|  | /* SPDX-License-Identifier: GPL-2.0-only */ | 
|  | /* | 
|  | * Low-level CPU initialisation | 
|  | * Based on arch/arm/kernel/head.S | 
|  | * | 
|  | * Copyright (C) 1994-2002 Russell King | 
|  | * Copyright (C) 2003-2012 ARM Ltd. | 
|  | * Authors:	Catalin Marinas <catalin.marinas@arm.com> | 
|  | *		Will Deacon <will.deacon@arm.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/linkage.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pgtable.h> | 
|  |  | 
|  | #include <asm/asm_pointer_auth.h> | 
|  | #include <asm/assembler.h> | 
|  | #include <asm/boot.h> | 
|  | #include <asm/bug.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/asm-offsets.h> | 
|  | #include <asm/cache.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/el2_setup.h> | 
|  | #include <asm/elf.h> | 
|  | #include <asm/image.h> | 
|  | #include <asm/kernel-pgtable.h> | 
|  | #include <asm/kvm_arm.h> | 
|  | #include <asm/memory.h> | 
|  | #include <asm/pgtable-hwdef.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/scs.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/sysreg.h> | 
|  | #include <asm/thread_info.h> | 
|  | #include <asm/virt.h> | 
|  |  | 
|  | #include "efi-header.S" | 
|  |  | 
|  | #define __PHYS_OFFSET	KERNEL_START | 
|  |  | 
|  | #if (PAGE_OFFSET & 0x1fffff) != 0 | 
|  | #error PAGE_OFFSET must be at least 2MB aligned | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Kernel startup entry point. | 
|  | * --------------------------- | 
|  | * | 
|  | * The requirements are: | 
|  | *   MMU = off, D-cache = off, I-cache = on or off, | 
|  | *   x0 = physical address to the FDT blob. | 
|  | * | 
|  | * This code is mostly position independent so you call this at | 
|  | * __pa(PAGE_OFFSET). | 
|  | * | 
|  | * Note that the callee-saved registers are used for storing variables | 
|  | * that are useful before the MMU is enabled. The allocations are described | 
|  | * in the entry routines. | 
|  | */ | 
|  | __HEAD | 
|  | /* | 
|  | * DO NOT MODIFY. Image header expected by Linux boot-loaders. | 
|  | */ | 
|  | efi_signature_nop			// special NOP to identity as PE/COFF executable | 
|  | b	primary_entry			// branch to kernel start, magic | 
|  | .quad	0				// Image load offset from start of RAM, little-endian | 
|  | le64sym	_kernel_size_le			// Effective size of kernel image, little-endian | 
|  | le64sym	_kernel_flags_le		// Informative flags, little-endian | 
|  | .quad	0				// reserved | 
|  | .quad	0				// reserved | 
|  | .quad	0				// reserved | 
|  | .ascii	ARM64_IMAGE_MAGIC		// Magic number | 
|  | .long	.Lpe_header_offset		// Offset to the PE header. | 
|  |  | 
|  | __EFI_PE_HEADER | 
|  |  | 
|  | __INIT | 
|  |  | 
|  | /* | 
|  | * The following callee saved general purpose registers are used on the | 
|  | * primary lowlevel boot path: | 
|  | * | 
|  | *  Register   Scope                      Purpose | 
|  | *  x21        primary_entry() .. start_kernel()        FDT pointer passed at boot in x0 | 
|  | *  x23        primary_entry() .. start_kernel()        physical misalignment/KASLR offset | 
|  | *  x28        __create_page_tables()                   callee preserved temp register | 
|  | *  x19/x20    __primary_switch()                       callee preserved temp registers | 
|  | *  x24        __primary_switch() .. relocate_kernel()  current RELR displacement | 
|  | */ | 
|  | SYM_CODE_START(primary_entry) | 
|  | bl	preserve_boot_args | 
|  | bl	init_kernel_el			// w0=cpu_boot_mode | 
|  | adrp	x23, __PHYS_OFFSET | 
|  | and	x23, x23, MIN_KIMG_ALIGN - 1	// KASLR offset, defaults to 0 | 
|  | bl	set_cpu_boot_mode_flag | 
|  | bl	__create_page_tables | 
|  | /* | 
|  | * The following calls CPU setup code, see arch/arm64/mm/proc.S for | 
|  | * details. | 
|  | * On return, the CPU will be ready for the MMU to be turned on and | 
|  | * the TCR will have been set. | 
|  | */ | 
|  | bl	__cpu_setup			// initialise processor | 
|  | b	__primary_switch | 
|  | SYM_CODE_END(primary_entry) | 
|  |  | 
|  | /* | 
|  | * Preserve the arguments passed by the bootloader in x0 .. x3 | 
|  | */ | 
|  | SYM_CODE_START_LOCAL(preserve_boot_args) | 
|  | mov	x21, x0				// x21=FDT | 
|  |  | 
|  | adr_l	x0, boot_args			// record the contents of | 
|  | stp	x21, x1, [x0]			// x0 .. x3 at kernel entry | 
|  | stp	x2, x3, [x0, #16] | 
|  |  | 
|  | dmb	sy				// needed before dc ivac with | 
|  | // MMU off | 
|  |  | 
|  | add	x1, x0, #0x20			// 4 x 8 bytes | 
|  | b	dcache_inval_poc		// tail call | 
|  | SYM_CODE_END(preserve_boot_args) | 
|  |  | 
|  | /* | 
|  | * Macro to create a table entry to the next page. | 
|  | * | 
|  | *	tbl:	page table address | 
|  | *	virt:	virtual address | 
|  | *	shift:	#imm page table shift | 
|  | *	ptrs:	#imm pointers per table page | 
|  | * | 
|  | * Preserves:	virt | 
|  | * Corrupts:	ptrs, tmp1, tmp2 | 
|  | * Returns:	tbl -> next level table page address | 
|  | */ | 
|  | .macro	create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2 | 
|  | add	\tmp1, \tbl, #PAGE_SIZE | 
|  | phys_to_pte \tmp2, \tmp1 | 
|  | orr	\tmp2, \tmp2, #PMD_TYPE_TABLE	// address of next table and entry type | 
|  | lsr	\tmp1, \virt, #\shift | 
|  | sub	\ptrs, \ptrs, #1 | 
|  | and	\tmp1, \tmp1, \ptrs		// table index | 
|  | str	\tmp2, [\tbl, \tmp1, lsl #3] | 
|  | add	\tbl, \tbl, #PAGE_SIZE		// next level table page | 
|  | .endm | 
|  |  | 
|  | /* | 
|  | * Macro to populate page table entries, these entries can be pointers to the next level | 
|  | * or last level entries pointing to physical memory. | 
|  | * | 
|  | *	tbl:	page table address | 
|  | *	rtbl:	pointer to page table or physical memory | 
|  | *	index:	start index to write | 
|  | *	eindex:	end index to write - [index, eindex] written to | 
|  | *	flags:	flags for pagetable entry to or in | 
|  | *	inc:	increment to rtbl between each entry | 
|  | *	tmp1:	temporary variable | 
|  | * | 
|  | * Preserves:	tbl, eindex, flags, inc | 
|  | * Corrupts:	index, tmp1 | 
|  | * Returns:	rtbl | 
|  | */ | 
|  | .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1 | 
|  | .Lpe\@:	phys_to_pte \tmp1, \rtbl | 
|  | orr	\tmp1, \tmp1, \flags	// tmp1 = table entry | 
|  | str	\tmp1, [\tbl, \index, lsl #3] | 
|  | add	\rtbl, \rtbl, \inc	// rtbl = pa next level | 
|  | add	\index, \index, #1 | 
|  | cmp	\index, \eindex | 
|  | b.ls	.Lpe\@ | 
|  | .endm | 
|  |  | 
|  | /* | 
|  | * Compute indices of table entries from virtual address range. If multiple entries | 
|  | * were needed in the previous page table level then the next page table level is assumed | 
|  | * to be composed of multiple pages. (This effectively scales the end index). | 
|  | * | 
|  | *	vstart:	virtual address of start of range | 
|  | *	vend:	virtual address of end of range - we map [vstart, vend] | 
|  | *	shift:	shift used to transform virtual address into index | 
|  | *	ptrs:	number of entries in page table | 
|  | *	istart:	index in table corresponding to vstart | 
|  | *	iend:	index in table corresponding to vend | 
|  | *	count:	On entry: how many extra entries were required in previous level, scales | 
|  | *			  our end index. | 
|  | *		On exit: returns how many extra entries required for next page table level | 
|  | * | 
|  | * Preserves:	vstart, vend, shift, ptrs | 
|  | * Returns:	istart, iend, count | 
|  | */ | 
|  | .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count | 
|  | lsr	\iend, \vend, \shift | 
|  | mov	\istart, \ptrs | 
|  | sub	\istart, \istart, #1 | 
|  | and	\iend, \iend, \istart	// iend = (vend >> shift) & (ptrs - 1) | 
|  | mov	\istart, \ptrs | 
|  | mul	\istart, \istart, \count | 
|  | add	\iend, \iend, \istart	// iend += count * ptrs | 
|  | // our entries span multiple tables | 
|  |  | 
|  | lsr	\istart, \vstart, \shift | 
|  | mov	\count, \ptrs | 
|  | sub	\count, \count, #1 | 
|  | and	\istart, \istart, \count | 
|  |  | 
|  | sub	\count, \iend, \istart | 
|  | .endm | 
|  |  | 
|  | /* | 
|  | * Map memory for specified virtual address range. Each level of page table needed supports | 
|  | * multiple entries. If a level requires n entries the next page table level is assumed to be | 
|  | * formed from n pages. | 
|  | * | 
|  | *	tbl:	location of page table | 
|  | *	rtbl:	address to be used for first level page table entry (typically tbl + PAGE_SIZE) | 
|  | *	vstart:	virtual address of start of range | 
|  | *	vend:	virtual address of end of range - we map [vstart, vend - 1] | 
|  | *	flags:	flags to use to map last level entries | 
|  | *	phys:	physical address corresponding to vstart - physical memory is contiguous | 
|  | *	pgds:	the number of pgd entries | 
|  | * | 
|  | * Temporaries:	istart, iend, tmp, count, sv - these need to be different registers | 
|  | * Preserves:	vstart, flags | 
|  | * Corrupts:	tbl, rtbl, vend, istart, iend, tmp, count, sv | 
|  | */ | 
|  | .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv | 
|  | sub \vend, \vend, #1 | 
|  | add \rtbl, \tbl, #PAGE_SIZE | 
|  | mov \sv, \rtbl | 
|  | mov \count, #0 | 
|  | compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count | 
|  | populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp | 
|  | mov \tbl, \sv | 
|  | mov \sv, \rtbl | 
|  |  | 
|  | #if SWAPPER_PGTABLE_LEVELS > 3 | 
|  | compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count | 
|  | populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp | 
|  | mov \tbl, \sv | 
|  | mov \sv, \rtbl | 
|  | #endif | 
|  |  | 
|  | #if SWAPPER_PGTABLE_LEVELS > 2 | 
|  | compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count | 
|  | populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp | 
|  | mov \tbl, \sv | 
|  | #endif | 
|  |  | 
|  | compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count | 
|  | bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1 | 
|  | populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp | 
|  | .endm | 
|  |  | 
|  | /* | 
|  | * Setup the initial page tables. We only setup the barest amount which is | 
|  | * required to get the kernel running. The following sections are required: | 
|  | *   - identity mapping to enable the MMU (low address, TTBR0) | 
|  | *   - first few MB of the kernel linear mapping to jump to once the MMU has | 
|  | *     been enabled | 
|  | */ | 
|  | SYM_FUNC_START_LOCAL(__create_page_tables) | 
|  | mov	x28, lr | 
|  |  | 
|  | /* | 
|  | * Invalidate the init page tables to avoid potential dirty cache lines | 
|  | * being evicted. Other page tables are allocated in rodata as part of | 
|  | * the kernel image, and thus are clean to the PoC per the boot | 
|  | * protocol. | 
|  | */ | 
|  | adrp	x0, init_pg_dir | 
|  | adrp	x1, init_pg_end | 
|  | bl	dcache_inval_poc | 
|  |  | 
|  | /* | 
|  | * Clear the init page tables. | 
|  | */ | 
|  | adrp	x0, init_pg_dir | 
|  | adrp	x1, init_pg_end | 
|  | sub	x1, x1, x0 | 
|  | 1:	stp	xzr, xzr, [x0], #16 | 
|  | stp	xzr, xzr, [x0], #16 | 
|  | stp	xzr, xzr, [x0], #16 | 
|  | stp	xzr, xzr, [x0], #16 | 
|  | subs	x1, x1, #64 | 
|  | b.ne	1b | 
|  |  | 
|  | mov	x7, SWAPPER_MM_MMUFLAGS | 
|  |  | 
|  | /* | 
|  | * Create the identity mapping. | 
|  | */ | 
|  | adrp	x0, idmap_pg_dir | 
|  | adrp	x3, __idmap_text_start		// __pa(__idmap_text_start) | 
|  |  | 
|  | #ifdef CONFIG_ARM64_VA_BITS_52 | 
|  | mrs_s	x6, SYS_ID_AA64MMFR2_EL1 | 
|  | and	x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT) | 
|  | mov	x5, #52 | 
|  | cbnz	x6, 1f | 
|  | #endif | 
|  | mov	x5, #VA_BITS_MIN | 
|  | 1: | 
|  | adr_l	x6, vabits_actual | 
|  | str	x5, [x6] | 
|  | dmb	sy | 
|  | dc	ivac, x6		// Invalidate potentially stale cache line | 
|  |  | 
|  | /* | 
|  | * VA_BITS may be too small to allow for an ID mapping to be created | 
|  | * that covers system RAM if that is located sufficiently high in the | 
|  | * physical address space. So for the ID map, use an extended virtual | 
|  | * range in that case, and configure an additional translation level | 
|  | * if needed. | 
|  | * | 
|  | * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the | 
|  | * entire ID map region can be mapped. As T0SZ == (64 - #bits used), | 
|  | * this number conveniently equals the number of leading zeroes in | 
|  | * the physical address of __idmap_text_end. | 
|  | */ | 
|  | adrp	x5, __idmap_text_end | 
|  | clz	x5, x5 | 
|  | cmp	x5, TCR_T0SZ(VA_BITS_MIN) // default T0SZ small enough? | 
|  | b.ge	1f			// .. then skip VA range extension | 
|  |  | 
|  | adr_l	x6, idmap_t0sz | 
|  | str	x5, [x6] | 
|  | dmb	sy | 
|  | dc	ivac, x6		// Invalidate potentially stale cache line | 
|  |  | 
|  | #if (VA_BITS < 48) | 
|  | #define EXTRA_SHIFT	(PGDIR_SHIFT + PAGE_SHIFT - 3) | 
|  | #define EXTRA_PTRS	(1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT)) | 
|  |  | 
|  | /* | 
|  | * If VA_BITS < 48, we have to configure an additional table level. | 
|  | * First, we have to verify our assumption that the current value of | 
|  | * VA_BITS was chosen such that all translation levels are fully | 
|  | * utilised, and that lowering T0SZ will always result in an additional | 
|  | * translation level to be configured. | 
|  | */ | 
|  | #if VA_BITS != EXTRA_SHIFT | 
|  | #error "Mismatch between VA_BITS and page size/number of translation levels" | 
|  | #endif | 
|  |  | 
|  | mov	x4, EXTRA_PTRS | 
|  | create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6 | 
|  | #else | 
|  | /* | 
|  | * If VA_BITS == 48, we don't have to configure an additional | 
|  | * translation level, but the top-level table has more entries. | 
|  | */ | 
|  | mov	x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT) | 
|  | str_l	x4, idmap_ptrs_per_pgd, x5 | 
|  | #endif | 
|  | 1: | 
|  | ldr_l	x4, idmap_ptrs_per_pgd | 
|  | adr_l	x6, __idmap_text_end		// __pa(__idmap_text_end) | 
|  |  | 
|  | map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14 | 
|  |  | 
|  | /* | 
|  | * Map the kernel image (starting with PHYS_OFFSET). | 
|  | */ | 
|  | adrp	x0, init_pg_dir | 
|  | mov_q	x5, KIMAGE_VADDR		// compile time __va(_text) | 
|  | add	x5, x5, x23			// add KASLR displacement | 
|  | mov	x4, PTRS_PER_PGD | 
|  | adrp	x6, _end			// runtime __pa(_end) | 
|  | adrp	x3, _text			// runtime __pa(_text) | 
|  | sub	x6, x6, x3			// _end - _text | 
|  | add	x6, x6, x5			// runtime __va(_end) | 
|  |  | 
|  | map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14 | 
|  |  | 
|  | /* | 
|  | * Since the page tables have been populated with non-cacheable | 
|  | * accesses (MMU disabled), invalidate those tables again to | 
|  | * remove any speculatively loaded cache lines. | 
|  | */ | 
|  | dmb	sy | 
|  |  | 
|  | adrp	x0, idmap_pg_dir | 
|  | adrp	x1, idmap_pg_end | 
|  | bl	dcache_inval_poc | 
|  |  | 
|  | adrp	x0, init_pg_dir | 
|  | adrp	x1, init_pg_end | 
|  | bl	dcache_inval_poc | 
|  |  | 
|  | ret	x28 | 
|  | SYM_FUNC_END(__create_page_tables) | 
|  |  | 
|  | /* | 
|  | * Initialize CPU registers with task-specific and cpu-specific context. | 
|  | * | 
|  | * Create a final frame record at task_pt_regs(current)->stackframe, so | 
|  | * that the unwinder can identify the final frame record of any task by | 
|  | * its location in the task stack. We reserve the entire pt_regs space | 
|  | * for consistency with user tasks and kthreads. | 
|  | */ | 
|  | .macro	init_cpu_task tsk, tmp1, tmp2 | 
|  | msr	sp_el0, \tsk | 
|  |  | 
|  | ldr	\tmp1, [\tsk, #TSK_STACK] | 
|  | add	sp, \tmp1, #THREAD_SIZE | 
|  | sub	sp, sp, #PT_REGS_SIZE | 
|  |  | 
|  | stp	xzr, xzr, [sp, #S_STACKFRAME] | 
|  | add	x29, sp, #S_STACKFRAME | 
|  |  | 
|  | scs_load \tsk | 
|  |  | 
|  | adr_l	\tmp1, __per_cpu_offset | 
|  | ldr	w\tmp2, [\tsk, #TSK_CPU] | 
|  | ldr	\tmp1, [\tmp1, \tmp2, lsl #3] | 
|  | set_this_cpu_offset \tmp1 | 
|  | .endm | 
|  |  | 
|  | /* | 
|  | * The following fragment of code is executed with the MMU enabled. | 
|  | * | 
|  | *   x0 = __PHYS_OFFSET | 
|  | */ | 
|  | SYM_FUNC_START_LOCAL(__primary_switched) | 
|  | adr_l	x4, init_task | 
|  | init_cpu_task x4, x5, x6 | 
|  |  | 
|  | adr_l	x8, vectors			// load VBAR_EL1 with virtual | 
|  | msr	vbar_el1, x8			// vector table address | 
|  | isb | 
|  |  | 
|  | stp	x29, x30, [sp, #-16]! | 
|  | mov	x29, sp | 
|  |  | 
|  | str_l	x21, __fdt_pointer, x5		// Save FDT pointer | 
|  |  | 
|  | ldr_l	x4, kimage_vaddr		// Save the offset between | 
|  | sub	x4, x4, x0			// the kernel virtual and | 
|  | str_l	x4, kimage_voffset, x5		// physical mappings | 
|  |  | 
|  | // Clear BSS | 
|  | adr_l	x0, __bss_start | 
|  | mov	x1, xzr | 
|  | adr_l	x2, __bss_stop | 
|  | sub	x2, x2, x0 | 
|  | bl	__pi_memset | 
|  | dsb	ishst				// Make zero page visible to PTW | 
|  |  | 
|  | #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) | 
|  | bl	kasan_early_init | 
|  | #endif | 
|  | mov	x0, x21				// pass FDT address in x0 | 
|  | bl	early_fdt_map			// Try mapping the FDT early | 
|  | bl	init_feature_override		// Parse cpu feature overrides | 
|  | #ifdef CONFIG_RANDOMIZE_BASE | 
|  | tst	x23, ~(MIN_KIMG_ALIGN - 1)	// already running randomized? | 
|  | b.ne	0f | 
|  | bl	kaslr_early_init		// parse FDT for KASLR options | 
|  | cbz	x0, 0f				// KASLR disabled? just proceed | 
|  | orr	x23, x23, x0			// record KASLR offset | 
|  | ldp	x29, x30, [sp], #16		// we must enable KASLR, return | 
|  | ret					// to __primary_switch() | 
|  | 0: | 
|  | #endif | 
|  | bl	switch_to_vhe			// Prefer VHE if possible | 
|  | ldp	x29, x30, [sp], #16 | 
|  | bl	start_kernel | 
|  | ASM_BUG() | 
|  | SYM_FUNC_END(__primary_switched) | 
|  |  | 
|  | .pushsection ".rodata", "a" | 
|  | SYM_DATA_START(kimage_vaddr) | 
|  | .quad		_text | 
|  | SYM_DATA_END(kimage_vaddr) | 
|  | EXPORT_SYMBOL(kimage_vaddr) | 
|  | .popsection | 
|  |  | 
|  | /* | 
|  | * end early head section, begin head code that is also used for | 
|  | * hotplug and needs to have the same protections as the text region | 
|  | */ | 
|  | .section ".idmap.text","awx" | 
|  |  | 
|  | /* | 
|  | * Starting from EL2 or EL1, configure the CPU to execute at the highest | 
|  | * reachable EL supported by the kernel in a chosen default state. If dropping | 
|  | * from EL2 to EL1, configure EL2 before configuring EL1. | 
|  | * | 
|  | * Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if | 
|  | * SCTLR_ELx.EOS is clear), we place an ISB prior to ERET. | 
|  | * | 
|  | * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if | 
|  | * booted in EL1 or EL2 respectively. | 
|  | */ | 
|  | SYM_FUNC_START(init_kernel_el) | 
|  | mrs	x0, CurrentEL | 
|  | cmp	x0, #CurrentEL_EL2 | 
|  | b.eq	init_el2 | 
|  |  | 
|  | SYM_INNER_LABEL(init_el1, SYM_L_LOCAL) | 
|  | mov_q	x0, INIT_SCTLR_EL1_MMU_OFF | 
|  | msr	sctlr_el1, x0 | 
|  | isb | 
|  | mov_q	x0, INIT_PSTATE_EL1 | 
|  | msr	spsr_el1, x0 | 
|  | msr	elr_el1, lr | 
|  | mov	w0, #BOOT_CPU_MODE_EL1 | 
|  | eret | 
|  |  | 
|  | SYM_INNER_LABEL(init_el2, SYM_L_LOCAL) | 
|  | mov_q	x0, HCR_HOST_NVHE_FLAGS | 
|  | msr	hcr_el2, x0 | 
|  | isb | 
|  |  | 
|  | init_el2_state | 
|  |  | 
|  | /* Hypervisor stub */ | 
|  | adr_l	x0, __hyp_stub_vectors | 
|  | msr	vbar_el2, x0 | 
|  | isb | 
|  |  | 
|  | /* | 
|  | * Fruity CPUs seem to have HCR_EL2.E2H set to RES1, | 
|  | * making it impossible to start in nVHE mode. Is that | 
|  | * compliant with the architecture? Absolutely not! | 
|  | */ | 
|  | mrs	x0, hcr_el2 | 
|  | and	x0, x0, #HCR_E2H | 
|  | cbz	x0, 1f | 
|  |  | 
|  | /* Switching to VHE requires a sane SCTLR_EL1 as a start */ | 
|  | mov_q	x0, INIT_SCTLR_EL1_MMU_OFF | 
|  | msr_s	SYS_SCTLR_EL12, x0 | 
|  |  | 
|  | /* | 
|  | * Force an eret into a helper "function", and let it return | 
|  | * to our original caller... This makes sure that we have | 
|  | * initialised the basic PSTATE state. | 
|  | */ | 
|  | mov	x0, #INIT_PSTATE_EL2 | 
|  | msr	spsr_el1, x0 | 
|  | adr	x0, __cpu_stick_to_vhe | 
|  | msr	elr_el1, x0 | 
|  | eret | 
|  |  | 
|  | 1: | 
|  | mov_q	x0, INIT_SCTLR_EL1_MMU_OFF | 
|  | msr	sctlr_el1, x0 | 
|  |  | 
|  | msr	elr_el2, lr | 
|  | mov	w0, #BOOT_CPU_MODE_EL2 | 
|  | eret | 
|  |  | 
|  | __cpu_stick_to_vhe: | 
|  | mov	x0, #HVC_VHE_RESTART | 
|  | hvc	#0 | 
|  | mov	x0, #BOOT_CPU_MODE_EL2 | 
|  | ret | 
|  | SYM_FUNC_END(init_kernel_el) | 
|  |  | 
|  | /* | 
|  | * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed | 
|  | * in w0. See arch/arm64/include/asm/virt.h for more info. | 
|  | */ | 
|  | SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag) | 
|  | adr_l	x1, __boot_cpu_mode | 
|  | cmp	w0, #BOOT_CPU_MODE_EL2 | 
|  | b.ne	1f | 
|  | add	x1, x1, #4 | 
|  | 1:	str	w0, [x1]			// Save CPU boot mode | 
|  | dmb	sy | 
|  | dc	ivac, x1			// Invalidate potentially stale cache line | 
|  | ret | 
|  | SYM_FUNC_END(set_cpu_boot_mode_flag) | 
|  |  | 
|  | /* | 
|  | * These values are written with the MMU off, but read with the MMU on. | 
|  | * Writers will invalidate the corresponding address, discarding up to a | 
|  | * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures | 
|  | * sufficient alignment that the CWG doesn't overlap another section. | 
|  | */ | 
|  | .pushsection ".mmuoff.data.write", "aw" | 
|  | /* | 
|  | * We need to find out the CPU boot mode long after boot, so we need to | 
|  | * store it in a writable variable. | 
|  | * | 
|  | * This is not in .bss, because we set it sufficiently early that the boot-time | 
|  | * zeroing of .bss would clobber it. | 
|  | */ | 
|  | SYM_DATA_START(__boot_cpu_mode) | 
|  | .long	BOOT_CPU_MODE_EL2 | 
|  | .long	BOOT_CPU_MODE_EL1 | 
|  | SYM_DATA_END(__boot_cpu_mode) | 
|  | /* | 
|  | * The booting CPU updates the failed status @__early_cpu_boot_status, | 
|  | * with MMU turned off. | 
|  | */ | 
|  | SYM_DATA_START(__early_cpu_boot_status) | 
|  | .quad 	0 | 
|  | SYM_DATA_END(__early_cpu_boot_status) | 
|  |  | 
|  | .popsection | 
|  |  | 
|  | /* | 
|  | * This provides a "holding pen" for platforms to hold all secondary | 
|  | * cores are held until we're ready for them to initialise. | 
|  | */ | 
|  | SYM_FUNC_START(secondary_holding_pen) | 
|  | bl	init_kernel_el			// w0=cpu_boot_mode | 
|  | bl	set_cpu_boot_mode_flag | 
|  | mrs	x0, mpidr_el1 | 
|  | mov_q	x1, MPIDR_HWID_BITMASK | 
|  | and	x0, x0, x1 | 
|  | adr_l	x3, secondary_holding_pen_release | 
|  | pen:	ldr	x4, [x3] | 
|  | cmp	x4, x0 | 
|  | b.eq	secondary_startup | 
|  | wfe | 
|  | b	pen | 
|  | SYM_FUNC_END(secondary_holding_pen) | 
|  |  | 
|  | /* | 
|  | * Secondary entry point that jumps straight into the kernel. Only to | 
|  | * be used where CPUs are brought online dynamically by the kernel. | 
|  | */ | 
|  | SYM_FUNC_START(secondary_entry) | 
|  | bl	init_kernel_el			// w0=cpu_boot_mode | 
|  | bl	set_cpu_boot_mode_flag | 
|  | b	secondary_startup | 
|  | SYM_FUNC_END(secondary_entry) | 
|  |  | 
|  | SYM_FUNC_START_LOCAL(secondary_startup) | 
|  | /* | 
|  | * Common entry point for secondary CPUs. | 
|  | */ | 
|  | bl	switch_to_vhe | 
|  | bl	__cpu_secondary_check52bitva | 
|  | bl	__cpu_setup			// initialise processor | 
|  | adrp	x1, swapper_pg_dir | 
|  | bl	__enable_mmu | 
|  | ldr	x8, =__secondary_switched | 
|  | br	x8 | 
|  | SYM_FUNC_END(secondary_startup) | 
|  |  | 
|  | SYM_FUNC_START_LOCAL(__secondary_switched) | 
|  | adr_l	x5, vectors | 
|  | msr	vbar_el1, x5 | 
|  | isb | 
|  |  | 
|  | adr_l	x0, secondary_data | 
|  | ldr	x2, [x0, #CPU_BOOT_TASK] | 
|  | cbz	x2, __secondary_too_slow | 
|  |  | 
|  | init_cpu_task x2, x1, x3 | 
|  |  | 
|  | #ifdef CONFIG_ARM64_PTR_AUTH | 
|  | ptrauth_keys_init_cpu x2, x3, x4, x5 | 
|  | #endif | 
|  |  | 
|  | bl	secondary_start_kernel | 
|  | ASM_BUG() | 
|  | SYM_FUNC_END(__secondary_switched) | 
|  |  | 
|  | SYM_FUNC_START_LOCAL(__secondary_too_slow) | 
|  | wfe | 
|  | wfi | 
|  | b	__secondary_too_slow | 
|  | SYM_FUNC_END(__secondary_too_slow) | 
|  |  | 
|  | /* | 
|  | * The booting CPU updates the failed status @__early_cpu_boot_status, | 
|  | * with MMU turned off. | 
|  | * | 
|  | * update_early_cpu_boot_status tmp, status | 
|  | *  - Corrupts tmp1, tmp2 | 
|  | *  - Writes 'status' to __early_cpu_boot_status and makes sure | 
|  | *    it is committed to memory. | 
|  | */ | 
|  |  | 
|  | .macro	update_early_cpu_boot_status status, tmp1, tmp2 | 
|  | mov	\tmp2, #\status | 
|  | adr_l	\tmp1, __early_cpu_boot_status | 
|  | str	\tmp2, [\tmp1] | 
|  | dmb	sy | 
|  | dc	ivac, \tmp1			// Invalidate potentially stale cache line | 
|  | .endm | 
|  |  | 
|  | /* | 
|  | * Enable the MMU. | 
|  | * | 
|  | *  x0  = SCTLR_EL1 value for turning on the MMU. | 
|  | *  x1  = TTBR1_EL1 value | 
|  | * | 
|  | * Returns to the caller via x30/lr. This requires the caller to be covered | 
|  | * by the .idmap.text section. | 
|  | * | 
|  | * Checks if the selected granule size is supported by the CPU. | 
|  | * If it isn't, park the CPU | 
|  | */ | 
|  | SYM_FUNC_START(__enable_mmu) | 
|  | mrs	x2, ID_AA64MMFR0_EL1 | 
|  | ubfx	x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4 | 
|  | cmp     x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MIN | 
|  | b.lt    __no_granule_support | 
|  | cmp     x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MAX | 
|  | b.gt    __no_granule_support | 
|  | update_early_cpu_boot_status 0, x2, x3 | 
|  | adrp	x2, idmap_pg_dir | 
|  | phys_to_ttbr x1, x1 | 
|  | phys_to_ttbr x2, x2 | 
|  | msr	ttbr0_el1, x2			// load TTBR0 | 
|  | offset_ttbr1 x1, x3 | 
|  | msr	ttbr1_el1, x1			// load TTBR1 | 
|  | isb | 
|  |  | 
|  | set_sctlr_el1	x0 | 
|  |  | 
|  | ret | 
|  | SYM_FUNC_END(__enable_mmu) | 
|  |  | 
|  | SYM_FUNC_START(__cpu_secondary_check52bitva) | 
|  | #ifdef CONFIG_ARM64_VA_BITS_52 | 
|  | ldr_l	x0, vabits_actual | 
|  | cmp	x0, #52 | 
|  | b.ne	2f | 
|  |  | 
|  | mrs_s	x0, SYS_ID_AA64MMFR2_EL1 | 
|  | and	x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT) | 
|  | cbnz	x0, 2f | 
|  |  | 
|  | update_early_cpu_boot_status \ | 
|  | CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1 | 
|  | 1:	wfe | 
|  | wfi | 
|  | b	1b | 
|  |  | 
|  | #endif | 
|  | 2:	ret | 
|  | SYM_FUNC_END(__cpu_secondary_check52bitva) | 
|  |  | 
|  | SYM_FUNC_START_LOCAL(__no_granule_support) | 
|  | /* Indicate that this CPU can't boot and is stuck in the kernel */ | 
|  | update_early_cpu_boot_status \ | 
|  | CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2 | 
|  | 1: | 
|  | wfe | 
|  | wfi | 
|  | b	1b | 
|  | SYM_FUNC_END(__no_granule_support) | 
|  |  | 
|  | #ifdef CONFIG_RELOCATABLE | 
|  | SYM_FUNC_START_LOCAL(__relocate_kernel) | 
|  | /* | 
|  | * Iterate over each entry in the relocation table, and apply the | 
|  | * relocations in place. | 
|  | */ | 
|  | ldr	w9, =__rela_offset		// offset to reloc table | 
|  | ldr	w10, =__rela_size		// size of reloc table | 
|  |  | 
|  | mov_q	x11, KIMAGE_VADDR		// default virtual offset | 
|  | add	x11, x11, x23			// actual virtual offset | 
|  | add	x9, x9, x11			// __va(.rela) | 
|  | add	x10, x9, x10			// __va(.rela) + sizeof(.rela) | 
|  |  | 
|  | 0:	cmp	x9, x10 | 
|  | b.hs	1f | 
|  | ldp	x12, x13, [x9], #24 | 
|  | ldr	x14, [x9, #-8] | 
|  | cmp	w13, #R_AARCH64_RELATIVE | 
|  | b.ne	0b | 
|  | add	x14, x14, x23			// relocate | 
|  | str	x14, [x12, x23] | 
|  | b	0b | 
|  |  | 
|  | 1: | 
|  | #ifdef CONFIG_RELR | 
|  | /* | 
|  | * Apply RELR relocations. | 
|  | * | 
|  | * RELR is a compressed format for storing relative relocations. The | 
|  | * encoded sequence of entries looks like: | 
|  | * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] | 
|  | * | 
|  | * i.e. start with an address, followed by any number of bitmaps. The | 
|  | * address entry encodes 1 relocation. The subsequent bitmap entries | 
|  | * encode up to 63 relocations each, at subsequent offsets following | 
|  | * the last address entry. | 
|  | * | 
|  | * The bitmap entries must have 1 in the least significant bit. The | 
|  | * assumption here is that an address cannot have 1 in lsb. Odd | 
|  | * addresses are not supported. Any odd addresses are stored in the RELA | 
|  | * section, which is handled above. | 
|  | * | 
|  | * Excluding the least significant bit in the bitmap, each non-zero | 
|  | * bit in the bitmap represents a relocation to be applied to | 
|  | * a corresponding machine word that follows the base address | 
|  | * word. The second least significant bit represents the machine | 
|  | * word immediately following the initial address, and each bit | 
|  | * that follows represents the next word, in linear order. As such, | 
|  | * a single bitmap can encode up to 63 relocations in a 64-bit object. | 
|  | * | 
|  | * In this implementation we store the address of the next RELR table | 
|  | * entry in x9, the address being relocated by the current address or | 
|  | * bitmap entry in x13 and the address being relocated by the current | 
|  | * bit in x14. | 
|  | * | 
|  | * Because addends are stored in place in the binary, RELR relocations | 
|  | * cannot be applied idempotently. We use x24 to keep track of the | 
|  | * currently applied displacement so that we can correctly relocate if | 
|  | * __relocate_kernel is called twice with non-zero displacements (i.e. | 
|  | * if there is both a physical misalignment and a KASLR displacement). | 
|  | */ | 
|  | ldr	w9, =__relr_offset		// offset to reloc table | 
|  | ldr	w10, =__relr_size		// size of reloc table | 
|  | add	x9, x9, x11			// __va(.relr) | 
|  | add	x10, x9, x10			// __va(.relr) + sizeof(.relr) | 
|  |  | 
|  | sub	x15, x23, x24			// delta from previous offset | 
|  | cbz	x15, 7f				// nothing to do if unchanged | 
|  | mov	x24, x23			// save new offset | 
|  |  | 
|  | 2:	cmp	x9, x10 | 
|  | b.hs	7f | 
|  | ldr	x11, [x9], #8 | 
|  | tbnz	x11, #0, 3f			// branch to handle bitmaps | 
|  | add	x13, x11, x23 | 
|  | ldr	x12, [x13]			// relocate address entry | 
|  | add	x12, x12, x15 | 
|  | str	x12, [x13], #8			// adjust to start of bitmap | 
|  | b	2b | 
|  |  | 
|  | 3:	mov	x14, x13 | 
|  | 4:	lsr	x11, x11, #1 | 
|  | cbz	x11, 6f | 
|  | tbz	x11, #0, 5f			// skip bit if not set | 
|  | ldr	x12, [x14]			// relocate bit | 
|  | add	x12, x12, x15 | 
|  | str	x12, [x14] | 
|  |  | 
|  | 5:	add	x14, x14, #8			// move to next bit's address | 
|  | b	4b | 
|  |  | 
|  | 6:	/* | 
|  | * Move to the next bitmap's address. 8 is the word size, and 63 is the | 
|  | * number of significant bits in a bitmap entry. | 
|  | */ | 
|  | add	x13, x13, #(8 * 63) | 
|  | b	2b | 
|  |  | 
|  | 7: | 
|  | #endif | 
|  | ret | 
|  |  | 
|  | SYM_FUNC_END(__relocate_kernel) | 
|  | #endif | 
|  |  | 
|  | SYM_FUNC_START_LOCAL(__primary_switch) | 
|  | #ifdef CONFIG_RANDOMIZE_BASE | 
|  | mov	x19, x0				// preserve new SCTLR_EL1 value | 
|  | mrs	x20, sctlr_el1			// preserve old SCTLR_EL1 value | 
|  | #endif | 
|  |  | 
|  | adrp	x1, init_pg_dir | 
|  | bl	__enable_mmu | 
|  | #ifdef CONFIG_RELOCATABLE | 
|  | #ifdef CONFIG_RELR | 
|  | mov	x24, #0				// no RELR displacement yet | 
|  | #endif | 
|  | bl	__relocate_kernel | 
|  | #ifdef CONFIG_RANDOMIZE_BASE | 
|  | ldr	x8, =__primary_switched | 
|  | adrp	x0, __PHYS_OFFSET | 
|  | blr	x8 | 
|  |  | 
|  | /* | 
|  | * If we return here, we have a KASLR displacement in x23 which we need | 
|  | * to take into account by discarding the current kernel mapping and | 
|  | * creating a new one. | 
|  | */ | 
|  | pre_disable_mmu_workaround | 
|  | msr	sctlr_el1, x20			// disable the MMU | 
|  | isb | 
|  | bl	__create_page_tables		// recreate kernel mapping | 
|  |  | 
|  | tlbi	vmalle1				// Remove any stale TLB entries | 
|  | dsb	nsh | 
|  | isb | 
|  |  | 
|  | set_sctlr_el1	x19			// re-enable the MMU | 
|  |  | 
|  | bl	__relocate_kernel | 
|  | #endif | 
|  | #endif | 
|  | ldr	x8, =__primary_switched | 
|  | adrp	x0, __PHYS_OFFSET | 
|  | br	x8 | 
|  | SYM_FUNC_END(__primary_switch) |