|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Fast Ethernet Controller (ENET) PTP driver for MX6x. | 
|  | * | 
|  | * Copyright (C) 2012 Freescale Semiconductor, Inc. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/phy.h> | 
|  | #include <linux/fec.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <linux/of_gpio.h> | 
|  | #include <linux/of_net.h> | 
|  |  | 
|  | #include "fec.h" | 
|  |  | 
|  | /* FEC 1588 register bits */ | 
|  | #define FEC_T_CTRL_SLAVE                0x00002000 | 
|  | #define FEC_T_CTRL_CAPTURE              0x00000800 | 
|  | #define FEC_T_CTRL_RESTART              0x00000200 | 
|  | #define FEC_T_CTRL_PERIOD_RST           0x00000030 | 
|  | #define FEC_T_CTRL_PERIOD_EN		0x00000010 | 
|  | #define FEC_T_CTRL_ENABLE               0x00000001 | 
|  |  | 
|  | #define FEC_T_INC_MASK                  0x0000007f | 
|  | #define FEC_T_INC_OFFSET                0 | 
|  | #define FEC_T_INC_CORR_MASK             0x00007f00 | 
|  | #define FEC_T_INC_CORR_OFFSET           8 | 
|  |  | 
|  | #define FEC_T_CTRL_PINPER		0x00000080 | 
|  | #define FEC_T_TF0_MASK			0x00000001 | 
|  | #define FEC_T_TF0_OFFSET		0 | 
|  | #define FEC_T_TF1_MASK			0x00000002 | 
|  | #define FEC_T_TF1_OFFSET		1 | 
|  | #define FEC_T_TF2_MASK			0x00000004 | 
|  | #define FEC_T_TF2_OFFSET		2 | 
|  | #define FEC_T_TF3_MASK			0x00000008 | 
|  | #define FEC_T_TF3_OFFSET		3 | 
|  | #define FEC_T_TDRE_MASK			0x00000001 | 
|  | #define FEC_T_TDRE_OFFSET		0 | 
|  | #define FEC_T_TMODE_MASK		0x0000003C | 
|  | #define FEC_T_TMODE_OFFSET		2 | 
|  | #define FEC_T_TIE_MASK			0x00000040 | 
|  | #define FEC_T_TIE_OFFSET		6 | 
|  | #define FEC_T_TF_MASK			0x00000080 | 
|  | #define FEC_T_TF_OFFSET			7 | 
|  |  | 
|  | #define FEC_ATIME_CTRL		0x400 | 
|  | #define FEC_ATIME		0x404 | 
|  | #define FEC_ATIME_EVT_OFFSET	0x408 | 
|  | #define FEC_ATIME_EVT_PERIOD	0x40c | 
|  | #define FEC_ATIME_CORR		0x410 | 
|  | #define FEC_ATIME_INC		0x414 | 
|  | #define FEC_TS_TIMESTAMP	0x418 | 
|  |  | 
|  | #define FEC_TGSR		0x604 | 
|  | #define FEC_TCSR(n)		(0x608 + n * 0x08) | 
|  | #define FEC_TCCR(n)		(0x60C + n * 0x08) | 
|  | #define MAX_TIMER_CHANNEL	3 | 
|  | #define FEC_TMODE_TOGGLE	0x05 | 
|  | #define FEC_HIGH_PULSE		0x0F | 
|  |  | 
|  | #define FEC_CC_MULT	(1 << 31) | 
|  | #define FEC_COUNTER_PERIOD	(1 << 31) | 
|  | #define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC | 
|  | #define FEC_CHANNLE_0		0 | 
|  | #define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0 | 
|  |  | 
|  | /** | 
|  | * fec_ptp_enable_pps | 
|  | * @fep: the fec_enet_private structure handle | 
|  | * @enable: enable the channel pps output | 
|  | * | 
|  | * This function enble the PPS ouput on the timer channel. | 
|  | */ | 
|  | static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable) | 
|  | { | 
|  | unsigned long flags; | 
|  | u32 val, tempval; | 
|  | struct timespec64 ts; | 
|  | u64 ns; | 
|  | val = 0; | 
|  |  | 
|  | if (!(fep->hwts_tx_en || fep->hwts_rx_en)) { | 
|  | dev_err(&fep->pdev->dev, "No ptp stack is running\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (fep->pps_enable == enable) | 
|  | return 0; | 
|  |  | 
|  | fep->pps_channel = DEFAULT_PPS_CHANNEL; | 
|  | fep->reload_period = PPS_OUPUT_RELOAD_PERIOD; | 
|  |  | 
|  | spin_lock_irqsave(&fep->tmreg_lock, flags); | 
|  |  | 
|  | if (enable) { | 
|  | /* clear capture or output compare interrupt status if have. | 
|  | */ | 
|  | writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel)); | 
|  |  | 
|  | /* It is recommended to double check the TMODE field in the | 
|  | * TCSR register to be cleared before the first compare counter | 
|  | * is written into TCCR register. Just add a double check. | 
|  | */ | 
|  | val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); | 
|  | do { | 
|  | val &= ~(FEC_T_TMODE_MASK); | 
|  | writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); | 
|  | val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); | 
|  | } while (val & FEC_T_TMODE_MASK); | 
|  |  | 
|  | /* Dummy read counter to update the counter */ | 
|  | timecounter_read(&fep->tc); | 
|  | /* We want to find the first compare event in the next | 
|  | * second point. So we need to know what the ptp time | 
|  | * is now and how many nanoseconds is ahead to get next second. | 
|  | * The remaining nanosecond ahead before the next second would be | 
|  | * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds | 
|  | * to current timer would be next second. | 
|  | */ | 
|  | tempval = readl(fep->hwp + FEC_ATIME_CTRL); | 
|  | tempval |= FEC_T_CTRL_CAPTURE; | 
|  | writel(tempval, fep->hwp + FEC_ATIME_CTRL); | 
|  |  | 
|  | tempval = readl(fep->hwp + FEC_ATIME); | 
|  | /* Convert the ptp local counter to 1588 timestamp */ | 
|  | ns = timecounter_cyc2time(&fep->tc, tempval); | 
|  | ts = ns_to_timespec64(ns); | 
|  |  | 
|  | /* The tempval is  less than 3 seconds, and  so val is less than | 
|  | * 4 seconds. No overflow for 32bit calculation. | 
|  | */ | 
|  | val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval; | 
|  |  | 
|  | /* Need to consider the situation that the current time is | 
|  | * very close to the second point, which means NSEC_PER_SEC | 
|  | * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer | 
|  | * is still running when we calculate the first compare event, it is | 
|  | * possible that the remaining nanoseonds run out before the compare | 
|  | * counter is calculated and written into TCCR register. To avoid | 
|  | * this possibility, we will set the compare event to be the next | 
|  | * of next second. The current setting is 31-bit timer and wrap | 
|  | * around over 2 seconds. So it is okay to set the next of next | 
|  | * seond for the timer. | 
|  | */ | 
|  | val += NSEC_PER_SEC; | 
|  |  | 
|  | /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current | 
|  | * ptp counter, which maybe cause 32-bit wrap. Since the | 
|  | * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second. | 
|  | * We can ensure the wrap will not cause issue. If the offset | 
|  | * is bigger than fep->cc.mask would be a error. | 
|  | */ | 
|  | val &= fep->cc.mask; | 
|  | writel(val, fep->hwp + FEC_TCCR(fep->pps_channel)); | 
|  |  | 
|  | /* Calculate the second the compare event timestamp */ | 
|  | fep->next_counter = (val + fep->reload_period) & fep->cc.mask; | 
|  |  | 
|  | /* * Enable compare event when overflow */ | 
|  | val = readl(fep->hwp + FEC_ATIME_CTRL); | 
|  | val |= FEC_T_CTRL_PINPER; | 
|  | writel(val, fep->hwp + FEC_ATIME_CTRL); | 
|  |  | 
|  | /* Compare channel setting. */ | 
|  | val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); | 
|  | val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); | 
|  | val &= ~(1 << FEC_T_TDRE_OFFSET); | 
|  | val &= ~(FEC_T_TMODE_MASK); | 
|  | val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET); | 
|  | writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); | 
|  |  | 
|  | /* Write the second compare event timestamp and calculate | 
|  | * the third timestamp. Refer the TCCR register detail in the spec. | 
|  | */ | 
|  | writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel)); | 
|  | fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; | 
|  | } else { | 
|  | writel(0, fep->hwp + FEC_TCSR(fep->pps_channel)); | 
|  | } | 
|  |  | 
|  | fep->pps_enable = enable; | 
|  | spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fec_ptp_read - read raw cycle counter (to be used by time counter) | 
|  | * @cc: the cyclecounter structure | 
|  | * | 
|  | * this function reads the cyclecounter registers and is called by the | 
|  | * cyclecounter structure used to construct a ns counter from the | 
|  | * arbitrary fixed point registers | 
|  | */ | 
|  | static u64 fec_ptp_read(const struct cyclecounter *cc) | 
|  | { | 
|  | struct fec_enet_private *fep = | 
|  | container_of(cc, struct fec_enet_private, cc); | 
|  | const struct platform_device_id *id_entry = | 
|  | platform_get_device_id(fep->pdev); | 
|  | u32 tempval; | 
|  |  | 
|  | tempval = readl(fep->hwp + FEC_ATIME_CTRL); | 
|  | tempval |= FEC_T_CTRL_CAPTURE; | 
|  | writel(tempval, fep->hwp + FEC_ATIME_CTRL); | 
|  |  | 
|  | if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE) | 
|  | udelay(1); | 
|  |  | 
|  | return readl(fep->hwp + FEC_ATIME); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fec_ptp_start_cyclecounter - create the cycle counter from hw | 
|  | * @ndev: network device | 
|  | * | 
|  | * this function initializes the timecounter and cyclecounter | 
|  | * structures for use in generated a ns counter from the arbitrary | 
|  | * fixed point cycles registers in the hardware. | 
|  | */ | 
|  | void fec_ptp_start_cyclecounter(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | unsigned long flags; | 
|  | int inc; | 
|  |  | 
|  | inc = 1000000000 / fep->cycle_speed; | 
|  |  | 
|  | /* grab the ptp lock */ | 
|  | spin_lock_irqsave(&fep->tmreg_lock, flags); | 
|  |  | 
|  | /* 1ns counter */ | 
|  | writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC); | 
|  |  | 
|  | /* use 31-bit timer counter */ | 
|  | writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD); | 
|  |  | 
|  | writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST, | 
|  | fep->hwp + FEC_ATIME_CTRL); | 
|  |  | 
|  | memset(&fep->cc, 0, sizeof(fep->cc)); | 
|  | fep->cc.read = fec_ptp_read; | 
|  | fep->cc.mask = CLOCKSOURCE_MASK(31); | 
|  | fep->cc.shift = 31; | 
|  | fep->cc.mult = FEC_CC_MULT; | 
|  |  | 
|  | /* reset the ns time counter */ | 
|  | timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real())); | 
|  |  | 
|  | spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fec_ptp_adjfreq - adjust ptp cycle frequency | 
|  | * @ptp: the ptp clock structure | 
|  | * @ppb: parts per billion adjustment from base | 
|  | * | 
|  | * Adjust the frequency of the ptp cycle counter by the | 
|  | * indicated ppb from the base frequency. | 
|  | * | 
|  | * Because ENET hardware frequency adjust is complex, | 
|  | * using software method to do that. | 
|  | */ | 
|  | static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) | 
|  | { | 
|  | unsigned long flags; | 
|  | int neg_adj = 0; | 
|  | u32 i, tmp; | 
|  | u32 corr_inc, corr_period; | 
|  | u32 corr_ns; | 
|  | u64 lhs, rhs; | 
|  |  | 
|  | struct fec_enet_private *fep = | 
|  | container_of(ptp, struct fec_enet_private, ptp_caps); | 
|  |  | 
|  | if (ppb == 0) | 
|  | return 0; | 
|  |  | 
|  | if (ppb < 0) { | 
|  | ppb = -ppb; | 
|  | neg_adj = 1; | 
|  | } | 
|  |  | 
|  | /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC; | 
|  | * Try to find the corr_inc  between 1 to fep->ptp_inc to | 
|  | * meet adjustment requirement. | 
|  | */ | 
|  | lhs = NSEC_PER_SEC; | 
|  | rhs = (u64)ppb * (u64)fep->ptp_inc; | 
|  | for (i = 1; i <= fep->ptp_inc; i++) { | 
|  | if (lhs >= rhs) { | 
|  | corr_inc = i; | 
|  | corr_period = div_u64(lhs, rhs); | 
|  | break; | 
|  | } | 
|  | lhs += NSEC_PER_SEC; | 
|  | } | 
|  | /* Not found? Set it to high value - double speed | 
|  | * correct in every clock step. | 
|  | */ | 
|  | if (i > fep->ptp_inc) { | 
|  | corr_inc = fep->ptp_inc; | 
|  | corr_period = 1; | 
|  | } | 
|  |  | 
|  | if (neg_adj) | 
|  | corr_ns = fep->ptp_inc - corr_inc; | 
|  | else | 
|  | corr_ns = fep->ptp_inc + corr_inc; | 
|  |  | 
|  | spin_lock_irqsave(&fep->tmreg_lock, flags); | 
|  |  | 
|  | tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK; | 
|  | tmp |= corr_ns << FEC_T_INC_CORR_OFFSET; | 
|  | writel(tmp, fep->hwp + FEC_ATIME_INC); | 
|  | corr_period = corr_period > 1 ? corr_period - 1 : corr_period; | 
|  | writel(corr_period, fep->hwp + FEC_ATIME_CORR); | 
|  | /* dummy read to update the timer. */ | 
|  | timecounter_read(&fep->tc); | 
|  |  | 
|  | spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fec_ptp_adjtime | 
|  | * @ptp: the ptp clock structure | 
|  | * @delta: offset to adjust the cycle counter by | 
|  | * | 
|  | * adjust the timer by resetting the timecounter structure. | 
|  | */ | 
|  | static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) | 
|  | { | 
|  | struct fec_enet_private *fep = | 
|  | container_of(ptp, struct fec_enet_private, ptp_caps); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&fep->tmreg_lock, flags); | 
|  | timecounter_adjtime(&fep->tc, delta); | 
|  | spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fec_ptp_gettime | 
|  | * @ptp: the ptp clock structure | 
|  | * @ts: timespec structure to hold the current time value | 
|  | * | 
|  | * read the timecounter and return the correct value on ns, | 
|  | * after converting it into a struct timespec. | 
|  | */ | 
|  | static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) | 
|  | { | 
|  | struct fec_enet_private *adapter = | 
|  | container_of(ptp, struct fec_enet_private, ptp_caps); | 
|  | u64 ns; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&adapter->tmreg_lock, flags); | 
|  | ns = timecounter_read(&adapter->tc); | 
|  | spin_unlock_irqrestore(&adapter->tmreg_lock, flags); | 
|  |  | 
|  | *ts = ns_to_timespec64(ns); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fec_ptp_settime | 
|  | * @ptp: the ptp clock structure | 
|  | * @ts: the timespec containing the new time for the cycle counter | 
|  | * | 
|  | * reset the timecounter to use a new base value instead of the kernel | 
|  | * wall timer value. | 
|  | */ | 
|  | static int fec_ptp_settime(struct ptp_clock_info *ptp, | 
|  | const struct timespec64 *ts) | 
|  | { | 
|  | struct fec_enet_private *fep = | 
|  | container_of(ptp, struct fec_enet_private, ptp_caps); | 
|  |  | 
|  | u64 ns; | 
|  | unsigned long flags; | 
|  | u32 counter; | 
|  |  | 
|  | mutex_lock(&fep->ptp_clk_mutex); | 
|  | /* Check the ptp clock */ | 
|  | if (!fep->ptp_clk_on) { | 
|  | mutex_unlock(&fep->ptp_clk_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ns = timespec64_to_ns(ts); | 
|  | /* Get the timer value based on timestamp. | 
|  | * Update the counter with the masked value. | 
|  | */ | 
|  | counter = ns & fep->cc.mask; | 
|  |  | 
|  | spin_lock_irqsave(&fep->tmreg_lock, flags); | 
|  | writel(counter, fep->hwp + FEC_ATIME); | 
|  | timecounter_init(&fep->tc, &fep->cc, ns); | 
|  | spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
|  | mutex_unlock(&fep->ptp_clk_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fec_ptp_enable | 
|  | * @ptp: the ptp clock structure | 
|  | * @rq: the requested feature to change | 
|  | * @on: whether to enable or disable the feature | 
|  | * | 
|  | */ | 
|  | static int fec_ptp_enable(struct ptp_clock_info *ptp, | 
|  | struct ptp_clock_request *rq, int on) | 
|  | { | 
|  | struct fec_enet_private *fep = | 
|  | container_of(ptp, struct fec_enet_private, ptp_caps); | 
|  | int ret = 0; | 
|  |  | 
|  | if (rq->type == PTP_CLK_REQ_PPS) { | 
|  | ret = fec_ptp_enable_pps(fep, on); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  |  | 
|  | struct hwtstamp_config config; | 
|  |  | 
|  | if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* reserved for future extensions */ | 
|  | if (config.flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (config.tx_type) { | 
|  | case HWTSTAMP_TX_OFF: | 
|  | fep->hwts_tx_en = 0; | 
|  | break; | 
|  | case HWTSTAMP_TX_ON: | 
|  | fep->hwts_tx_en = 1; | 
|  | break; | 
|  | default: | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | switch (config.rx_filter) { | 
|  | case HWTSTAMP_FILTER_NONE: | 
|  | if (fep->hwts_rx_en) | 
|  | fep->hwts_rx_en = 0; | 
|  | config.rx_filter = HWTSTAMP_FILTER_NONE; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | fep->hwts_rx_en = 1; | 
|  | config.rx_filter = HWTSTAMP_FILTER_ALL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? | 
|  | -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | struct hwtstamp_config config; | 
|  |  | 
|  | config.flags = 0; | 
|  | config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; | 
|  | config.rx_filter = (fep->hwts_rx_en ? | 
|  | HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); | 
|  |  | 
|  | return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? | 
|  | -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fec_time_keep - call timecounter_read every second to avoid timer overrun | 
|  | *                 because ENET just support 32bit counter, will timeout in 4s | 
|  | */ | 
|  | static void fec_time_keep(struct work_struct *work) | 
|  | { | 
|  | struct delayed_work *dwork = to_delayed_work(work); | 
|  | struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep); | 
|  | u64 ns; | 
|  | unsigned long flags; | 
|  |  | 
|  | mutex_lock(&fep->ptp_clk_mutex); | 
|  | if (fep->ptp_clk_on) { | 
|  | spin_lock_irqsave(&fep->tmreg_lock, flags); | 
|  | ns = timecounter_read(&fep->tc); | 
|  | spin_unlock_irqrestore(&fep->tmreg_lock, flags); | 
|  | } | 
|  | mutex_unlock(&fep->ptp_clk_mutex); | 
|  |  | 
|  | schedule_delayed_work(&fep->time_keep, HZ); | 
|  | } | 
|  |  | 
|  | /* This function checks the pps event and reloads the timer compare counter. */ | 
|  | static irqreturn_t fec_pps_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct net_device *ndev = dev_id; | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | u32 val; | 
|  | u8 channel = fep->pps_channel; | 
|  | struct ptp_clock_event event; | 
|  |  | 
|  | val = readl(fep->hwp + FEC_TCSR(channel)); | 
|  | if (val & FEC_T_TF_MASK) { | 
|  | /* Write the next next compare(not the next according the spec) | 
|  | * value to the register | 
|  | */ | 
|  | writel(fep->next_counter, fep->hwp + FEC_TCCR(channel)); | 
|  | do { | 
|  | writel(val, fep->hwp + FEC_TCSR(channel)); | 
|  | } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK); | 
|  |  | 
|  | /* Update the counter; */ | 
|  | fep->next_counter = (fep->next_counter + fep->reload_period) & | 
|  | fep->cc.mask; | 
|  |  | 
|  | event.type = PTP_CLOCK_PPS; | 
|  | ptp_clock_event(fep->ptp_clock, &event); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fec_ptp_init | 
|  | * @ndev: The FEC network adapter | 
|  | * | 
|  | * This function performs the required steps for enabling ptp | 
|  | * support. If ptp support has already been loaded it simply calls the | 
|  | * cyclecounter init routine and exits. | 
|  | */ | 
|  |  | 
|  | void fec_ptp_init(struct platform_device *pdev, int irq_idx) | 
|  | { | 
|  | struct net_device *ndev = platform_get_drvdata(pdev); | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | int irq; | 
|  | int ret; | 
|  |  | 
|  | fep->ptp_caps.owner = THIS_MODULE; | 
|  | snprintf(fep->ptp_caps.name, 16, "fec ptp"); | 
|  |  | 
|  | fep->ptp_caps.max_adj = 250000000; | 
|  | fep->ptp_caps.n_alarm = 0; | 
|  | fep->ptp_caps.n_ext_ts = 0; | 
|  | fep->ptp_caps.n_per_out = 0; | 
|  | fep->ptp_caps.n_pins = 0; | 
|  | fep->ptp_caps.pps = 1; | 
|  | fep->ptp_caps.adjfreq = fec_ptp_adjfreq; | 
|  | fep->ptp_caps.adjtime = fec_ptp_adjtime; | 
|  | fep->ptp_caps.gettime64 = fec_ptp_gettime; | 
|  | fep->ptp_caps.settime64 = fec_ptp_settime; | 
|  | fep->ptp_caps.enable = fec_ptp_enable; | 
|  |  | 
|  | fep->cycle_speed = clk_get_rate(fep->clk_ptp); | 
|  | fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed; | 
|  |  | 
|  | spin_lock_init(&fep->tmreg_lock); | 
|  |  | 
|  | fec_ptp_start_cyclecounter(ndev); | 
|  |  | 
|  | INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep); | 
|  |  | 
|  | irq = platform_get_irq_byname(pdev, "pps"); | 
|  | if (irq < 0) | 
|  | irq = platform_get_irq(pdev, irq_idx); | 
|  | /* Failure to get an irq is not fatal, | 
|  | * only the PTP_CLOCK_PPS clock events should stop | 
|  | */ | 
|  | if (irq >= 0) { | 
|  | ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt, | 
|  | 0, pdev->name, ndev); | 
|  | if (ret < 0) | 
|  | dev_warn(&pdev->dev, "request for pps irq failed(%d)\n", | 
|  | ret); | 
|  | } | 
|  |  | 
|  | fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev); | 
|  | if (IS_ERR(fep->ptp_clock)) { | 
|  | fep->ptp_clock = NULL; | 
|  | pr_err("ptp_clock_register failed\n"); | 
|  | } | 
|  |  | 
|  | schedule_delayed_work(&fep->time_keep, HZ); | 
|  | } | 
|  |  | 
|  | void fec_ptp_stop(struct platform_device *pdev) | 
|  | { | 
|  | struct net_device *ndev = platform_get_drvdata(pdev); | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  |  | 
|  | cancel_delayed_work_sync(&fep->time_keep); | 
|  | if (fep->ptp_clock) | 
|  | ptp_clock_unregister(fep->ptp_clock); | 
|  | } |