|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2017 - Cambridge Greys Ltd | 
|  | * Copyright (C) 2011 - 2014 Cisco Systems Inc | 
|  | * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) | 
|  | * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: | 
|  | *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar | 
|  | */ | 
|  |  | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <as-layout.h> | 
|  | #include <kern_util.h> | 
|  | #include <os.h> | 
|  | #include <irq_user.h> | 
|  | #include <irq_kern.h> | 
|  | #include <linux/time-internal.h> | 
|  |  | 
|  |  | 
|  | extern void free_irqs(void); | 
|  |  | 
|  | /* When epoll triggers we do not know why it did so | 
|  | * we can also have different IRQs for read and write. | 
|  | * This is why we keep a small irq_reg array for each fd - | 
|  | * one entry per IRQ type | 
|  | */ | 
|  | struct irq_reg { | 
|  | void *id; | 
|  | int irq; | 
|  | /* it's cheaper to store this than to query it */ | 
|  | int events; | 
|  | bool active; | 
|  | bool pending; | 
|  | bool wakeup; | 
|  | #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT | 
|  | bool pending_on_resume; | 
|  | void (*timetravel_handler)(int, int, void *, | 
|  | struct time_travel_event *); | 
|  | struct time_travel_event event; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct irq_entry { | 
|  | struct list_head list; | 
|  | int fd; | 
|  | struct irq_reg reg[NUM_IRQ_TYPES]; | 
|  | bool suspended; | 
|  | bool sigio_workaround; | 
|  | }; | 
|  |  | 
|  | static DEFINE_SPINLOCK(irq_lock); | 
|  | static LIST_HEAD(active_fds); | 
|  | static DECLARE_BITMAP(irqs_allocated, UM_LAST_SIGNAL_IRQ); | 
|  | static bool irqs_suspended; | 
|  |  | 
|  | static void irq_io_loop(struct irq_reg *irq, struct uml_pt_regs *regs) | 
|  | { | 
|  | /* | 
|  | * irq->active guards against reentry | 
|  | * irq->pending accumulates pending requests | 
|  | * if pending is raised the irq_handler is re-run | 
|  | * until pending is cleared | 
|  | */ | 
|  | if (irq->active) { | 
|  | irq->active = false; | 
|  |  | 
|  | do { | 
|  | irq->pending = false; | 
|  | do_IRQ(irq->irq, regs); | 
|  | } while (irq->pending); | 
|  |  | 
|  | irq->active = true; | 
|  | } else { | 
|  | irq->pending = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT | 
|  | static void irq_event_handler(struct time_travel_event *ev) | 
|  | { | 
|  | struct irq_reg *reg = container_of(ev, struct irq_reg, event); | 
|  |  | 
|  | /* do nothing if suspended - just to cause a wakeup */ | 
|  | if (irqs_suspended) | 
|  | return; | 
|  |  | 
|  | generic_handle_irq(reg->irq); | 
|  | } | 
|  |  | 
|  | static bool irq_do_timetravel_handler(struct irq_entry *entry, | 
|  | enum um_irq_type t) | 
|  | { | 
|  | struct irq_reg *reg = &entry->reg[t]; | 
|  |  | 
|  | if (!reg->timetravel_handler) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Handle all messages - we might get multiple even while | 
|  | * interrupts are already suspended, due to suspend order | 
|  | * etc. Note that time_travel_add_irq_event() will not add | 
|  | * an event twice, if it's pending already "first wins". | 
|  | */ | 
|  | reg->timetravel_handler(reg->irq, entry->fd, reg->id, ®->event); | 
|  |  | 
|  | if (!reg->event.pending) | 
|  | return false; | 
|  |  | 
|  | if (irqs_suspended) | 
|  | reg->pending_on_resume = true; | 
|  | return true; | 
|  | } | 
|  | #else | 
|  | static bool irq_do_timetravel_handler(struct irq_entry *entry, | 
|  | enum um_irq_type t) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void sigio_reg_handler(int idx, struct irq_entry *entry, enum um_irq_type t, | 
|  | struct uml_pt_regs *regs, | 
|  | bool timetravel_handlers_only) | 
|  | { | 
|  | struct irq_reg *reg = &entry->reg[t]; | 
|  |  | 
|  | if (!reg->events) | 
|  | return; | 
|  |  | 
|  | if (os_epoll_triggered(idx, reg->events) <= 0) | 
|  | return; | 
|  |  | 
|  | if (irq_do_timetravel_handler(entry, t)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If we're called to only run time-travel handlers then don't | 
|  | * actually proceed but mark sigio as pending (if applicable). | 
|  | * For suspend/resume, timetravel_handlers_only may be true | 
|  | * despite time-travel not being configured and used. | 
|  | */ | 
|  | if (timetravel_handlers_only) { | 
|  | #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT | 
|  | mark_sigio_pending(); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | irq_io_loop(reg, regs); | 
|  | } | 
|  |  | 
|  | static void _sigio_handler(struct uml_pt_regs *regs, | 
|  | bool timetravel_handlers_only) | 
|  | { | 
|  | struct irq_entry *irq_entry; | 
|  | int n, i; | 
|  |  | 
|  | if (timetravel_handlers_only && !um_irq_timetravel_handler_used()) | 
|  | return; | 
|  |  | 
|  | while (1) { | 
|  | /* This is now lockless - epoll keeps back-referencesto the irqs | 
|  | * which have trigger it so there is no need to walk the irq | 
|  | * list and lock it every time. We avoid locking by turning off | 
|  | * IO for a specific fd by executing os_del_epoll_fd(fd) before | 
|  | * we do any changes to the actual data structures | 
|  | */ | 
|  | n = os_waiting_for_events_epoll(); | 
|  |  | 
|  | if (n <= 0) { | 
|  | if (n == -EINTR) | 
|  | continue; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < n ; i++) { | 
|  | enum um_irq_type t; | 
|  |  | 
|  | irq_entry = os_epoll_get_data_pointer(i); | 
|  |  | 
|  | for (t = 0; t < NUM_IRQ_TYPES; t++) | 
|  | sigio_reg_handler(i, irq_entry, t, regs, | 
|  | timetravel_handlers_only); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!timetravel_handlers_only) | 
|  | free_irqs(); | 
|  | } | 
|  |  | 
|  | void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs) | 
|  | { | 
|  | _sigio_handler(regs, irqs_suspended); | 
|  | } | 
|  |  | 
|  | static struct irq_entry *get_irq_entry_by_fd(int fd) | 
|  | { | 
|  | struct irq_entry *walk; | 
|  |  | 
|  | lockdep_assert_held(&irq_lock); | 
|  |  | 
|  | list_for_each_entry(walk, &active_fds, list) { | 
|  | if (walk->fd == fd) | 
|  | return walk; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void free_irq_entry(struct irq_entry *to_free, bool remove) | 
|  | { | 
|  | if (!to_free) | 
|  | return; | 
|  |  | 
|  | if (remove) | 
|  | os_del_epoll_fd(to_free->fd); | 
|  | list_del(&to_free->list); | 
|  | kfree(to_free); | 
|  | } | 
|  |  | 
|  | static bool update_irq_entry(struct irq_entry *entry) | 
|  | { | 
|  | enum um_irq_type i; | 
|  | int events = 0; | 
|  |  | 
|  | for (i = 0; i < NUM_IRQ_TYPES; i++) | 
|  | events |= entry->reg[i].events; | 
|  |  | 
|  | if (events) { | 
|  | /* will modify (instead of add) if needed */ | 
|  | os_add_epoll_fd(events, entry->fd, entry); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | os_del_epoll_fd(entry->fd); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void update_or_free_irq_entry(struct irq_entry *entry) | 
|  | { | 
|  | if (!update_irq_entry(entry)) | 
|  | free_irq_entry(entry, false); | 
|  | } | 
|  |  | 
|  | static int activate_fd(int irq, int fd, enum um_irq_type type, void *dev_id, | 
|  | void (*timetravel_handler)(int, int, void *, | 
|  | struct time_travel_event *)) | 
|  | { | 
|  | struct irq_entry *irq_entry; | 
|  | int err, events = os_event_mask(type); | 
|  | unsigned long flags; | 
|  |  | 
|  | err = os_set_fd_async(fd); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | spin_lock_irqsave(&irq_lock, flags); | 
|  | irq_entry = get_irq_entry_by_fd(fd); | 
|  | if (irq_entry) { | 
|  | /* cannot register the same FD twice with the same type */ | 
|  | if (WARN_ON(irq_entry->reg[type].events)) { | 
|  | err = -EALREADY; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* temporarily disable to avoid IRQ-side locking */ | 
|  | os_del_epoll_fd(fd); | 
|  | } else { | 
|  | irq_entry = kzalloc(sizeof(*irq_entry), GFP_ATOMIC); | 
|  | if (!irq_entry) { | 
|  | err = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  | irq_entry->fd = fd; | 
|  | list_add_tail(&irq_entry->list, &active_fds); | 
|  | maybe_sigio_broken(fd); | 
|  | } | 
|  |  | 
|  | irq_entry->reg[type].id = dev_id; | 
|  | irq_entry->reg[type].irq = irq; | 
|  | irq_entry->reg[type].active = true; | 
|  | irq_entry->reg[type].events = events; | 
|  |  | 
|  | #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT | 
|  | if (um_irq_timetravel_handler_used()) { | 
|  | irq_entry->reg[type].timetravel_handler = timetravel_handler; | 
|  | irq_entry->reg[type].event.fn = irq_event_handler; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | WARN_ON(!update_irq_entry(irq_entry)); | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove the entry or entries for a specific FD, if you | 
|  | * don't want to remove all the possible entries then use | 
|  | * um_free_irq() or deactivate_fd() instead. | 
|  | */ | 
|  | void free_irq_by_fd(int fd) | 
|  | { | 
|  | struct irq_entry *to_free; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&irq_lock, flags); | 
|  | to_free = get_irq_entry_by_fd(fd); | 
|  | free_irq_entry(to_free, true); | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(free_irq_by_fd); | 
|  |  | 
|  | static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) | 
|  | { | 
|  | struct irq_entry *entry; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&irq_lock, flags); | 
|  | list_for_each_entry(entry, &active_fds, list) { | 
|  | enum um_irq_type i; | 
|  |  | 
|  | for (i = 0; i < NUM_IRQ_TYPES; i++) { | 
|  | struct irq_reg *reg = &entry->reg[i]; | 
|  |  | 
|  | if (!reg->events) | 
|  | continue; | 
|  | if (reg->irq != irq) | 
|  | continue; | 
|  | if (reg->id != dev) | 
|  | continue; | 
|  |  | 
|  | os_del_epoll_fd(entry->fd); | 
|  | reg->events = 0; | 
|  | update_or_free_irq_entry(entry); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  | } | 
|  |  | 
|  | void deactivate_fd(int fd, int irqnum) | 
|  | { | 
|  | struct irq_entry *entry; | 
|  | unsigned long flags; | 
|  | enum um_irq_type i; | 
|  |  | 
|  | os_del_epoll_fd(fd); | 
|  |  | 
|  | spin_lock_irqsave(&irq_lock, flags); | 
|  | entry = get_irq_entry_by_fd(fd); | 
|  | if (!entry) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < NUM_IRQ_TYPES; i++) { | 
|  | if (!entry->reg[i].events) | 
|  | continue; | 
|  | if (entry->reg[i].irq == irqnum) | 
|  | entry->reg[i].events = 0; | 
|  | } | 
|  |  | 
|  | update_or_free_irq_entry(entry); | 
|  | out: | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  |  | 
|  | ignore_sigio_fd(fd); | 
|  | } | 
|  | EXPORT_SYMBOL(deactivate_fd); | 
|  |  | 
|  | /* | 
|  | * Called just before shutdown in order to provide a clean exec | 
|  | * environment in case the system is rebooting.  No locking because | 
|  | * that would cause a pointless shutdown hang if something hadn't | 
|  | * released the lock. | 
|  | */ | 
|  | int deactivate_all_fds(void) | 
|  | { | 
|  | struct irq_entry *entry; | 
|  |  | 
|  | /* Stop IO. The IRQ loop has no lock so this is our | 
|  | * only way of making sure we are safe to dispose | 
|  | * of all IRQ handlers | 
|  | */ | 
|  | os_set_ioignore(); | 
|  |  | 
|  | /* we can no longer call kfree() here so just deactivate */ | 
|  | list_for_each_entry(entry, &active_fds, list) | 
|  | os_del_epoll_fd(entry->fd); | 
|  | os_close_epoll_fd(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_IRQ handles all normal device IRQs (the special | 
|  | * SMP cross-CPU interrupts have their own specific | 
|  | * handlers). | 
|  | */ | 
|  | unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) | 
|  | { | 
|  | struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); | 
|  | irq_enter(); | 
|  | generic_handle_irq(irq); | 
|  | irq_exit(); | 
|  | set_irq_regs(old_regs); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void um_free_irq(int irq, void *dev) | 
|  | { | 
|  | if (WARN(irq < 0 || irq > UM_LAST_SIGNAL_IRQ, | 
|  | "freeing invalid irq %d", irq)) | 
|  | return; | 
|  |  | 
|  | free_irq_by_irq_and_dev(irq, dev); | 
|  | free_irq(irq, dev); | 
|  | clear_bit(irq, irqs_allocated); | 
|  | } | 
|  | EXPORT_SYMBOL(um_free_irq); | 
|  |  | 
|  | static int | 
|  | _um_request_irq(int irq, int fd, enum um_irq_type type, | 
|  | irq_handler_t handler, unsigned long irqflags, | 
|  | const char *devname, void *dev_id, | 
|  | void (*timetravel_handler)(int, int, void *, | 
|  | struct time_travel_event *)) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (irq == UM_IRQ_ALLOC) { | 
|  | int i; | 
|  |  | 
|  | for (i = UM_FIRST_DYN_IRQ; i < NR_IRQS; i++) { | 
|  | if (!test_and_set_bit(i, irqs_allocated)) { | 
|  | irq = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (irq < 0) | 
|  | return -ENOSPC; | 
|  |  | 
|  | if (fd != -1) { | 
|  | err = activate_fd(irq, fd, type, dev_id, timetravel_handler); | 
|  | if (err) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | err = request_irq(irq, handler, irqflags, devname, dev_id); | 
|  | if (err < 0) | 
|  | goto error; | 
|  |  | 
|  | return irq; | 
|  | error: | 
|  | clear_bit(irq, irqs_allocated); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int um_request_irq(int irq, int fd, enum um_irq_type type, | 
|  | irq_handler_t handler, unsigned long irqflags, | 
|  | const char *devname, void *dev_id) | 
|  | { | 
|  | return _um_request_irq(irq, fd, type, handler, irqflags, | 
|  | devname, dev_id, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(um_request_irq); | 
|  |  | 
|  | #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT | 
|  | int um_request_irq_tt(int irq, int fd, enum um_irq_type type, | 
|  | irq_handler_t handler, unsigned long irqflags, | 
|  | const char *devname, void *dev_id, | 
|  | void (*timetravel_handler)(int, int, void *, | 
|  | struct time_travel_event *)) | 
|  | { | 
|  | return _um_request_irq(irq, fd, type, handler, irqflags, | 
|  | devname, dev_id, timetravel_handler); | 
|  | } | 
|  | EXPORT_SYMBOL(um_request_irq_tt); | 
|  |  | 
|  | void sigio_run_timetravel_handlers(void) | 
|  | { | 
|  | _sigio_handler(NULL, true); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | void um_irqs_suspend(void) | 
|  | { | 
|  | struct irq_entry *entry; | 
|  | unsigned long flags; | 
|  |  | 
|  | irqs_suspended = true; | 
|  |  | 
|  | spin_lock_irqsave(&irq_lock, flags); | 
|  | list_for_each_entry(entry, &active_fds, list) { | 
|  | enum um_irq_type t; | 
|  | bool clear = true; | 
|  |  | 
|  | for (t = 0; t < NUM_IRQ_TYPES; t++) { | 
|  | if (!entry->reg[t].events) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * For the SIGIO_WRITE_IRQ, which is used to handle the | 
|  | * SIGIO workaround thread, we need special handling: | 
|  | * enable wake for it itself, but below we tell it about | 
|  | * any FDs that should be suspended. | 
|  | */ | 
|  | if (entry->reg[t].wakeup || | 
|  | entry->reg[t].irq == SIGIO_WRITE_IRQ | 
|  | #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT | 
|  | || entry->reg[t].timetravel_handler | 
|  | #endif | 
|  | ) { | 
|  | clear = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (clear) { | 
|  | entry->suspended = true; | 
|  | os_clear_fd_async(entry->fd); | 
|  | entry->sigio_workaround = | 
|  | !__ignore_sigio_fd(entry->fd); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  | } | 
|  |  | 
|  | void um_irqs_resume(void) | 
|  | { | 
|  | struct irq_entry *entry; | 
|  | unsigned long flags; | 
|  |  | 
|  |  | 
|  | local_irq_save(flags); | 
|  | #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT | 
|  | /* | 
|  | * We don't need to lock anything here since we're in resume | 
|  | * and nothing else is running, but have disabled IRQs so we | 
|  | * don't try anything else with the interrupt list from there. | 
|  | */ | 
|  | list_for_each_entry(entry, &active_fds, list) { | 
|  | enum um_irq_type t; | 
|  |  | 
|  | for (t = 0; t < NUM_IRQ_TYPES; t++) { | 
|  | struct irq_reg *reg = &entry->reg[t]; | 
|  |  | 
|  | if (reg->pending_on_resume) { | 
|  | irq_enter(); | 
|  | generic_handle_irq(reg->irq); | 
|  | irq_exit(); | 
|  | reg->pending_on_resume = false; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | spin_lock(&irq_lock); | 
|  | list_for_each_entry(entry, &active_fds, list) { | 
|  | if (entry->suspended) { | 
|  | int err = os_set_fd_async(entry->fd); | 
|  |  | 
|  | WARN(err < 0, "os_set_fd_async returned %d\n", err); | 
|  | entry->suspended = false; | 
|  |  | 
|  | if (entry->sigio_workaround) { | 
|  | err = __add_sigio_fd(entry->fd); | 
|  | WARN(err < 0, "add_sigio_returned %d\n", err); | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  |  | 
|  | irqs_suspended = false; | 
|  | send_sigio_to_self(); | 
|  | } | 
|  |  | 
|  | static int normal_irq_set_wake(struct irq_data *d, unsigned int on) | 
|  | { | 
|  | struct irq_entry *entry; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&irq_lock, flags); | 
|  | list_for_each_entry(entry, &active_fds, list) { | 
|  | enum um_irq_type t; | 
|  |  | 
|  | for (t = 0; t < NUM_IRQ_TYPES; t++) { | 
|  | if (!entry->reg[t].events) | 
|  | continue; | 
|  |  | 
|  | if (entry->reg[t].irq != d->irq) | 
|  | continue; | 
|  | entry->reg[t].wakeup = on; | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  | unlock: | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | #define normal_irq_set_wake NULL | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * irq_chip must define at least enable/disable and ack when | 
|  | * the edge handler is used. | 
|  | */ | 
|  | static void dummy(struct irq_data *d) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* This is used for everything other than the timer. */ | 
|  | static struct irq_chip normal_irq_type = { | 
|  | .name = "SIGIO", | 
|  | .irq_disable = dummy, | 
|  | .irq_enable = dummy, | 
|  | .irq_ack = dummy, | 
|  | .irq_mask = dummy, | 
|  | .irq_unmask = dummy, | 
|  | .irq_set_wake = normal_irq_set_wake, | 
|  | }; | 
|  |  | 
|  | static struct irq_chip alarm_irq_type = { | 
|  | .name = "SIGALRM", | 
|  | .irq_disable = dummy, | 
|  | .irq_enable = dummy, | 
|  | .irq_ack = dummy, | 
|  | .irq_mask = dummy, | 
|  | .irq_unmask = dummy, | 
|  | }; | 
|  |  | 
|  | void __init init_IRQ(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | irq_set_chip_and_handler(TIMER_IRQ, &alarm_irq_type, handle_edge_irq); | 
|  |  | 
|  | for (i = 1; i < UM_LAST_SIGNAL_IRQ; i++) | 
|  | irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq); | 
|  | /* Initialize EPOLL Loop */ | 
|  | os_setup_epoll(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IRQ stack entry and exit: | 
|  | * | 
|  | * Unlike i386, UML doesn't receive IRQs on the normal kernel stack | 
|  | * and switch over to the IRQ stack after some preparation.  We use | 
|  | * sigaltstack to receive signals on a separate stack from the start. | 
|  | * These two functions make sure the rest of the kernel won't be too | 
|  | * upset by being on a different stack.  The IRQ stack has a | 
|  | * thread_info structure at the bottom so that current et al continue | 
|  | * to work. | 
|  | * | 
|  | * to_irq_stack copies the current task's thread_info to the IRQ stack | 
|  | * thread_info and sets the tasks's stack to point to the IRQ stack. | 
|  | * | 
|  | * from_irq_stack copies the thread_info struct back (flags may have | 
|  | * been modified) and resets the task's stack pointer. | 
|  | * | 
|  | * Tricky bits - | 
|  | * | 
|  | * What happens when two signals race each other?  UML doesn't block | 
|  | * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal | 
|  | * could arrive while a previous one is still setting up the | 
|  | * thread_info. | 
|  | * | 
|  | * There are three cases - | 
|  | *     The first interrupt on the stack - sets up the thread_info and | 
|  | * handles the interrupt | 
|  | *     A nested interrupt interrupting the copying of the thread_info - | 
|  | * can't handle the interrupt, as the stack is in an unknown state | 
|  | *     A nested interrupt not interrupting the copying of the | 
|  | * thread_info - doesn't do any setup, just handles the interrupt | 
|  | * | 
|  | * The first job is to figure out whether we interrupted stack setup. | 
|  | * This is done by xchging the signal mask with thread_info->pending. | 
|  | * If the value that comes back is zero, then there is no setup in | 
|  | * progress, and the interrupt can be handled.  If the value is | 
|  | * non-zero, then there is stack setup in progress.  In order to have | 
|  | * the interrupt handled, we leave our signal in the mask, and it will | 
|  | * be handled by the upper handler after it has set up the stack. | 
|  | * | 
|  | * Next is to figure out whether we are the outer handler or a nested | 
|  | * one.  As part of setting up the stack, thread_info->real_thread is | 
|  | * set to non-NULL (and is reset to NULL on exit).  This is the | 
|  | * nesting indicator.  If it is non-NULL, then the stack is already | 
|  | * set up and the handler can run. | 
|  | */ | 
|  |  | 
|  | static unsigned long pending_mask; | 
|  |  | 
|  | unsigned long to_irq_stack(unsigned long *mask_out) | 
|  | { | 
|  | struct thread_info *ti; | 
|  | unsigned long mask, old; | 
|  | int nested; | 
|  |  | 
|  | mask = xchg(&pending_mask, *mask_out); | 
|  | if (mask != 0) { | 
|  | /* | 
|  | * If any interrupts come in at this point, we want to | 
|  | * make sure that their bits aren't lost by our | 
|  | * putting our bit in.  So, this loop accumulates bits | 
|  | * until xchg returns the same value that we put in. | 
|  | * When that happens, there were no new interrupts, | 
|  | * and pending_mask contains a bit for each interrupt | 
|  | * that came in. | 
|  | */ | 
|  | old = *mask_out; | 
|  | do { | 
|  | old |= mask; | 
|  | mask = xchg(&pending_mask, old); | 
|  | } while (mask != old); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | ti = current_thread_info(); | 
|  | nested = (ti->real_thread != NULL); | 
|  | if (!nested) { | 
|  | struct task_struct *task; | 
|  | struct thread_info *tti; | 
|  |  | 
|  | task = cpu_tasks[ti->cpu].task; | 
|  | tti = task_thread_info(task); | 
|  |  | 
|  | *ti = *tti; | 
|  | ti->real_thread = tti; | 
|  | task->stack = ti; | 
|  | } | 
|  |  | 
|  | mask = xchg(&pending_mask, 0); | 
|  | *mask_out |= mask | nested; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long from_irq_stack(int nested) | 
|  | { | 
|  | struct thread_info *ti, *to; | 
|  | unsigned long mask; | 
|  |  | 
|  | ti = current_thread_info(); | 
|  |  | 
|  | pending_mask = 1; | 
|  |  | 
|  | to = ti->real_thread; | 
|  | current->stack = to; | 
|  | ti->real_thread = NULL; | 
|  | *to = *ti; | 
|  |  | 
|  | mask = xchg(&pending_mask, 0); | 
|  | return mask & ~1; | 
|  | } | 
|  |  |