  | lbalo = | 
|  | MAKEDWORD(MAKEWORD(cdb[5], | 
|  | cdb[4]), | 
|  | MAKEWORD(cdb[3], | 
|  | cdb[2])); | 
|  | is_i_o = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case    READ_6: | 
|  | case    WRITE_6: | 
|  | { | 
|  | lbalo = | 
|  | MAKEDWORD(MAKEWORD(cdb[3], | 
|  | cdb[2]), | 
|  | MAKEWORD(cdb[1] & 0x1F, | 
|  | 0)); | 
|  | is_i_o = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (is_i_o) { | 
|  | u32 startlba; | 
|  |  | 
|  | rq->vrq->scsi.iblk_cnt_prd = 0; | 
|  |  | 
|  | /* Determine size of 1st I-block PRD list       */ | 
|  | startlba = t->inter_block - (lbalo & (t->inter_block - | 
|  | 1)); | 
|  | sgc->length = startlba * t->block_size; | 
|  |  | 
|  | /* Chk if the 1st iblk chain starts at base of Iblock */ | 
|  | if ((lbalo & (t->inter_block - 1)) == 0) | 
|  | rq->flags |= RF_1ST_IBLK_BASE; | 
|  |  | 
|  | if (sgc->length > len) | 
|  | sgc->length = len; | 
|  | } else { | 
|  | sgc->length = len; | 
|  | } | 
|  | } else { | 
|  | sgc->length = len; | 
|  | } | 
|  |  | 
|  | /* get our starting chain address   */ | 
|  |  | 
|  | curr_iblk_chn = | 
|  | (struct atto_physical_region_description *)sgc->sge.a64.curr; | 
|  |  | 
|  | sgc->sge.prd.sgl_max_cnt = sgl_page_size / | 
|  | sizeof(struct | 
|  | atto_physical_region_description); | 
|  |  | 
|  | /* create all of the I-block PRD lists          */ | 
|  |  | 
|  | while (len) { | 
|  | sgc->sge.prd.sge_cnt = 0; | 
|  | sgc->sge.prd.chain = NULL; | 
|  | sgc->sge.prd.curr = curr_iblk_chn; | 
|  |  | 
|  | /* increment to next I-Block    */ | 
|  |  | 
|  | len -= sgc->length; | 
|  |  | 
|  | /* go build the next I-Block PRD list   */ | 
|  |  | 
|  | if (unlikely(!esas2r_build_prd_iblk(a, sgc))) | 
|  | return false; | 
|  |  | 
|  | curr_iblk_chn++; | 
|  |  | 
|  | if (is_i_o) { | 
|  | rq->vrq->scsi.iblk_cnt_prd++; | 
|  |  | 
|  | if (len > t->inter_byte) | 
|  | sgc->length = t->inter_byte; | 
|  | else | 
|  | sgc->length = len; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* figure out the size used of the VDA request */ | 
|  |  | 
|  | reqsize = ((u16)((u8 *)curr_iblk_chn - (u8 *)rq->vrq)) | 
|  | / sizeof(u32); | 
|  |  | 
|  | /* | 
|  | * only update the request size if it is bigger than what is | 
|  | * already there.  we can come in here twice for some management | 
|  | * commands. | 
|  | */ | 
|  |  | 
|  | if (reqsize > rq->vda_req_sz) | 
|  | rq->vda_req_sz = reqsize; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void esas2r_handle_pending_reset(struct esas2r_adapter *a, u32 currtime) | 
|  | { | 
|  | u32 delta = currtime - a->chip_init_time; | 
|  |  | 
|  | if (delta <= ESAS2R_CHPRST_WAIT_TIME) { | 
|  | /* Wait before accessing registers */ | 
|  | } else if (delta >= ESAS2R_CHPRST_TIME) { | 
|  | /* | 
|  | * The last reset failed so try again. Reset | 
|  | * processing will give up after three tries. | 
|  | */ | 
|  | esas2r_local_reset_adapter(a); | 
|  | } else { | 
|  | /* We can now see if the firmware is ready */ | 
|  | u32 doorbell; | 
|  |  | 
|  | doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); | 
|  | if (doorbell == 0xFFFFFFFF || !(doorbell & DRBL_FORCE_INT)) { | 
|  | esas2r_force_interrupt(a); | 
|  | } else { | 
|  | u32 ver = (doorbell & DRBL_FW_VER_MSK); | 
|  |  | 
|  | /* Driver supports API version 0 and 1 */ | 
|  | esas2r_write_register_dword(a, MU_DOORBELL_OUT, | 
|  | doorbell); | 
|  | if (ver == DRBL_FW_VER_0) { | 
|  | set_bit(AF_CHPRST_DETECTED, &a->flags); | 
|  | set_bit(AF_LEGACY_SGE_MODE, &a->flags); | 
|  |  | 
|  | a->max_vdareq_size = 128; | 
|  | a->build_sgl = esas2r_build_sg_list_sge; | 
|  | } else if (ver == DRBL_FW_VER_1) { | 
|  | set_bit(AF_CHPRST_DETECTED, &a->flags); | 
|  | clear_bit(AF_LEGACY_SGE_MODE, &a->flags); | 
|  |  | 
|  | a->max_vdareq_size = 1024; | 
|  | a->build_sgl = esas2r_build_sg_list_prd; | 
|  | } else { | 
|  | esas2r_local_reset_adapter(a); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This function must be called once per timer tick */ | 
|  | void esas2r_timer_tick(struct esas2r_adapter *a) | 
|  | { | 
|  | u32 currtime = jiffies_to_msecs(jiffies); | 
|  | u32 deltatime = currtime - a->last_tick_time; | 
|  |  | 
|  | a->last_tick_time = currtime; | 
|  |  | 
|  | /* count down the uptime */ | 
|  | if (a->chip_uptime && | 
|  | !test_bit(AF_CHPRST_PENDING, &a->flags) && | 
|  | !test_bit(AF_DISC_PENDING, &a->flags)) { | 
|  | if (deltatime >= a->chip_uptime) | 
|  | a->chip_uptime = 0; | 
|  | else | 
|  | a->chip_uptime -= deltatime; | 
|  | } | 
|  |  | 
|  | if (test_bit(AF_CHPRST_PENDING, &a->flags)) { | 
|  | if (!test_bit(AF_CHPRST_NEEDED, &a->flags) && | 
|  | !test_bit(AF_CHPRST_DETECTED, &a->flags)) | 
|  | esas2r_handle_pending_reset(a, currtime); | 
|  | } else { | 
|  | if (test_bit(AF_DISC_PENDING, &a->flags)) | 
|  | esas2r_disc_check_complete(a); | 
|  | if (test_bit(AF_HEARTBEAT_ENB, &a->flags)) { | 
|  | if (test_bit(AF_HEARTBEAT, &a->flags)) { | 
|  | if ((currtime - a->heartbeat_time) >= | 
|  | ESAS2R_HEARTBEAT_TIME) { | 
|  | clear_bit(AF_HEARTBEAT, &a->flags); | 
|  | esas2r_hdebug("heartbeat failed"); | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "heartbeat failed"); | 
|  | esas2r_bugon(); | 
|  | esas2r_local_reset_adapter(a); | 
|  | } | 
|  | } else { | 
|  | set_bit(AF_HEARTBEAT, &a->flags); | 
|  | a->heartbeat_time = currtime; | 
|  | esas2r_force_interrupt(a); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (atomic_read(&a->disable_cnt) == 0) | 
|  | esas2r_do_deferred_processes(a); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send the specified task management function to the target and LUN | 
|  | * specified in rqaux.  in addition, immediately abort any commands that | 
|  | * are queued but not sent to the device according to the rules specified | 
|  | * by the task management function. | 
|  | */ | 
|  | bool esas2r_send_task_mgmt(struct esas2r_adapter *a, | 
|  | struct esas2r_request *rqaux, u8 task_mgt_func) | 
|  | { | 
|  | u16 targetid = rqaux->target_id; | 
|  | u8 lun = (u8)le32_to_cpu(rqaux->vrq->scsi.flags); | 
|  | bool ret = false; | 
|  | struct esas2r_request *rq; | 
|  | struct list_head *next, *element; | 
|  | unsigned long flags; | 
|  |  | 
|  | LIST_HEAD(comp_list); | 
|  |  | 
|  | esas2r_trace_enter(); | 
|  | esas2r_trace("rqaux:%p", rqaux); | 
|  | esas2r_trace("task_mgt_func:%x", task_mgt_func); | 
|  | spin_lock_irqsave(&a->queue_lock, flags); | 
|  |  | 
|  | /* search the defer queue looking for requests for the device */ | 
|  | list_for_each_safe(element, next, &a->defer_list) { | 
|  | rq = list_entry(element, struct esas2r_request, req_list); | 
|  |  | 
|  | if (rq->vrq->scsi.function == VDA_FUNC_SCSI | 
|  | && rq->target_id == targetid | 
|  | && (((u8)le32_to_cpu(rq->vrq->scsi.flags)) == lun | 
|  | || task_mgt_func == 0x20)) { /* target reset */ | 
|  | /* Found a request affected by the task management */ | 
|  | if (rq->req_stat == RS_PENDING) { | 
|  | /* | 
|  | * The request is pending or waiting.  We can | 
|  | * safelycomplete the request now. | 
|  | */ | 
|  | if (esas2r_ioreq_aborted(a, rq, RS_ABORTED)) | 
|  | list_add_tail(&rq->comp_list, | 
|  | &comp_list); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Send the task management request to the firmware */ | 
|  | rqaux->sense_len = 0; | 
|  | rqaux->vrq->scsi.length = 0; | 
|  | rqaux->target_id = targetid; | 
|  | rqaux->vrq->scsi.flags |= cpu_to_le32(lun); | 
|  | memset(rqaux->vrq->scsi.cdb, 0, sizeof(rqaux->vrq->scsi.cdb)); | 
|  | rqaux->vrq->scsi.flags |= | 
|  | cpu_to_le16(task_mgt_func * LOBIT(FCP_CMND_TM_MASK)); | 
|  |  | 
|  | if (test_bit(AF_FLASHING, &a->flags)) { | 
|  | /* Assume success.  if there are active requests, return busy */ | 
|  | rqaux->req_stat = RS_SUCCESS; | 
|  |  | 
|  | list_for_each_safe(element, next, &a->active_list) { | 
|  | rq = list_entry(element, struct esas2r_request, | 
|  | req_list); | 
|  | if (rq->vrq->scsi.function == VDA_FUNC_SCSI | 
|  | && rq->target_id == targetid | 
|  | && (((u8)le32_to_cpu(rq->vrq->scsi.flags)) == lun | 
|  | || task_mgt_func == 0x20))  /* target reset */ | 
|  | rqaux->req_stat = RS_BUSY; | 
|  | } | 
|  |  | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&a->queue_lock, flags); | 
|  |  | 
|  | if (!test_bit(AF_FLASHING, &a->flags)) | 
|  | esas2r_start_request(a, rqaux); | 
|  |  | 
|  | esas2r_comp_list_drain(a, &comp_list); | 
|  |  | 
|  | if (atomic_read(&a->disable_cnt) == 0) | 
|  | esas2r_do_deferred_processes(a); | 
|  |  | 
|  | esas2r_trace_exit(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void esas2r_reset_bus(struct esas2r_adapter *a) | 
|  | { | 
|  | esas2r_log(ESAS2R_LOG_INFO, "performing a bus reset"); | 
|  |  | 
|  | if (!test_bit(AF_DEGRADED_MODE, &a->flags) && | 
|  | !test_bit(AF_CHPRST_PENDING, &a->flags) && | 
|  | !test_bit(AF_DISC_PENDING, &a->flags)) { | 
|  | set_bit(AF_BUSRST_NEEDED, &a->flags); | 
|  | set_bit(AF_BUSRST_PENDING, &a->flags); | 
|  | set_bit(AF_OS_RESET, &a->flags); | 
|  |  | 
|  | esas2r_schedule_tasklet(a); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool esas2r_ioreq_aborted(struct esas2r_adapter *a, struct esas2r_request *rq, | 
|  | u8 status) | 
|  | { | 
|  | esas2r_trace_enter(); | 
|  | esas2r_trace("rq:%p", rq); | 
|  | list_del_init(&rq->req_list); | 
|  | if (rq->timeout > RQ_MAX_TIMEOUT) { | 
|  | /* | 
|  | * The request timed out, but we could not abort it because a | 
|  | * chip reset occurred.  Return busy status. | 
|  | */ | 
|  | rq->req_stat = RS_BUSY; | 
|  | esas2r_trace_exit(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | rq->req_stat = status; | 
|  | esas2r_trace_exit(); | 
|  | return true; | 
|  | } |