|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Oracle Data Analytics Accelerator (DAX) | 
|  | * | 
|  | * DAX is a coprocessor which resides on the SPARC M7 (DAX1) and M8 | 
|  | * (DAX2) processor chips, and has direct access to the CPU's L3 | 
|  | * caches as well as physical memory. It can perform several | 
|  | * operations on data streams with various input and output formats. | 
|  | * The driver provides a transport mechanism only and has limited | 
|  | * knowledge of the various opcodes and data formats. A user space | 
|  | * library provides high level services and translates these into low | 
|  | * level commands which are then passed into the driver and | 
|  | * subsequently the hypervisor and the coprocessor.  The library is | 
|  | * the recommended way for applications to use the coprocessor, and | 
|  | * the driver interface is not intended for general use. | 
|  | * | 
|  | * See Documentation/sparc/oradax/oracle-dax.rst for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/cdev.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mm.h> | 
|  |  | 
|  | #include <asm/hypervisor.h> | 
|  | #include <asm/mdesc.h> | 
|  | #include <asm/oradax.h> | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("Driver for Oracle Data Analytics Accelerator"); | 
|  |  | 
|  | #define	DAX_DBG_FLG_BASIC	0x01 | 
|  | #define	DAX_DBG_FLG_STAT	0x02 | 
|  | #define	DAX_DBG_FLG_INFO	0x04 | 
|  | #define	DAX_DBG_FLG_ALL		0xff | 
|  |  | 
|  | #define	dax_err(fmt, ...)      pr_err("%s: " fmt "\n", __func__, ##__VA_ARGS__) | 
|  | #define	dax_info(fmt, ...)     pr_info("%s: " fmt "\n", __func__, ##__VA_ARGS__) | 
|  |  | 
|  | #define	dax_dbg(fmt, ...)	do {					\ | 
|  | if (dax_debug & DAX_DBG_FLG_BASIC)\ | 
|  | dax_info(fmt, ##__VA_ARGS__); \ | 
|  | } while (0) | 
|  | #define	dax_stat_dbg(fmt, ...)	do {					\ | 
|  | if (dax_debug & DAX_DBG_FLG_STAT) \ | 
|  | dax_info(fmt, ##__VA_ARGS__); \ | 
|  | } while (0) | 
|  | #define	dax_info_dbg(fmt, ...)	do { \ | 
|  | if (dax_debug & DAX_DBG_FLG_INFO) \ | 
|  | dax_info(fmt, ##__VA_ARGS__); \ | 
|  | } while (0) | 
|  |  | 
|  | #define	DAX1_MINOR		1 | 
|  | #define	DAX1_MAJOR		1 | 
|  | #define	DAX2_MINOR		0 | 
|  | #define	DAX2_MAJOR		2 | 
|  |  | 
|  | #define	DAX1_STR    "ORCL,sun4v-dax" | 
|  | #define	DAX2_STR    "ORCL,sun4v-dax2" | 
|  |  | 
|  | #define	DAX_CA_ELEMS		(DAX_MMAP_LEN / sizeof(struct dax_cca)) | 
|  |  | 
|  | #define	DAX_CCB_USEC		100 | 
|  | #define	DAX_CCB_RETRIES		10000 | 
|  |  | 
|  | /* stream types */ | 
|  | enum { | 
|  | OUT, | 
|  | PRI, | 
|  | SEC, | 
|  | TBL, | 
|  | NUM_STREAM_TYPES | 
|  | }; | 
|  |  | 
|  | /* completion status */ | 
|  | #define	CCA_STAT_NOT_COMPLETED	0 | 
|  | #define	CCA_STAT_COMPLETED	1 | 
|  | #define	CCA_STAT_FAILED		2 | 
|  | #define	CCA_STAT_KILLED		3 | 
|  | #define	CCA_STAT_NOT_RUN	4 | 
|  | #define	CCA_STAT_PIPE_OUT	5 | 
|  | #define	CCA_STAT_PIPE_SRC	6 | 
|  | #define	CCA_STAT_PIPE_DST	7 | 
|  |  | 
|  | /* completion err */ | 
|  | #define	CCA_ERR_SUCCESS		0x0	/* no error */ | 
|  | #define	CCA_ERR_OVERFLOW	0x1	/* buffer overflow */ | 
|  | #define	CCA_ERR_DECODE		0x2	/* CCB decode error */ | 
|  | #define	CCA_ERR_PAGE_OVERFLOW	0x3	/* page overflow */ | 
|  | #define	CCA_ERR_KILLED		0x7	/* command was killed */ | 
|  | #define	CCA_ERR_TIMEOUT		0x8	/* Timeout */ | 
|  | #define	CCA_ERR_ADI		0x9	/* ADI error */ | 
|  | #define	CCA_ERR_DATA_FMT	0xA	/* data format error */ | 
|  | #define	CCA_ERR_OTHER_NO_RETRY	0xE	/* Other error, do not retry */ | 
|  | #define	CCA_ERR_OTHER_RETRY	0xF	/* Other error, retry */ | 
|  | #define	CCA_ERR_PARTIAL_SYMBOL	0x80	/* QP partial symbol warning */ | 
|  |  | 
|  | /* CCB address types */ | 
|  | #define	DAX_ADDR_TYPE_NONE	0 | 
|  | #define	DAX_ADDR_TYPE_VA_ALT	1	/* secondary context */ | 
|  | #define	DAX_ADDR_TYPE_RA	2	/* real address */ | 
|  | #define	DAX_ADDR_TYPE_VA	3	/* virtual address */ | 
|  |  | 
|  | /* dax_header_t opcode */ | 
|  | #define	DAX_OP_SYNC_NOP		0x0 | 
|  | #define	DAX_OP_EXTRACT		0x1 | 
|  | #define	DAX_OP_SCAN_VALUE	0x2 | 
|  | #define	DAX_OP_SCAN_RANGE	0x3 | 
|  | #define	DAX_OP_TRANSLATE	0x4 | 
|  | #define	DAX_OP_SELECT		0x5 | 
|  | #define	DAX_OP_INVERT		0x10	/* OR with translate, scan opcodes */ | 
|  |  | 
|  | struct dax_header { | 
|  | u32 ccb_version:4;	/* 31:28 CCB Version */ | 
|  | /* 27:24 Sync Flags */ | 
|  | u32 pipe:1;		/* Pipeline */ | 
|  | u32 longccb:1;		/* Longccb. Set for scan with lu2, lu3, lu4. */ | 
|  | u32 cond:1;		/* Conditional */ | 
|  | u32 serial:1;		/* Serial */ | 
|  | u32 opcode:8;		/* 23:16 Opcode */ | 
|  | /* 15:0 Address Type. */ | 
|  | u32 reserved:3;		/* 15:13 reserved */ | 
|  | u32 table_addr_type:2;	/* 12:11 Huffman Table Address Type */ | 
|  | u32 out_addr_type:3;	/* 10:8 Destination Address Type */ | 
|  | u32 sec_addr_type:3;	/* 7:5 Secondary Source Address Type */ | 
|  | u32 pri_addr_type:3;	/* 4:2 Primary Source Address Type */ | 
|  | u32 cca_addr_type:2;	/* 1:0 Completion Address Type */ | 
|  | }; | 
|  |  | 
|  | struct dax_control { | 
|  | u32 pri_fmt:4;		/* 31:28 Primary Input Format */ | 
|  | u32 pri_elem_size:5;	/* 27:23 Primary Input Element Size(less1) */ | 
|  | u32 pri_offset:3;	/* 22:20 Primary Input Starting Offset */ | 
|  | u32 sec_encoding:1;	/* 19    Secondary Input Encoding */ | 
|  | /*	 (must be 0 for Select) */ | 
|  | u32 sec_offset:3;	/* 18:16 Secondary Input Starting Offset */ | 
|  | u32 sec_elem_size:2;	/* 15:14 Secondary Input Element Size */ | 
|  | /*	 (must be 0 for Select) */ | 
|  | u32 out_fmt:2;		/* 13:12 Output Format */ | 
|  | u32 out_elem_size:2;	/* 11:10 Output Element Size */ | 
|  | u32 misc:10;		/* 9:0 Opcode specific info */ | 
|  | }; | 
|  |  | 
|  | struct dax_data_access { | 
|  | u64 flow_ctrl:2;	/* 63:62 Flow Control Type */ | 
|  | u64 pipe_target:2;	/* 61:60 Pipeline Target */ | 
|  | u64 out_buf_size:20;	/* 59:40 Output Buffer Size */ | 
|  | /*	 (cachelines less 1) */ | 
|  | u64 unused1:8;		/* 39:32 Reserved, Set to 0 */ | 
|  | u64 out_alloc:5;	/* 31:27 Output Allocation */ | 
|  | u64 unused2:1;		/* 26	 Reserved */ | 
|  | u64 pri_len_fmt:2;	/* 25:24 Input Length Format */ | 
|  | u64 pri_len:24;		/* 23:0  Input Element/Byte/Bit Count */ | 
|  | /*	 (less 1) */ | 
|  | }; | 
|  |  | 
|  | struct dax_ccb { | 
|  | struct dax_header hdr;	/* CCB Header */ | 
|  | struct dax_control ctrl;/* Control Word */ | 
|  | void *ca;		/* Completion Address */ | 
|  | void *pri;		/* Primary Input Address */ | 
|  | struct dax_data_access dac; /* Data Access Control */ | 
|  | void *sec;		/* Secondary Input Address */ | 
|  | u64 dword5;		/* depends on opcode */ | 
|  | void *out;		/* Output Address */ | 
|  | void *tbl;		/* Table Address or bitmap */ | 
|  | }; | 
|  |  | 
|  | struct dax_cca { | 
|  | u8	status;		/* user may mwait on this address */ | 
|  | u8	err;		/* user visible error notification */ | 
|  | u8	rsvd[2];	/* reserved */ | 
|  | u32	n_remaining;	/* for QP partial symbol warning */ | 
|  | u32	output_sz;	/* output in bytes */ | 
|  | u32	rsvd2;		/* reserved */ | 
|  | u64	run_cycles;	/* run time in OCND2 cycles */ | 
|  | u64	run_stats;	/* nothing reported in version 1.0 */ | 
|  | u32	n_processed;	/* number input elements */ | 
|  | u32	rsvd3[5];	/* reserved */ | 
|  | u64	retval;		/* command return value */ | 
|  | u64	rsvd4[8];	/* reserved */ | 
|  | }; | 
|  |  | 
|  | /* per thread CCB context */ | 
|  | struct dax_ctx { | 
|  | struct dax_ccb		*ccb_buf; | 
|  | u64			ccb_buf_ra;	/* cached RA of ccb_buf  */ | 
|  | struct dax_cca		*ca_buf; | 
|  | u64			ca_buf_ra;	/* cached RA of ca_buf   */ | 
|  | struct page		*pages[DAX_CA_ELEMS][NUM_STREAM_TYPES]; | 
|  | /* array of locked pages */ | 
|  | struct task_struct	*owner;		/* thread that owns ctx  */ | 
|  | struct task_struct	*client;	/* requesting thread     */ | 
|  | union ccb_result	result; | 
|  | u32			ccb_count; | 
|  | u32			fail_count; | 
|  | }; | 
|  |  | 
|  | /* driver public entry points */ | 
|  | static int dax_open(struct inode *inode, struct file *file); | 
|  | static ssize_t dax_read(struct file *filp, char __user *buf, | 
|  | size_t count, loff_t *ppos); | 
|  | static ssize_t dax_write(struct file *filp, const char __user *buf, | 
|  | size_t count, loff_t *ppos); | 
|  | static int dax_devmap(struct file *f, struct vm_area_struct *vma); | 
|  | static int dax_close(struct inode *i, struct file *f); | 
|  |  | 
|  | static const struct file_operations dax_fops = { | 
|  | .owner	=	THIS_MODULE, | 
|  | .open	=	dax_open, | 
|  | .read	=	dax_read, | 
|  | .write	=	dax_write, | 
|  | .mmap	=	dax_devmap, | 
|  | .release =	dax_close, | 
|  | }; | 
|  |  | 
|  | static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf, | 
|  | size_t count, loff_t *ppos); | 
|  | static int dax_ccb_info(u64 ca, struct ccb_info_result *info); | 
|  | static int dax_ccb_kill(u64 ca, u16 *kill_res); | 
|  |  | 
|  | static struct cdev c_dev; | 
|  | static struct class *cl; | 
|  | static dev_t first; | 
|  |  | 
|  | static int max_ccb_version; | 
|  | static int dax_debug; | 
|  | module_param(dax_debug, int, 0644); | 
|  | MODULE_PARM_DESC(dax_debug, "Debug flags"); | 
|  |  | 
|  | static int __init dax_attach(void) | 
|  | { | 
|  | unsigned long dummy, hv_rv, major, minor, minor_requested, max_ccbs; | 
|  | struct mdesc_handle *hp = mdesc_grab(); | 
|  | char *prop, *dax_name; | 
|  | bool found = false; | 
|  | int len, ret = 0; | 
|  | u64 pn; | 
|  |  | 
|  | if (hp == NULL) { | 
|  | dax_err("Unable to grab mdesc"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | mdesc_for_each_node_by_name(hp, pn, "virtual-device") { | 
|  | prop = (char *)mdesc_get_property(hp, pn, "name", &len); | 
|  | if (prop == NULL) | 
|  | continue; | 
|  | if (strncmp(prop, "dax", strlen("dax"))) | 
|  | continue; | 
|  | dax_dbg("Found node 0x%llx = %s", pn, prop); | 
|  |  | 
|  | prop = (char *)mdesc_get_property(hp, pn, "compatible", &len); | 
|  | if (prop == NULL) | 
|  | continue; | 
|  | dax_dbg("Found node 0x%llx = %s", pn, prop); | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | dax_err("No DAX device found"); | 
|  | ret = -ENODEV; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (strncmp(prop, DAX2_STR, strlen(DAX2_STR)) == 0) { | 
|  | dax_name = DAX_NAME "2"; | 
|  | major = DAX2_MAJOR; | 
|  | minor_requested = DAX2_MINOR; | 
|  | max_ccb_version = 1; | 
|  | dax_dbg("MD indicates DAX2 coprocessor"); | 
|  | } else if (strncmp(prop, DAX1_STR, strlen(DAX1_STR)) == 0) { | 
|  | dax_name = DAX_NAME "1"; | 
|  | major = DAX1_MAJOR; | 
|  | minor_requested = DAX1_MINOR; | 
|  | max_ccb_version = 0; | 
|  | dax_dbg("MD indicates DAX1 coprocessor"); | 
|  | } else { | 
|  | dax_err("Unknown dax type: %s", prop); | 
|  | ret = -ENODEV; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | minor = minor_requested; | 
|  | dax_dbg("Registering DAX HV api with major %ld minor %ld", major, | 
|  | minor); | 
|  | if (sun4v_hvapi_register(HV_GRP_DAX, major, &minor)) { | 
|  | dax_err("hvapi_register failed"); | 
|  | ret = -ENODEV; | 
|  | goto done; | 
|  | } else { | 
|  | dax_dbg("Max minor supported by HV = %ld (major %ld)", minor, | 
|  | major); | 
|  | minor = min(minor, minor_requested); | 
|  | dax_dbg("registered DAX major %ld minor %ld", major, minor); | 
|  | } | 
|  |  | 
|  | /* submit a zero length ccb array to query coprocessor queue size */ | 
|  | hv_rv = sun4v_ccb_submit(0, 0, HV_CCB_QUERY_CMD, 0, &max_ccbs, &dummy); | 
|  | if (hv_rv != 0) { | 
|  | dax_err("get_hwqueue_size failed with status=%ld and max_ccbs=%ld", | 
|  | hv_rv, max_ccbs); | 
|  | ret = -ENODEV; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (max_ccbs != DAX_MAX_CCBS) { | 
|  | dax_err("HV reports unsupported max_ccbs=%ld", max_ccbs); | 
|  | ret = -ENODEV; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (alloc_chrdev_region(&first, 0, 1, DAX_NAME) < 0) { | 
|  | dax_err("alloc_chrdev_region failed"); | 
|  | ret = -ENXIO; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | cl = class_create(THIS_MODULE, DAX_NAME); | 
|  | if (IS_ERR(cl)) { | 
|  | dax_err("class_create failed"); | 
|  | ret = PTR_ERR(cl); | 
|  | goto class_error; | 
|  | } | 
|  |  | 
|  | if (device_create(cl, NULL, first, NULL, dax_name) == NULL) { | 
|  | dax_err("device_create failed"); | 
|  | ret = -ENXIO; | 
|  | goto device_error; | 
|  | } | 
|  |  | 
|  | cdev_init(&c_dev, &dax_fops); | 
|  | if (cdev_add(&c_dev, first, 1) == -1) { | 
|  | dax_err("cdev_add failed"); | 
|  | ret = -ENXIO; | 
|  | goto cdev_error; | 
|  | } | 
|  |  | 
|  | pr_info("Attached DAX module\n"); | 
|  | goto done; | 
|  |  | 
|  | cdev_error: | 
|  | device_destroy(cl, first); | 
|  | device_error: | 
|  | class_destroy(cl); | 
|  | class_error: | 
|  | unregister_chrdev_region(first, 1); | 
|  | done: | 
|  | mdesc_release(hp); | 
|  | return ret; | 
|  | } | 
|  | module_init(dax_attach); | 
|  |  | 
|  | static void __exit dax_detach(void) | 
|  | { | 
|  | pr_info("Cleaning up DAX module\n"); | 
|  | cdev_del(&c_dev); | 
|  | device_destroy(cl, first); | 
|  | class_destroy(cl); | 
|  | unregister_chrdev_region(first, 1); | 
|  | } | 
|  | module_exit(dax_detach); | 
|  |  | 
|  | /* map completion area */ | 
|  | static int dax_devmap(struct file *f, struct vm_area_struct *vma) | 
|  | { | 
|  | struct dax_ctx *ctx = (struct dax_ctx *)f->private_data; | 
|  | size_t len = vma->vm_end - vma->vm_start; | 
|  |  | 
|  | dax_dbg("len=0x%lx, flags=0x%lx", len, vma->vm_flags); | 
|  |  | 
|  | if (ctx->owner != current) { | 
|  | dax_dbg("devmap called from wrong thread"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (len != DAX_MMAP_LEN) { | 
|  | dax_dbg("len(%lu) != DAX_MMAP_LEN(%d)", len, DAX_MMAP_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* completion area is mapped read-only for user */ | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | return -EPERM; | 
|  | vma->vm_flags &= ~VM_MAYWRITE; | 
|  |  | 
|  | if (remap_pfn_range(vma, vma->vm_start, ctx->ca_buf_ra >> PAGE_SHIFT, | 
|  | len, vma->vm_page_prot)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | dax_dbg("mmapped completion area at uva 0x%lx", vma->vm_start); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Unlock user pages. Called during dequeue or device close */ | 
|  | static void dax_unlock_pages(struct dax_ctx *ctx, int ccb_index, int nelem) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (i = ccb_index; i < ccb_index + nelem; i++) { | 
|  | for (j = 0; j < NUM_STREAM_TYPES; j++) { | 
|  | struct page *p = ctx->pages[i][j]; | 
|  |  | 
|  | if (p) { | 
|  | dax_dbg("freeing page %p", p); | 
|  | unpin_user_pages_dirty_lock(&p, 1, j == OUT); | 
|  | ctx->pages[i][j] = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int dax_lock_page(void *va, struct page **p) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | dax_dbg("uva %p", va); | 
|  |  | 
|  | ret = pin_user_pages_fast((unsigned long)va, 1, FOLL_WRITE, p); | 
|  | if (ret == 1) { | 
|  | dax_dbg("locked page %p, for VA %p", *p, va); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | dax_dbg("pin_user_pages failed, va=%p, ret=%d", va, ret); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int dax_lock_pages(struct dax_ctx *ctx, int idx, | 
|  | int nelem, u64 *err_va) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nelem; i++) { | 
|  | struct dax_ccb *ccbp = &ctx->ccb_buf[i]; | 
|  |  | 
|  | /* | 
|  | * For each address in the CCB whose type is virtual, | 
|  | * lock the page and change the type to virtual alternate | 
|  | * context. On error, return the offending address in | 
|  | * err_va. | 
|  | */ | 
|  | if (ccbp->hdr.out_addr_type == DAX_ADDR_TYPE_VA) { | 
|  | dax_dbg("output"); | 
|  | if (dax_lock_page(ccbp->out, | 
|  | &ctx->pages[i + idx][OUT]) != 0) { | 
|  | *err_va = (u64)ccbp->out; | 
|  | goto error; | 
|  | } | 
|  | ccbp->hdr.out_addr_type = DAX_ADDR_TYPE_VA_ALT; | 
|  | } | 
|  |  | 
|  | if (ccbp->hdr.pri_addr_type == DAX_ADDR_TYPE_VA) { | 
|  | dax_dbg("input"); | 
|  | if (dax_lock_page(ccbp->pri, | 
|  | &ctx->pages[i + idx][PRI]) != 0) { | 
|  | *err_va = (u64)ccbp->pri; | 
|  | goto error; | 
|  | } | 
|  | ccbp->hdr.pri_addr_type = DAX_ADDR_TYPE_VA_ALT; | 
|  | } | 
|  |  | 
|  | if (ccbp->hdr.sec_addr_type == DAX_ADDR_TYPE_VA) { | 
|  | dax_dbg("sec input"); | 
|  | if (dax_lock_page(ccbp->sec, | 
|  | &ctx->pages[i + idx][SEC]) != 0) { | 
|  | *err_va = (u64)ccbp->sec; | 
|  | goto error; | 
|  | } | 
|  | ccbp->hdr.sec_addr_type = DAX_ADDR_TYPE_VA_ALT; | 
|  | } | 
|  |  | 
|  | if (ccbp->hdr.table_addr_type == DAX_ADDR_TYPE_VA) { | 
|  | dax_dbg("tbl"); | 
|  | if (dax_lock_page(ccbp->tbl, | 
|  | &ctx->pages[i + idx][TBL]) != 0) { | 
|  | *err_va = (u64)ccbp->tbl; | 
|  | goto error; | 
|  | } | 
|  | ccbp->hdr.table_addr_type = DAX_ADDR_TYPE_VA_ALT; | 
|  | } | 
|  |  | 
|  | /* skip over 2nd 64 bytes of long CCB */ | 
|  | if (ccbp->hdr.longccb) | 
|  | i++; | 
|  | } | 
|  | return DAX_SUBMIT_OK; | 
|  |  | 
|  | error: | 
|  | dax_unlock_pages(ctx, idx, nelem); | 
|  | return DAX_SUBMIT_ERR_NOACCESS; | 
|  | } | 
|  |  | 
|  | static void dax_ccb_wait(struct dax_ctx *ctx, int idx) | 
|  | { | 
|  | int ret, nretries; | 
|  | u16 kill_res; | 
|  |  | 
|  | dax_dbg("idx=%d", idx); | 
|  |  | 
|  | for (nretries = 0; nretries < DAX_CCB_RETRIES; nretries++) { | 
|  | if (ctx->ca_buf[idx].status == CCA_STAT_NOT_COMPLETED) | 
|  | udelay(DAX_CCB_USEC); | 
|  | else | 
|  | return; | 
|  | } | 
|  | dax_dbg("ctx (%p): CCB[%d] timed out, wait usec=%d, retries=%d. Killing ccb", | 
|  | (void *)ctx, idx, DAX_CCB_USEC, DAX_CCB_RETRIES); | 
|  |  | 
|  | ret = dax_ccb_kill(ctx->ca_buf_ra + idx * sizeof(struct dax_cca), | 
|  | &kill_res); | 
|  | dax_dbg("Kill CCB[%d] %s", idx, ret ? "failed" : "succeeded"); | 
|  | } | 
|  |  | 
|  | static int dax_close(struct inode *ino, struct file *f) | 
|  | { | 
|  | struct dax_ctx *ctx = (struct dax_ctx *)f->private_data; | 
|  | int i; | 
|  |  | 
|  | f->private_data = NULL; | 
|  |  | 
|  | for (i = 0; i < DAX_CA_ELEMS; i++) { | 
|  | if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) { | 
|  | dax_dbg("CCB[%d] not completed", i); | 
|  | dax_ccb_wait(ctx, i); | 
|  | } | 
|  | dax_unlock_pages(ctx, i, 1); | 
|  | } | 
|  |  | 
|  | kfree(ctx->ccb_buf); | 
|  | kfree(ctx->ca_buf); | 
|  | dax_stat_dbg("CCBs: %d good, %d bad", ctx->ccb_count, ctx->fail_count); | 
|  | kfree(ctx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t dax_read(struct file *f, char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | struct dax_ctx *ctx = f->private_data; | 
|  |  | 
|  | if (ctx->client != current) | 
|  | return -EUSERS; | 
|  |  | 
|  | ctx->client = NULL; | 
|  |  | 
|  | if (count != sizeof(union ccb_result)) | 
|  | return -EINVAL; | 
|  | if (copy_to_user(buf, &ctx->result, sizeof(union ccb_result))) | 
|  | return -EFAULT; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t dax_write(struct file *f, const char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | struct dax_ctx *ctx = f->private_data; | 
|  | struct dax_command hdr; | 
|  | unsigned long ca; | 
|  | int i, idx, ret; | 
|  |  | 
|  | if (ctx->client != NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (count == 0 || count > DAX_MAX_CCBS * sizeof(struct dax_ccb)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (count % sizeof(struct dax_ccb) == 0) | 
|  | return dax_ccb_exec(ctx, buf, count, ppos); /* CCB EXEC */ | 
|  |  | 
|  | if (count != sizeof(struct dax_command)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* immediate command */ | 
|  | if (ctx->owner != current) | 
|  | return -EUSERS; | 
|  |  | 
|  | if (copy_from_user(&hdr, buf, sizeof(hdr))) | 
|  | return -EFAULT; | 
|  |  | 
|  | ca = ctx->ca_buf_ra + hdr.ca_offset; | 
|  |  | 
|  | switch (hdr.command) { | 
|  | case CCB_KILL: | 
|  | if (hdr.ca_offset >= DAX_MMAP_LEN) { | 
|  | dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)", | 
|  | hdr.ca_offset, DAX_MMAP_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = dax_ccb_kill(ca, &ctx->result.kill.action); | 
|  | if (ret != 0) { | 
|  | dax_dbg("dax_ccb_kill failed (ret=%d)", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | dax_info_dbg("killed (ca_offset %d)", hdr.ca_offset); | 
|  | idx = hdr.ca_offset / sizeof(struct dax_cca); | 
|  | ctx->ca_buf[idx].status = CCA_STAT_KILLED; | 
|  | ctx->ca_buf[idx].err = CCA_ERR_KILLED; | 
|  | ctx->client = current; | 
|  | return count; | 
|  |  | 
|  | case CCB_INFO: | 
|  | if (hdr.ca_offset >= DAX_MMAP_LEN) { | 
|  | dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)", | 
|  | hdr.ca_offset, DAX_MMAP_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = dax_ccb_info(ca, &ctx->result.info); | 
|  | if (ret != 0) { | 
|  | dax_dbg("dax_ccb_info failed (ret=%d)", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | dax_info_dbg("info succeeded on ca_offset %d", hdr.ca_offset); | 
|  | ctx->client = current; | 
|  | return count; | 
|  |  | 
|  | case CCB_DEQUEUE: | 
|  | for (i = 0; i < DAX_CA_ELEMS; i++) { | 
|  | if (ctx->ca_buf[i].status != | 
|  | CCA_STAT_NOT_COMPLETED) | 
|  | dax_unlock_pages(ctx, i, 1); | 
|  | } | 
|  | return count; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int dax_open(struct inode *inode, struct file *f) | 
|  | { | 
|  | struct dax_ctx *ctx = NULL; | 
|  | int i; | 
|  |  | 
|  | ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); | 
|  | if (ctx == NULL) | 
|  | goto done; | 
|  |  | 
|  | ctx->ccb_buf = kcalloc(DAX_MAX_CCBS, sizeof(struct dax_ccb), | 
|  | GFP_KERNEL); | 
|  | if (ctx->ccb_buf == NULL) | 
|  | goto done; | 
|  |  | 
|  | ctx->ccb_buf_ra = virt_to_phys(ctx->ccb_buf); | 
|  | dax_dbg("ctx->ccb_buf=0x%p, ccb_buf_ra=0x%llx", | 
|  | (void *)ctx->ccb_buf, ctx->ccb_buf_ra); | 
|  |  | 
|  | /* allocate CCB completion area buffer */ | 
|  | ctx->ca_buf = kzalloc(DAX_MMAP_LEN, GFP_KERNEL); | 
|  | if (ctx->ca_buf == NULL) | 
|  | goto alloc_error; | 
|  | for (i = 0; i < DAX_CA_ELEMS; i++) | 
|  | ctx->ca_buf[i].status = CCA_STAT_COMPLETED; | 
|  |  | 
|  | ctx->ca_buf_ra = virt_to_phys(ctx->ca_buf); | 
|  | dax_dbg("ctx=0x%p, ctx->ca_buf=0x%p, ca_buf_ra=0x%llx", | 
|  | (void *)ctx, (void *)ctx->ca_buf, ctx->ca_buf_ra); | 
|  |  | 
|  | ctx->owner = current; | 
|  | f->private_data = ctx; | 
|  | return 0; | 
|  |  | 
|  | alloc_error: | 
|  | kfree(ctx->ccb_buf); | 
|  | done: | 
|  | kfree(ctx); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static char *dax_hv_errno(unsigned long hv_ret, int *ret) | 
|  | { | 
|  | switch (hv_ret) { | 
|  | case HV_EBADALIGN: | 
|  | *ret = -EFAULT; | 
|  | return "HV_EBADALIGN"; | 
|  | case HV_ENORADDR: | 
|  | *ret = -EFAULT; | 
|  | return "HV_ENORADDR"; | 
|  | case HV_EINVAL: | 
|  | *ret = -EINVAL; | 
|  | return "HV_EINVAL"; | 
|  | case HV_EWOULDBLOCK: | 
|  | *ret = -EAGAIN; | 
|  | return "HV_EWOULDBLOCK"; | 
|  | case HV_ENOACCESS: | 
|  | *ret = -EPERM; | 
|  | return "HV_ENOACCESS"; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | *ret = -EIO; | 
|  | return "UNKNOWN"; | 
|  | } | 
|  |  | 
|  | static int dax_ccb_kill(u64 ca, u16 *kill_res) | 
|  | { | 
|  | unsigned long hv_ret; | 
|  | int count, ret = 0; | 
|  | char *err_str; | 
|  |  | 
|  | for (count = 0; count < DAX_CCB_RETRIES; count++) { | 
|  | dax_dbg("attempting kill on ca_ra 0x%llx", ca); | 
|  | hv_ret = sun4v_ccb_kill(ca, kill_res); | 
|  |  | 
|  | if (hv_ret == HV_EOK) { | 
|  | dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca, | 
|  | *kill_res); | 
|  | } else { | 
|  | err_str = dax_hv_errno(hv_ret, &ret); | 
|  | dax_dbg("%s (ca_ra 0x%llx)", err_str, ca); | 
|  | } | 
|  |  | 
|  | if (ret != -EAGAIN) | 
|  | return ret; | 
|  | dax_info_dbg("ccb_kill count = %d", count); | 
|  | udelay(DAX_CCB_USEC); | 
|  | } | 
|  |  | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | static int dax_ccb_info(u64 ca, struct ccb_info_result *info) | 
|  | { | 
|  | unsigned long hv_ret; | 
|  | char *err_str; | 
|  | int ret = 0; | 
|  |  | 
|  | dax_dbg("attempting info on ca_ra 0x%llx", ca); | 
|  | hv_ret = sun4v_ccb_info(ca, info); | 
|  |  | 
|  | if (hv_ret == HV_EOK) { | 
|  | dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca, info->state); | 
|  | if (info->state == DAX_CCB_ENQUEUED) { | 
|  | dax_info_dbg("dax_unit %d, queue_num %d, queue_pos %d", | 
|  | info->inst_num, info->q_num, info->q_pos); | 
|  | } | 
|  | } else { | 
|  | err_str = dax_hv_errno(hv_ret, &ret); | 
|  | dax_dbg("%s (ca_ra 0x%llx)", err_str, ca); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void dax_prt_ccbs(struct dax_ccb *ccb, int nelem) | 
|  | { | 
|  | int i, j; | 
|  | u64 *ccbp; | 
|  |  | 
|  | dax_dbg("ccb buffer:"); | 
|  | for (i = 0; i < nelem; i++) { | 
|  | ccbp = (u64 *)&ccb[i]; | 
|  | dax_dbg(" %sccb[%d]", ccb[i].hdr.longccb ? "long " : "",  i); | 
|  | for (j = 0; j < 8; j++) | 
|  | dax_dbg("\tccb[%d].dwords[%d]=0x%llx", | 
|  | i, j, *(ccbp + j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validates user CCB content.  Also sets completion address and address types | 
|  | * for all addresses contained in CCB. | 
|  | */ | 
|  | static int dax_preprocess_usr_ccbs(struct dax_ctx *ctx, int idx, int nelem) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * The user is not allowed to specify real address types in | 
|  | * the CCB header.  This must be enforced by the kernel before | 
|  | * submitting the CCBs to HV.  The only allowed values for all | 
|  | * address fields are VA or IMM | 
|  | */ | 
|  | for (i = 0; i < nelem; i++) { | 
|  | struct dax_ccb *ccbp = &ctx->ccb_buf[i]; | 
|  | unsigned long ca_offset; | 
|  |  | 
|  | if (ccbp->hdr.ccb_version > max_ccb_version) | 
|  | return DAX_SUBMIT_ERR_CCB_INVAL; | 
|  |  | 
|  | switch (ccbp->hdr.opcode) { | 
|  | case DAX_OP_SYNC_NOP: | 
|  | case DAX_OP_EXTRACT: | 
|  | case DAX_OP_SCAN_VALUE: | 
|  | case DAX_OP_SCAN_RANGE: | 
|  | case DAX_OP_TRANSLATE: | 
|  | case DAX_OP_SCAN_VALUE | DAX_OP_INVERT: | 
|  | case DAX_OP_SCAN_RANGE | DAX_OP_INVERT: | 
|  | case DAX_OP_TRANSLATE | DAX_OP_INVERT: | 
|  | case DAX_OP_SELECT: | 
|  | break; | 
|  | default: | 
|  | return DAX_SUBMIT_ERR_CCB_INVAL; | 
|  | } | 
|  |  | 
|  | if (ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_VA && | 
|  | ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_NONE) { | 
|  | dax_dbg("invalid out_addr_type in user CCB[%d]", i); | 
|  | return DAX_SUBMIT_ERR_CCB_INVAL; | 
|  | } | 
|  |  | 
|  | if (ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_VA && | 
|  | ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_NONE) { | 
|  | dax_dbg("invalid pri_addr_type in user CCB[%d]", i); | 
|  | return DAX_SUBMIT_ERR_CCB_INVAL; | 
|  | } | 
|  |  | 
|  | if (ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_VA && | 
|  | ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_NONE) { | 
|  | dax_dbg("invalid sec_addr_type in user CCB[%d]", i); | 
|  | return DAX_SUBMIT_ERR_CCB_INVAL; | 
|  | } | 
|  |  | 
|  | if (ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_VA && | 
|  | ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_NONE) { | 
|  | dax_dbg("invalid table_addr_type in user CCB[%d]", i); | 
|  | return DAX_SUBMIT_ERR_CCB_INVAL; | 
|  | } | 
|  |  | 
|  | /* set completion (real) address and address type */ | 
|  | ccbp->hdr.cca_addr_type = DAX_ADDR_TYPE_RA; | 
|  | ca_offset = (idx + i) * sizeof(struct dax_cca); | 
|  | ccbp->ca = (void *)ctx->ca_buf_ra + ca_offset; | 
|  | memset(&ctx->ca_buf[idx + i], 0, sizeof(struct dax_cca)); | 
|  |  | 
|  | dax_dbg("ccb[%d]=%p, ca_offset=0x%lx, compl RA=0x%llx", | 
|  | i, ccbp, ca_offset, ctx->ca_buf_ra + ca_offset); | 
|  |  | 
|  | /* skip over 2nd 64 bytes of long CCB */ | 
|  | if (ccbp->hdr.longccb) | 
|  | i++; | 
|  | } | 
|  |  | 
|  | return DAX_SUBMIT_OK; | 
|  | } | 
|  |  | 
|  | static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | unsigned long accepted_len, hv_rv; | 
|  | int i, idx, nccbs, naccepted; | 
|  |  | 
|  | ctx->client = current; | 
|  | idx = *ppos; | 
|  | nccbs = count / sizeof(struct dax_ccb); | 
|  |  | 
|  | if (ctx->owner != current) { | 
|  | dax_dbg("wrong thread"); | 
|  | ctx->result.exec.status = DAX_SUBMIT_ERR_THR_INIT; | 
|  | return 0; | 
|  | } | 
|  | dax_dbg("args: ccb_buf_len=%ld, idx=%d", count, idx); | 
|  |  | 
|  | /* for given index and length, verify ca_buf range exists */ | 
|  | if (idx < 0 || idx > (DAX_CA_ELEMS - nccbs)) { | 
|  | ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy CCBs into kernel buffer to prevent modification by the | 
|  | * user in between validation and submission. | 
|  | */ | 
|  | if (copy_from_user(ctx->ccb_buf, buf, count)) { | 
|  | dax_dbg("copyin of user CCB buffer failed"); | 
|  | ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_ARR_MMU_MISS; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check to see if ca_buf[idx] .. ca_buf[idx + nccbs] are available */ | 
|  | for (i = idx; i < idx + nccbs; i++) { | 
|  | if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) { | 
|  | dax_dbg("CA range not available, dequeue needed"); | 
|  | ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | dax_unlock_pages(ctx, idx, nccbs); | 
|  |  | 
|  | ctx->result.exec.status = dax_preprocess_usr_ccbs(ctx, idx, nccbs); | 
|  | if (ctx->result.exec.status != DAX_SUBMIT_OK) | 
|  | return 0; | 
|  |  | 
|  | ctx->result.exec.status = dax_lock_pages(ctx, idx, nccbs, | 
|  | &ctx->result.exec.status_data); | 
|  | if (ctx->result.exec.status != DAX_SUBMIT_OK) | 
|  | return 0; | 
|  |  | 
|  | if (dax_debug & DAX_DBG_FLG_BASIC) | 
|  | dax_prt_ccbs(ctx->ccb_buf, nccbs); | 
|  |  | 
|  | hv_rv = sun4v_ccb_submit(ctx->ccb_buf_ra, count, | 
|  | HV_CCB_QUERY_CMD | HV_CCB_VA_SECONDARY, 0, | 
|  | &accepted_len, &ctx->result.exec.status_data); | 
|  |  | 
|  | switch (hv_rv) { | 
|  | case HV_EOK: | 
|  | /* | 
|  | * Hcall succeeded with no errors but the accepted | 
|  | * length may be less than the requested length.  The | 
|  | * only way the driver can resubmit the remainder is | 
|  | * to wait for completion of the submitted CCBs since | 
|  | * there is no way to guarantee the ordering semantics | 
|  | * required by the client applications.  Therefore we | 
|  | * let the user library deal with resubmissions. | 
|  | */ | 
|  | ctx->result.exec.status = DAX_SUBMIT_OK; | 
|  | break; | 
|  | case HV_EWOULDBLOCK: | 
|  | /* | 
|  | * This is a transient HV API error. The user library | 
|  | * can retry. | 
|  | */ | 
|  | dax_dbg("hcall returned HV_EWOULDBLOCK"); | 
|  | ctx->result.exec.status = DAX_SUBMIT_ERR_WOULDBLOCK; | 
|  | break; | 
|  | case HV_ENOMAP: | 
|  | /* | 
|  | * HV was unable to translate a VA. The VA it could | 
|  | * not translate is returned in the status_data param. | 
|  | */ | 
|  | dax_dbg("hcall returned HV_ENOMAP"); | 
|  | ctx->result.exec.status = DAX_SUBMIT_ERR_NOMAP; | 
|  | break; | 
|  | case HV_EINVAL: | 
|  | /* | 
|  | * This is the result of an invalid user CCB as HV is | 
|  | * validating some of the user CCB fields.  Pass this | 
|  | * error back to the user. There is no supporting info | 
|  | * to isolate the invalid field. | 
|  | */ | 
|  | dax_dbg("hcall returned HV_EINVAL"); | 
|  | ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_INVAL; | 
|  | break; | 
|  | case HV_ENOACCESS: | 
|  | /* | 
|  | * HV found a VA that did not have the appropriate | 
|  | * permissions (such as the w bit). The VA in question | 
|  | * is returned in status_data param. | 
|  | */ | 
|  | dax_dbg("hcall returned HV_ENOACCESS"); | 
|  | ctx->result.exec.status = DAX_SUBMIT_ERR_NOACCESS; | 
|  | break; | 
|  | case HV_EUNAVAILABLE: | 
|  | /* | 
|  | * The requested CCB operation could not be performed | 
|  | * at this time. Return the specific unavailable code | 
|  | * in the status_data field. | 
|  | */ | 
|  | dax_dbg("hcall returned HV_EUNAVAILABLE"); | 
|  | ctx->result.exec.status = DAX_SUBMIT_ERR_UNAVAIL; | 
|  | break; | 
|  | default: | 
|  | ctx->result.exec.status = DAX_SUBMIT_ERR_INTERNAL; | 
|  | dax_dbg("unknown hcall return value (%ld)", hv_rv); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* unlock pages associated with the unaccepted CCBs */ | 
|  | naccepted = accepted_len / sizeof(struct dax_ccb); | 
|  | dax_unlock_pages(ctx, idx + naccepted, nccbs - naccepted); | 
|  |  | 
|  | /* mark unaccepted CCBs as not completed */ | 
|  | for (i = idx + naccepted; i < idx + nccbs; i++) | 
|  | ctx->ca_buf[i].status = CCA_STAT_COMPLETED; | 
|  |  | 
|  | ctx->ccb_count += naccepted; | 
|  | ctx->fail_count += nccbs - naccepted; | 
|  |  | 
|  | dax_dbg("hcall rv=%ld, accepted_len=%ld, status_data=0x%llx, ret status=%d", | 
|  | hv_rv, accepted_len, ctx->result.exec.status_data, | 
|  | ctx->result.exec.status); | 
|  |  | 
|  | if (count == accepted_len) | 
|  | ctx->client = NULL; /* no read needed to complete protocol */ | 
|  | return accepted_len; | 
|  | } |