| /* | 
 |  * VGICv2 MMIO handling functions | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  */ | 
 |  | 
 | #include <linux/irqchip/arm-gic.h> | 
 | #include <linux/kvm.h> | 
 | #include <linux/kvm_host.h> | 
 | #include <linux/nospec.h> | 
 |  | 
 | #include <kvm/iodev.h> | 
 | #include <kvm/arm_vgic.h> | 
 |  | 
 | #include "vgic.h" | 
 | #include "vgic-mmio.h" | 
 |  | 
 | /* | 
 |  * The Revision field in the IIDR have the following meanings: | 
 |  * | 
 |  * Revision 1: Report GICv2 interrupts as group 0 instead of group 1 | 
 |  * Revision 2: Interrupt groups are guest-configurable and signaled using | 
 |  * 	       their configured groups. | 
 |  */ | 
 |  | 
 | static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu, | 
 | 					    gpa_t addr, unsigned int len) | 
 | { | 
 | 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic; | 
 | 	u32 value; | 
 |  | 
 | 	switch (addr & 0x0c) { | 
 | 	case GIC_DIST_CTRL: | 
 | 		value = vgic->enabled ? GICD_ENABLE : 0; | 
 | 		break; | 
 | 	case GIC_DIST_CTR: | 
 | 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS; | 
 | 		value = (value >> 5) - 1; | 
 | 		value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; | 
 | 		break; | 
 | 	case GIC_DIST_IIDR: | 
 | 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) | | 
 | 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) | | 
 | 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT); | 
 | 		break; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return value; | 
 | } | 
 |  | 
 | static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu, | 
 | 				    gpa_t addr, unsigned int len, | 
 | 				    unsigned long val) | 
 | { | 
 | 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | 
 | 	bool was_enabled = dist->enabled; | 
 |  | 
 | 	switch (addr & 0x0c) { | 
 | 	case GIC_DIST_CTRL: | 
 | 		dist->enabled = val & GICD_ENABLE; | 
 | 		if (!was_enabled && dist->enabled) | 
 | 			vgic_kick_vcpus(vcpu->kvm); | 
 | 		break; | 
 | 	case GIC_DIST_CTR: | 
 | 	case GIC_DIST_IIDR: | 
 | 		/* Nothing to do */ | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu, | 
 | 					   gpa_t addr, unsigned int len, | 
 | 					   unsigned long val) | 
 | { | 
 | 	switch (addr & 0x0c) { | 
 | 	case GIC_DIST_IIDR: | 
 | 		if (val != vgic_mmio_read_v2_misc(vcpu, addr, len)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		/* | 
 | 		 * If we observe a write to GICD_IIDR we know that userspace | 
 | 		 * has been updated and has had a chance to cope with older | 
 | 		 * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting | 
 | 		 * interrupts as group 1, and therefore we now allow groups to | 
 | 		 * be user writable.  Doing this by default would break | 
 | 		 * migration from old kernels to new kernels with legacy | 
 | 		 * userspace. | 
 | 		 */ | 
 | 		vcpu->kvm->arch.vgic.v2_groups_user_writable = true; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	vgic_mmio_write_v2_misc(vcpu, addr, len, val); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu, | 
 | 					    gpa_t addr, unsigned int len, | 
 | 					    unsigned long val) | 
 | { | 
 | 	if (vcpu->kvm->arch.vgic.v2_groups_user_writable) | 
 | 		vgic_mmio_write_group(vcpu, addr, len, val); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu, | 
 | 				 gpa_t addr, unsigned int len, | 
 | 				 unsigned long val) | 
 | { | 
 | 	int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus); | 
 | 	int intid = val & 0xf; | 
 | 	int targets = (val >> 16) & 0xff; | 
 | 	int mode = (val >> 24) & 0x03; | 
 | 	int c; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	unsigned long flags; | 
 |  | 
 | 	switch (mode) { | 
 | 	case 0x0:		/* as specified by targets */ | 
 | 		break; | 
 | 	case 0x1: | 
 | 		targets = (1U << nr_vcpus) - 1;			/* all, ... */ | 
 | 		targets &= ~(1U << source_vcpu->vcpu_id);	/* but self */ | 
 | 		break; | 
 | 	case 0x2:		/* this very vCPU only */ | 
 | 		targets = (1U << source_vcpu->vcpu_id); | 
 | 		break; | 
 | 	case 0x3:		/* reserved */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) { | 
 | 		struct vgic_irq *irq; | 
 |  | 
 | 		if (!(targets & (1U << c))) | 
 | 			continue; | 
 |  | 
 | 		irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid); | 
 |  | 
 | 		raw_spin_lock_irqsave(&irq->irq_lock, flags); | 
 | 		irq->pending_latch = true; | 
 | 		irq->source |= 1U << source_vcpu->vcpu_id; | 
 |  | 
 | 		vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags); | 
 | 		vgic_put_irq(source_vcpu->kvm, irq); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu, | 
 | 					   gpa_t addr, unsigned int len) | 
 | { | 
 | 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8); | 
 | 	int i; | 
 | 	u64 val = 0; | 
 |  | 
 | 	for (i = 0; i < len; i++) { | 
 | 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); | 
 |  | 
 | 		val |= (u64)irq->targets << (i * 8); | 
 |  | 
 | 		vgic_put_irq(vcpu->kvm, irq); | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static void vgic_mmio_write_target(struct kvm_vcpu *vcpu, | 
 | 				   gpa_t addr, unsigned int len, | 
 | 				   unsigned long val) | 
 | { | 
 | 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8); | 
 | 	u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0); | 
 | 	int i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* GICD_ITARGETSR[0-7] are read-only */ | 
 | 	if (intid < VGIC_NR_PRIVATE_IRQS) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < len; i++) { | 
 | 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i); | 
 | 		int target; | 
 |  | 
 | 		raw_spin_lock_irqsave(&irq->irq_lock, flags); | 
 |  | 
 | 		irq->targets = (val >> (i * 8)) & cpu_mask; | 
 | 		target = irq->targets ? __ffs(irq->targets) : 0; | 
 | 		irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target); | 
 |  | 
 | 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags); | 
 | 		vgic_put_irq(vcpu->kvm, irq); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu, | 
 | 					    gpa_t addr, unsigned int len) | 
 | { | 
 | 	u32 intid = addr & 0x0f; | 
 | 	int i; | 
 | 	u64 val = 0; | 
 |  | 
 | 	for (i = 0; i < len; i++) { | 
 | 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); | 
 |  | 
 | 		val |= (u64)irq->source << (i * 8); | 
 |  | 
 | 		vgic_put_irq(vcpu->kvm, irq); | 
 | 	} | 
 | 	return val; | 
 | } | 
 |  | 
 | static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu, | 
 | 				     gpa_t addr, unsigned int len, | 
 | 				     unsigned long val) | 
 | { | 
 | 	u32 intid = addr & 0x0f; | 
 | 	int i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	for (i = 0; i < len; i++) { | 
 | 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); | 
 |  | 
 | 		raw_spin_lock_irqsave(&irq->irq_lock, flags); | 
 |  | 
 | 		irq->source &= ~((val >> (i * 8)) & 0xff); | 
 | 		if (!irq->source) | 
 | 			irq->pending_latch = false; | 
 |  | 
 | 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags); | 
 | 		vgic_put_irq(vcpu->kvm, irq); | 
 | 	} | 
 | } | 
 |  | 
 | static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu, | 
 | 				     gpa_t addr, unsigned int len, | 
 | 				     unsigned long val) | 
 | { | 
 | 	u32 intid = addr & 0x0f; | 
 | 	int i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	for (i = 0; i < len; i++) { | 
 | 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); | 
 |  | 
 | 		raw_spin_lock_irqsave(&irq->irq_lock, flags); | 
 |  | 
 | 		irq->source |= (val >> (i * 8)) & 0xff; | 
 |  | 
 | 		if (irq->source) { | 
 | 			irq->pending_latch = true; | 
 | 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags); | 
 | 		} else { | 
 | 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags); | 
 | 		} | 
 | 		vgic_put_irq(vcpu->kvm, irq); | 
 | 	} | 
 | } | 
 |  | 
 | #define GICC_ARCH_VERSION_V2	0x2 | 
 |  | 
 | /* These are for userland accesses only, there is no guest-facing emulation. */ | 
 | static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu, | 
 | 					   gpa_t addr, unsigned int len) | 
 | { | 
 | 	struct vgic_vmcr vmcr; | 
 | 	u32 val; | 
 |  | 
 | 	vgic_get_vmcr(vcpu, &vmcr); | 
 |  | 
 | 	switch (addr & 0xff) { | 
 | 	case GIC_CPU_CTRL: | 
 | 		val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT; | 
 | 		val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT; | 
 | 		val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT; | 
 | 		val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT; | 
 | 		val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT; | 
 | 		val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT; | 
 |  | 
 | 		break; | 
 | 	case GIC_CPU_PRIMASK: | 
 | 		/* | 
 | 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the | 
 | 		 * the PMR field as GICH_VMCR.VMPriMask rather than | 
 | 		 * GICC_PMR.Priority, so we expose the upper five bits of | 
 | 		 * priority mask to userspace using the lower bits in the | 
 | 		 * unsigned long. | 
 | 		 */ | 
 | 		val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >> | 
 | 			GICV_PMR_PRIORITY_SHIFT; | 
 | 		break; | 
 | 	case GIC_CPU_BINPOINT: | 
 | 		val = vmcr.bpr; | 
 | 		break; | 
 | 	case GIC_CPU_ALIAS_BINPOINT: | 
 | 		val = vmcr.abpr; | 
 | 		break; | 
 | 	case GIC_CPU_IDENT: | 
 | 		val = ((PRODUCT_ID_KVM << 20) | | 
 | 		       (GICC_ARCH_VERSION_V2 << 16) | | 
 | 		       IMPLEMENTER_ARM); | 
 | 		break; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu, | 
 | 				   gpa_t addr, unsigned int len, | 
 | 				   unsigned long val) | 
 | { | 
 | 	struct vgic_vmcr vmcr; | 
 |  | 
 | 	vgic_get_vmcr(vcpu, &vmcr); | 
 |  | 
 | 	switch (addr & 0xff) { | 
 | 	case GIC_CPU_CTRL: | 
 | 		vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0); | 
 | 		vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1); | 
 | 		vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl); | 
 | 		vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn); | 
 | 		vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR); | 
 | 		vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS); | 
 |  | 
 | 		break; | 
 | 	case GIC_CPU_PRIMASK: | 
 | 		/* | 
 | 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the | 
 | 		 * the PMR field as GICH_VMCR.VMPriMask rather than | 
 | 		 * GICC_PMR.Priority, so we expose the upper five bits of | 
 | 		 * priority mask to userspace using the lower bits in the | 
 | 		 * unsigned long. | 
 | 		 */ | 
 | 		vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) & | 
 | 			GICV_PMR_PRIORITY_MASK; | 
 | 		break; | 
 | 	case GIC_CPU_BINPOINT: | 
 | 		vmcr.bpr = val; | 
 | 		break; | 
 | 	case GIC_CPU_ALIAS_BINPOINT: | 
 | 		vmcr.abpr = val; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	vgic_set_vmcr(vcpu, &vmcr); | 
 | } | 
 |  | 
 | static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu, | 
 | 					gpa_t addr, unsigned int len) | 
 | { | 
 | 	int n; /* which APRn is this */ | 
 |  | 
 | 	n = (addr >> 2) & 0x3; | 
 |  | 
 | 	if (kvm_vgic_global_state.type == VGIC_V2) { | 
 | 		/* GICv2 hardware systems support max. 32 groups */ | 
 | 		if (n != 0) | 
 | 			return 0; | 
 | 		return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr; | 
 | 	} else { | 
 | 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; | 
 |  | 
 | 		if (n > vgic_v3_max_apr_idx(vcpu)) | 
 | 			return 0; | 
 |  | 
 | 		n = array_index_nospec(n, 4); | 
 |  | 
 | 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */ | 
 | 		return vgicv3->vgic_ap1r[n]; | 
 | 	} | 
 | } | 
 |  | 
 | static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu, | 
 | 				gpa_t addr, unsigned int len, | 
 | 				unsigned long val) | 
 | { | 
 | 	int n; /* which APRn is this */ | 
 |  | 
 | 	n = (addr >> 2) & 0x3; | 
 |  | 
 | 	if (kvm_vgic_global_state.type == VGIC_V2) { | 
 | 		/* GICv2 hardware systems support max. 32 groups */ | 
 | 		if (n != 0) | 
 | 			return; | 
 | 		vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val; | 
 | 	} else { | 
 | 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; | 
 |  | 
 | 		if (n > vgic_v3_max_apr_idx(vcpu)) | 
 | 			return; | 
 |  | 
 | 		n = array_index_nospec(n, 4); | 
 |  | 
 | 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */ | 
 | 		vgicv3->vgic_ap1r[n] = val; | 
 | 	} | 
 | } | 
 |  | 
 | static const struct vgic_register_region vgic_v2_dist_registers[] = { | 
 | 	REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL, | 
 | 		vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc, | 
 | 		NULL, vgic_mmio_uaccess_write_v2_misc, | 
 | 		12, VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP, | 
 | 		vgic_mmio_read_group, vgic_mmio_write_group, | 
 | 		NULL, vgic_mmio_uaccess_write_v2_group, 1, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET, | 
 | 		vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR, | 
 | 		vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET, | 
 | 		vgic_mmio_read_pending, vgic_mmio_write_spending, NULL, NULL, 1, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR, | 
 | 		vgic_mmio_read_pending, vgic_mmio_write_cpending, NULL, NULL, 1, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET, | 
 | 		vgic_mmio_read_active, vgic_mmio_write_sactive, | 
 | 		NULL, vgic_mmio_uaccess_write_sactive, 1, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR, | 
 | 		vgic_mmio_read_active, vgic_mmio_write_cactive, | 
 | 		NULL, vgic_mmio_uaccess_write_cactive, 1, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI, | 
 | 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL, | 
 | 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), | 
 | 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET, | 
 | 		vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8, | 
 | 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), | 
 | 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG, | 
 | 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT, | 
 | 		vgic_mmio_read_raz, vgic_mmio_write_sgir, 4, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR, | 
 | 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16, | 
 | 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), | 
 | 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET, | 
 | 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16, | 
 | 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), | 
 | }; | 
 |  | 
 | static const struct vgic_register_region vgic_v2_cpu_registers[] = { | 
 | 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL, | 
 | 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK, | 
 | 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT, | 
 | 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT, | 
 | 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO, | 
 | 		vgic_mmio_read_apr, vgic_mmio_write_apr, 16, | 
 | 		VGIC_ACCESS_32bit), | 
 | 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT, | 
 | 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, | 
 | 		VGIC_ACCESS_32bit), | 
 | }; | 
 |  | 
 | unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev) | 
 | { | 
 | 	dev->regions = vgic_v2_dist_registers; | 
 | 	dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers); | 
 |  | 
 | 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops); | 
 |  | 
 | 	return SZ_4K; | 
 | } | 
 |  | 
 | int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) | 
 | { | 
 | 	const struct vgic_register_region *region; | 
 | 	struct vgic_io_device iodev; | 
 | 	struct vgic_reg_attr reg_attr; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	gpa_t addr; | 
 | 	int ret; | 
 |  | 
 | 	ret = vgic_v2_parse_attr(dev, attr, ®_attr); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	vcpu = reg_attr.vcpu; | 
 | 	addr = reg_attr.addr; | 
 |  | 
 | 	switch (attr->group) { | 
 | 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | 
 | 		iodev.regions = vgic_v2_dist_registers; | 
 | 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers); | 
 | 		iodev.base_addr = 0; | 
 | 		break; | 
 | 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: | 
 | 		iodev.regions = vgic_v2_cpu_registers; | 
 | 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers); | 
 | 		iodev.base_addr = 0; | 
 | 		break; | 
 | 	default: | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	/* We only support aligned 32-bit accesses. */ | 
 | 	if (addr & 3) | 
 | 		return -ENXIO; | 
 |  | 
 | 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32)); | 
 | 	if (!region) | 
 | 		return -ENXIO; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write, | 
 | 			  int offset, u32 *val) | 
 | { | 
 | 	struct vgic_io_device dev = { | 
 | 		.regions = vgic_v2_cpu_registers, | 
 | 		.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers), | 
 | 		.iodev_type = IODEV_CPUIF, | 
 | 	}; | 
 |  | 
 | 	return vgic_uaccess(vcpu, &dev, is_write, offset, val); | 
 | } | 
 |  | 
 | int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, | 
 | 			 int offset, u32 *val) | 
 | { | 
 | 	struct vgic_io_device dev = { | 
 | 		.regions = vgic_v2_dist_registers, | 
 | 		.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers), | 
 | 		.iodev_type = IODEV_DIST, | 
 | 	}; | 
 |  | 
 | 	return vgic_uaccess(vcpu, &dev, is_write, offset, val); | 
 | } |