|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC). | 
|  | * | 
|  | * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/) | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <asm/div64.h> | 
|  |  | 
|  | #include <media/dvb_math.h> | 
|  | #include <media/dvb_frontend.h> | 
|  |  | 
|  | #include "dib7000p.h" | 
|  |  | 
|  | static int debug; | 
|  | module_param(debug, int, 0644); | 
|  | MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); | 
|  |  | 
|  | static int buggy_sfn_workaround; | 
|  | module_param(buggy_sfn_workaround, int, 0644); | 
|  | MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)"); | 
|  |  | 
|  | #define dprintk(fmt, arg...) do {					\ | 
|  | if (debug)							\ | 
|  | printk(KERN_DEBUG pr_fmt("%s: " fmt),			\ | 
|  | __func__, ##arg);				\ | 
|  | } while (0) | 
|  |  | 
|  | struct i2c_device { | 
|  | struct i2c_adapter *i2c_adap; | 
|  | u8 i2c_addr; | 
|  | }; | 
|  |  | 
|  | struct dib7000p_state { | 
|  | struct dvb_frontend demod; | 
|  | struct dib7000p_config cfg; | 
|  |  | 
|  | u8 i2c_addr; | 
|  | struct i2c_adapter *i2c_adap; | 
|  |  | 
|  | struct dibx000_i2c_master i2c_master; | 
|  |  | 
|  | u16 wbd_ref; | 
|  |  | 
|  | u8 current_band; | 
|  | u32 current_bandwidth; | 
|  | struct dibx000_agc_config *current_agc; | 
|  | u32 timf; | 
|  |  | 
|  | u8 div_force_off:1; | 
|  | u8 div_state:1; | 
|  | u16 div_sync_wait; | 
|  |  | 
|  | u8 agc_state; | 
|  |  | 
|  | u16 gpio_dir; | 
|  | u16 gpio_val; | 
|  |  | 
|  | u8 sfn_workaround_active:1; | 
|  |  | 
|  | #define SOC7090 0x7090 | 
|  | u16 version; | 
|  |  | 
|  | u16 tuner_enable; | 
|  | struct i2c_adapter dib7090_tuner_adap; | 
|  |  | 
|  | /* for the I2C transfer */ | 
|  | struct i2c_msg msg[2]; | 
|  | u8 i2c_write_buffer[4]; | 
|  | u8 i2c_read_buffer[2]; | 
|  | struct mutex i2c_buffer_lock; | 
|  |  | 
|  | u8 input_mode_mpeg; | 
|  |  | 
|  | /* for DVBv5 stats */ | 
|  | s64 old_ucb; | 
|  | unsigned long per_jiffies_stats; | 
|  | unsigned long ber_jiffies_stats; | 
|  | unsigned long get_stats_time; | 
|  | }; | 
|  |  | 
|  | enum dib7000p_power_mode { | 
|  | DIB7000P_POWER_ALL = 0, | 
|  | DIB7000P_POWER_ANALOG_ADC, | 
|  | DIB7000P_POWER_INTERFACE_ONLY, | 
|  | }; | 
|  |  | 
|  | /* dib7090 specific functions */ | 
|  | static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode); | 
|  | static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff); | 
|  | static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode); | 
|  | static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode); | 
|  |  | 
|  | static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) | 
|  | { | 
|  | u16 ret; | 
|  |  | 
|  | if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { | 
|  | dprintk("could not acquire lock\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | state->i2c_write_buffer[0] = reg >> 8; | 
|  | state->i2c_write_buffer[1] = reg & 0xff; | 
|  |  | 
|  | memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); | 
|  | state->msg[0].addr = state->i2c_addr >> 1; | 
|  | state->msg[0].flags = 0; | 
|  | state->msg[0].buf = state->i2c_write_buffer; | 
|  | state->msg[0].len = 2; | 
|  | state->msg[1].addr = state->i2c_addr >> 1; | 
|  | state->msg[1].flags = I2C_M_RD; | 
|  | state->msg[1].buf = state->i2c_read_buffer; | 
|  | state->msg[1].len = 2; | 
|  |  | 
|  | if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2) | 
|  | dprintk("i2c read error on %d\n", reg); | 
|  |  | 
|  | ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; | 
|  | mutex_unlock(&state->i2c_buffer_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { | 
|  | dprintk("could not acquire lock\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | state->i2c_write_buffer[0] = (reg >> 8) & 0xff; | 
|  | state->i2c_write_buffer[1] = reg & 0xff; | 
|  | state->i2c_write_buffer[2] = (val >> 8) & 0xff; | 
|  | state->i2c_write_buffer[3] = val & 0xff; | 
|  |  | 
|  | memset(&state->msg[0], 0, sizeof(struct i2c_msg)); | 
|  | state->msg[0].addr = state->i2c_addr >> 1; | 
|  | state->msg[0].flags = 0; | 
|  | state->msg[0].buf = state->i2c_write_buffer; | 
|  | state->msg[0].len = 4; | 
|  |  | 
|  | ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ? | 
|  | -EREMOTEIO : 0); | 
|  | mutex_unlock(&state->i2c_buffer_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf) | 
|  | { | 
|  | u16 l = 0, r, *n; | 
|  | n = buf; | 
|  | l = *n++; | 
|  | while (l) { | 
|  | r = *n++; | 
|  |  | 
|  | do { | 
|  | dib7000p_write_word(state, r, *n++); | 
|  | r++; | 
|  | } while (--l); | 
|  | l = *n++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) | 
|  | { | 
|  | int ret = 0; | 
|  | u16 outreg, fifo_threshold, smo_mode; | 
|  |  | 
|  | outreg = 0; | 
|  | fifo_threshold = 1792; | 
|  | smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); | 
|  |  | 
|  | dprintk("setting output mode for demod %p to %d\n", &state->demod, mode); | 
|  |  | 
|  | switch (mode) { | 
|  | case OUTMODE_MPEG2_PAR_GATED_CLK: | 
|  | outreg = (1 << 10);	/* 0x0400 */ | 
|  | break; | 
|  | case OUTMODE_MPEG2_PAR_CONT_CLK: | 
|  | outreg = (1 << 10) | (1 << 6);	/* 0x0440 */ | 
|  | break; | 
|  | case OUTMODE_MPEG2_SERIAL: | 
|  | outreg = (1 << 10) | (2 << 6) | (0 << 1);	/* 0x0480 */ | 
|  | break; | 
|  | case OUTMODE_DIVERSITY: | 
|  | if (state->cfg.hostbus_diversity) | 
|  | outreg = (1 << 10) | (4 << 6);	/* 0x0500 */ | 
|  | else | 
|  | outreg = (1 << 11); | 
|  | break; | 
|  | case OUTMODE_MPEG2_FIFO: | 
|  | smo_mode |= (3 << 1); | 
|  | fifo_threshold = 512; | 
|  | outreg = (1 << 10) | (5 << 6); | 
|  | break; | 
|  | case OUTMODE_ANALOG_ADC: | 
|  | outreg = (1 << 10) | (3 << 6); | 
|  | break; | 
|  | case OUTMODE_HIGH_Z: | 
|  | outreg = 0; | 
|  | break; | 
|  | default: | 
|  | dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->demod); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (state->cfg.output_mpeg2_in_188_bytes) | 
|  | smo_mode |= (1 << 5); | 
|  |  | 
|  | ret |= dib7000p_write_word(state, 235, smo_mode); | 
|  | ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */ | 
|  | if (state->version != SOC7090) | 
|  | ret |= dib7000p_write_word(state, 1286, outreg);	/* P_Div_active */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff) | 
|  | { | 
|  | struct dib7000p_state *state = demod->demodulator_priv; | 
|  |  | 
|  | if (state->div_force_off) { | 
|  | dprintk("diversity combination deactivated - forced by COFDM parameters\n"); | 
|  | onoff = 0; | 
|  | dib7000p_write_word(state, 207, 0); | 
|  | } else | 
|  | dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); | 
|  |  | 
|  | state->div_state = (u8) onoff; | 
|  |  | 
|  | if (onoff) { | 
|  | dib7000p_write_word(state, 204, 6); | 
|  | dib7000p_write_word(state, 205, 16); | 
|  | /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ | 
|  | } else { | 
|  | dib7000p_write_word(state, 204, 1); | 
|  | dib7000p_write_word(state, 205, 0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) | 
|  | { | 
|  | /* by default everything is powered off */ | 
|  | u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff); | 
|  |  | 
|  | /* now, depending on the requested mode, we power on */ | 
|  | switch (mode) { | 
|  | /* power up everything in the demod */ | 
|  | case DIB7000P_POWER_ALL: | 
|  | reg_774 = 0x0000; | 
|  | reg_775 = 0x0000; | 
|  | reg_776 = 0x0; | 
|  | reg_899 = 0x0; | 
|  | if (state->version == SOC7090) | 
|  | reg_1280 &= 0x001f; | 
|  | else | 
|  | reg_1280 &= 0x01ff; | 
|  | break; | 
|  |  | 
|  | case DIB7000P_POWER_ANALOG_ADC: | 
|  | /* dem, cfg, iqc, sad, agc */ | 
|  | reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9)); | 
|  | /* nud */ | 
|  | reg_776 &= ~((1 << 0)); | 
|  | /* Dout */ | 
|  | if (state->version != SOC7090) | 
|  | reg_1280 &= ~((1 << 11)); | 
|  | reg_1280 &= ~(1 << 6); | 
|  | fallthrough; | 
|  | case DIB7000P_POWER_INTERFACE_ONLY: | 
|  | /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ | 
|  | /* TODO power up either SDIO or I2C */ | 
|  | if (state->version == SOC7090) | 
|  | reg_1280 &= ~((1 << 7) | (1 << 5)); | 
|  | else | 
|  | reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); | 
|  | break; | 
|  |  | 
|  | /* TODO following stuff is just converted from the dib7000-driver - check when is used what */ | 
|  | } | 
|  |  | 
|  | dib7000p_write_word(state, 774, reg_774); | 
|  | dib7000p_write_word(state, 775, reg_775); | 
|  | dib7000p_write_word(state, 776, reg_776); | 
|  | dib7000p_write_word(state, 1280, reg_1280); | 
|  | if (state->version != SOC7090) | 
|  | dib7000p_write_word(state, 899, reg_899); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no) | 
|  | { | 
|  | u16 reg_908 = 0, reg_909 = 0; | 
|  | u16 reg; | 
|  |  | 
|  | if (state->version != SOC7090) { | 
|  | reg_908 = dib7000p_read_word(state, 908); | 
|  | reg_909 = dib7000p_read_word(state, 909); | 
|  | } | 
|  |  | 
|  | switch (no) { | 
|  | case DIBX000_SLOW_ADC_ON: | 
|  | if (state->version == SOC7090) { | 
|  | reg = dib7000p_read_word(state, 1925); | 
|  |  | 
|  | dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2));	/* en_slowAdc = 1 & reset_sladc = 1 */ | 
|  |  | 
|  | reg = dib7000p_read_word(state, 1925);	/* read access to make it works... strange ... */ | 
|  | msleep(200); | 
|  | dib7000p_write_word(state, 1925, reg & ~(1 << 4));	/* en_slowAdc = 1 & reset_sladc = 0 */ | 
|  |  | 
|  | reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12)); | 
|  | dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524);	/* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */ | 
|  | } else { | 
|  | reg_909 |= (1 << 1) | (1 << 0); | 
|  | dib7000p_write_word(state, 909, reg_909); | 
|  | reg_909 &= ~(1 << 1); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DIBX000_SLOW_ADC_OFF: | 
|  | if (state->version == SOC7090) { | 
|  | reg = dib7000p_read_word(state, 1925); | 
|  | dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4));	/* reset_sladc = 1 en_slowAdc = 0 */ | 
|  | } else | 
|  | reg_909 |= (1 << 1) | (1 << 0); | 
|  | break; | 
|  |  | 
|  | case DIBX000_ADC_ON: | 
|  | reg_908 &= 0x0fff; | 
|  | reg_909 &= 0x0003; | 
|  | break; | 
|  |  | 
|  | case DIBX000_ADC_OFF: | 
|  | reg_908 |= (1 << 14) | (1 << 13) | (1 << 12); | 
|  | reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); | 
|  | break; | 
|  |  | 
|  | case DIBX000_VBG_ENABLE: | 
|  | reg_908 &= ~(1 << 15); | 
|  | break; | 
|  |  | 
|  | case DIBX000_VBG_DISABLE: | 
|  | reg_908 |= (1 << 15); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | //	dprintk( "908: %x, 909: %x\n", reg_908, reg_909); | 
|  |  | 
|  | reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4; | 
|  | reg_908 |= (state->cfg.enable_current_mirror & 1) << 7; | 
|  |  | 
|  | if (state->version != SOC7090) { | 
|  | dib7000p_write_word(state, 908, reg_908); | 
|  | dib7000p_write_word(state, 909, reg_909); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw) | 
|  | { | 
|  | u32 timf; | 
|  |  | 
|  | // store the current bandwidth for later use | 
|  | state->current_bandwidth = bw; | 
|  |  | 
|  | if (state->timf == 0) { | 
|  | dprintk("using default timf\n"); | 
|  | timf = state->cfg.bw->timf; | 
|  | } else { | 
|  | dprintk("using updated timf\n"); | 
|  | timf = state->timf; | 
|  | } | 
|  |  | 
|  | timf = timf * (bw / 50) / 160; | 
|  |  | 
|  | dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); | 
|  | dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_sad_calib(struct dib7000p_state *state) | 
|  | { | 
|  | /* internal */ | 
|  | dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); | 
|  |  | 
|  | if (state->version == SOC7090) | 
|  | dib7000p_write_word(state, 74, 2048); | 
|  | else | 
|  | dib7000p_write_word(state, 74, 776); | 
|  |  | 
|  | /* do the calibration */ | 
|  | dib7000p_write_word(state, 73, (1 << 0)); | 
|  | dib7000p_write_word(state, 73, (0 << 0)); | 
|  |  | 
|  | msleep(1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value) | 
|  | { | 
|  | struct dib7000p_state *state = demod->demodulator_priv; | 
|  | if (value > 4095) | 
|  | value = 4095; | 
|  | state->wbd_ref = value; | 
|  | return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value); | 
|  | } | 
|  |  | 
|  | static int dib7000p_get_agc_values(struct dvb_frontend *fe, | 
|  | u16 *agc_global, u16 *agc1, u16 *agc2, u16 *wbd) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  |  | 
|  | if (agc_global != NULL) | 
|  | *agc_global = dib7000p_read_word(state, 394); | 
|  | if (agc1 != NULL) | 
|  | *agc1 = dib7000p_read_word(state, 392); | 
|  | if (agc2 != NULL) | 
|  | *agc2 = dib7000p_read_word(state, 393); | 
|  | if (wbd != NULL) | 
|  | *wbd = dib7000p_read_word(state, 397); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_set_agc1_min(struct dvb_frontend *fe, u16 v) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | return dib7000p_write_word(state, 108,  v); | 
|  | } | 
|  |  | 
|  | static void dib7000p_reset_pll(struct dib7000p_state *state) | 
|  | { | 
|  | struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; | 
|  | u16 clk_cfg0; | 
|  |  | 
|  | if (state->version == SOC7090) { | 
|  | dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv)); | 
|  |  | 
|  | while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) | 
|  | ; | 
|  |  | 
|  | dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15)); | 
|  | } else { | 
|  | /* force PLL bypass */ | 
|  | clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) | | 
|  | (bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0); | 
|  |  | 
|  | dib7000p_write_word(state, 900, clk_cfg0); | 
|  |  | 
|  | /* P_pll_cfg */ | 
|  | dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset); | 
|  | clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff); | 
|  | dib7000p_write_word(state, 900, clk_cfg0); | 
|  | } | 
|  |  | 
|  | dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff)); | 
|  | dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff)); | 
|  | dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff)); | 
|  | dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff)); | 
|  |  | 
|  | dib7000p_write_word(state, 72, bw->sad_cfg); | 
|  | } | 
|  |  | 
|  | static u32 dib7000p_get_internal_freq(struct dib7000p_state *state) | 
|  | { | 
|  | u32 internal = (u32) dib7000p_read_word(state, 18) << 16; | 
|  | internal |= (u32) dib7000p_read_word(state, 19); | 
|  | internal /= 1000; | 
|  |  | 
|  | return internal; | 
|  | } | 
|  |  | 
|  | static int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856); | 
|  | u8 loopdiv, prediv; | 
|  | u32 internal, xtal; | 
|  |  | 
|  | /* get back old values */ | 
|  | prediv = reg_1856 & 0x3f; | 
|  | loopdiv = (reg_1856 >> 6) & 0x3f; | 
|  |  | 
|  | if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) { | 
|  | dprintk("Updating pll (prediv: old =  %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio); | 
|  | reg_1856 &= 0xf000; | 
|  | reg_1857 = dib7000p_read_word(state, 1857); | 
|  | dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15)); | 
|  |  | 
|  | dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f)); | 
|  |  | 
|  | /* write new system clk into P_sec_len */ | 
|  | internal = dib7000p_get_internal_freq(state); | 
|  | xtal = (internal / loopdiv) * prediv; | 
|  | internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio;	/* new internal */ | 
|  | dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff)); | 
|  | dib7000p_write_word(state, 19, (u16) (internal & 0xffff)); | 
|  |  | 
|  | dib7000p_write_word(state, 1857, reg_1857 | (1 << 15)); | 
|  |  | 
|  | while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) | 
|  | dprintk("Waiting for PLL to lock\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static int dib7000p_reset_gpio(struct dib7000p_state *st) | 
|  | { | 
|  | /* reset the GPIOs */ | 
|  | dprintk("gpio dir: %x: val: %x, pwm_pos: %x\n", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos); | 
|  |  | 
|  | dib7000p_write_word(st, 1029, st->gpio_dir); | 
|  | dib7000p_write_word(st, 1030, st->gpio_val); | 
|  |  | 
|  | /* TODO 1031 is P_gpio_od */ | 
|  |  | 
|  | dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos); | 
|  |  | 
|  | dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val) | 
|  | { | 
|  | st->gpio_dir = dib7000p_read_word(st, 1029); | 
|  | st->gpio_dir &= ~(1 << num);	/* reset the direction bit */ | 
|  | st->gpio_dir |= (dir & 0x1) << num;	/* set the new direction */ | 
|  | dib7000p_write_word(st, 1029, st->gpio_dir); | 
|  |  | 
|  | st->gpio_val = dib7000p_read_word(st, 1030); | 
|  | st->gpio_val &= ~(1 << num);	/* reset the direction bit */ | 
|  | st->gpio_val |= (val & 0x01) << num;	/* set the new value */ | 
|  | dib7000p_write_word(st, 1030, st->gpio_val); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val) | 
|  | { | 
|  | struct dib7000p_state *state = demod->demodulator_priv; | 
|  | return dib7000p_cfg_gpio(state, num, dir, val); | 
|  | } | 
|  |  | 
|  | static u16 dib7000p_defaults[] = { | 
|  | // auto search configuration | 
|  | 3, 2, | 
|  | 0x0004, | 
|  | (1<<3)|(1<<11)|(1<<12)|(1<<13), | 
|  | 0x0814,			/* Equal Lock */ | 
|  |  | 
|  | 12, 6, | 
|  | 0x001b, | 
|  | 0x7740, | 
|  | 0x005b, | 
|  | 0x8d80, | 
|  | 0x01c9, | 
|  | 0xc380, | 
|  | 0x0000, | 
|  | 0x0080, | 
|  | 0x0000, | 
|  | 0x0090, | 
|  | 0x0001, | 
|  | 0xd4c0, | 
|  |  | 
|  | 1, 26, | 
|  | 0x6680, | 
|  |  | 
|  | /* set ADC level to -16 */ | 
|  | 11, 79, | 
|  | (1 << 13) - 825 - 117, | 
|  | (1 << 13) - 837 - 117, | 
|  | (1 << 13) - 811 - 117, | 
|  | (1 << 13) - 766 - 117, | 
|  | (1 << 13) - 737 - 117, | 
|  | (1 << 13) - 693 - 117, | 
|  | (1 << 13) - 648 - 117, | 
|  | (1 << 13) - 619 - 117, | 
|  | (1 << 13) - 575 - 117, | 
|  | (1 << 13) - 531 - 117, | 
|  | (1 << 13) - 501 - 117, | 
|  |  | 
|  | 1, 142, | 
|  | 0x0410, | 
|  |  | 
|  | /* disable power smoothing */ | 
|  | 8, 145, | 
|  | 0, | 
|  | 0, | 
|  | 0, | 
|  | 0, | 
|  | 0, | 
|  | 0, | 
|  | 0, | 
|  | 0, | 
|  |  | 
|  | 1, 154, | 
|  | 1 << 13, | 
|  |  | 
|  | 1, 168, | 
|  | 0x0ccd, | 
|  |  | 
|  | 1, 183, | 
|  | 0x200f, | 
|  |  | 
|  | 1, 212, | 
|  | 0x169, | 
|  |  | 
|  | 5, 187, | 
|  | 0x023d, | 
|  | 0x00a4, | 
|  | 0x00a4, | 
|  | 0x7ff0, | 
|  | 0x3ccc, | 
|  |  | 
|  | 1, 198, | 
|  | 0x800, | 
|  |  | 
|  | 1, 222, | 
|  | 0x0010, | 
|  |  | 
|  | 1, 235, | 
|  | 0x0062, | 
|  |  | 
|  | 0, | 
|  | }; | 
|  |  | 
|  | static void dib7000p_reset_stats(struct dvb_frontend *fe); | 
|  |  | 
|  | static int dib7000p_demod_reset(struct dib7000p_state *state) | 
|  | { | 
|  | dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); | 
|  |  | 
|  | if (state->version == SOC7090) | 
|  | dibx000_reset_i2c_master(&state->i2c_master); | 
|  |  | 
|  | dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE); | 
|  |  | 
|  | /* restart all parts */ | 
|  | dib7000p_write_word(state, 770, 0xffff); | 
|  | dib7000p_write_word(state, 771, 0xffff); | 
|  | dib7000p_write_word(state, 772, 0x001f); | 
|  | dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3))); | 
|  |  | 
|  | dib7000p_write_word(state, 770, 0); | 
|  | dib7000p_write_word(state, 771, 0); | 
|  | dib7000p_write_word(state, 772, 0); | 
|  | dib7000p_write_word(state, 1280, 0); | 
|  |  | 
|  | if (state->version != SOC7090) { | 
|  | dib7000p_write_word(state,  898, 0x0003); | 
|  | dib7000p_write_word(state,  898, 0); | 
|  | } | 
|  |  | 
|  | /* default */ | 
|  | dib7000p_reset_pll(state); | 
|  |  | 
|  | if (dib7000p_reset_gpio(state) != 0) | 
|  | dprintk("GPIO reset was not successful.\n"); | 
|  |  | 
|  | if (state->version == SOC7090) { | 
|  | dib7000p_write_word(state, 899, 0); | 
|  |  | 
|  | /* impulse noise */ | 
|  | dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */ | 
|  | dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */ | 
|  | dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */ | 
|  | dib7000p_write_word(state, 273, (0<<6) | 30); | 
|  | } | 
|  | if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0) | 
|  | dprintk("OUTPUT_MODE could not be reset.\n"); | 
|  |  | 
|  | dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); | 
|  | dib7000p_sad_calib(state); | 
|  | dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF); | 
|  |  | 
|  | /* unforce divstr regardless whether i2c enumeration was done or not */ | 
|  | dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1)); | 
|  |  | 
|  | dib7000p_set_bandwidth(state, 8000); | 
|  |  | 
|  | if (state->version == SOC7090) { | 
|  | dib7000p_write_word(state, 36, 0x0755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */ | 
|  | } else { | 
|  | if (state->cfg.tuner_is_baseband) | 
|  | dib7000p_write_word(state, 36, 0x0755); | 
|  | else | 
|  | dib7000p_write_word(state, 36, 0x1f55); | 
|  | } | 
|  |  | 
|  | dib7000p_write_tab(state, dib7000p_defaults); | 
|  | if (state->version != SOC7090) { | 
|  | dib7000p_write_word(state, 901, 0x0006); | 
|  | dib7000p_write_word(state, 902, (3 << 10) | (1 << 6)); | 
|  | dib7000p_write_word(state, 905, 0x2c8e); | 
|  | } | 
|  |  | 
|  | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dib7000p_pll_clk_cfg(struct dib7000p_state *state) | 
|  | { | 
|  | u16 tmp = 0; | 
|  | tmp = dib7000p_read_word(state, 903); | 
|  | dib7000p_write_word(state, 903, (tmp | 0x1)); | 
|  | tmp = dib7000p_read_word(state, 900); | 
|  | dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); | 
|  | } | 
|  |  | 
|  | static void dib7000p_restart_agc(struct dib7000p_state *state) | 
|  | { | 
|  | // P_restart_iqc & P_restart_agc | 
|  | dib7000p_write_word(state, 770, (1 << 11) | (1 << 9)); | 
|  | dib7000p_write_word(state, 770, 0x0000); | 
|  | } | 
|  |  | 
|  | static int dib7000p_update_lna(struct dib7000p_state *state) | 
|  | { | 
|  | u16 dyn_gain; | 
|  |  | 
|  | if (state->cfg.update_lna) { | 
|  | dyn_gain = dib7000p_read_word(state, 394); | 
|  | if (state->cfg.update_lna(&state->demod, dyn_gain)) { | 
|  | dib7000p_restart_agc(state); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) | 
|  | { | 
|  | struct dibx000_agc_config *agc = NULL; | 
|  | int i; | 
|  | if (state->current_band == band && state->current_agc != NULL) | 
|  | return 0; | 
|  | state->current_band = band; | 
|  |  | 
|  | for (i = 0; i < state->cfg.agc_config_count; i++) | 
|  | if (state->cfg.agc[i].band_caps & band) { | 
|  | agc = &state->cfg.agc[i]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (agc == NULL) { | 
|  | dprintk("no valid AGC configuration found for band 0x%02x\n", band); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | state->current_agc = agc; | 
|  |  | 
|  | /* AGC */ | 
|  | dib7000p_write_word(state, 75, agc->setup); | 
|  | dib7000p_write_word(state, 76, agc->inv_gain); | 
|  | dib7000p_write_word(state, 77, agc->time_stabiliz); | 
|  | dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock); | 
|  |  | 
|  | // Demod AGC loop configuration | 
|  | dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp); | 
|  | dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp); | 
|  |  | 
|  | /* AGC continued */ | 
|  | dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", | 
|  | state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); | 
|  |  | 
|  | if (state->wbd_ref != 0) | 
|  | dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref); | 
|  | else | 
|  | dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref); | 
|  |  | 
|  | dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); | 
|  |  | 
|  | dib7000p_write_word(state, 107, agc->agc1_max); | 
|  | dib7000p_write_word(state, 108, agc->agc1_min); | 
|  | dib7000p_write_word(state, 109, agc->agc2_max); | 
|  | dib7000p_write_word(state, 110, agc->agc2_min); | 
|  | dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2); | 
|  | dib7000p_write_word(state, 112, agc->agc1_pt3); | 
|  | dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); | 
|  | dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); | 
|  | dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz) | 
|  | { | 
|  | u32 internal = dib7000p_get_internal_freq(state); | 
|  | s32 unit_khz_dds_val; | 
|  | u32 abs_offset_khz = abs(offset_khz); | 
|  | u32 dds = state->cfg.bw->ifreq & 0x1ffffff; | 
|  | u8 invert = !!(state->cfg.bw->ifreq & (1 << 25)); | 
|  | if (internal == 0) { | 
|  | pr_warn("DIB7000P: dib7000p_get_internal_freq returned 0\n"); | 
|  | return -1; | 
|  | } | 
|  | /* 2**26 / Fsampling is the unit 1KHz offset */ | 
|  | unit_khz_dds_val = 67108864 / (internal); | 
|  |  | 
|  | dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d\n", offset_khz, internal, invert); | 
|  |  | 
|  | if (offset_khz < 0) | 
|  | unit_khz_dds_val *= -1; | 
|  |  | 
|  | /* IF tuner */ | 
|  | if (invert) | 
|  | dds -= (abs_offset_khz * unit_khz_dds_val);	/* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */ | 
|  | else | 
|  | dds += (abs_offset_khz * unit_khz_dds_val); | 
|  |  | 
|  | if (abs_offset_khz <= (internal / 2)) {	/* Max dds offset is the half of the demod freq */ | 
|  | dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9))); | 
|  | dib7000p_write_word(state, 22, (u16) (dds & 0xffff)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_agc_startup(struct dvb_frontend *demod) | 
|  | { | 
|  | struct dtv_frontend_properties *ch = &demod->dtv_property_cache; | 
|  | struct dib7000p_state *state = demod->demodulator_priv; | 
|  | int ret = -1; | 
|  | u8 *agc_state = &state->agc_state; | 
|  | u8 agc_split; | 
|  | u16 reg; | 
|  | u32 upd_demod_gain_period = 0x1000; | 
|  | s32 frequency_offset = 0; | 
|  |  | 
|  | switch (state->agc_state) { | 
|  | case 0: | 
|  | dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); | 
|  | if (state->version == SOC7090) { | 
|  | reg = dib7000p_read_word(state, 0x79b) & 0xff00; | 
|  | dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF);	/* lsb */ | 
|  | dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF)); | 
|  |  | 
|  | /* enable adc i & q */ | 
|  | reg = dib7000p_read_word(state, 0x780); | 
|  | dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7))); | 
|  | } else { | 
|  | dib7000p_set_adc_state(state, DIBX000_ADC_ON); | 
|  | dib7000p_pll_clk_cfg(state); | 
|  | } | 
|  |  | 
|  | if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0) | 
|  | return -1; | 
|  |  | 
|  | if (demod->ops.tuner_ops.get_frequency) { | 
|  | u32 frequency_tuner; | 
|  |  | 
|  | demod->ops.tuner_ops.get_frequency(demod, &frequency_tuner); | 
|  | frequency_offset = (s32)frequency_tuner / 1000 - ch->frequency / 1000; | 
|  | } | 
|  |  | 
|  | if (dib7000p_set_dds(state, frequency_offset) < 0) | 
|  | return -1; | 
|  |  | 
|  | ret = 7; | 
|  | (*agc_state)++; | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | if (state->cfg.agc_control) | 
|  | state->cfg.agc_control(&state->demod, 1); | 
|  |  | 
|  | dib7000p_write_word(state, 78, 32768); | 
|  | if (!state->current_agc->perform_agc_softsplit) { | 
|  | /* we are using the wbd - so slow AGC startup */ | 
|  | /* force 0 split on WBD and restart AGC */ | 
|  | dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8)); | 
|  | (*agc_state)++; | 
|  | ret = 5; | 
|  | } else { | 
|  | /* default AGC startup */ | 
|  | (*agc_state) = 4; | 
|  | /* wait AGC rough lock time */ | 
|  | ret = 7; | 
|  | } | 
|  |  | 
|  | dib7000p_restart_agc(state); | 
|  | break; | 
|  |  | 
|  | case 2:		/* fast split search path after 5sec */ | 
|  | dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4));	/* freeze AGC loop */ | 
|  | dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8));	/* fast split search 0.25kHz */ | 
|  | (*agc_state)++; | 
|  | ret = 14; | 
|  | break; | 
|  |  | 
|  | case 3:		/* split search ended */ | 
|  | agc_split = (u8) dib7000p_read_word(state, 396);	/* store the split value for the next time */ | 
|  | dib7000p_write_word(state, 78, dib7000p_read_word(state, 394));	/* set AGC gain start value */ | 
|  |  | 
|  | dib7000p_write_word(state, 75, state->current_agc->setup);	/* std AGC loop */ | 
|  | dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split);	/* standard split search */ | 
|  |  | 
|  | dib7000p_restart_agc(state); | 
|  |  | 
|  | dprintk("SPLIT %p: %u\n", demod, agc_split); | 
|  |  | 
|  | (*agc_state)++; | 
|  | ret = 5; | 
|  | break; | 
|  |  | 
|  | case 4:		/* LNA startup */ | 
|  | ret = 7; | 
|  |  | 
|  | if (dib7000p_update_lna(state)) | 
|  | ret = 5; | 
|  | else | 
|  | (*agc_state)++; | 
|  | break; | 
|  |  | 
|  | case 5: | 
|  | if (state->cfg.agc_control) | 
|  | state->cfg.agc_control(&state->demod, 0); | 
|  | (*agc_state)++; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void dib7000p_update_timf(struct dib7000p_state *state) | 
|  | { | 
|  | u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428); | 
|  | state->timf = timf * 160 / (state->current_bandwidth / 50); | 
|  | dib7000p_write_word(state, 23, (u16) (timf >> 16)); | 
|  | dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); | 
|  | dprintk("updated timf_frequency: %d (default: %d)\n", state->timf, state->cfg.bw->timf); | 
|  |  | 
|  | } | 
|  |  | 
|  | static u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | switch (op) { | 
|  | case DEMOD_TIMF_SET: | 
|  | state->timf = timf; | 
|  | break; | 
|  | case DEMOD_TIMF_UPDATE: | 
|  | dib7000p_update_timf(state); | 
|  | break; | 
|  | case DEMOD_TIMF_GET: | 
|  | break; | 
|  | } | 
|  | dib7000p_set_bandwidth(state, state->current_bandwidth); | 
|  | return state->timf; | 
|  | } | 
|  |  | 
|  | static void dib7000p_set_channel(struct dib7000p_state *state, | 
|  | struct dtv_frontend_properties *ch, u8 seq) | 
|  | { | 
|  | u16 value, est[4]; | 
|  |  | 
|  | dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); | 
|  |  | 
|  | /* nfft, guard, qam, alpha */ | 
|  | value = 0; | 
|  | switch (ch->transmission_mode) { | 
|  | case TRANSMISSION_MODE_2K: | 
|  | value |= (0 << 7); | 
|  | break; | 
|  | case TRANSMISSION_MODE_4K: | 
|  | value |= (2 << 7); | 
|  | break; | 
|  | default: | 
|  | case TRANSMISSION_MODE_8K: | 
|  | value |= (1 << 7); | 
|  | break; | 
|  | } | 
|  | switch (ch->guard_interval) { | 
|  | case GUARD_INTERVAL_1_32: | 
|  | value |= (0 << 5); | 
|  | break; | 
|  | case GUARD_INTERVAL_1_16: | 
|  | value |= (1 << 5); | 
|  | break; | 
|  | case GUARD_INTERVAL_1_4: | 
|  | value |= (3 << 5); | 
|  | break; | 
|  | default: | 
|  | case GUARD_INTERVAL_1_8: | 
|  | value |= (2 << 5); | 
|  | break; | 
|  | } | 
|  | switch (ch->modulation) { | 
|  | case QPSK: | 
|  | value |= (0 << 3); | 
|  | break; | 
|  | case QAM_16: | 
|  | value |= (1 << 3); | 
|  | break; | 
|  | default: | 
|  | case QAM_64: | 
|  | value |= (2 << 3); | 
|  | break; | 
|  | } | 
|  | switch (HIERARCHY_1) { | 
|  | case HIERARCHY_2: | 
|  | value |= 2; | 
|  | break; | 
|  | case HIERARCHY_4: | 
|  | value |= 4; | 
|  | break; | 
|  | default: | 
|  | case HIERARCHY_1: | 
|  | value |= 1; | 
|  | break; | 
|  | } | 
|  | dib7000p_write_word(state, 0, value); | 
|  | dib7000p_write_word(state, 5, (seq << 4) | 1);	/* do not force tps, search list 0 */ | 
|  |  | 
|  | /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ | 
|  | value = 0; | 
|  | if (1 != 0) | 
|  | value |= (1 << 6); | 
|  | if (ch->hierarchy == 1) | 
|  | value |= (1 << 4); | 
|  | if (1 == 1) | 
|  | value |= 1; | 
|  | switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) { | 
|  | case FEC_2_3: | 
|  | value |= (2 << 1); | 
|  | break; | 
|  | case FEC_3_4: | 
|  | value |= (3 << 1); | 
|  | break; | 
|  | case FEC_5_6: | 
|  | value |= (5 << 1); | 
|  | break; | 
|  | case FEC_7_8: | 
|  | value |= (7 << 1); | 
|  | break; | 
|  | default: | 
|  | case FEC_1_2: | 
|  | value |= (1 << 1); | 
|  | break; | 
|  | } | 
|  | dib7000p_write_word(state, 208, value); | 
|  |  | 
|  | /* offset loop parameters */ | 
|  | dib7000p_write_word(state, 26, 0x6680); | 
|  | dib7000p_write_word(state, 32, 0x0003); | 
|  | dib7000p_write_word(state, 29, 0x1273); | 
|  | dib7000p_write_word(state, 33, 0x0005); | 
|  |  | 
|  | /* P_dvsy_sync_wait */ | 
|  | switch (ch->transmission_mode) { | 
|  | case TRANSMISSION_MODE_8K: | 
|  | value = 256; | 
|  | break; | 
|  | case TRANSMISSION_MODE_4K: | 
|  | value = 128; | 
|  | break; | 
|  | case TRANSMISSION_MODE_2K: | 
|  | default: | 
|  | value = 64; | 
|  | break; | 
|  | } | 
|  | switch (ch->guard_interval) { | 
|  | case GUARD_INTERVAL_1_16: | 
|  | value *= 2; | 
|  | break; | 
|  | case GUARD_INTERVAL_1_8: | 
|  | value *= 4; | 
|  | break; | 
|  | case GUARD_INTERVAL_1_4: | 
|  | value *= 8; | 
|  | break; | 
|  | default: | 
|  | case GUARD_INTERVAL_1_32: | 
|  | value *= 1; | 
|  | break; | 
|  | } | 
|  | if (state->cfg.diversity_delay == 0) | 
|  | state->div_sync_wait = (value * 3) / 2 + 48; | 
|  | else | 
|  | state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay; | 
|  |  | 
|  | /* deactivate the possibility of diversity reception if extended interleaver */ | 
|  | state->div_force_off = !1 && ch->transmission_mode != TRANSMISSION_MODE_8K; | 
|  | dib7000p_set_diversity_in(&state->demod, state->div_state); | 
|  |  | 
|  | /* channel estimation fine configuration */ | 
|  | switch (ch->modulation) { | 
|  | case QAM_64: | 
|  | est[0] = 0x0148;	/* P_adp_regul_cnt 0.04 */ | 
|  | est[1] = 0xfff0;	/* P_adp_noise_cnt -0.002 */ | 
|  | est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */ | 
|  | est[3] = 0xfff8;	/* P_adp_noise_ext -0.001 */ | 
|  | break; | 
|  | case QAM_16: | 
|  | est[0] = 0x023d;	/* P_adp_regul_cnt 0.07 */ | 
|  | est[1] = 0xffdf;	/* P_adp_noise_cnt -0.004 */ | 
|  | est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */ | 
|  | est[3] = 0xfff0;	/* P_adp_noise_ext -0.002 */ | 
|  | break; | 
|  | default: | 
|  | est[0] = 0x099a;	/* P_adp_regul_cnt 0.3 */ | 
|  | est[1] = 0xffae;	/* P_adp_noise_cnt -0.01 */ | 
|  | est[2] = 0x0333;	/* P_adp_regul_ext 0.1 */ | 
|  | est[3] = 0xfff8;	/* P_adp_noise_ext -0.002 */ | 
|  | break; | 
|  | } | 
|  | for (value = 0; value < 4; value++) | 
|  | dib7000p_write_word(state, 187 + value, est[value]); | 
|  | } | 
|  |  | 
|  | static int dib7000p_autosearch_start(struct dvb_frontend *demod) | 
|  | { | 
|  | struct dtv_frontend_properties *ch = &demod->dtv_property_cache; | 
|  | struct dib7000p_state *state = demod->demodulator_priv; | 
|  | struct dtv_frontend_properties schan; | 
|  | u32 value, factor; | 
|  | u32 internal = dib7000p_get_internal_freq(state); | 
|  |  | 
|  | schan = *ch; | 
|  | schan.modulation = QAM_64; | 
|  | schan.guard_interval = GUARD_INTERVAL_1_32; | 
|  | schan.transmission_mode = TRANSMISSION_MODE_8K; | 
|  | schan.code_rate_HP = FEC_2_3; | 
|  | schan.code_rate_LP = FEC_3_4; | 
|  | schan.hierarchy = 0; | 
|  |  | 
|  | dib7000p_set_channel(state, &schan, 7); | 
|  |  | 
|  | factor = BANDWIDTH_TO_KHZ(ch->bandwidth_hz); | 
|  | if (factor >= 5000) { | 
|  | if (state->version == SOC7090) | 
|  | factor = 2; | 
|  | else | 
|  | factor = 1; | 
|  | } else | 
|  | factor = 6; | 
|  |  | 
|  | value = 30 * internal * factor; | 
|  | dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); | 
|  | dib7000p_write_word(state, 7, (u16) (value & 0xffff)); | 
|  | value = 100 * internal * factor; | 
|  | dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); | 
|  | dib7000p_write_word(state, 9, (u16) (value & 0xffff)); | 
|  | value = 500 * internal * factor; | 
|  | dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); | 
|  | dib7000p_write_word(state, 11, (u16) (value & 0xffff)); | 
|  |  | 
|  | value = dib7000p_read_word(state, 0); | 
|  | dib7000p_write_word(state, 0, (u16) ((1 << 9) | value)); | 
|  | dib7000p_read_word(state, 1284); | 
|  | dib7000p_write_word(state, 0, (u16) value); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) | 
|  | { | 
|  | struct dib7000p_state *state = demod->demodulator_priv; | 
|  | u16 irq_pending = dib7000p_read_word(state, 1284); | 
|  |  | 
|  | if (irq_pending & 0x1) | 
|  | return 1; | 
|  |  | 
|  | if (irq_pending & 0x2) | 
|  | return 2; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw) | 
|  | { | 
|  | static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 }; | 
|  | static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, | 
|  | 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, | 
|  | 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, | 
|  | 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105, | 
|  | 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126, | 
|  | 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, | 
|  | 147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165, | 
|  | 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, | 
|  | 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, | 
|  | 199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212, | 
|  | 213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224, | 
|  | 225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235, | 
|  | 235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243, | 
|  | 244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, | 
|  | 250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254, | 
|  | 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, | 
|  | 255, 255, 255, 255, 255, 255 | 
|  | }; | 
|  |  | 
|  | u32 xtal = state->cfg.bw->xtal_hz / 1000; | 
|  | int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz; | 
|  | int k; | 
|  | int coef_re[8], coef_im[8]; | 
|  | int bw_khz = bw; | 
|  | u32 pha; | 
|  |  | 
|  | dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)\n", f_rel, rf_khz, xtal); | 
|  |  | 
|  | if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2) | 
|  | return; | 
|  |  | 
|  | bw_khz /= 100; | 
|  |  | 
|  | dib7000p_write_word(state, 142, 0x0610); | 
|  |  | 
|  | for (k = 0; k < 8; k++) { | 
|  | pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff; | 
|  |  | 
|  | if (pha == 0) { | 
|  | coef_re[k] = 256; | 
|  | coef_im[k] = 0; | 
|  | } else if (pha < 256) { | 
|  | coef_re[k] = sine[256 - (pha & 0xff)]; | 
|  | coef_im[k] = sine[pha & 0xff]; | 
|  | } else if (pha == 256) { | 
|  | coef_re[k] = 0; | 
|  | coef_im[k] = 256; | 
|  | } else if (pha < 512) { | 
|  | coef_re[k] = -sine[pha & 0xff]; | 
|  | coef_im[k] = sine[256 - (pha & 0xff)]; | 
|  | } else if (pha == 512) { | 
|  | coef_re[k] = -256; | 
|  | coef_im[k] = 0; | 
|  | } else if (pha < 768) { | 
|  | coef_re[k] = -sine[256 - (pha & 0xff)]; | 
|  | coef_im[k] = -sine[pha & 0xff]; | 
|  | } else if (pha == 768) { | 
|  | coef_re[k] = 0; | 
|  | coef_im[k] = -256; | 
|  | } else { | 
|  | coef_re[k] = sine[pha & 0xff]; | 
|  | coef_im[k] = -sine[256 - (pha & 0xff)]; | 
|  | } | 
|  |  | 
|  | coef_re[k] *= notch[k]; | 
|  | coef_re[k] += (1 << 14); | 
|  | if (coef_re[k] >= (1 << 24)) | 
|  | coef_re[k] = (1 << 24) - 1; | 
|  | coef_re[k] /= (1 << 15); | 
|  |  | 
|  | coef_im[k] *= notch[k]; | 
|  | coef_im[k] += (1 << 14); | 
|  | if (coef_im[k] >= (1 << 24)) | 
|  | coef_im[k] = (1 << 24) - 1; | 
|  | coef_im[k] /= (1 << 15); | 
|  |  | 
|  | dprintk("PALF COEF: %d re: %d im: %d\n", k, coef_re[k], coef_im[k]); | 
|  |  | 
|  | dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); | 
|  | dib7000p_write_word(state, 144, coef_im[k] & 0x3ff); | 
|  | dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); | 
|  | } | 
|  | dib7000p_write_word(state, 143, 0); | 
|  | } | 
|  |  | 
|  | static int dib7000p_tune(struct dvb_frontend *demod) | 
|  | { | 
|  | struct dtv_frontend_properties *ch = &demod->dtv_property_cache; | 
|  | struct dib7000p_state *state = demod->demodulator_priv; | 
|  | u16 tmp = 0; | 
|  |  | 
|  | if (ch != NULL) | 
|  | dib7000p_set_channel(state, ch, 0); | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | // restart demod | 
|  | dib7000p_write_word(state, 770, 0x4000); | 
|  | dib7000p_write_word(state, 770, 0x0000); | 
|  | msleep(45); | 
|  |  | 
|  | /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ | 
|  | tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3); | 
|  | if (state->sfn_workaround_active) { | 
|  | dprintk("SFN workaround is active\n"); | 
|  | tmp |= (1 << 9); | 
|  | dib7000p_write_word(state, 166, 0x4000); | 
|  | } else { | 
|  | dib7000p_write_word(state, 166, 0x0000); | 
|  | } | 
|  | dib7000p_write_word(state, 29, tmp); | 
|  |  | 
|  | // never achieved a lock with that bandwidth so far - wait for osc-freq to update | 
|  | if (state->timf == 0) | 
|  | msleep(200); | 
|  |  | 
|  | /* offset loop parameters */ | 
|  |  | 
|  | /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ | 
|  | tmp = (6 << 8) | 0x80; | 
|  | switch (ch->transmission_mode) { | 
|  | case TRANSMISSION_MODE_2K: | 
|  | tmp |= (2 << 12); | 
|  | break; | 
|  | case TRANSMISSION_MODE_4K: | 
|  | tmp |= (3 << 12); | 
|  | break; | 
|  | default: | 
|  | case TRANSMISSION_MODE_8K: | 
|  | tmp |= (4 << 12); | 
|  | break; | 
|  | } | 
|  | dib7000p_write_word(state, 26, tmp);	/* timf_a(6xxx) */ | 
|  |  | 
|  | /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ | 
|  | tmp = (0 << 4); | 
|  | switch (ch->transmission_mode) { | 
|  | case TRANSMISSION_MODE_2K: | 
|  | tmp |= 0x6; | 
|  | break; | 
|  | case TRANSMISSION_MODE_4K: | 
|  | tmp |= 0x7; | 
|  | break; | 
|  | default: | 
|  | case TRANSMISSION_MODE_8K: | 
|  | tmp |= 0x8; | 
|  | break; | 
|  | } | 
|  | dib7000p_write_word(state, 32, tmp); | 
|  |  | 
|  | /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ | 
|  | tmp = (0 << 4); | 
|  | switch (ch->transmission_mode) { | 
|  | case TRANSMISSION_MODE_2K: | 
|  | tmp |= 0x6; | 
|  | break; | 
|  | case TRANSMISSION_MODE_4K: | 
|  | tmp |= 0x7; | 
|  | break; | 
|  | default: | 
|  | case TRANSMISSION_MODE_8K: | 
|  | tmp |= 0x8; | 
|  | break; | 
|  | } | 
|  | dib7000p_write_word(state, 33, tmp); | 
|  |  | 
|  | tmp = dib7000p_read_word(state, 509); | 
|  | if (!((tmp >> 6) & 0x1)) { | 
|  | /* restart the fec */ | 
|  | tmp = dib7000p_read_word(state, 771); | 
|  | dib7000p_write_word(state, 771, tmp | (1 << 1)); | 
|  | dib7000p_write_word(state, 771, tmp); | 
|  | msleep(40); | 
|  | tmp = dib7000p_read_word(state, 509); | 
|  | } | 
|  | // we achieved a lock - it's time to update the osc freq | 
|  | if ((tmp >> 6) & 0x1) { | 
|  | dib7000p_update_timf(state); | 
|  | /* P_timf_alpha += 2 */ | 
|  | tmp = dib7000p_read_word(state, 26); | 
|  | dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12)); | 
|  | } | 
|  |  | 
|  | if (state->cfg.spur_protect) | 
|  | dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); | 
|  |  | 
|  | dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); | 
|  |  | 
|  | dib7000p_reset_stats(demod); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_wakeup(struct dvb_frontend *demod) | 
|  | { | 
|  | struct dib7000p_state *state = demod->demodulator_priv; | 
|  | dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); | 
|  | dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); | 
|  | if (state->version == SOC7090) | 
|  | dib7000p_sad_calib(state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_sleep(struct dvb_frontend *demod) | 
|  | { | 
|  | struct dib7000p_state *state = demod->demodulator_priv; | 
|  | if (state->version == SOC7090) | 
|  | return dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); | 
|  | return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); | 
|  | } | 
|  |  | 
|  | static int dib7000p_identify(struct dib7000p_state *st) | 
|  | { | 
|  | u16 value; | 
|  | dprintk("checking demod on I2C address: %d (%x)\n", st->i2c_addr, st->i2c_addr); | 
|  |  | 
|  | if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { | 
|  | dprintk("wrong Vendor ID (read=0x%x)\n", value); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  |  | 
|  | if ((value = dib7000p_read_word(st, 769)) != 0x4000) { | 
|  | dprintk("wrong Device ID (%x)\n", value); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_get_frontend(struct dvb_frontend *fe, | 
|  | struct dtv_frontend_properties *fep) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | u16 tps = dib7000p_read_word(state, 463); | 
|  |  | 
|  | fep->inversion = INVERSION_AUTO; | 
|  |  | 
|  | fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth); | 
|  |  | 
|  | switch ((tps >> 8) & 0x3) { | 
|  | case 0: | 
|  | fep->transmission_mode = TRANSMISSION_MODE_2K; | 
|  | break; | 
|  | case 1: | 
|  | fep->transmission_mode = TRANSMISSION_MODE_8K; | 
|  | break; | 
|  | /* case 2: fep->transmission_mode = TRANSMISSION_MODE_4K; break; */ | 
|  | } | 
|  |  | 
|  | switch (tps & 0x3) { | 
|  | case 0: | 
|  | fep->guard_interval = GUARD_INTERVAL_1_32; | 
|  | break; | 
|  | case 1: | 
|  | fep->guard_interval = GUARD_INTERVAL_1_16; | 
|  | break; | 
|  | case 2: | 
|  | fep->guard_interval = GUARD_INTERVAL_1_8; | 
|  | break; | 
|  | case 3: | 
|  | fep->guard_interval = GUARD_INTERVAL_1_4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch ((tps >> 14) & 0x3) { | 
|  | case 0: | 
|  | fep->modulation = QPSK; | 
|  | break; | 
|  | case 1: | 
|  | fep->modulation = QAM_16; | 
|  | break; | 
|  | case 2: | 
|  | default: | 
|  | fep->modulation = QAM_64; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ | 
|  | /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ | 
|  |  | 
|  | fep->hierarchy = HIERARCHY_NONE; | 
|  | switch ((tps >> 5) & 0x7) { | 
|  | case 1: | 
|  | fep->code_rate_HP = FEC_1_2; | 
|  | break; | 
|  | case 2: | 
|  | fep->code_rate_HP = FEC_2_3; | 
|  | break; | 
|  | case 3: | 
|  | fep->code_rate_HP = FEC_3_4; | 
|  | break; | 
|  | case 5: | 
|  | fep->code_rate_HP = FEC_5_6; | 
|  | break; | 
|  | case 7: | 
|  | default: | 
|  | fep->code_rate_HP = FEC_7_8; | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | switch ((tps >> 2) & 0x7) { | 
|  | case 1: | 
|  | fep->code_rate_LP = FEC_1_2; | 
|  | break; | 
|  | case 2: | 
|  | fep->code_rate_LP = FEC_2_3; | 
|  | break; | 
|  | case 3: | 
|  | fep->code_rate_LP = FEC_3_4; | 
|  | break; | 
|  | case 5: | 
|  | fep->code_rate_LP = FEC_5_6; | 
|  | break; | 
|  | case 7: | 
|  | default: | 
|  | fep->code_rate_LP = FEC_7_8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* native interleaver: (dib7000p_read_word(state, 464) >>  5) & 0x1 */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_set_frontend(struct dvb_frontend *fe) | 
|  | { | 
|  | struct dtv_frontend_properties *fep = &fe->dtv_property_cache; | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | int time, ret; | 
|  |  | 
|  | if (state->version == SOC7090) | 
|  | dib7090_set_diversity_in(fe, 0); | 
|  | else | 
|  | dib7000p_set_output_mode(state, OUTMODE_HIGH_Z); | 
|  |  | 
|  | /* maybe the parameter has been changed */ | 
|  | state->sfn_workaround_active = buggy_sfn_workaround; | 
|  |  | 
|  | if (fe->ops.tuner_ops.set_params) | 
|  | fe->ops.tuner_ops.set_params(fe); | 
|  |  | 
|  | /* start up the AGC */ | 
|  | state->agc_state = 0; | 
|  | do { | 
|  | time = dib7000p_agc_startup(fe); | 
|  | if (time != -1) | 
|  | msleep(time); | 
|  | } while (time != -1); | 
|  |  | 
|  | if (fep->transmission_mode == TRANSMISSION_MODE_AUTO || | 
|  | fep->guard_interval == GUARD_INTERVAL_AUTO || fep->modulation == QAM_AUTO || fep->code_rate_HP == FEC_AUTO) { | 
|  | int i = 800, found; | 
|  |  | 
|  | dib7000p_autosearch_start(fe); | 
|  | do { | 
|  | msleep(1); | 
|  | found = dib7000p_autosearch_is_irq(fe); | 
|  | } while (found == 0 && i--); | 
|  |  | 
|  | dprintk("autosearch returns: %d\n", found); | 
|  | if (found == 0 || found == 1) | 
|  | return 0; | 
|  |  | 
|  | dib7000p_get_frontend(fe, fep); | 
|  | } | 
|  |  | 
|  | ret = dib7000p_tune(fe); | 
|  |  | 
|  | /* make this a config parameter */ | 
|  | if (state->version == SOC7090) { | 
|  | dib7090_set_output_mode(fe, state->cfg.output_mode); | 
|  | if (state->cfg.enMpegOutput == 0) { | 
|  | dib7090_setDibTxMux(state, MPEG_ON_DIBTX); | 
|  | dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); | 
|  | } | 
|  | } else | 
|  | dib7000p_set_output_mode(state, state->cfg.output_mode); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dib7000p_get_stats(struct dvb_frontend *fe, enum fe_status stat); | 
|  |  | 
|  | static int dib7000p_read_status(struct dvb_frontend *fe, enum fe_status *stat) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | u16 lock = dib7000p_read_word(state, 509); | 
|  |  | 
|  | *stat = 0; | 
|  |  | 
|  | if (lock & 0x8000) | 
|  | *stat |= FE_HAS_SIGNAL; | 
|  | if (lock & 0x3000) | 
|  | *stat |= FE_HAS_CARRIER; | 
|  | if (lock & 0x0100) | 
|  | *stat |= FE_HAS_VITERBI; | 
|  | if (lock & 0x0010) | 
|  | *stat |= FE_HAS_SYNC; | 
|  | if ((lock & 0x0038) == 0x38) | 
|  | *stat |= FE_HAS_LOCK; | 
|  |  | 
|  | dib7000p_get_stats(fe, *stat); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | *unc = dib7000p_read_word(state, 506); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | u16 val = dib7000p_read_word(state, 394); | 
|  | *strength = 65535 - val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 dib7000p_get_snr(struct dvb_frontend *fe) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | u16 val; | 
|  | s32 signal_mant, signal_exp, noise_mant, noise_exp; | 
|  | u32 result = 0; | 
|  |  | 
|  | val = dib7000p_read_word(state, 479); | 
|  | noise_mant = (val >> 4) & 0xff; | 
|  | noise_exp = ((val & 0xf) << 2); | 
|  | val = dib7000p_read_word(state, 480); | 
|  | noise_exp += ((val >> 14) & 0x3); | 
|  | if ((noise_exp & 0x20) != 0) | 
|  | noise_exp -= 0x40; | 
|  |  | 
|  | signal_mant = (val >> 6) & 0xFF; | 
|  | signal_exp = (val & 0x3F); | 
|  | if ((signal_exp & 0x20) != 0) | 
|  | signal_exp -= 0x40; | 
|  |  | 
|  | if (signal_mant != 0) | 
|  | result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant); | 
|  | else | 
|  | result = intlog10(2) * 10 * signal_exp - 100; | 
|  |  | 
|  | if (noise_mant != 0) | 
|  | result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant); | 
|  | else | 
|  | result -= intlog10(2) * 10 * noise_exp - 100; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int dib7000p_read_snr(struct dvb_frontend *fe, u16 *snr) | 
|  | { | 
|  | u32 result; | 
|  |  | 
|  | result = dib7000p_get_snr(fe); | 
|  |  | 
|  | *snr = result / ((1 << 24) / 10); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dib7000p_reset_stats(struct dvb_frontend *demod) | 
|  | { | 
|  | struct dib7000p_state *state = demod->demodulator_priv; | 
|  | struct dtv_frontend_properties *c = &demod->dtv_property_cache; | 
|  | u32 ucb; | 
|  |  | 
|  | memset(&c->strength, 0, sizeof(c->strength)); | 
|  | memset(&c->cnr, 0, sizeof(c->cnr)); | 
|  | memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); | 
|  | memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); | 
|  | memset(&c->block_error, 0, sizeof(c->block_error)); | 
|  |  | 
|  | c->strength.len = 1; | 
|  | c->cnr.len = 1; | 
|  | c->block_error.len = 1; | 
|  | c->block_count.len = 1; | 
|  | c->post_bit_error.len = 1; | 
|  | c->post_bit_count.len = 1; | 
|  |  | 
|  | c->strength.stat[0].scale = FE_SCALE_DECIBEL; | 
|  | c->strength.stat[0].uvalue = 0; | 
|  |  | 
|  | c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  |  | 
|  | dib7000p_read_unc_blocks(demod, &ucb); | 
|  |  | 
|  | state->old_ucb = ucb; | 
|  | state->ber_jiffies_stats = 0; | 
|  | state->per_jiffies_stats = 0; | 
|  | } | 
|  |  | 
|  | struct linear_segments { | 
|  | unsigned x; | 
|  | signed y; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Table to estimate signal strength in dBm. | 
|  | * This table should be empirically determinated by measuring the signal | 
|  | * strength generated by a RF generator directly connected into | 
|  | * a device. | 
|  | * This table was determinated by measuring the signal strength generated | 
|  | * by a DTA-2111 RF generator directly connected into a dib7000p device | 
|  | * (a Hauppauge Nova-TD stick), using a good quality 3 meters length | 
|  | * RC6 cable and good RC6 connectors, connected directly to antenna 1. | 
|  | * As the minimum output power of DTA-2111 is -31dBm, a 16 dBm attenuator | 
|  | * were used, for the lower power values. | 
|  | * The real value can actually be on other devices, or even at the | 
|  | * second antena input, depending on several factors, like if LNA | 
|  | * is enabled or not, if diversity is enabled, type of connectors, etc. | 
|  | * Yet, it is better to use this measure in dB than a random non-linear | 
|  | * percentage value, especially for antenna adjustments. | 
|  | * On my tests, the precision of the measure using this table is about | 
|  | * 0.5 dB, with sounds reasonable enough to adjust antennas. | 
|  | */ | 
|  | #define DB_OFFSET 131000 | 
|  |  | 
|  | static struct linear_segments strength_to_db_table[] = { | 
|  | { 63630, DB_OFFSET - 20500}, | 
|  | { 62273, DB_OFFSET - 21000}, | 
|  | { 60162, DB_OFFSET - 22000}, | 
|  | { 58730, DB_OFFSET - 23000}, | 
|  | { 58294, DB_OFFSET - 24000}, | 
|  | { 57778, DB_OFFSET - 25000}, | 
|  | { 57320, DB_OFFSET - 26000}, | 
|  | { 56779, DB_OFFSET - 27000}, | 
|  | { 56293, DB_OFFSET - 28000}, | 
|  | { 55724, DB_OFFSET - 29000}, | 
|  | { 55145, DB_OFFSET - 30000}, | 
|  | { 54680, DB_OFFSET - 31000}, | 
|  | { 54293, DB_OFFSET - 32000}, | 
|  | { 53813, DB_OFFSET - 33000}, | 
|  | { 53427, DB_OFFSET - 34000}, | 
|  | { 52981, DB_OFFSET - 35000}, | 
|  |  | 
|  | { 52636, DB_OFFSET - 36000}, | 
|  | { 52014, DB_OFFSET - 37000}, | 
|  | { 51674, DB_OFFSET - 38000}, | 
|  | { 50692, DB_OFFSET - 39000}, | 
|  | { 49824, DB_OFFSET - 40000}, | 
|  | { 49052, DB_OFFSET - 41000}, | 
|  | { 48436, DB_OFFSET - 42000}, | 
|  | { 47836, DB_OFFSET - 43000}, | 
|  | { 47368, DB_OFFSET - 44000}, | 
|  | { 46468, DB_OFFSET - 45000}, | 
|  | { 45597, DB_OFFSET - 46000}, | 
|  | { 44586, DB_OFFSET - 47000}, | 
|  | { 43667, DB_OFFSET - 48000}, | 
|  | { 42673, DB_OFFSET - 49000}, | 
|  | { 41816, DB_OFFSET - 50000}, | 
|  | { 40876, DB_OFFSET - 51000}, | 
|  | {     0,      0}, | 
|  | }; | 
|  |  | 
|  | static u32 interpolate_value(u32 value, struct linear_segments *segments, | 
|  | unsigned len) | 
|  | { | 
|  | u64 tmp64; | 
|  | u32 dx; | 
|  | s32 dy; | 
|  | int i, ret; | 
|  |  | 
|  | if (value >= segments[0].x) | 
|  | return segments[0].y; | 
|  | if (value < segments[len-1].x) | 
|  | return segments[len-1].y; | 
|  |  | 
|  | for (i = 1; i < len - 1; i++) { | 
|  | /* If value is identical, no need to interpolate */ | 
|  | if (value == segments[i].x) | 
|  | return segments[i].y; | 
|  | if (value > segments[i].x) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Linear interpolation between the two (x,y) points */ | 
|  | dy = segments[i - 1].y - segments[i].y; | 
|  | dx = segments[i - 1].x - segments[i].x; | 
|  |  | 
|  | tmp64 = value - segments[i].x; | 
|  | tmp64 *= dy; | 
|  | do_div(tmp64, dx); | 
|  | ret = segments[i].y + tmp64; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* FIXME: may require changes - this one was borrowed from dib8000 */ | 
|  | static u32 dib7000p_get_time_us(struct dvb_frontend *demod) | 
|  | { | 
|  | struct dtv_frontend_properties *c = &demod->dtv_property_cache; | 
|  | u64 time_us, tmp64; | 
|  | u32 tmp, denom; | 
|  | int guard, rate_num, rate_denum = 1, bits_per_symbol; | 
|  | int interleaving = 0, fft_div; | 
|  |  | 
|  | switch (c->guard_interval) { | 
|  | case GUARD_INTERVAL_1_4: | 
|  | guard = 4; | 
|  | break; | 
|  | case GUARD_INTERVAL_1_8: | 
|  | guard = 8; | 
|  | break; | 
|  | case GUARD_INTERVAL_1_16: | 
|  | guard = 16; | 
|  | break; | 
|  | default: | 
|  | case GUARD_INTERVAL_1_32: | 
|  | guard = 32; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (c->transmission_mode) { | 
|  | case TRANSMISSION_MODE_2K: | 
|  | fft_div = 4; | 
|  | break; | 
|  | case TRANSMISSION_MODE_4K: | 
|  | fft_div = 2; | 
|  | break; | 
|  | default: | 
|  | case TRANSMISSION_MODE_8K: | 
|  | fft_div = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (c->modulation) { | 
|  | case DQPSK: | 
|  | case QPSK: | 
|  | bits_per_symbol = 2; | 
|  | break; | 
|  | case QAM_16: | 
|  | bits_per_symbol = 4; | 
|  | break; | 
|  | default: | 
|  | case QAM_64: | 
|  | bits_per_symbol = 6; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch ((c->hierarchy == 0 || 1 == 1) ? c->code_rate_HP : c->code_rate_LP) { | 
|  | case FEC_1_2: | 
|  | rate_num = 1; | 
|  | rate_denum = 2; | 
|  | break; | 
|  | case FEC_2_3: | 
|  | rate_num = 2; | 
|  | rate_denum = 3; | 
|  | break; | 
|  | case FEC_3_4: | 
|  | rate_num = 3; | 
|  | rate_denum = 4; | 
|  | break; | 
|  | case FEC_5_6: | 
|  | rate_num = 5; | 
|  | rate_denum = 6; | 
|  | break; | 
|  | default: | 
|  | case FEC_7_8: | 
|  | rate_num = 7; | 
|  | rate_denum = 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | denom = bits_per_symbol * rate_num * fft_div * 384; | 
|  |  | 
|  | /* | 
|  | * FIXME: check if the math makes sense. If so, fill the | 
|  | * interleaving var. | 
|  | */ | 
|  |  | 
|  | /* If calculus gets wrong, wait for 1s for the next stats */ | 
|  | if (!denom) | 
|  | return 0; | 
|  |  | 
|  | /* Estimate the period for the total bit rate */ | 
|  | time_us = rate_denum * (1008 * 1562500L); | 
|  | tmp64 = time_us; | 
|  | do_div(tmp64, guard); | 
|  | time_us = time_us + tmp64; | 
|  | time_us += denom / 2; | 
|  | do_div(time_us, denom); | 
|  |  | 
|  | tmp = 1008 * 96 * interleaving; | 
|  | time_us += tmp + tmp / guard; | 
|  |  | 
|  | return time_us; | 
|  | } | 
|  |  | 
|  | static int dib7000p_get_stats(struct dvb_frontend *demod, enum fe_status stat) | 
|  | { | 
|  | struct dib7000p_state *state = demod->demodulator_priv; | 
|  | struct dtv_frontend_properties *c = &demod->dtv_property_cache; | 
|  | int show_per_stats = 0; | 
|  | u32 time_us = 0, val, snr; | 
|  | u64 blocks, ucb; | 
|  | s32 db; | 
|  | u16 strength; | 
|  |  | 
|  | /* Get Signal strength */ | 
|  | dib7000p_read_signal_strength(demod, &strength); | 
|  | val = strength; | 
|  | db = interpolate_value(val, | 
|  | strength_to_db_table, | 
|  | ARRAY_SIZE(strength_to_db_table)) - DB_OFFSET; | 
|  | c->strength.stat[0].svalue = db; | 
|  |  | 
|  | /* UCB/BER/CNR measures require lock */ | 
|  | if (!(stat & FE_HAS_LOCK)) { | 
|  | c->cnr.len = 1; | 
|  | c->block_count.len = 1; | 
|  | c->block_error.len = 1; | 
|  | c->post_bit_error.len = 1; | 
|  | c->post_bit_count.len = 1; | 
|  | c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check if time for stats was elapsed */ | 
|  | if (time_after(jiffies, state->per_jiffies_stats)) { | 
|  | state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000); | 
|  |  | 
|  | /* Get SNR */ | 
|  | snr = dib7000p_get_snr(demod); | 
|  | if (snr) | 
|  | snr = (1000L * snr) >> 24; | 
|  | else | 
|  | snr = 0; | 
|  | c->cnr.stat[0].svalue = snr; | 
|  | c->cnr.stat[0].scale = FE_SCALE_DECIBEL; | 
|  |  | 
|  | /* Get UCB measures */ | 
|  | dib7000p_read_unc_blocks(demod, &val); | 
|  | ucb = val - state->old_ucb; | 
|  | if (val < state->old_ucb) | 
|  | ucb += 0x100000000LL; | 
|  |  | 
|  | c->block_error.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->block_error.stat[0].uvalue = ucb; | 
|  |  | 
|  | /* Estimate the number of packets based on bitrate */ | 
|  | if (!time_us) | 
|  | time_us = dib7000p_get_time_us(demod); | 
|  |  | 
|  | if (time_us) { | 
|  | blocks = 1250000ULL * 1000000ULL; | 
|  | do_div(blocks, time_us * 8 * 204); | 
|  | c->block_count.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->block_count.stat[0].uvalue += blocks; | 
|  | } | 
|  |  | 
|  | show_per_stats = 1; | 
|  | } | 
|  |  | 
|  | /* Get post-BER measures */ | 
|  | if (time_after(jiffies, state->ber_jiffies_stats)) { | 
|  | time_us = dib7000p_get_time_us(demod); | 
|  | state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000); | 
|  |  | 
|  | dprintk("Next all layers stats available in %u us.\n", time_us); | 
|  |  | 
|  | dib7000p_read_ber(demod, &val); | 
|  | c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->post_bit_error.stat[0].uvalue += val; | 
|  |  | 
|  | c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->post_bit_count.stat[0].uvalue += 100000000; | 
|  | } | 
|  |  | 
|  | /* Get PER measures */ | 
|  | if (show_per_stats) { | 
|  | dib7000p_read_unc_blocks(demod, &val); | 
|  |  | 
|  | c->block_error.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->block_error.stat[0].uvalue += val; | 
|  |  | 
|  | time_us = dib7000p_get_time_us(demod); | 
|  | if (time_us) { | 
|  | blocks = 1250000ULL * 1000000ULL; | 
|  | do_div(blocks, time_us * 8 * 204); | 
|  | c->block_count.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->block_count.stat[0].uvalue += blocks; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) | 
|  | { | 
|  | tune->min_delay_ms = 1000; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dib7000p_release(struct dvb_frontend *demod) | 
|  | { | 
|  | struct dib7000p_state *st = demod->demodulator_priv; | 
|  | dibx000_exit_i2c_master(&st->i2c_master); | 
|  | i2c_del_adapter(&st->dib7090_tuner_adap); | 
|  | kfree(st); | 
|  | } | 
|  |  | 
|  | static int dib7000pc_detection(struct i2c_adapter *i2c_adap) | 
|  | { | 
|  | u8 *tx, *rx; | 
|  | struct i2c_msg msg[2] = { | 
|  | {.addr = 18 >> 1, .flags = 0, .len = 2}, | 
|  | {.addr = 18 >> 1, .flags = I2C_M_RD, .len = 2}, | 
|  | }; | 
|  | int ret = 0; | 
|  |  | 
|  | tx = kzalloc(2, GFP_KERNEL); | 
|  | if (!tx) | 
|  | return -ENOMEM; | 
|  | rx = kzalloc(2, GFP_KERNEL); | 
|  | if (!rx) { | 
|  | ret = -ENOMEM; | 
|  | goto rx_memory_error; | 
|  | } | 
|  |  | 
|  | msg[0].buf = tx; | 
|  | msg[1].buf = rx; | 
|  |  | 
|  | tx[0] = 0x03; | 
|  | tx[1] = 0x00; | 
|  |  | 
|  | if (i2c_transfer(i2c_adap, msg, 2) == 2) | 
|  | if (rx[0] == 0x01 && rx[1] == 0xb3) { | 
|  | dprintk("-D-  DiB7000PC detected\n"); | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | msg[0].addr = msg[1].addr = 0x40; | 
|  |  | 
|  | if (i2c_transfer(i2c_adap, msg, 2) == 2) | 
|  | if (rx[0] == 0x01 && rx[1] == 0xb3) { | 
|  | dprintk("-D-  DiB7000PC detected\n"); | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | dprintk("-D-  DiB7000PC not detected\n"); | 
|  |  | 
|  | out: | 
|  | kfree(rx); | 
|  | rx_memory_error: | 
|  | kfree(tx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) | 
|  | { | 
|  | struct dib7000p_state *st = demod->demodulator_priv; | 
|  | return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); | 
|  | } | 
|  |  | 
|  | static int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | u16 val = dib7000p_read_word(state, 235) & 0xffef; | 
|  | val |= (onoff & 0x1) << 4; | 
|  | dprintk("PID filter enabled %d\n", onoff); | 
|  | return dib7000p_write_word(state, 235, val); | 
|  | } | 
|  |  | 
|  | static int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | dprintk("PID filter: index %x, PID %d, OnOff %d\n", id, pid, onoff); | 
|  | return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0); | 
|  | } | 
|  |  | 
|  | static int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]) | 
|  | { | 
|  | struct dib7000p_state *dpst; | 
|  | int k = 0; | 
|  | u8 new_addr = 0; | 
|  |  | 
|  | dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); | 
|  | if (!dpst) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dpst->i2c_adap = i2c; | 
|  | mutex_init(&dpst->i2c_buffer_lock); | 
|  |  | 
|  | for (k = no_of_demods - 1; k >= 0; k--) { | 
|  | dpst->cfg = cfg[k]; | 
|  |  | 
|  | /* designated i2c address */ | 
|  | if (cfg[k].default_i2c_addr != 0) | 
|  | new_addr = cfg[k].default_i2c_addr + (k << 1); | 
|  | else | 
|  | new_addr = (0x40 + k) << 1; | 
|  | dpst->i2c_addr = new_addr; | 
|  | dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */ | 
|  | if (dib7000p_identify(dpst) != 0) { | 
|  | dpst->i2c_addr = default_addr; | 
|  | dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */ | 
|  | if (dib7000p_identify(dpst) != 0) { | 
|  | dprintk("DiB7000P #%d: not identified\n", k); | 
|  | kfree(dpst); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* start diversity to pull_down div_str - just for i2c-enumeration */ | 
|  | dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY); | 
|  |  | 
|  | /* set new i2c address and force divstart */ | 
|  | dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2); | 
|  |  | 
|  | dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); | 
|  | } | 
|  |  | 
|  | for (k = 0; k < no_of_demods; k++) { | 
|  | dpst->cfg = cfg[k]; | 
|  | if (cfg[k].default_i2c_addr != 0) | 
|  | dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1; | 
|  | else | 
|  | dpst->i2c_addr = (0x40 + k) << 1; | 
|  |  | 
|  | // unforce divstr | 
|  | dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2); | 
|  |  | 
|  | /* deactivate div - it was just for i2c-enumeration */ | 
|  | dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z); | 
|  | } | 
|  |  | 
|  | kfree(dpst); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const s32 lut_1000ln_mant[] = { | 
|  | 6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600 | 
|  | }; | 
|  |  | 
|  | static s32 dib7000p_get_adc_power(struct dvb_frontend *fe) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | u32 tmp_val = 0, exp = 0, mant = 0; | 
|  | s32 pow_i; | 
|  | u16 buf[2]; | 
|  | u8 ix = 0; | 
|  |  | 
|  | buf[0] = dib7000p_read_word(state, 0x184); | 
|  | buf[1] = dib7000p_read_word(state, 0x185); | 
|  | pow_i = (buf[0] << 16) | buf[1]; | 
|  | dprintk("raw pow_i = %d\n", pow_i); | 
|  |  | 
|  | tmp_val = pow_i; | 
|  | while (tmp_val >>= 1) | 
|  | exp++; | 
|  |  | 
|  | mant = (pow_i * 1000 / (1 << exp)); | 
|  | dprintk(" mant = %d exp = %d\n", mant / 1000, exp); | 
|  |  | 
|  | ix = (u8) ((mant - 1000) / 100);	/* index of the LUT */ | 
|  | dprintk(" ix = %d\n", ix); | 
|  |  | 
|  | pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908); | 
|  | pow_i = (pow_i << 8) / 1000; | 
|  | dprintk(" pow_i = %d\n", pow_i); | 
|  |  | 
|  | return pow_i; | 
|  | } | 
|  |  | 
|  | static int map_addr_to_serpar_number(struct i2c_msg *msg) | 
|  | { | 
|  | if ((msg->buf[0] <= 15)) | 
|  | msg->buf[0] -= 1; | 
|  | else if (msg->buf[0] == 17) | 
|  | msg->buf[0] = 15; | 
|  | else if (msg->buf[0] == 16) | 
|  | msg->buf[0] = 17; | 
|  | else if (msg->buf[0] == 19) | 
|  | msg->buf[0] = 16; | 
|  | else if (msg->buf[0] >= 21 && msg->buf[0] <= 25) | 
|  | msg->buf[0] -= 3; | 
|  | else if (msg->buf[0] == 28) | 
|  | msg->buf[0] = 23; | 
|  | else | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) | 
|  | { | 
|  | struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); | 
|  | u8 n_overflow = 1; | 
|  | u16 i = 1000; | 
|  | u16 serpar_num = msg[0].buf[0]; | 
|  |  | 
|  | while (n_overflow == 1 && i) { | 
|  | n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1; | 
|  | i--; | 
|  | if (i == 0) | 
|  | dprintk("Tuner ITF: write busy (overflow)\n"); | 
|  | } | 
|  | dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f)); | 
|  | dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]); | 
|  |  | 
|  | return num; | 
|  | } | 
|  |  | 
|  | static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) | 
|  | { | 
|  | struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); | 
|  | u8 n_overflow = 1, n_empty = 1; | 
|  | u16 i = 1000; | 
|  | u16 serpar_num = msg[0].buf[0]; | 
|  | u16 read_word; | 
|  |  | 
|  | while (n_overflow == 1 && i) { | 
|  | n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1; | 
|  | i--; | 
|  | if (i == 0) | 
|  | dprintk("TunerITF: read busy (overflow)\n"); | 
|  | } | 
|  | dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f)); | 
|  |  | 
|  | i = 1000; | 
|  | while (n_empty == 1 && i) { | 
|  | n_empty = dib7000p_read_word(state, 1984) & 0x1; | 
|  | i--; | 
|  | if (i == 0) | 
|  | dprintk("TunerITF: read busy (empty)\n"); | 
|  | } | 
|  | read_word = dib7000p_read_word(state, 1987); | 
|  | msg[1].buf[0] = (read_word >> 8) & 0xff; | 
|  | msg[1].buf[1] = (read_word) & 0xff; | 
|  |  | 
|  | return num; | 
|  | } | 
|  |  | 
|  | static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) | 
|  | { | 
|  | if (map_addr_to_serpar_number(&msg[0]) == 0) {	/* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */ | 
|  | if (num == 1) {	/* write */ | 
|  | return w7090p_tuner_write_serpar(i2c_adap, msg, 1); | 
|  | } else {	/* read */ | 
|  | return w7090p_tuner_read_serpar(i2c_adap, msg, 2); | 
|  | } | 
|  | } | 
|  | return num; | 
|  | } | 
|  |  | 
|  | static int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap, | 
|  | struct i2c_msg msg[], int num, u16 apb_address) | 
|  | { | 
|  | struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); | 
|  | u16 word; | 
|  |  | 
|  | if (num == 1) {		/* write */ | 
|  | dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2]))); | 
|  | } else { | 
|  | word = dib7000p_read_word(state, apb_address); | 
|  | msg[1].buf[0] = (word >> 8) & 0xff; | 
|  | msg[1].buf[1] = (word) & 0xff; | 
|  | } | 
|  |  | 
|  | return num; | 
|  | } | 
|  |  | 
|  | static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) | 
|  | { | 
|  | struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); | 
|  |  | 
|  | u16 apb_address = 0, word; | 
|  | int i = 0; | 
|  | switch (msg[0].buf[0]) { | 
|  | case 0x12: | 
|  | apb_address = 1920; | 
|  | break; | 
|  | case 0x14: | 
|  | apb_address = 1921; | 
|  | break; | 
|  | case 0x24: | 
|  | apb_address = 1922; | 
|  | break; | 
|  | case 0x1a: | 
|  | apb_address = 1923; | 
|  | break; | 
|  | case 0x22: | 
|  | apb_address = 1924; | 
|  | break; | 
|  | case 0x33: | 
|  | apb_address = 1926; | 
|  | break; | 
|  | case 0x34: | 
|  | apb_address = 1927; | 
|  | break; | 
|  | case 0x35: | 
|  | apb_address = 1928; | 
|  | break; | 
|  | case 0x36: | 
|  | apb_address = 1929; | 
|  | break; | 
|  | case 0x37: | 
|  | apb_address = 1930; | 
|  | break; | 
|  | case 0x38: | 
|  | apb_address = 1931; | 
|  | break; | 
|  | case 0x39: | 
|  | apb_address = 1932; | 
|  | break; | 
|  | case 0x2a: | 
|  | apb_address = 1935; | 
|  | break; | 
|  | case 0x2b: | 
|  | apb_address = 1936; | 
|  | break; | 
|  | case 0x2c: | 
|  | apb_address = 1937; | 
|  | break; | 
|  | case 0x2d: | 
|  | apb_address = 1938; | 
|  | break; | 
|  | case 0x2e: | 
|  | apb_address = 1939; | 
|  | break; | 
|  | case 0x2f: | 
|  | apb_address = 1940; | 
|  | break; | 
|  | case 0x30: | 
|  | apb_address = 1941; | 
|  | break; | 
|  | case 0x31: | 
|  | apb_address = 1942; | 
|  | break; | 
|  | case 0x32: | 
|  | apb_address = 1943; | 
|  | break; | 
|  | case 0x3e: | 
|  | apb_address = 1944; | 
|  | break; | 
|  | case 0x3f: | 
|  | apb_address = 1945; | 
|  | break; | 
|  | case 0x40: | 
|  | apb_address = 1948; | 
|  | break; | 
|  | case 0x25: | 
|  | apb_address = 914; | 
|  | break; | 
|  | case 0x26: | 
|  | apb_address = 915; | 
|  | break; | 
|  | case 0x27: | 
|  | apb_address = 917; | 
|  | break; | 
|  | case 0x28: | 
|  | apb_address = 916; | 
|  | break; | 
|  | case 0x1d: | 
|  | i = ((dib7000p_read_word(state, 72) >> 12) & 0x3); | 
|  | word = dib7000p_read_word(state, 384 + i); | 
|  | msg[1].buf[0] = (word >> 8) & 0xff; | 
|  | msg[1].buf[1] = (word) & 0xff; | 
|  | return num; | 
|  | case 0x1f: | 
|  | if (num == 1) {	/* write */ | 
|  | word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]); | 
|  | word &= 0x3; | 
|  | word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12); | 
|  | dib7000p_write_word(state, 72, word);	/* Set the proper input */ | 
|  | return num; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (apb_address != 0)	/* R/W access via APB */ | 
|  | return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address); | 
|  | else			/* R/W access via SERPAR  */ | 
|  | return w7090p_tuner_rw_serpar(i2c_adap, msg, num); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 dib7000p_i2c_func(struct i2c_adapter *adapter) | 
|  | { | 
|  | return I2C_FUNC_I2C; | 
|  | } | 
|  |  | 
|  | static const struct i2c_algorithm dib7090_tuner_xfer_algo = { | 
|  | .master_xfer = dib7090_tuner_xfer, | 
|  | .functionality = dib7000p_i2c_func, | 
|  | }; | 
|  |  | 
|  | static struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe) | 
|  | { | 
|  | struct dib7000p_state *st = fe->demodulator_priv; | 
|  | return &st->dib7090_tuner_adap; | 
|  | } | 
|  |  | 
|  | static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive) | 
|  | { | 
|  | u16 reg; | 
|  |  | 
|  | /* drive host bus 2, 3, 4 */ | 
|  | reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); | 
|  | reg |= (drive << 12) | (drive << 6) | drive; | 
|  | dib7000p_write_word(state, 1798, reg); | 
|  |  | 
|  | /* drive host bus 5,6 */ | 
|  | reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8)); | 
|  | reg |= (drive << 8) | (drive << 2); | 
|  | dib7000p_write_word(state, 1799, reg); | 
|  |  | 
|  | /* drive host bus 7, 8, 9 */ | 
|  | reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); | 
|  | reg |= (drive << 12) | (drive << 6) | drive; | 
|  | dib7000p_write_word(state, 1800, reg); | 
|  |  | 
|  | /* drive host bus 10, 11 */ | 
|  | reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8)); | 
|  | reg |= (drive << 8) | (drive << 2); | 
|  | dib7000p_write_word(state, 1801, reg); | 
|  |  | 
|  | /* drive host bus 12, 13, 14 */ | 
|  | reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); | 
|  | reg |= (drive << 12) | (drive << 6) | drive; | 
|  | dib7000p_write_word(state, 1802, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize) | 
|  | { | 
|  | u32 quantif = 3; | 
|  | u32 nom = (insertExtSynchro * P_Kin + syncSize); | 
|  | u32 denom = P_Kout; | 
|  | u32 syncFreq = ((nom << quantif) / denom); | 
|  |  | 
|  | if ((syncFreq & ((1 << quantif) - 1)) != 0) | 
|  | syncFreq = (syncFreq >> quantif) + 1; | 
|  | else | 
|  | syncFreq = (syncFreq >> quantif); | 
|  |  | 
|  | if (syncFreq != 0) | 
|  | syncFreq = syncFreq - 1; | 
|  |  | 
|  | return syncFreq; | 
|  | } | 
|  |  | 
|  | static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize) | 
|  | { | 
|  | dprintk("Configure DibStream Tx\n"); | 
|  |  | 
|  | dib7000p_write_word(state, 1615, 1); | 
|  | dib7000p_write_word(state, 1603, P_Kin); | 
|  | dib7000p_write_word(state, 1605, P_Kout); | 
|  | dib7000p_write_word(state, 1606, insertExtSynchro); | 
|  | dib7000p_write_word(state, 1608, synchroMode); | 
|  | dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff); | 
|  | dib7000p_write_word(state, 1610, syncWord & 0xffff); | 
|  | dib7000p_write_word(state, 1612, syncSize); | 
|  | dib7000p_write_word(state, 1615, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize, | 
|  | u32 dataOutRate) | 
|  | { | 
|  | u32 syncFreq; | 
|  |  | 
|  | dprintk("Configure DibStream Rx\n"); | 
|  | if ((P_Kin != 0) && (P_Kout != 0)) { | 
|  | syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize); | 
|  | dib7000p_write_word(state, 1542, syncFreq); | 
|  | } | 
|  | dib7000p_write_word(state, 1554, 1); | 
|  | dib7000p_write_word(state, 1536, P_Kin); | 
|  | dib7000p_write_word(state, 1537, P_Kout); | 
|  | dib7000p_write_word(state, 1539, synchroMode); | 
|  | dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff); | 
|  | dib7000p_write_word(state, 1541, syncWord & 0xffff); | 
|  | dib7000p_write_word(state, 1543, syncSize); | 
|  | dib7000p_write_word(state, 1544, dataOutRate); | 
|  | dib7000p_write_word(state, 1554, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dib7090_enMpegMux(struct dib7000p_state *state, int onoff) | 
|  | { | 
|  | u16 reg_1287 = dib7000p_read_word(state, 1287); | 
|  |  | 
|  | switch (onoff) { | 
|  | case 1: | 
|  | reg_1287 &= ~(1<<7); | 
|  | break; | 
|  | case 0: | 
|  | reg_1287 |= (1<<7); | 
|  | break; | 
|  | } | 
|  |  | 
|  | dib7000p_write_word(state, 1287, reg_1287); | 
|  | } | 
|  |  | 
|  | static void dib7090_configMpegMux(struct dib7000p_state *state, | 
|  | u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2) | 
|  | { | 
|  | dprintk("Enable Mpeg mux\n"); | 
|  |  | 
|  | dib7090_enMpegMux(state, 0); | 
|  |  | 
|  | /* If the input mode is MPEG do not divide the serial clock */ | 
|  | if ((enSerialMode == 1) && (state->input_mode_mpeg == 1)) | 
|  | enSerialClkDiv2 = 0; | 
|  |  | 
|  | dib7000p_write_word(state, 1287, ((pulseWidth & 0x1f) << 2) | 
|  | | ((enSerialMode & 0x1) << 1) | 
|  | | (enSerialClkDiv2 & 0x1)); | 
|  |  | 
|  | dib7090_enMpegMux(state, 1); | 
|  | } | 
|  |  | 
|  | static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode) | 
|  | { | 
|  | u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 7); | 
|  |  | 
|  | switch (mode) { | 
|  | case MPEG_ON_DIBTX: | 
|  | dprintk("SET MPEG ON DIBSTREAM TX\n"); | 
|  | dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0); | 
|  | reg_1288 |= (1<<9); | 
|  | break; | 
|  | case DIV_ON_DIBTX: | 
|  | dprintk("SET DIV_OUT ON DIBSTREAM TX\n"); | 
|  | dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0); | 
|  | reg_1288 |= (1<<8); | 
|  | break; | 
|  | case ADC_ON_DIBTX: | 
|  | dprintk("SET ADC_OUT ON DIBSTREAM TX\n"); | 
|  | dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0); | 
|  | reg_1288 |= (1<<7); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | dib7000p_write_word(state, 1288, reg_1288); | 
|  | } | 
|  |  | 
|  | static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode) | 
|  | { | 
|  | u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 4); | 
|  |  | 
|  | switch (mode) { | 
|  | case DEMOUT_ON_HOSTBUS: | 
|  | dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n"); | 
|  | dib7090_enMpegMux(state, 0); | 
|  | reg_1288 |= (1<<6); | 
|  | break; | 
|  | case DIBTX_ON_HOSTBUS: | 
|  | dprintk("SET DIBSTREAM TX ON HOST BUS\n"); | 
|  | dib7090_enMpegMux(state, 0); | 
|  | reg_1288 |= (1<<5); | 
|  | break; | 
|  | case MPEG_ON_HOSTBUS: | 
|  | dprintk("SET MPEG MUX ON HOST BUS\n"); | 
|  | reg_1288 |= (1<<4); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | dib7000p_write_word(state, 1288, reg_1288); | 
|  | } | 
|  |  | 
|  | static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | u16 reg_1287; | 
|  |  | 
|  | switch (onoff) { | 
|  | case 0: /* only use the internal way - not the diversity input */ | 
|  | dprintk("%s mode OFF : by default Enable Mpeg INPUT\n", __func__); | 
|  | dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); | 
|  |  | 
|  | /* Do not divide the serial clock of MPEG MUX */ | 
|  | /* in SERIAL MODE in case input mode MPEG is used */ | 
|  | reg_1287 = dib7000p_read_word(state, 1287); | 
|  | /* enSerialClkDiv2 == 1 ? */ | 
|  | if ((reg_1287 & 0x1) == 1) { | 
|  | /* force enSerialClkDiv2 = 0 */ | 
|  | reg_1287 &= ~0x1; | 
|  | dib7000p_write_word(state, 1287, reg_1287); | 
|  | } | 
|  | state->input_mode_mpeg = 1; | 
|  | break; | 
|  | case 1: /* both ways */ | 
|  | case 2: /* only the diversity input */ | 
|  | dprintk("%s ON : Enable diversity INPUT\n", __func__); | 
|  | dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0); | 
|  | state->input_mode_mpeg = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | dib7000p_set_diversity_in(&state->demod, onoff); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  |  | 
|  | u16 outreg, smo_mode, fifo_threshold; | 
|  | u8 prefer_mpeg_mux_use = 1; | 
|  | int ret = 0; | 
|  |  | 
|  | dib7090_host_bus_drive(state, 1); | 
|  |  | 
|  | fifo_threshold = 1792; | 
|  | smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); | 
|  | outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1)); | 
|  |  | 
|  | switch (mode) { | 
|  | case OUTMODE_HIGH_Z: | 
|  | outreg = 0; | 
|  | break; | 
|  |  | 
|  | case OUTMODE_MPEG2_SERIAL: | 
|  | if (prefer_mpeg_mux_use) { | 
|  | dprintk("setting output mode TS_SERIAL using Mpeg Mux\n"); | 
|  | dib7090_configMpegMux(state, 3, 1, 1); | 
|  | dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS); | 
|  | } else {/* Use Smooth block */ | 
|  | dprintk("setting output mode TS_SERIAL using Smooth bloc\n"); | 
|  | dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); | 
|  | outreg |= (2<<6) | (0 << 1); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OUTMODE_MPEG2_PAR_GATED_CLK: | 
|  | if (prefer_mpeg_mux_use) { | 
|  | dprintk("setting output mode TS_PARALLEL_GATED using Mpeg Mux\n"); | 
|  | dib7090_configMpegMux(state, 2, 0, 0); | 
|  | dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS); | 
|  | } else { /* Use Smooth block */ | 
|  | dprintk("setting output mode TS_PARALLEL_GATED using Smooth block\n"); | 
|  | dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); | 
|  | outreg |= (0<<6); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OUTMODE_MPEG2_PAR_CONT_CLK:	/* Using Smooth block only */ | 
|  | dprintk("setting output mode TS_PARALLEL_CONT using Smooth block\n"); | 
|  | dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); | 
|  | outreg |= (1<<6); | 
|  | break; | 
|  |  | 
|  | case OUTMODE_MPEG2_FIFO:	/* Using Smooth block because not supported by new Mpeg Mux bloc */ | 
|  | dprintk("setting output mode TS_FIFO using Smooth block\n"); | 
|  | dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); | 
|  | outreg |= (5<<6); | 
|  | smo_mode |= (3 << 1); | 
|  | fifo_threshold = 512; | 
|  | break; | 
|  |  | 
|  | case OUTMODE_DIVERSITY: | 
|  | dprintk("setting output mode MODE_DIVERSITY\n"); | 
|  | dib7090_setDibTxMux(state, DIV_ON_DIBTX); | 
|  | dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); | 
|  | break; | 
|  |  | 
|  | case OUTMODE_ANALOG_ADC: | 
|  | dprintk("setting output mode MODE_ANALOG_ADC\n"); | 
|  | dib7090_setDibTxMux(state, ADC_ON_DIBTX); | 
|  | dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); | 
|  | break; | 
|  | } | 
|  | if (mode != OUTMODE_HIGH_Z) | 
|  | outreg |= (1 << 10); | 
|  |  | 
|  | if (state->cfg.output_mpeg2_in_188_bytes) | 
|  | smo_mode |= (1 << 5); | 
|  |  | 
|  | ret |= dib7000p_write_word(state, 235, smo_mode); | 
|  | ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */ | 
|  | ret |= dib7000p_write_word(state, 1286, outreg); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | u16 en_cur_state; | 
|  |  | 
|  | dprintk("sleep dib7090: %d\n", onoff); | 
|  |  | 
|  | en_cur_state = dib7000p_read_word(state, 1922); | 
|  |  | 
|  | if (en_cur_state > 0xff) | 
|  | state->tuner_enable = en_cur_state; | 
|  |  | 
|  | if (onoff) | 
|  | en_cur_state &= 0x00ff; | 
|  | else { | 
|  | if (state->tuner_enable != 0) | 
|  | en_cur_state = state->tuner_enable; | 
|  | } | 
|  |  | 
|  | dib7000p_write_word(state, 1922, en_cur_state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dib7090_get_adc_power(struct dvb_frontend *fe) | 
|  | { | 
|  | return dib7000p_get_adc_power(fe); | 
|  | } | 
|  |  | 
|  | static int dib7090_slave_reset(struct dvb_frontend *fe) | 
|  | { | 
|  | struct dib7000p_state *state = fe->demodulator_priv; | 
|  | u16 reg; | 
|  |  | 
|  | reg = dib7000p_read_word(state, 1794); | 
|  | dib7000p_write_word(state, 1794, reg | (4 << 12)); | 
|  |  | 
|  | dib7000p_write_word(state, 1032, 0xffff); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct dvb_frontend_ops dib7000p_ops; | 
|  | static struct dvb_frontend *dib7000p_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg) | 
|  | { | 
|  | struct dvb_frontend *demod; | 
|  | struct dib7000p_state *st; | 
|  | st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); | 
|  | if (st == NULL) | 
|  | return NULL; | 
|  |  | 
|  | memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config)); | 
|  | st->i2c_adap = i2c_adap; | 
|  | st->i2c_addr = i2c_addr; | 
|  | st->gpio_val = cfg->gpio_val; | 
|  | st->gpio_dir = cfg->gpio_dir; | 
|  |  | 
|  | /* Ensure the output mode remains at the previous default if it's | 
|  | * not specifically set by the caller. | 
|  | */ | 
|  | if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) | 
|  | st->cfg.output_mode = OUTMODE_MPEG2_FIFO; | 
|  |  | 
|  | demod = &st->demod; | 
|  | demod->demodulator_priv = st; | 
|  | memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops)); | 
|  | mutex_init(&st->i2c_buffer_lock); | 
|  |  | 
|  | dib7000p_write_word(st, 1287, 0x0003);	/* sram lead in, rdy */ | 
|  |  | 
|  | if (dib7000p_identify(st) != 0) | 
|  | goto error; | 
|  |  | 
|  | st->version = dib7000p_read_word(st, 897); | 
|  |  | 
|  | /* FIXME: make sure the dev.parent field is initialized, or else | 
|  | request_firmware() will hit an OOPS (this should be moved somewhere | 
|  | more common) */ | 
|  | st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent; | 
|  |  | 
|  | dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr); | 
|  |  | 
|  | /* init 7090 tuner adapter */ | 
|  | strscpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", | 
|  | sizeof(st->dib7090_tuner_adap.name)); | 
|  | st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo; | 
|  | st->dib7090_tuner_adap.algo_data = NULL; | 
|  | st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent; | 
|  | i2c_set_adapdata(&st->dib7090_tuner_adap, st); | 
|  | i2c_add_adapter(&st->dib7090_tuner_adap); | 
|  |  | 
|  | dib7000p_demod_reset(st); | 
|  |  | 
|  | dib7000p_reset_stats(demod); | 
|  |  | 
|  | if (st->version == SOC7090) { | 
|  | dib7090_set_output_mode(demod, st->cfg.output_mode); | 
|  | dib7090_set_diversity_in(demod, 0); | 
|  | } | 
|  |  | 
|  | return demod; | 
|  |  | 
|  | error: | 
|  | kfree(st); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void *dib7000p_attach(struct dib7000p_ops *ops) | 
|  | { | 
|  | if (!ops) | 
|  | return NULL; | 
|  |  | 
|  | ops->slave_reset = dib7090_slave_reset; | 
|  | ops->get_adc_power = dib7090_get_adc_power; | 
|  | ops->dib7000pc_detection = dib7000pc_detection; | 
|  | ops->get_i2c_tuner = dib7090_get_i2c_tuner; | 
|  | ops->tuner_sleep = dib7090_tuner_sleep; | 
|  | ops->init = dib7000p_init; | 
|  | ops->set_agc1_min = dib7000p_set_agc1_min; | 
|  | ops->set_gpio = dib7000p_set_gpio; | 
|  | ops->i2c_enumeration = dib7000p_i2c_enumeration; | 
|  | ops->pid_filter = dib7000p_pid_filter; | 
|  | ops->pid_filter_ctrl = dib7000p_pid_filter_ctrl; | 
|  | ops->get_i2c_master = dib7000p_get_i2c_master; | 
|  | ops->update_pll = dib7000p_update_pll; | 
|  | ops->ctrl_timf = dib7000p_ctrl_timf; | 
|  | ops->get_agc_values = dib7000p_get_agc_values; | 
|  | ops->set_wbd_ref = dib7000p_set_wbd_ref; | 
|  |  | 
|  | return ops; | 
|  | } | 
|  | EXPORT_SYMBOL(dib7000p_attach); | 
|  |  | 
|  | static const struct dvb_frontend_ops dib7000p_ops = { | 
|  | .delsys = { SYS_DVBT }, | 
|  | .info = { | 
|  | .name = "DiBcom 7000PC", | 
|  | .frequency_min_hz =  44250 * kHz, | 
|  | .frequency_max_hz = 867250 * kHz, | 
|  | .frequency_stepsize_hz = 62500, | 
|  | .caps = FE_CAN_INVERSION_AUTO | | 
|  | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | | 
|  | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | | 
|  | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | | 
|  | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, | 
|  | }, | 
|  |  | 
|  | .release = dib7000p_release, | 
|  |  | 
|  | .init = dib7000p_wakeup, | 
|  | .sleep = dib7000p_sleep, | 
|  |  | 
|  | .set_frontend = dib7000p_set_frontend, | 
|  | .get_tune_settings = dib7000p_fe_get_tune_settings, | 
|  | .get_frontend = dib7000p_get_frontend, | 
|  |  | 
|  | .read_status = dib7000p_read_status, | 
|  | .read_ber = dib7000p_read_ber, | 
|  | .read_signal_strength = dib7000p_read_signal_strength, | 
|  | .read_snr = dib7000p_read_snr, | 
|  | .read_ucblocks = dib7000p_read_unc_blocks, | 
|  | }; | 
|  |  | 
|  | MODULE_AUTHOR("Olivier Grenie <olivie.grenie@parrot.com>"); | 
|  | MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>"); | 
|  | MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator"); | 
|  | MODULE_LICENSE("GPL"); |