blob: 62c1ef40b51951bf91653b6e6e942bb5a49ac411 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2019 Nuvoton Technology corporation.
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/mfd/syscon.h>
#include <linux/io.h>
#include <linux/iio/iio.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/spinlock.h>
#include <linux/uaccess.h>
#include <linux/reset.h>
struct npcm_adc {
u32 R05;
u32 R15;
bool int_status;
u32 adc_sample_hz;
struct device *dev;
void __iomem *regs;
struct clk *adc_clk;
wait_queue_head_t wq;
struct regulator *vref;
struct reset_control *reset;
/*
* Lock to protect the device state during a potential concurrent
* read access from userspace. Reading a raw value requires a sequence
* of register writes, then a wait for a event and finally a register
* read, during which userspace could issue another read request.
* This lock protects a read access from ocurring before another one
* has finished.
*/
struct mutex lock;
};
/* ADC registers */
#define NPCM_ADCCON 0x00
#define NPCM_ADCDATA 0x04
/* ADCCON Register Bits */
#define NPCM_ADCCON_ADC_INT_EN BIT(21)
#define NPCM_ADCCON_REFSEL BIT(19)
#define NPCM_ADCCON_ADC_INT_ST BIT(18)
#define NPCM_ADCCON_ADC_EN BIT(17)
#define NPCM_ADCCON_ADC_RST BIT(16)
#define NPCM_ADCCON_ADC_CONV BIT(13)
#define NPCM_ADCCON_CH_MASK GENMASK(27, 24)
#define NPCM_ADCCON_CH(x) ((x) << 24)
#define NPCM_ADCCON_DIV_SHIFT 1
#define NPCM_ADCCON_DIV_MASK GENMASK(8, 1)
#define NPCM_ADC_DATA_MASK(x) ((x) & GENMASK(9, 0))
#define NPCM_ADC_ENABLE (NPCM_ADCCON_ADC_EN | NPCM_ADCCON_ADC_INT_EN)
/* ADC General Definition */
#define NPCM_RESOLUTION_BITS 10
#define NPCM_INT_VREF_MV 2000
/* FUSE registers */
#define NPCM7XX_FST 0x00
#define NPCM7XX_FADDR 0x04
#define NPCM7XX_FDATA 0x08
#define NPCM7XX_FCFG 0x0C
#define NPCM7XX_FCTL 0x14
/* FST Register Bits */
#define NPCM7XX_FST_RDY BIT(0)
#define NPCM7XX_FST_RDST BIT(1)
/* FADDR Register Bits */
#define NPCM7XX_FADDR_BYTEADDR BIT(0)
#define NPCM7XX_FADDR_BYTEADDR_MASK GENMASK(9, 0)
/* FADDR Register Bits */
#define NPCM7XX_FDATA_DATA BIT(0)
#define NPCM7XX_FDATA_CLEAN_VALUE BIT(1)
#define NPCM7XX_FDATA_DATA_MASK GENMASK(7, 0)
/* FCTL Register Bits */
#define NPCM7XX_FCTL_RDST BIT(1)
/* ADC Calibration Definition */
#define NPCM_INT_1500MV 768
#define NPCM_INT_1000MV 512
#define NPCM_ADC_MIN_VAL 0
#define NPCM_ADC_MAX_VAL 1023
#define FUSE_CALIB_ADDR 24
#define FUSE_CALIB_SIZE 8
#define DATA_CALIB_SIZE 4
#define FUSE_READ_SLEEP 500
#define FUSE_READ_TIMEOUT 1000000
#define NPCM_ADC_CHAN(ch) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = ch, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
}
static const struct iio_chan_spec npcm_adc_iio_channels[] = {
NPCM_ADC_CHAN(0),
NPCM_ADC_CHAN(1),
NPCM_ADC_CHAN(2),
NPCM_ADC_CHAN(3),
NPCM_ADC_CHAN(4),
NPCM_ADC_CHAN(5),
NPCM_ADC_CHAN(6),
NPCM_ADC_CHAN(7),
};
static void npcm750_fuse_read(struct regmap *fuse_regmap, u32 addr, u8 *data)
{
u32 val;
u32 fstreg;
regmap_read_poll_timeout(fuse_regmap, NPCM7XX_FST, fstreg,
fstreg & NPCM7XX_FST_RDY, FUSE_READ_SLEEP,
FUSE_READ_TIMEOUT);
regmap_write_bits(fuse_regmap, NPCM7XX_FST,
NPCM7XX_FST_RDST, NPCM7XX_FST_RDST);
regmap_write_bits(fuse_regmap, NPCM7XX_FADDR,
NPCM7XX_FADDR_BYTEADDR_MASK, addr);
regmap_read(fuse_regmap, NPCM7XX_FADDR, &val);
regmap_write(fuse_regmap, NPCM7XX_FCTL, NPCM7XX_FCTL_RDST);
regmap_read_poll_timeout(fuse_regmap, NPCM7XX_FST, fstreg,
fstreg & NPCM7XX_FST_RDY, FUSE_READ_SLEEP,
FUSE_READ_TIMEOUT);
regmap_write_bits(fuse_regmap, NPCM7XX_FST,
NPCM7XX_FST_RDST, NPCM7XX_FST_RDST);
regmap_read(fuse_regmap, NPCM7XX_FDATA, &val);
*data = (u8)val;
regmap_write_bits(fuse_regmap, NPCM7XX_FDATA, NPCM7XX_FDATA_DATA_MASK,
NPCM7XX_FDATA_CLEAN_VALUE);
}
static int npcm750_ECC_to_nibble(u8 ECC, u8 nibble)
{
u8 nibble_b0 = (nibble >> 0) & BIT(0);
u8 nibble_b1 = (nibble >> 1) & BIT(0);
u8 nibble_b2 = (nibble >> 2) & BIT(0);
u8 nibble_b3 = (nibble >> 3) & BIT(0);
u8 tmp_ECC = nibble;
tmp_ECC |= (nibble_b0 ^ nibble_b1) << 4 | (nibble_b2 ^ nibble_b3) << 5 |
(nibble_b0 ^ nibble_b2) << 6 | (nibble_b1 ^ nibble_b3) << 7;
if (tmp_ECC != ECC)
return -EINVAL;
return 0;
}
static int npcm750_ECC_to_byte(u16 ECC, u8 *Byte)
{
u8 nibble_L, nibble_H;
u8 ECC_L, ECC_H;
ECC_H = ECC >> 8;
nibble_H = ECC_H & 0x0F;
ECC_L = ECC >> 0;
nibble_L = ECC_L & 0x0F;
if (npcm750_ECC_to_nibble(ECC_H, nibble_H) != 0 ||
npcm750_ECC_to_nibble(ECC_L, nibble_L) != 0)
return -EINVAL;
*Byte = nibble_H << 4 | nibble_L << 0;
return 0;
}
static int npcm750_read_nibble_parity(u8 *block_ECC, u8 *ADC_calib)
{
int i;
u16 ECC;
for (i = 0; i < DATA_CALIB_SIZE; i++) {
memcpy(&ECC, block_ECC + (i * 2), 2);
if (npcm750_ECC_to_byte(ECC, &ADC_calib[i]) != 0)
return -EINVAL;
}
return 0;
}
static int npcm750_fuse_calibration_read(struct platform_device *pdev,
struct npcm_adc *info)
{
struct device_node *np = pdev->dev.of_node;
struct regmap *fuse_regmap;
ssize_t bytes_read = 0;
u8 read_buf[8];
u32 ADC_calib;
u32 addr = FUSE_CALIB_ADDR;
fuse_regmap = syscon_regmap_lookup_by_phandle(np, "syscon");
if (IS_ERR(fuse_regmap)) {
dev_warn(&pdev->dev, "Failed to find syscon\n");
return PTR_ERR(fuse_regmap);
}
while (bytes_read < FUSE_CALIB_SIZE) {
npcm750_fuse_read(fuse_regmap, addr,
&read_buf[bytes_read]);
bytes_read++;
addr++;
}
if (npcm750_read_nibble_parity(read_buf, (u8 *)&ADC_calib)) {
dev_warn(info->dev, "FUSE Calibration read failed\n");
return -EINVAL;
}
info->R05 = ADC_calib & 0xFFFF;
info->R15 = ADC_calib >> 16;
return 0;
}
static irqreturn_t npcm_adc_isr(int irq, void *data)
{
u32 regtemp;
struct iio_dev *indio_dev = data;
struct npcm_adc *info = iio_priv(indio_dev);
regtemp = ioread32(info->regs + NPCM_ADCCON);
if (regtemp & NPCM_ADCCON_ADC_INT_ST) {
iowrite32(regtemp, info->regs + NPCM_ADCCON);
wake_up_interruptible(&info->wq);
info->int_status = true;
}
return IRQ_HANDLED;
}
static int npcm_adc_read(struct npcm_adc *info, int *val, u8 channel)
{
int ret;
u32 regtemp;
/* Select ADC channel */
regtemp = ioread32(info->regs + NPCM_ADCCON);
regtemp &= ~NPCM_ADCCON_CH_MASK;
info->int_status = false;
iowrite32(regtemp | NPCM_ADCCON_CH(channel) |
NPCM_ADCCON_ADC_CONV, info->regs + NPCM_ADCCON);
ret = wait_event_interruptible_timeout(info->wq, info->int_status,
msecs_to_jiffies(10));
if (ret == 0) {
regtemp = ioread32(info->regs + NPCM_ADCCON);
if (regtemp & NPCM_ADCCON_ADC_CONV) {
/* if conversion failed - reset ADC module */
reset_control_assert(info->reset);
msleep(100);
reset_control_deassert(info->reset);
msleep(100);
/* Enable ADC and start conversion module */
iowrite32(NPCM_ADC_ENABLE | NPCM_ADCCON_ADC_CONV,
info->regs + NPCM_ADCCON);
dev_err(info->dev, "RESET ADC Complete\n");
}
return -ETIMEDOUT;
}
if (ret < 0)
return ret;
*val = NPCM_ADC_DATA_MASK(ioread32(info->regs + NPCM_ADCDATA));
return 0;
}
static void npcm_adc_calibration(int *val, struct npcm_adc *info)
{
int mul_val;
int offset_val;
mul_val = NPCM_INT_1000MV * (*val - info->R15);
if (mul_val < 0) {
mul_val = mul_val * -1;
offset_val = DIV_ROUND_CLOSEST(mul_val,
(info->R15 - info->R05));
*val = NPCM_INT_1500MV - offset_val;
} else {
offset_val = DIV_ROUND_CLOSEST(mul_val,
(info->R15 - info->R05));
*val = NPCM_INT_1500MV + offset_val;
}
if (*val < NPCM_ADC_MIN_VAL)
*val = NPCM_ADC_MIN_VAL;
if (*val > NPCM_ADC_MAX_VAL)
*val = NPCM_ADC_MAX_VAL;
}
static int npcm_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
int ret;
int vref_uv;
struct npcm_adc *info = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&info->lock);
ret = npcm_adc_read(info, val, chan->channel);
mutex_unlock(&info->lock);
if (ret) {
dev_err(info->dev, "NPCM ADC read failed\n");
return ret;
}
if ((info->R05 || info->R15) && IS_ERR(info->vref))
npcm_adc_calibration(val, info);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
if (!IS_ERR(info->vref)) {
vref_uv = regulator_get_voltage(info->vref);
*val = vref_uv / 1000;
} else {
*val = NPCM_INT_VREF_MV;
}
*val2 = NPCM_RESOLUTION_BITS;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = info->adc_sample_hz;
return IIO_VAL_INT;
default:
return -EINVAL;
}
return 0;
}
static const struct iio_info npcm_adc_iio_info = {
.read_raw = &npcm_adc_read_raw,
};
static const struct of_device_id npcm_adc_match[] = {
{ .compatible = "nuvoton,npcm750-adc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, npcm_adc_match);
static int npcm_adc_probe(struct platform_device *pdev)
{
int ret;
int irq;
u32 div;
u32 reg_con;
struct npcm_adc *info;
struct iio_dev *indio_dev;
struct device *dev = &pdev->dev;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*info));
if (!indio_dev)
return -ENOMEM;
info = iio_priv(indio_dev);
mutex_init(&info->lock);
info->dev = &pdev->dev;
info->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(info->regs))
return PTR_ERR(info->regs);
info->reset = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(info->reset))
return PTR_ERR(info->reset);
info->adc_clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(info->adc_clk)) {
dev_warn(&pdev->dev, "ADC clock failed: can't read clk\n");
return PTR_ERR(info->adc_clk);
}
/* calculate ADC clock sample rate */
reg_con = ioread32(info->regs + NPCM_ADCCON);
div = reg_con & NPCM_ADCCON_DIV_MASK;
div = div >> NPCM_ADCCON_DIV_SHIFT;
info->adc_sample_hz = clk_get_rate(info->adc_clk) / ((div + 1) * 2);
irq = platform_get_irq(pdev, 0);
if (irq <= 0) {
ret = -EINVAL;
goto err_disable_clk;
}
ret = devm_request_irq(&pdev->dev, irq, npcm_adc_isr, 0,
"NPCM_ADC", indio_dev);
if (ret < 0) {
dev_err(dev, "failed requesting interrupt\n");
goto err_disable_clk;
}
reg_con = ioread32(info->regs + NPCM_ADCCON);
info->vref = devm_regulator_get_optional(&pdev->dev, "vref");
if (!IS_ERR(info->vref)) {
ret = regulator_enable(info->vref);
if (ret) {
dev_err(&pdev->dev, "Can't enable ADC reference voltage\n");
goto err_disable_clk;
}
iowrite32(reg_con & ~NPCM_ADCCON_REFSEL,
info->regs + NPCM_ADCCON);
} else {
/*
* Any error which is not ENODEV indicates the regulator
* has been specified and so is a failure case.
*/
if (PTR_ERR(info->vref) != -ENODEV) {
ret = PTR_ERR(info->vref);
goto err_disable_clk;
}
/* Use internal reference */
iowrite32(reg_con | NPCM_ADCCON_REFSEL,
info->regs + NPCM_ADCCON);
}
npcm750_fuse_calibration_read(pdev, info);
init_waitqueue_head(&info->wq);
reg_con = ioread32(info->regs + NPCM_ADCCON);
reg_con |= NPCM_ADC_ENABLE;
/* Enable the ADC Module */
iowrite32(reg_con, info->regs + NPCM_ADCCON);
/* Start ADC conversion */
iowrite32(reg_con | NPCM_ADCCON_ADC_CONV, info->regs + NPCM_ADCCON);
platform_set_drvdata(pdev, indio_dev);
indio_dev->name = dev_name(&pdev->dev);
indio_dev->info = &npcm_adc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = npcm_adc_iio_channels;
indio_dev->num_channels = ARRAY_SIZE(npcm_adc_iio_channels);
ret = iio_device_register(indio_dev);
if (ret) {
dev_err(&pdev->dev, "Couldn't register the device.\n");
goto err_iio_register;
}
pr_info("NPCM ADC driver probed\n");
return 0;
err_iio_register:
iowrite32(reg_con & ~NPCM_ADCCON_ADC_EN, info->regs + NPCM_ADCCON);
if (!IS_ERR(info->vref))
regulator_disable(info->vref);
err_disable_clk:
clk_disable_unprepare(info->adc_clk);
return ret;
}
static int npcm_adc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct npcm_adc *info = iio_priv(indio_dev);
u32 regtemp;
iio_device_unregister(indio_dev);
regtemp = ioread32(info->regs + NPCM_ADCCON);
iowrite32(regtemp & ~NPCM_ADCCON_ADC_EN, info->regs + NPCM_ADCCON);
if (!IS_ERR(info->vref))
regulator_disable(info->vref);
clk_disable_unprepare(info->adc_clk);
return 0;
}
static struct platform_driver npcm_adc_driver = {
.probe = npcm_adc_probe,
.remove = npcm_adc_remove,
.driver = {
.name = "npcm_adc",
.of_match_table = npcm_adc_match,
},
};
module_platform_driver(npcm_adc_driver);
MODULE_DESCRIPTION("Nuvoton NPCM ADC Driver");
MODULE_AUTHOR("Tomer Maimon <tomer.maimon@nuvoton.com>");
MODULE_LICENSE("GPL v2");