| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright (c) 2019 Nuvoton Technology corporation. |
| |
| #include <linux/clk.h> |
| #include <linux/device.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/io.h> |
| #include <linux/iio/iio.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/spinlock.h> |
| #include <linux/uaccess.h> |
| #include <linux/reset.h> |
| |
| struct npcm_adc { |
| u32 R05; |
| u32 R15; |
| bool int_status; |
| u32 adc_sample_hz; |
| struct device *dev; |
| void __iomem *regs; |
| struct clk *adc_clk; |
| wait_queue_head_t wq; |
| struct regulator *vref; |
| struct reset_control *reset; |
| /* |
| * Lock to protect the device state during a potential concurrent |
| * read access from userspace. Reading a raw value requires a sequence |
| * of register writes, then a wait for a event and finally a register |
| * read, during which userspace could issue another read request. |
| * This lock protects a read access from ocurring before another one |
| * has finished. |
| */ |
| struct mutex lock; |
| }; |
| |
| /* ADC registers */ |
| #define NPCM_ADCCON 0x00 |
| #define NPCM_ADCDATA 0x04 |
| |
| /* ADCCON Register Bits */ |
| #define NPCM_ADCCON_ADC_INT_EN BIT(21) |
| #define NPCM_ADCCON_REFSEL BIT(19) |
| #define NPCM_ADCCON_ADC_INT_ST BIT(18) |
| #define NPCM_ADCCON_ADC_EN BIT(17) |
| #define NPCM_ADCCON_ADC_RST BIT(16) |
| #define NPCM_ADCCON_ADC_CONV BIT(13) |
| |
| #define NPCM_ADCCON_CH_MASK GENMASK(27, 24) |
| #define NPCM_ADCCON_CH(x) ((x) << 24) |
| #define NPCM_ADCCON_DIV_SHIFT 1 |
| #define NPCM_ADCCON_DIV_MASK GENMASK(8, 1) |
| #define NPCM_ADC_DATA_MASK(x) ((x) & GENMASK(9, 0)) |
| |
| #define NPCM_ADC_ENABLE (NPCM_ADCCON_ADC_EN | NPCM_ADCCON_ADC_INT_EN) |
| |
| /* ADC General Definition */ |
| #define NPCM_RESOLUTION_BITS 10 |
| #define NPCM_INT_VREF_MV 2000 |
| |
| /* FUSE registers */ |
| #define NPCM7XX_FST 0x00 |
| #define NPCM7XX_FADDR 0x04 |
| #define NPCM7XX_FDATA 0x08 |
| #define NPCM7XX_FCFG 0x0C |
| #define NPCM7XX_FCTL 0x14 |
| |
| /* FST Register Bits */ |
| #define NPCM7XX_FST_RDY BIT(0) |
| #define NPCM7XX_FST_RDST BIT(1) |
| |
| /* FADDR Register Bits */ |
| #define NPCM7XX_FADDR_BYTEADDR BIT(0) |
| #define NPCM7XX_FADDR_BYTEADDR_MASK GENMASK(9, 0) |
| |
| /* FADDR Register Bits */ |
| #define NPCM7XX_FDATA_DATA BIT(0) |
| #define NPCM7XX_FDATA_CLEAN_VALUE BIT(1) |
| #define NPCM7XX_FDATA_DATA_MASK GENMASK(7, 0) |
| |
| /* FCTL Register Bits */ |
| #define NPCM7XX_FCTL_RDST BIT(1) |
| |
| /* ADC Calibration Definition */ |
| #define NPCM_INT_1500MV 768 |
| #define NPCM_INT_1000MV 512 |
| #define NPCM_ADC_MIN_VAL 0 |
| #define NPCM_ADC_MAX_VAL 1023 |
| |
| #define FUSE_CALIB_ADDR 24 |
| #define FUSE_CALIB_SIZE 8 |
| #define DATA_CALIB_SIZE 4 |
| #define FUSE_READ_SLEEP 500 |
| #define FUSE_READ_TIMEOUT 1000000 |
| |
| #define NPCM_ADC_CHAN(ch) { \ |
| .type = IIO_VOLTAGE, \ |
| .indexed = 1, \ |
| .channel = ch, \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ |
| .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ |
| BIT(IIO_CHAN_INFO_SAMP_FREQ), \ |
| } |
| |
| static const struct iio_chan_spec npcm_adc_iio_channels[] = { |
| NPCM_ADC_CHAN(0), |
| NPCM_ADC_CHAN(1), |
| NPCM_ADC_CHAN(2), |
| NPCM_ADC_CHAN(3), |
| NPCM_ADC_CHAN(4), |
| NPCM_ADC_CHAN(5), |
| NPCM_ADC_CHAN(6), |
| NPCM_ADC_CHAN(7), |
| }; |
| |
| static void npcm750_fuse_read(struct regmap *fuse_regmap, u32 addr, u8 *data) |
| { |
| u32 val; |
| u32 fstreg; |
| |
| regmap_read_poll_timeout(fuse_regmap, NPCM7XX_FST, fstreg, |
| fstreg & NPCM7XX_FST_RDY, FUSE_READ_SLEEP, |
| FUSE_READ_TIMEOUT); |
| regmap_write_bits(fuse_regmap, NPCM7XX_FST, |
| NPCM7XX_FST_RDST, NPCM7XX_FST_RDST); |
| |
| regmap_write_bits(fuse_regmap, NPCM7XX_FADDR, |
| NPCM7XX_FADDR_BYTEADDR_MASK, addr); |
| regmap_read(fuse_regmap, NPCM7XX_FADDR, &val); |
| regmap_write(fuse_regmap, NPCM7XX_FCTL, NPCM7XX_FCTL_RDST); |
| |
| regmap_read_poll_timeout(fuse_regmap, NPCM7XX_FST, fstreg, |
| fstreg & NPCM7XX_FST_RDY, FUSE_READ_SLEEP, |
| FUSE_READ_TIMEOUT); |
| regmap_write_bits(fuse_regmap, NPCM7XX_FST, |
| NPCM7XX_FST_RDST, NPCM7XX_FST_RDST); |
| |
| regmap_read(fuse_regmap, NPCM7XX_FDATA, &val); |
| *data = (u8)val; |
| |
| regmap_write_bits(fuse_regmap, NPCM7XX_FDATA, NPCM7XX_FDATA_DATA_MASK, |
| NPCM7XX_FDATA_CLEAN_VALUE); |
| } |
| |
| static int npcm750_ECC_to_nibble(u8 ECC, u8 nibble) |
| { |
| u8 nibble_b0 = (nibble >> 0) & BIT(0); |
| u8 nibble_b1 = (nibble >> 1) & BIT(0); |
| u8 nibble_b2 = (nibble >> 2) & BIT(0); |
| u8 nibble_b3 = (nibble >> 3) & BIT(0); |
| u8 tmp_ECC = nibble; |
| |
| tmp_ECC |= (nibble_b0 ^ nibble_b1) << 4 | (nibble_b2 ^ nibble_b3) << 5 | |
| (nibble_b0 ^ nibble_b2) << 6 | (nibble_b1 ^ nibble_b3) << 7; |
| |
| if (tmp_ECC != ECC) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int npcm750_ECC_to_byte(u16 ECC, u8 *Byte) |
| { |
| u8 nibble_L, nibble_H; |
| u8 ECC_L, ECC_H; |
| |
| ECC_H = ECC >> 8; |
| nibble_H = ECC_H & 0x0F; |
| ECC_L = ECC >> 0; |
| nibble_L = ECC_L & 0x0F; |
| |
| if (npcm750_ECC_to_nibble(ECC_H, nibble_H) != 0 || |
| npcm750_ECC_to_nibble(ECC_L, nibble_L) != 0) |
| return -EINVAL; |
| |
| *Byte = nibble_H << 4 | nibble_L << 0; |
| |
| return 0; |
| } |
| |
| static int npcm750_read_nibble_parity(u8 *block_ECC, u8 *ADC_calib) |
| { |
| int i; |
| u16 ECC; |
| |
| for (i = 0; i < DATA_CALIB_SIZE; i++) { |
| memcpy(&ECC, block_ECC + (i * 2), 2); |
| if (npcm750_ECC_to_byte(ECC, &ADC_calib[i]) != 0) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int npcm750_fuse_calibration_read(struct platform_device *pdev, |
| struct npcm_adc *info) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct regmap *fuse_regmap; |
| ssize_t bytes_read = 0; |
| u8 read_buf[8]; |
| u32 ADC_calib; |
| u32 addr = FUSE_CALIB_ADDR; |
| |
| fuse_regmap = syscon_regmap_lookup_by_phandle(np, "syscon"); |
| if (IS_ERR(fuse_regmap)) { |
| dev_warn(&pdev->dev, "Failed to find syscon\n"); |
| return PTR_ERR(fuse_regmap); |
| } |
| |
| while (bytes_read < FUSE_CALIB_SIZE) { |
| npcm750_fuse_read(fuse_regmap, addr, |
| &read_buf[bytes_read]); |
| bytes_read++; |
| addr++; |
| } |
| |
| if (npcm750_read_nibble_parity(read_buf, (u8 *)&ADC_calib)) { |
| dev_warn(info->dev, "FUSE Calibration read failed\n"); |
| return -EINVAL; |
| } |
| |
| info->R05 = ADC_calib & 0xFFFF; |
| info->R15 = ADC_calib >> 16; |
| |
| return 0; |
| } |
| |
| static irqreturn_t npcm_adc_isr(int irq, void *data) |
| { |
| u32 regtemp; |
| struct iio_dev *indio_dev = data; |
| struct npcm_adc *info = iio_priv(indio_dev); |
| |
| regtemp = ioread32(info->regs + NPCM_ADCCON); |
| if (regtemp & NPCM_ADCCON_ADC_INT_ST) { |
| iowrite32(regtemp, info->regs + NPCM_ADCCON); |
| wake_up_interruptible(&info->wq); |
| info->int_status = true; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int npcm_adc_read(struct npcm_adc *info, int *val, u8 channel) |
| { |
| int ret; |
| u32 regtemp; |
| |
| /* Select ADC channel */ |
| regtemp = ioread32(info->regs + NPCM_ADCCON); |
| regtemp &= ~NPCM_ADCCON_CH_MASK; |
| info->int_status = false; |
| iowrite32(regtemp | NPCM_ADCCON_CH(channel) | |
| NPCM_ADCCON_ADC_CONV, info->regs + NPCM_ADCCON); |
| |
| ret = wait_event_interruptible_timeout(info->wq, info->int_status, |
| msecs_to_jiffies(10)); |
| if (ret == 0) { |
| regtemp = ioread32(info->regs + NPCM_ADCCON); |
| if (regtemp & NPCM_ADCCON_ADC_CONV) { |
| /* if conversion failed - reset ADC module */ |
| reset_control_assert(info->reset); |
| msleep(100); |
| reset_control_deassert(info->reset); |
| msleep(100); |
| |
| /* Enable ADC and start conversion module */ |
| iowrite32(NPCM_ADC_ENABLE | NPCM_ADCCON_ADC_CONV, |
| info->regs + NPCM_ADCCON); |
| dev_err(info->dev, "RESET ADC Complete\n"); |
| } |
| return -ETIMEDOUT; |
| } |
| if (ret < 0) |
| return ret; |
| |
| *val = NPCM_ADC_DATA_MASK(ioread32(info->regs + NPCM_ADCDATA)); |
| |
| return 0; |
| } |
| |
| static void npcm_adc_calibration(int *val, struct npcm_adc *info) |
| { |
| int mul_val; |
| int offset_val; |
| |
| mul_val = NPCM_INT_1000MV * (*val - info->R15); |
| if (mul_val < 0) { |
| mul_val = mul_val * -1; |
| offset_val = DIV_ROUND_CLOSEST(mul_val, |
| (info->R15 - info->R05)); |
| *val = NPCM_INT_1500MV - offset_val; |
| } else { |
| offset_val = DIV_ROUND_CLOSEST(mul_val, |
| (info->R15 - info->R05)); |
| *val = NPCM_INT_1500MV + offset_val; |
| } |
| |
| if (*val < NPCM_ADC_MIN_VAL) |
| *val = NPCM_ADC_MIN_VAL; |
| if (*val > NPCM_ADC_MAX_VAL) |
| *val = NPCM_ADC_MAX_VAL; |
| } |
| |
| static int npcm_adc_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, int *val, |
| int *val2, long mask) |
| { |
| int ret; |
| int vref_uv; |
| struct npcm_adc *info = iio_priv(indio_dev); |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_RAW: |
| mutex_lock(&info->lock); |
| ret = npcm_adc_read(info, val, chan->channel); |
| mutex_unlock(&info->lock); |
| if (ret) { |
| dev_err(info->dev, "NPCM ADC read failed\n"); |
| return ret; |
| } |
| |
| if ((info->R05 || info->R15) && IS_ERR(info->vref)) |
| npcm_adc_calibration(val, info); |
| |
| return IIO_VAL_INT; |
| case IIO_CHAN_INFO_SCALE: |
| if (!IS_ERR(info->vref)) { |
| vref_uv = regulator_get_voltage(info->vref); |
| *val = vref_uv / 1000; |
| } else { |
| *val = NPCM_INT_VREF_MV; |
| } |
| *val2 = NPCM_RESOLUTION_BITS; |
| return IIO_VAL_FRACTIONAL_LOG2; |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| *val = info->adc_sample_hz; |
| return IIO_VAL_INT; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static const struct iio_info npcm_adc_iio_info = { |
| .read_raw = &npcm_adc_read_raw, |
| }; |
| |
| static const struct of_device_id npcm_adc_match[] = { |
| { .compatible = "nuvoton,npcm750-adc", }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, npcm_adc_match); |
| |
| static int npcm_adc_probe(struct platform_device *pdev) |
| { |
| int ret; |
| int irq; |
| u32 div; |
| u32 reg_con; |
| struct npcm_adc *info; |
| struct iio_dev *indio_dev; |
| struct device *dev = &pdev->dev; |
| |
| indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*info)); |
| if (!indio_dev) |
| return -ENOMEM; |
| info = iio_priv(indio_dev); |
| |
| mutex_init(&info->lock); |
| |
| info->dev = &pdev->dev; |
| |
| info->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(info->regs)) |
| return PTR_ERR(info->regs); |
| |
| info->reset = devm_reset_control_get(&pdev->dev, NULL); |
| if (IS_ERR(info->reset)) |
| return PTR_ERR(info->reset); |
| |
| info->adc_clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(info->adc_clk)) { |
| dev_warn(&pdev->dev, "ADC clock failed: can't read clk\n"); |
| return PTR_ERR(info->adc_clk); |
| } |
| |
| /* calculate ADC clock sample rate */ |
| reg_con = ioread32(info->regs + NPCM_ADCCON); |
| div = reg_con & NPCM_ADCCON_DIV_MASK; |
| div = div >> NPCM_ADCCON_DIV_SHIFT; |
| info->adc_sample_hz = clk_get_rate(info->adc_clk) / ((div + 1) * 2); |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq <= 0) { |
| ret = -EINVAL; |
| goto err_disable_clk; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, irq, npcm_adc_isr, 0, |
| "NPCM_ADC", indio_dev); |
| if (ret < 0) { |
| dev_err(dev, "failed requesting interrupt\n"); |
| goto err_disable_clk; |
| } |
| |
| reg_con = ioread32(info->regs + NPCM_ADCCON); |
| info->vref = devm_regulator_get_optional(&pdev->dev, "vref"); |
| if (!IS_ERR(info->vref)) { |
| ret = regulator_enable(info->vref); |
| if (ret) { |
| dev_err(&pdev->dev, "Can't enable ADC reference voltage\n"); |
| goto err_disable_clk; |
| } |
| |
| iowrite32(reg_con & ~NPCM_ADCCON_REFSEL, |
| info->regs + NPCM_ADCCON); |
| } else { |
| /* |
| * Any error which is not ENODEV indicates the regulator |
| * has been specified and so is a failure case. |
| */ |
| if (PTR_ERR(info->vref) != -ENODEV) { |
| ret = PTR_ERR(info->vref); |
| goto err_disable_clk; |
| } |
| |
| /* Use internal reference */ |
| iowrite32(reg_con | NPCM_ADCCON_REFSEL, |
| info->regs + NPCM_ADCCON); |
| } |
| |
| npcm750_fuse_calibration_read(pdev, info); |
| init_waitqueue_head(&info->wq); |
| |
| reg_con = ioread32(info->regs + NPCM_ADCCON); |
| reg_con |= NPCM_ADC_ENABLE; |
| |
| /* Enable the ADC Module */ |
| iowrite32(reg_con, info->regs + NPCM_ADCCON); |
| |
| /* Start ADC conversion */ |
| iowrite32(reg_con | NPCM_ADCCON_ADC_CONV, info->regs + NPCM_ADCCON); |
| |
| platform_set_drvdata(pdev, indio_dev); |
| indio_dev->name = dev_name(&pdev->dev); |
| indio_dev->info = &npcm_adc_iio_info; |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| indio_dev->channels = npcm_adc_iio_channels; |
| indio_dev->num_channels = ARRAY_SIZE(npcm_adc_iio_channels); |
| |
| ret = iio_device_register(indio_dev); |
| if (ret) { |
| dev_err(&pdev->dev, "Couldn't register the device.\n"); |
| goto err_iio_register; |
| } |
| |
| pr_info("NPCM ADC driver probed\n"); |
| |
| return 0; |
| |
| err_iio_register: |
| iowrite32(reg_con & ~NPCM_ADCCON_ADC_EN, info->regs + NPCM_ADCCON); |
| if (!IS_ERR(info->vref)) |
| regulator_disable(info->vref); |
| err_disable_clk: |
| clk_disable_unprepare(info->adc_clk); |
| |
| return ret; |
| } |
| |
| static int npcm_adc_remove(struct platform_device *pdev) |
| { |
| struct iio_dev *indio_dev = platform_get_drvdata(pdev); |
| struct npcm_adc *info = iio_priv(indio_dev); |
| u32 regtemp; |
| |
| iio_device_unregister(indio_dev); |
| |
| regtemp = ioread32(info->regs + NPCM_ADCCON); |
| iowrite32(regtemp & ~NPCM_ADCCON_ADC_EN, info->regs + NPCM_ADCCON); |
| if (!IS_ERR(info->vref)) |
| regulator_disable(info->vref); |
| clk_disable_unprepare(info->adc_clk); |
| |
| return 0; |
| } |
| |
| static struct platform_driver npcm_adc_driver = { |
| .probe = npcm_adc_probe, |
| .remove = npcm_adc_remove, |
| .driver = { |
| .name = "npcm_adc", |
| .of_match_table = npcm_adc_match, |
| }, |
| }; |
| |
| module_platform_driver(npcm_adc_driver); |
| |
| MODULE_DESCRIPTION("Nuvoton NPCM ADC Driver"); |
| MODULE_AUTHOR("Tomer Maimon <tomer.maimon@nuvoton.com>"); |
| MODULE_LICENSE("GPL v2"); |