|  | /* | 
|  | *  linux/drivers/video/sa1100fb.c | 
|  | * | 
|  | *  Copyright (C) 1999 Eric A. Thomas | 
|  | *   Based on acornfb.c Copyright (C) Russell King. | 
|  | * | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file COPYING in the main directory of this archive for | 
|  | * more details. | 
|  | * | 
|  | *	        StrongARM 1100 LCD Controller Frame Buffer Driver | 
|  | * | 
|  | * Please direct your questions and comments on this driver to the following | 
|  | * email address: | 
|  | * | 
|  | *	linux-arm-kernel@lists.arm.linux.org.uk | 
|  | * | 
|  | * Clean patches should be sent to the ARM Linux Patch System.  Please see the | 
|  | * following web page for more information: | 
|  | * | 
|  | *	http://www.arm.linux.org.uk/developer/patches/info.shtml | 
|  | * | 
|  | * Thank you. | 
|  | * | 
|  | * Known problems: | 
|  | *	- With the Neponset plugged into an Assabet, LCD powerdown | 
|  | *	  doesn't work (LCD stays powered up).  Therefore we shouldn't | 
|  | *	  blank the screen. | 
|  | *	- We don't limit the CPU clock rate nor the mode selection | 
|  | *	  according to the available SDRAM bandwidth. | 
|  | * | 
|  | * Other notes: | 
|  | *	- Linear grayscale palettes and the kernel. | 
|  | *	  Such code does not belong in the kernel.  The kernel frame buffer | 
|  | *	  drivers do not expect a linear colourmap, but a colourmap based on | 
|  | *	  the VT100 standard mapping. | 
|  | * | 
|  | *	  If your _userspace_ requires a linear colourmap, then the setup of | 
|  | *	  such a colourmap belongs _in userspace_, not in the kernel.  Code | 
|  | *	  to set the colourmap correctly from user space has been sent to | 
|  | *	  David Neuer.  It's around 8 lines of C code, plus another 4 to | 
|  | *	  detect if we are using grayscale. | 
|  | * | 
|  | *	- The following must never be specified in a panel definition: | 
|  | *	     LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL | 
|  | * | 
|  | *	- The following should be specified: | 
|  | *	     either LCCR0_Color or LCCR0_Mono | 
|  | *	     either LCCR0_Sngl or LCCR0_Dual | 
|  | *	     either LCCR0_Act or LCCR0_Pas | 
|  | *	     either LCCR3_OutEnH or LCCD3_OutEnL | 
|  | *	     either LCCR3_PixRsEdg or LCCR3_PixFlEdg | 
|  | *	     either LCCR3_ACBsDiv or LCCR3_ACBsCntOff | 
|  | * | 
|  | * Code Status: | 
|  | * 1999/04/01: | 
|  | *	- Driver appears to be working for Brutus 320x200x8bpp mode.  Other | 
|  | *	  resolutions are working, but only the 8bpp mode is supported. | 
|  | *	  Changes need to be made to the palette encode and decode routines | 
|  | *	  to support 4 and 16 bpp modes. | 
|  | *	  Driver is not designed to be a module.  The FrameBuffer is statically | 
|  | *	  allocated since dynamic allocation of a 300k buffer cannot be | 
|  | *	  guaranteed. | 
|  | * | 
|  | * 1999/06/17: | 
|  | *	- FrameBuffer memory is now allocated at run-time when the | 
|  | *	  driver is initialized. | 
|  | * | 
|  | * 2000/04/10: Nicolas Pitre <nico@fluxnic.net> | 
|  | *	- Big cleanup for dynamic selection of machine type at run time. | 
|  | * | 
|  | * 2000/07/19: Jamey Hicks <jamey@crl.dec.com> | 
|  | *	- Support for Bitsy aka Compaq iPAQ H3600 added. | 
|  | * | 
|  | * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com> | 
|  | *	       Jeff Sutherland <jsutherland@accelent.com> | 
|  | *	- Resolved an issue caused by a change made to the Assabet's PLD | 
|  | *	  earlier this year which broke the framebuffer driver for newer | 
|  | *	  Phase 4 Assabets.  Some other parameters were changed to optimize | 
|  | *	  for the Sharp display. | 
|  | * | 
|  | * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp> | 
|  | *	- XP860 support added | 
|  | * | 
|  | * 2000/08/19: Mark Huang <mhuang@livetoy.com> | 
|  | *	- Allows standard options to be passed on the kernel command line | 
|  | *	  for most common passive displays. | 
|  | * | 
|  | * 2000/08/29: | 
|  | *	- s/save_flags_cli/local_irq_save/ | 
|  | *	- remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller | 
|  | * | 
|  | * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl> | 
|  | *	- Updated LART stuff. Fixed some minor bugs. | 
|  | * | 
|  | * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw> | 
|  | *	- Pangolin support added | 
|  | * | 
|  | * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de> | 
|  | *	- Huw Webpanel support added | 
|  | * | 
|  | * 2000/11/23: Eric Peng <ericpeng@coventive.com> | 
|  | *	- Freebird add | 
|  | * | 
|  | * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com> | 
|  | *	       Cliff Brake <cbrake@accelent.com> | 
|  | *	- Added PM callback | 
|  | * | 
|  | * 2001/05/26: <rmk@arm.linux.org.uk> | 
|  | *	- Fix 16bpp so that (a) we use the right colours rather than some | 
|  | *	  totally random colour depending on what was in page 0, and (b) | 
|  | *	  we don't de-reference a NULL pointer. | 
|  | *	- remove duplicated implementation of consistent_alloc() | 
|  | *	- convert dma address types to dma_addr_t | 
|  | *	- remove unused 'montype' stuff | 
|  | *	- remove redundant zero inits of init_var after the initial | 
|  | *	  memset. | 
|  | *	- remove allow_modeset (acornfb idea does not belong here) | 
|  | * | 
|  | * 2001/05/28: <rmk@arm.linux.org.uk> | 
|  | *	- massive cleanup - move machine dependent data into structures | 
|  | *	- I've left various #warnings in - if you see one, and know | 
|  | *	  the hardware concerned, please get in contact with me. | 
|  | * | 
|  | * 2001/05/31: <rmk@arm.linux.org.uk> | 
|  | *	- Fix LCCR1 HSW value, fix all machine type specifications to | 
|  | *	  keep values in line.  (Please check your machine type specs) | 
|  | * | 
|  | * 2001/06/10: <rmk@arm.linux.org.uk> | 
|  | *	- Fiddle with the LCD controller from task context only; mainly | 
|  | *	  so that we can run with interrupts on, and sleep. | 
|  | *	- Convert #warnings into #errors.  No pain, no gain. ;) | 
|  | * | 
|  | * 2001/06/14: <rmk@arm.linux.org.uk> | 
|  | *	- Make the palette BPS value for 12bpp come out correctly. | 
|  | *	- Take notice of "greyscale" on any colour depth. | 
|  | *	- Make truecolor visuals use the RGB channel encoding information. | 
|  | * | 
|  | * 2001/07/02: <rmk@arm.linux.org.uk> | 
|  | *	- Fix colourmap problems. | 
|  | * | 
|  | * 2001/07/13: <abraham@2d3d.co.za> | 
|  | *	- Added support for the ICP LCD-Kit01 on LART. This LCD is | 
|  | *	  manufactured by Prime View, model no V16C6448AB | 
|  | * | 
|  | * 2001/07/23: <rmk@arm.linux.org.uk> | 
|  | *	- Hand merge version from handhelds.org CVS tree.  See patch | 
|  | *	  notes for 595/1 for more information. | 
|  | *	- Drop 12bpp (it's 16bpp with different colour register mappings). | 
|  | *	- This hardware can not do direct colour.  Therefore we don't | 
|  | *	  support it. | 
|  | * | 
|  | * 2001/07/27: <rmk@arm.linux.org.uk> | 
|  | *	- Halve YRES on dual scan LCDs. | 
|  | * | 
|  | * 2001/08/22: <rmk@arm.linux.org.uk> | 
|  | *	- Add b/w iPAQ pixclock value. | 
|  | * | 
|  | * 2001/10/12: <rmk@arm.linux.org.uk> | 
|  | *	- Add patch 681/1 and clean up stork definitions. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/fb.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/gpio.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/clk.h> | 
|  |  | 
|  | #include <video/sa1100fb.h> | 
|  |  | 
|  | #include <mach/hardware.h> | 
|  | #include <asm/mach-types.h> | 
|  | #include <mach/shannon.h> | 
|  |  | 
|  | /* | 
|  | * Complain if VAR is out of range. | 
|  | */ | 
|  | #define DEBUG_VAR 1 | 
|  |  | 
|  | #include "sa1100fb.h" | 
|  |  | 
|  | static const struct sa1100fb_rgb rgb_4 = { | 
|  | .red	= { .offset = 0,  .length = 4, }, | 
|  | .green	= { .offset = 0,  .length = 4, }, | 
|  | .blue	= { .offset = 0,  .length = 4, }, | 
|  | .transp	= { .offset = 0,  .length = 0, }, | 
|  | }; | 
|  |  | 
|  | static const struct sa1100fb_rgb rgb_8 = { | 
|  | .red	= { .offset = 0,  .length = 8, }, | 
|  | .green	= { .offset = 0,  .length = 8, }, | 
|  | .blue	= { .offset = 0,  .length = 8, }, | 
|  | .transp	= { .offset = 0,  .length = 0, }, | 
|  | }; | 
|  |  | 
|  | static const struct sa1100fb_rgb def_rgb_16 = { | 
|  | .red	= { .offset = 11, .length = 5, }, | 
|  | .green	= { .offset = 5,  .length = 6, }, | 
|  | .blue	= { .offset = 0,  .length = 5, }, | 
|  | .transp	= { .offset = 0,  .length = 0, }, | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *); | 
|  | static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state); | 
|  |  | 
|  | static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | /* | 
|  | * We need to handle two requests being made at the same time. | 
|  | * There are two important cases: | 
|  | *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE) | 
|  | *     We must perform the unblanking, which will do our REENABLE for us. | 
|  | *  2. When we are blanking, but immediately unblank before we have | 
|  | *     blanked.  We do the "REENABLE" thing here as well, just to be sure. | 
|  | */ | 
|  | if (fbi->task_state == C_ENABLE && state == C_REENABLE) | 
|  | state = (u_int) -1; | 
|  | if (fbi->task_state == C_DISABLE && state == C_ENABLE) | 
|  | state = C_REENABLE; | 
|  |  | 
|  | if (state != (u_int)-1) { | 
|  | fbi->task_state = state; | 
|  | schedule_work(&fbi->task); | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) | 
|  | { | 
|  | chan &= 0xffff; | 
|  | chan >>= 16 - bf->length; | 
|  | return chan << bf->offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert bits-per-pixel to a hardware palette PBS value. | 
|  | */ | 
|  | static inline u_int palette_pbs(struct fb_var_screeninfo *var) | 
|  | { | 
|  | int ret = 0; | 
|  | switch (var->bits_per_pixel) { | 
|  | case 4:  ret = 0 << 12;	break; | 
|  | case 8:  ret = 1 << 12; break; | 
|  | case 16: ret = 2 << 12; break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, | 
|  | u_int trans, struct fb_info *info) | 
|  | { | 
|  | struct sa1100fb_info *fbi = | 
|  | container_of(info, struct sa1100fb_info, fb); | 
|  | u_int val, ret = 1; | 
|  |  | 
|  | if (regno < fbi->palette_size) { | 
|  | val = ((red >> 4) & 0xf00); | 
|  | val |= ((green >> 8) & 0x0f0); | 
|  | val |= ((blue >> 12) & 0x00f); | 
|  |  | 
|  | if (regno == 0) | 
|  | val |= palette_pbs(&fbi->fb.var); | 
|  |  | 
|  | fbi->palette_cpu[regno] = val; | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, | 
|  | u_int trans, struct fb_info *info) | 
|  | { | 
|  | struct sa1100fb_info *fbi = | 
|  | container_of(info, struct sa1100fb_info, fb); | 
|  | unsigned int val; | 
|  | int ret = 1; | 
|  |  | 
|  | /* | 
|  | * If inverse mode was selected, invert all the colours | 
|  | * rather than the register number.  The register number | 
|  | * is what you poke into the framebuffer to produce the | 
|  | * colour you requested. | 
|  | */ | 
|  | if (fbi->inf->cmap_inverse) { | 
|  | red   = 0xffff - red; | 
|  | green = 0xffff - green; | 
|  | blue  = 0xffff - blue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If greyscale is true, then we convert the RGB value | 
|  | * to greyscale no mater what visual we are using. | 
|  | */ | 
|  | if (fbi->fb.var.grayscale) | 
|  | red = green = blue = (19595 * red + 38470 * green + | 
|  | 7471 * blue) >> 16; | 
|  |  | 
|  | switch (fbi->fb.fix.visual) { | 
|  | case FB_VISUAL_TRUECOLOR: | 
|  | /* | 
|  | * 12 or 16-bit True Colour.  We encode the RGB value | 
|  | * according to the RGB bitfield information. | 
|  | */ | 
|  | if (regno < 16) { | 
|  | val  = chan_to_field(red, &fbi->fb.var.red); | 
|  | val |= chan_to_field(green, &fbi->fb.var.green); | 
|  | val |= chan_to_field(blue, &fbi->fb.var.blue); | 
|  |  | 
|  | fbi->pseudo_palette[regno] = val; | 
|  | ret = 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case FB_VISUAL_STATIC_PSEUDOCOLOR: | 
|  | case FB_VISUAL_PSEUDOCOLOR: | 
|  | ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  | /* | 
|  | *  sa1100fb_display_dma_period() | 
|  | *    Calculate the minimum period (in picoseconds) between two DMA | 
|  | *    requests for the LCD controller.  If we hit this, it means we're | 
|  | *    doing nothing but LCD DMA. | 
|  | */ | 
|  | static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var) | 
|  | { | 
|  | /* | 
|  | * Period = pixclock * bits_per_byte * bytes_per_transfer | 
|  | *		/ memory_bits_per_pixel; | 
|  | */ | 
|  | return var->pixclock * 8 * 16 / var->bits_per_pixel; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | *  sa1100fb_check_var(): | 
|  | *    Round up in the following order: bits_per_pixel, xres, | 
|  | *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, | 
|  | *    bitfields, horizontal timing, vertical timing. | 
|  | */ | 
|  | static int | 
|  | sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) | 
|  | { | 
|  | struct sa1100fb_info *fbi = | 
|  | container_of(info, struct sa1100fb_info, fb); | 
|  | int rgbidx; | 
|  |  | 
|  | if (var->xres < MIN_XRES) | 
|  | var->xres = MIN_XRES; | 
|  | if (var->yres < MIN_YRES) | 
|  | var->yres = MIN_YRES; | 
|  | if (var->xres > fbi->inf->xres) | 
|  | var->xres = fbi->inf->xres; | 
|  | if (var->yres > fbi->inf->yres) | 
|  | var->yres = fbi->inf->yres; | 
|  | var->xres_virtual = max(var->xres_virtual, var->xres); | 
|  | var->yres_virtual = max(var->yres_virtual, var->yres); | 
|  |  | 
|  | dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel); | 
|  | switch (var->bits_per_pixel) { | 
|  | case 4: | 
|  | rgbidx = RGB_4; | 
|  | break; | 
|  | case 8: | 
|  | rgbidx = RGB_8; | 
|  | break; | 
|  | case 16: | 
|  | rgbidx = RGB_16; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the RGB parameters for this display | 
|  | * from the machine specific parameters. | 
|  | */ | 
|  | var->red    = fbi->rgb[rgbidx]->red; | 
|  | var->green  = fbi->rgb[rgbidx]->green; | 
|  | var->blue   = fbi->rgb[rgbidx]->blue; | 
|  | var->transp = fbi->rgb[rgbidx]->transp; | 
|  |  | 
|  | dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n", | 
|  | var->red.length, var->green.length, var->blue.length, | 
|  | var->transp.length); | 
|  |  | 
|  | dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n", | 
|  | var->red.offset, var->green.offset, var->blue.offset, | 
|  | var->transp.offset); | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  | dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n", | 
|  | sa1100fb_display_dma_period(var), | 
|  | clk_get_rate(fbi->clk) / 1000); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual) | 
|  | { | 
|  | if (fbi->inf->set_visual) | 
|  | fbi->inf->set_visual(visual); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sa1100fb_set_par(): | 
|  | *	Set the user defined part of the display for the specified console | 
|  | */ | 
|  | static int sa1100fb_set_par(struct fb_info *info) | 
|  | { | 
|  | struct sa1100fb_info *fbi = | 
|  | container_of(info, struct sa1100fb_info, fb); | 
|  | struct fb_var_screeninfo *var = &info->var; | 
|  | unsigned long palette_mem_size; | 
|  |  | 
|  | dev_dbg(fbi->dev, "set_par\n"); | 
|  |  | 
|  | if (var->bits_per_pixel == 16) | 
|  | fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; | 
|  | else if (!fbi->inf->cmap_static) | 
|  | fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; | 
|  | else { | 
|  | /* | 
|  | * Some people have weird ideas about wanting static | 
|  | * pseudocolor maps.  I suspect their user space | 
|  | * applications are broken. | 
|  | */ | 
|  | fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; | 
|  | } | 
|  |  | 
|  | fbi->fb.fix.line_length = var->xres_virtual * | 
|  | var->bits_per_pixel / 8; | 
|  | fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16; | 
|  |  | 
|  | palette_mem_size = fbi->palette_size * sizeof(u16); | 
|  |  | 
|  | dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size); | 
|  |  | 
|  | fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); | 
|  | fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; | 
|  |  | 
|  | /* | 
|  | * Set (any) board control register to handle new color depth | 
|  | */ | 
|  | sa1100fb_set_visual(fbi, fbi->fb.fix.visual); | 
|  | sa1100fb_activate_var(var, fbi); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static int | 
|  | sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con, | 
|  | struct fb_info *info) | 
|  | { | 
|  | struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; | 
|  |  | 
|  | /* | 
|  | * Make sure the user isn't doing something stupid. | 
|  | */ | 
|  | if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return gen_set_cmap(cmap, kspc, con, info); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Formal definition of the VESA spec: | 
|  | *  On | 
|  | *  	This refers to the state of the display when it is in full operation | 
|  | *  Stand-By | 
|  | *  	This defines an optional operating state of minimal power reduction with | 
|  | *  	the shortest recovery time | 
|  | *  Suspend | 
|  | *  	This refers to a level of power management in which substantial power | 
|  | *  	reduction is achieved by the display.  The display can have a longer | 
|  | *  	recovery time from this state than from the Stand-by state | 
|  | *  Off | 
|  | *  	This indicates that the display is consuming the lowest level of power | 
|  | *  	and is non-operational. Recovery from this state may optionally require | 
|  | *  	the user to manually power on the monitor | 
|  | * | 
|  | *  Now, the fbdev driver adds an additional state, (blank), where they | 
|  | *  turn off the video (maybe by colormap tricks), but don't mess with the | 
|  | *  video itself: think of it semantically between on and Stand-By. | 
|  | * | 
|  | *  So here's what we should do in our fbdev blank routine: | 
|  | * | 
|  | *  	VESA_NO_BLANKING (mode 0)	Video on,  front/back light on | 
|  | *  	VESA_VSYNC_SUSPEND (mode 1)  	Video on,  front/back light off | 
|  | *  	VESA_HSYNC_SUSPEND (mode 2)  	Video on,  front/back light off | 
|  | *  	VESA_POWERDOWN (mode 3)		Video off, front/back light off | 
|  | * | 
|  | *  This will match the matrox implementation. | 
|  | */ | 
|  | /* | 
|  | * sa1100fb_blank(): | 
|  | *	Blank the display by setting all palette values to zero.  Note, the | 
|  | * 	12 and 16 bpp modes don't really use the palette, so this will not | 
|  | *      blank the display in all modes. | 
|  | */ | 
|  | static int sa1100fb_blank(int blank, struct fb_info *info) | 
|  | { | 
|  | struct sa1100fb_info *fbi = | 
|  | container_of(info, struct sa1100fb_info, fb); | 
|  | int i; | 
|  |  | 
|  | dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank); | 
|  |  | 
|  | switch (blank) { | 
|  | case FB_BLANK_POWERDOWN: | 
|  | case FB_BLANK_VSYNC_SUSPEND: | 
|  | case FB_BLANK_HSYNC_SUSPEND: | 
|  | case FB_BLANK_NORMAL: | 
|  | if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || | 
|  | fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) | 
|  | for (i = 0; i < fbi->palette_size; i++) | 
|  | sa1100fb_setpalettereg(i, 0, 0, 0, 0, info); | 
|  | sa1100fb_schedule_work(fbi, C_DISABLE); | 
|  | break; | 
|  |  | 
|  | case FB_BLANK_UNBLANK: | 
|  | if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || | 
|  | fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) | 
|  | fb_set_cmap(&fbi->fb.cmap, info); | 
|  | sa1100fb_schedule_work(fbi, C_ENABLE); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sa1100fb_mmap(struct fb_info *info, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | struct sa1100fb_info *fbi = | 
|  | container_of(info, struct sa1100fb_info, fb); | 
|  | unsigned long off = vma->vm_pgoff << PAGE_SHIFT; | 
|  |  | 
|  | if (off < info->fix.smem_len) { | 
|  | vma->vm_pgoff += 1; /* skip over the palette */ | 
|  | return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma, | 
|  | fbi->map_size); | 
|  | } | 
|  |  | 
|  | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); | 
|  |  | 
|  | return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len); | 
|  | } | 
|  |  | 
|  | static struct fb_ops sa1100fb_ops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .fb_check_var	= sa1100fb_check_var, | 
|  | .fb_set_par	= sa1100fb_set_par, | 
|  | //	.fb_set_cmap	= sa1100fb_set_cmap, | 
|  | .fb_setcolreg	= sa1100fb_setcolreg, | 
|  | .fb_fillrect	= cfb_fillrect, | 
|  | .fb_copyarea	= cfb_copyarea, | 
|  | .fb_imageblit	= cfb_imageblit, | 
|  | .fb_blank	= sa1100fb_blank, | 
|  | .fb_mmap	= sa1100fb_mmap, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Calculate the PCD value from the clock rate (in picoseconds). | 
|  | * We take account of the PPCR clock setting. | 
|  | */ | 
|  | static inline unsigned int get_pcd(struct sa1100fb_info *fbi, | 
|  | unsigned int pixclock) | 
|  | { | 
|  | unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000; | 
|  |  | 
|  | pcd *= pixclock; | 
|  | pcd /= 10000000; | 
|  |  | 
|  | return pcd + 1;	/* make up for integer math truncations */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sa1100fb_activate_var(): | 
|  | *	Configures LCD Controller based on entries in var parameter.  Settings are | 
|  | *	only written to the controller if changes were made. | 
|  | */ | 
|  | static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi) | 
|  | { | 
|  | struct sa1100fb_lcd_reg new_regs; | 
|  | u_int half_screen_size, yres, pcd; | 
|  | u_long flags; | 
|  |  | 
|  | dev_dbg(fbi->dev, "Configuring SA1100 LCD\n"); | 
|  |  | 
|  | dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n", | 
|  | var->xres, var->hsync_len, | 
|  | var->left_margin, var->right_margin); | 
|  | dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n", | 
|  | var->yres, var->vsync_len, | 
|  | var->upper_margin, var->lower_margin); | 
|  |  | 
|  | #if DEBUG_VAR | 
|  | if (var->xres < 16        || var->xres > 1024) | 
|  | dev_err(fbi->dev, "%s: invalid xres %d\n", | 
|  | fbi->fb.fix.id, var->xres); | 
|  | if (var->hsync_len < 1    || var->hsync_len > 64) | 
|  | dev_err(fbi->dev, "%s: invalid hsync_len %d\n", | 
|  | fbi->fb.fix.id, var->hsync_len); | 
|  | if (var->left_margin < 1  || var->left_margin > 255) | 
|  | dev_err(fbi->dev, "%s: invalid left_margin %d\n", | 
|  | fbi->fb.fix.id, var->left_margin); | 
|  | if (var->right_margin < 1 || var->right_margin > 255) | 
|  | dev_err(fbi->dev, "%s: invalid right_margin %d\n", | 
|  | fbi->fb.fix.id, var->right_margin); | 
|  | if (var->yres < 1         || var->yres > 1024) | 
|  | dev_err(fbi->dev, "%s: invalid yres %d\n", | 
|  | fbi->fb.fix.id, var->yres); | 
|  | if (var->vsync_len < 1    || var->vsync_len > 64) | 
|  | dev_err(fbi->dev, "%s: invalid vsync_len %d\n", | 
|  | fbi->fb.fix.id, var->vsync_len); | 
|  | if (var->upper_margin < 0 || var->upper_margin > 255) | 
|  | dev_err(fbi->dev, "%s: invalid upper_margin %d\n", | 
|  | fbi->fb.fix.id, var->upper_margin); | 
|  | if (var->lower_margin < 0 || var->lower_margin > 255) | 
|  | dev_err(fbi->dev, "%s: invalid lower_margin %d\n", | 
|  | fbi->fb.fix.id, var->lower_margin); | 
|  | #endif | 
|  |  | 
|  | new_regs.lccr0 = fbi->inf->lccr0 | | 
|  | LCCR0_LEN | LCCR0_LDM | LCCR0_BAM | | 
|  | LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0); | 
|  |  | 
|  | new_regs.lccr1 = | 
|  | LCCR1_DisWdth(var->xres) + | 
|  | LCCR1_HorSnchWdth(var->hsync_len) + | 
|  | LCCR1_BegLnDel(var->left_margin) + | 
|  | LCCR1_EndLnDel(var->right_margin); | 
|  |  | 
|  | /* | 
|  | * If we have a dual scan LCD, then we need to halve | 
|  | * the YRES parameter. | 
|  | */ | 
|  | yres = var->yres; | 
|  | if (fbi->inf->lccr0 & LCCR0_Dual) | 
|  | yres /= 2; | 
|  |  | 
|  | new_regs.lccr2 = | 
|  | LCCR2_DisHght(yres) + | 
|  | LCCR2_VrtSnchWdth(var->vsync_len) + | 
|  | LCCR2_BegFrmDel(var->upper_margin) + | 
|  | LCCR2_EndFrmDel(var->lower_margin); | 
|  |  | 
|  | pcd = get_pcd(fbi, var->pixclock); | 
|  | new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 | | 
|  | (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) | | 
|  | (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL); | 
|  |  | 
|  | dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0); | 
|  | dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1); | 
|  | dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2); | 
|  | dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3); | 
|  |  | 
|  | half_screen_size = var->bits_per_pixel; | 
|  | half_screen_size = half_screen_size * var->xres * var->yres / 16; | 
|  |  | 
|  | /* Update shadow copy atomically */ | 
|  | local_irq_save(flags); | 
|  | fbi->dbar1 = fbi->palette_dma; | 
|  | fbi->dbar2 = fbi->screen_dma + half_screen_size; | 
|  |  | 
|  | fbi->reg_lccr0 = new_regs.lccr0; | 
|  | fbi->reg_lccr1 = new_regs.lccr1; | 
|  | fbi->reg_lccr2 = new_regs.lccr2; | 
|  | fbi->reg_lccr3 = new_regs.lccr3; | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* | 
|  | * Only update the registers if the controller is enabled | 
|  | * and something has changed. | 
|  | */ | 
|  | if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 || | 
|  | readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 || | 
|  | readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 || | 
|  | readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 || | 
|  | readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 || | 
|  | readl_relaxed(fbi->base + DBAR2) != fbi->dbar2) | 
|  | sa1100fb_schedule_work(fbi, C_REENABLE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE!  The following functions are purely helpers for set_ctrlr_state. | 
|  | * Do not call them directly; set_ctrlr_state does the correct serialisation | 
|  | * to ensure that things happen in the right way 100% of time time. | 
|  | *	-- rmk | 
|  | */ | 
|  | static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on) | 
|  | { | 
|  | dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff"); | 
|  |  | 
|  | if (fbi->inf->backlight_power) | 
|  | fbi->inf->backlight_power(on); | 
|  | } | 
|  |  | 
|  | static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on) | 
|  | { | 
|  | dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff"); | 
|  |  | 
|  | if (fbi->inf->lcd_power) | 
|  | fbi->inf->lcd_power(on); | 
|  | } | 
|  |  | 
|  | static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi) | 
|  | { | 
|  | u_int mask = 0; | 
|  |  | 
|  | /* | 
|  | * Enable GPIO<9:2> for LCD use if: | 
|  | *  1. Active display, or | 
|  | *  2. Color Dual Passive display | 
|  | * | 
|  | * see table 11.8 on page 11-27 in the SA1100 manual | 
|  | *   -- Erik. | 
|  | * | 
|  | * SA1110 spec update nr. 25 says we can and should | 
|  | * clear LDD15 to 12 for 4 or 8bpp modes with active | 
|  | * panels. | 
|  | */ | 
|  | if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color && | 
|  | (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) { | 
|  | mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8; | 
|  |  | 
|  | if (fbi->fb.var.bits_per_pixel > 8 || | 
|  | (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual) | 
|  | mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12; | 
|  |  | 
|  | } | 
|  |  | 
|  | if (mask) { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * SA-1100 requires the GPIO direction register set | 
|  | * appropriately for the alternate function.  Hence | 
|  | * we set it here via bitmask rather than excessive | 
|  | * fiddling via the GPIO subsystem - and even then | 
|  | * we'll still have to deal with GAFR. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | GPDR |= mask; | 
|  | GAFR |= mask; | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sa1100fb_enable_controller(struct sa1100fb_info *fbi) | 
|  | { | 
|  | dev_dbg(fbi->dev, "Enabling LCD controller\n"); | 
|  |  | 
|  | /* | 
|  | * Make sure the mode bits are present in the first palette entry | 
|  | */ | 
|  | fbi->palette_cpu[0] &= 0xcfff; | 
|  | fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var); | 
|  |  | 
|  | /* enable LCD controller clock */ | 
|  | clk_prepare_enable(fbi->clk); | 
|  |  | 
|  | /* Sequence from 11.7.10 */ | 
|  | writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3); | 
|  | writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2); | 
|  | writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1); | 
|  | writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0); | 
|  | writel_relaxed(fbi->dbar1, fbi->base + DBAR1); | 
|  | writel_relaxed(fbi->dbar2, fbi->base + DBAR2); | 
|  | writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0); | 
|  |  | 
|  | if (machine_is_shannon()) | 
|  | gpio_set_value(SHANNON_GPIO_DISP_EN, 1); | 
|  |  | 
|  | dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1)); | 
|  | dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2)); | 
|  | dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0)); | 
|  | dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1)); | 
|  | dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2)); | 
|  | dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3)); | 
|  | } | 
|  |  | 
|  | static void sa1100fb_disable_controller(struct sa1100fb_info *fbi) | 
|  | { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | u32 lccr0; | 
|  |  | 
|  | dev_dbg(fbi->dev, "Disabling LCD controller\n"); | 
|  |  | 
|  | if (machine_is_shannon()) | 
|  | gpio_set_value(SHANNON_GPIO_DISP_EN, 0); | 
|  |  | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&fbi->ctrlr_wait, &wait); | 
|  |  | 
|  | /* Clear LCD Status Register */ | 
|  | writel_relaxed(~0, fbi->base + LCSR); | 
|  |  | 
|  | lccr0 = readl_relaxed(fbi->base + LCCR0); | 
|  | lccr0 &= ~LCCR0_LDM;	/* Enable LCD Disable Done Interrupt */ | 
|  | writel_relaxed(lccr0, fbi->base + LCCR0); | 
|  | lccr0 &= ~LCCR0_LEN;	/* Disable LCD Controller */ | 
|  | writel_relaxed(lccr0, fbi->base + LCCR0); | 
|  |  | 
|  | schedule_timeout(20 * HZ / 1000); | 
|  | remove_wait_queue(&fbi->ctrlr_wait, &wait); | 
|  |  | 
|  | /* disable LCD controller clock */ | 
|  | clk_disable_unprepare(fbi->clk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts. | 
|  | */ | 
|  | static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id) | 
|  | { | 
|  | struct sa1100fb_info *fbi = dev_id; | 
|  | unsigned int lcsr = readl_relaxed(fbi->base + LCSR); | 
|  |  | 
|  | if (lcsr & LCSR_LDD) { | 
|  | u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM; | 
|  | writel_relaxed(lccr0, fbi->base + LCCR0); | 
|  | wake_up(&fbi->ctrlr_wait); | 
|  | } | 
|  |  | 
|  | writel_relaxed(lcsr, fbi->base + LCSR); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function must be called from task context only, since it will | 
|  | * sleep when disabling the LCD controller, or if we get two contending | 
|  | * processes trying to alter state. | 
|  | */ | 
|  | static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state) | 
|  | { | 
|  | u_int old_state; | 
|  |  | 
|  | mutex_lock(&fbi->ctrlr_lock); | 
|  |  | 
|  | old_state = fbi->state; | 
|  |  | 
|  | /* | 
|  | * Hack around fbcon initialisation. | 
|  | */ | 
|  | if (old_state == C_STARTUP && state == C_REENABLE) | 
|  | state = C_ENABLE; | 
|  |  | 
|  | switch (state) { | 
|  | case C_DISABLE_CLKCHANGE: | 
|  | /* | 
|  | * Disable controller for clock change.  If the | 
|  | * controller is already disabled, then do nothing. | 
|  | */ | 
|  | if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { | 
|  | fbi->state = state; | 
|  | sa1100fb_disable_controller(fbi); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case C_DISABLE_PM: | 
|  | case C_DISABLE: | 
|  | /* | 
|  | * Disable controller | 
|  | */ | 
|  | if (old_state != C_DISABLE) { | 
|  | fbi->state = state; | 
|  |  | 
|  | __sa1100fb_backlight_power(fbi, 0); | 
|  | if (old_state != C_DISABLE_CLKCHANGE) | 
|  | sa1100fb_disable_controller(fbi); | 
|  | __sa1100fb_lcd_power(fbi, 0); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case C_ENABLE_CLKCHANGE: | 
|  | /* | 
|  | * Enable the controller after clock change.  Only | 
|  | * do this if we were disabled for the clock change. | 
|  | */ | 
|  | if (old_state == C_DISABLE_CLKCHANGE) { | 
|  | fbi->state = C_ENABLE; | 
|  | sa1100fb_enable_controller(fbi); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case C_REENABLE: | 
|  | /* | 
|  | * Re-enable the controller only if it was already | 
|  | * enabled.  This is so we reprogram the control | 
|  | * registers. | 
|  | */ | 
|  | if (old_state == C_ENABLE) { | 
|  | sa1100fb_disable_controller(fbi); | 
|  | sa1100fb_setup_gpio(fbi); | 
|  | sa1100fb_enable_controller(fbi); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case C_ENABLE_PM: | 
|  | /* | 
|  | * Re-enable the controller after PM.  This is not | 
|  | * perfect - think about the case where we were doing | 
|  | * a clock change, and we suspended half-way through. | 
|  | */ | 
|  | if (old_state != C_DISABLE_PM) | 
|  | break; | 
|  | /* fall through */ | 
|  |  | 
|  | case C_ENABLE: | 
|  | /* | 
|  | * Power up the LCD screen, enable controller, and | 
|  | * turn on the backlight. | 
|  | */ | 
|  | if (old_state != C_ENABLE) { | 
|  | fbi->state = C_ENABLE; | 
|  | sa1100fb_setup_gpio(fbi); | 
|  | __sa1100fb_lcd_power(fbi, 1); | 
|  | sa1100fb_enable_controller(fbi); | 
|  | __sa1100fb_backlight_power(fbi, 1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&fbi->ctrlr_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Our LCD controller task (which is called when we blank or unblank) | 
|  | * via keventd. | 
|  | */ | 
|  | static void sa1100fb_task(struct work_struct *w) | 
|  | { | 
|  | struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task); | 
|  | u_int state = xchg(&fbi->task_state, -1); | 
|  |  | 
|  | set_ctrlr_state(fbi, state); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  | /* | 
|  | * Calculate the minimum DMA period over all displays that we own. | 
|  | * This, together with the SDRAM bandwidth defines the slowest CPU | 
|  | * frequency that can be selected. | 
|  | */ | 
|  | static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi) | 
|  | { | 
|  | #if 0 | 
|  | unsigned int min_period = (unsigned int)-1; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_NR_CONSOLES; i++) { | 
|  | struct display *disp = &fb_display[i]; | 
|  | unsigned int period; | 
|  |  | 
|  | /* | 
|  | * Do we own this display? | 
|  | */ | 
|  | if (disp->fb_info != &fbi->fb) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Ok, calculate its DMA period | 
|  | */ | 
|  | period = sa1100fb_display_dma_period(&disp->var); | 
|  | if (period < min_period) | 
|  | min_period = period; | 
|  | } | 
|  |  | 
|  | return min_period; | 
|  | #else | 
|  | /* | 
|  | * FIXME: we need to verify _all_ consoles. | 
|  | */ | 
|  | return sa1100fb_display_dma_period(&fbi->fb.var); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CPU clock speed change handler.  We need to adjust the LCD timing | 
|  | * parameters when the CPU clock is adjusted by the power management | 
|  | * subsystem. | 
|  | */ | 
|  | static int | 
|  | sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val, | 
|  | void *data) | 
|  | { | 
|  | struct sa1100fb_info *fbi = TO_INF(nb, freq_transition); | 
|  | u_int pcd; | 
|  |  | 
|  | switch (val) { | 
|  | case CPUFREQ_PRECHANGE: | 
|  | set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); | 
|  | break; | 
|  |  | 
|  | case CPUFREQ_POSTCHANGE: | 
|  | pcd = get_pcd(fbi, fbi->fb.var.pixclock); | 
|  | fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd); | 
|  | set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val, | 
|  | void *data) | 
|  | { | 
|  | struct sa1100fb_info *fbi = TO_INF(nb, freq_policy); | 
|  | struct cpufreq_policy *policy = data; | 
|  |  | 
|  | switch (val) { | 
|  | case CPUFREQ_ADJUST: | 
|  | dev_dbg(fbi->dev, "min dma period: %d ps, " | 
|  | "new clock %d kHz\n", sa1100fb_min_dma_period(fbi), | 
|  | policy->max); | 
|  | /* todo: fill in min/max values */ | 
|  | break; | 
|  | case CPUFREQ_NOTIFY: | 
|  | do {} while(0); | 
|  | /* todo: panic if min/max values aren't fulfilled | 
|  | * [can't really happen unless there's a bug in the | 
|  | * CPU policy verififcation process * | 
|  | */ | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | /* | 
|  | * Power management hooks.  Note that we won't be called from IRQ context, | 
|  | * unlike the blank functions above, so we may sleep. | 
|  | */ | 
|  | static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state) | 
|  | { | 
|  | struct sa1100fb_info *fbi = platform_get_drvdata(dev); | 
|  |  | 
|  | set_ctrlr_state(fbi, C_DISABLE_PM); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sa1100fb_resume(struct platform_device *dev) | 
|  | { | 
|  | struct sa1100fb_info *fbi = platform_get_drvdata(dev); | 
|  |  | 
|  | set_ctrlr_state(fbi, C_ENABLE_PM); | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | #define sa1100fb_suspend	NULL | 
|  | #define sa1100fb_resume		NULL | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * sa1100fb_map_video_memory(): | 
|  | *      Allocates the DRAM memory for the frame buffer.  This buffer is | 
|  | *	remapped into a non-cached, non-buffered, memory region to | 
|  | *      allow palette and pixel writes to occur without flushing the | 
|  | *      cache.  Once this area is remapped, all virtual memory | 
|  | *      access to the video memory should occur at the new region. | 
|  | */ | 
|  | static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi) | 
|  | { | 
|  | /* | 
|  | * We reserve one page for the palette, plus the size | 
|  | * of the framebuffer. | 
|  | */ | 
|  | fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE); | 
|  | fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma, | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (fbi->map_cpu) { | 
|  | fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE; | 
|  | fbi->screen_dma = fbi->map_dma + PAGE_SIZE; | 
|  | /* | 
|  | * FIXME: this is actually the wrong thing to place in | 
|  | * smem_start.  But fbdev suffers from the problem that | 
|  | * it needs an API which doesn't exist (in this case, | 
|  | * dma_writecombine_mmap) | 
|  | */ | 
|  | fbi->fb.fix.smem_start = fbi->screen_dma; | 
|  | } | 
|  |  | 
|  | return fbi->map_cpu ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Fake monspecs to fill in fbinfo structure */ | 
|  | static struct fb_monspecs monspecs = { | 
|  | .hfmin	= 30000, | 
|  | .hfmax	= 70000, | 
|  | .vfmin	= 50, | 
|  | .vfmax	= 65, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev) | 
|  | { | 
|  | struct sa1100fb_mach_info *inf = dev_get_platdata(dev); | 
|  | struct sa1100fb_info *fbi; | 
|  | unsigned i; | 
|  |  | 
|  | fbi = devm_kzalloc(dev, sizeof(struct sa1100fb_info), GFP_KERNEL); | 
|  | if (!fbi) | 
|  | return NULL; | 
|  |  | 
|  | fbi->dev = dev; | 
|  |  | 
|  | strcpy(fbi->fb.fix.id, SA1100_NAME); | 
|  |  | 
|  | fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS; | 
|  | fbi->fb.fix.type_aux	= 0; | 
|  | fbi->fb.fix.xpanstep	= 0; | 
|  | fbi->fb.fix.ypanstep	= 0; | 
|  | fbi->fb.fix.ywrapstep	= 0; | 
|  | fbi->fb.fix.accel	= FB_ACCEL_NONE; | 
|  |  | 
|  | fbi->fb.var.nonstd	= 0; | 
|  | fbi->fb.var.activate	= FB_ACTIVATE_NOW; | 
|  | fbi->fb.var.height	= -1; | 
|  | fbi->fb.var.width	= -1; | 
|  | fbi->fb.var.accel_flags	= 0; | 
|  | fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED; | 
|  |  | 
|  | fbi->fb.fbops		= &sa1100fb_ops; | 
|  | fbi->fb.flags		= FBINFO_DEFAULT; | 
|  | fbi->fb.monspecs	= monspecs; | 
|  | fbi->fb.pseudo_palette	= fbi->pseudo_palette; | 
|  |  | 
|  | fbi->rgb[RGB_4]		= &rgb_4; | 
|  | fbi->rgb[RGB_8]		= &rgb_8; | 
|  | fbi->rgb[RGB_16]	= &def_rgb_16; | 
|  |  | 
|  | /* | 
|  | * People just don't seem to get this.  We don't support | 
|  | * anything but correct entries now, so panic if someone | 
|  | * does something stupid. | 
|  | */ | 
|  | if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) || | 
|  | inf->pixclock == 0) | 
|  | panic("sa1100fb error: invalid LCCR3 fields set or zero " | 
|  | "pixclock."); | 
|  |  | 
|  | fbi->fb.var.xres		= inf->xres; | 
|  | fbi->fb.var.xres_virtual	= inf->xres; | 
|  | fbi->fb.var.yres		= inf->yres; | 
|  | fbi->fb.var.yres_virtual	= inf->yres; | 
|  | fbi->fb.var.bits_per_pixel	= inf->bpp; | 
|  | fbi->fb.var.pixclock		= inf->pixclock; | 
|  | fbi->fb.var.hsync_len		= inf->hsync_len; | 
|  | fbi->fb.var.left_margin		= inf->left_margin; | 
|  | fbi->fb.var.right_margin	= inf->right_margin; | 
|  | fbi->fb.var.vsync_len		= inf->vsync_len; | 
|  | fbi->fb.var.upper_margin	= inf->upper_margin; | 
|  | fbi->fb.var.lower_margin	= inf->lower_margin; | 
|  | fbi->fb.var.sync		= inf->sync; | 
|  | fbi->fb.var.grayscale		= inf->cmap_greyscale; | 
|  | fbi->state			= C_STARTUP; | 
|  | fbi->task_state			= (u_char)-1; | 
|  | fbi->fb.fix.smem_len		= inf->xres * inf->yres * | 
|  | inf->bpp / 8; | 
|  | fbi->inf			= inf; | 
|  |  | 
|  | /* Copy the RGB bitfield overrides */ | 
|  | for (i = 0; i < NR_RGB; i++) | 
|  | if (inf->rgb[i]) | 
|  | fbi->rgb[i] = inf->rgb[i]; | 
|  |  | 
|  | init_waitqueue_head(&fbi->ctrlr_wait); | 
|  | INIT_WORK(&fbi->task, sa1100fb_task); | 
|  | mutex_init(&fbi->ctrlr_lock); | 
|  |  | 
|  | return fbi; | 
|  | } | 
|  |  | 
|  | static int sa1100fb_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct sa1100fb_info *fbi; | 
|  | struct resource *res; | 
|  | int ret, irq; | 
|  |  | 
|  | if (!dev_get_platdata(&pdev->dev)) { | 
|  | dev_err(&pdev->dev, "no platform LCD data\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | if (irq < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | fbi = sa1100fb_init_fbinfo(&pdev->dev); | 
|  | if (!fbi) | 
|  | return -ENOMEM; | 
|  |  | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | fbi->base = devm_ioremap_resource(&pdev->dev, res); | 
|  | if (IS_ERR(fbi->base)) | 
|  | return PTR_ERR(fbi->base); | 
|  |  | 
|  | fbi->clk = devm_clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(fbi->clk)) | 
|  | return PTR_ERR(fbi->clk); | 
|  |  | 
|  | ret = devm_request_irq(&pdev->dev, irq, sa1100fb_handle_irq, 0, | 
|  | "LCD", fbi); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "request_irq failed: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (machine_is_shannon()) { | 
|  | ret = devm_gpio_request_one(&pdev->dev, SHANNON_GPIO_DISP_EN, | 
|  | GPIOF_OUT_INIT_LOW, "display enable"); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Initialize video memory */ | 
|  | ret = sa1100fb_map_video_memory(fbi); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * This makes sure that our colour bitfield | 
|  | * descriptors are correctly initialised. | 
|  | */ | 
|  | sa1100fb_check_var(&fbi->fb.var, &fbi->fb); | 
|  |  | 
|  | platform_set_drvdata(pdev, fbi); | 
|  |  | 
|  | ret = register_framebuffer(&fbi->fb); | 
|  | if (ret < 0) { | 
|  | dma_free_wc(fbi->dev, fbi->map_size, fbi->map_cpu, | 
|  | fbi->map_dma); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  | fbi->freq_transition.notifier_call = sa1100fb_freq_transition; | 
|  | fbi->freq_policy.notifier_call = sa1100fb_freq_policy; | 
|  | cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); | 
|  | cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER); | 
|  | #endif | 
|  |  | 
|  | /* This driver cannot be unloaded at the moment */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver sa1100fb_driver = { | 
|  | .probe		= sa1100fb_probe, | 
|  | .suspend	= sa1100fb_suspend, | 
|  | .resume		= sa1100fb_resume, | 
|  | .driver		= { | 
|  | .name	= "sa11x0-fb", | 
|  | }, | 
|  | }; | 
|  |  | 
|  | int __init sa1100fb_init(void) | 
|  | { | 
|  | if (fb_get_options("sa1100fb", NULL)) | 
|  | return -ENODEV; | 
|  |  | 
|  | return platform_driver_register(&sa1100fb_driver); | 
|  | } | 
|  |  | 
|  | int __init sa1100fb_setup(char *options) | 
|  | { | 
|  | #if 0 | 
|  | char *this_opt; | 
|  |  | 
|  | if (!options || !*options) | 
|  | return 0; | 
|  |  | 
|  | while ((this_opt = strsep(&options, ",")) != NULL) { | 
|  |  | 
|  | if (!strncmp(this_opt, "bpp:", 4)) | 
|  | current_par.max_bpp = | 
|  | simple_strtoul(this_opt + 4, NULL, 0); | 
|  |  | 
|  | if (!strncmp(this_opt, "lccr0:", 6)) | 
|  | lcd_shadow.lccr0 = | 
|  | simple_strtoul(this_opt + 6, NULL, 0); | 
|  | if (!strncmp(this_opt, "lccr1:", 6)) { | 
|  | lcd_shadow.lccr1 = | 
|  | simple_strtoul(this_opt + 6, NULL, 0); | 
|  | current_par.max_xres = | 
|  | (lcd_shadow.lccr1 & 0x3ff) + 16; | 
|  | } | 
|  | if (!strncmp(this_opt, "lccr2:", 6)) { | 
|  | lcd_shadow.lccr2 = | 
|  | simple_strtoul(this_opt + 6, NULL, 0); | 
|  | current_par.max_yres = | 
|  | (lcd_shadow. | 
|  | lccr0 & LCCR0_SDS) ? ((lcd_shadow. | 
|  | lccr2 & 0x3ff) + | 
|  | 1) * | 
|  | 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1); | 
|  | } | 
|  | if (!strncmp(this_opt, "lccr3:", 6)) | 
|  | lcd_shadow.lccr3 = | 
|  | simple_strtoul(this_opt + 6, NULL, 0); | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(sa1100fb_init); | 
|  | MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver"); | 
|  | MODULE_LICENSE("GPL"); |