|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  | /* Faraday FOTG210 EHCI-like driver | 
|  | * | 
|  | * Copyright (c) 2013 Faraday Technology Corporation | 
|  | * | 
|  | * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com> | 
|  | *	   Feng-Hsin Chiang <john453@faraday-tech.com> | 
|  | *	   Po-Yu Chuang <ratbert.chuang@gmail.com> | 
|  | * | 
|  | * Most of code borrowed from the Linux-3.7 EHCI driver | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dmapool.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/usb.h> | 
|  | #include <linux/usb/hcd.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/iopoll.h> | 
|  | #include <linux/clk.h> | 
|  |  | 
|  | #include <asm/byteorder.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/unaligned.h> | 
|  |  | 
|  | #define DRIVER_AUTHOR "Yuan-Hsin Chen" | 
|  | #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver" | 
|  | static const char hcd_name[] = "fotg210_hcd"; | 
|  |  | 
|  | #undef FOTG210_URB_TRACE | 
|  | #define FOTG210_STATS | 
|  |  | 
|  | /* magic numbers that can affect system performance */ | 
|  | #define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */ | 
|  | #define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */ | 
|  | #define FOTG210_TUNE_RL_TT	0 | 
|  | #define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */ | 
|  | #define FOTG210_TUNE_MULT_TT	1 | 
|  |  | 
|  | /* Some drivers think it's safe to schedule isochronous transfers more than 256 | 
|  | * ms into the future (partly as a result of an old bug in the scheduling | 
|  | * code).  In an attempt to avoid trouble, we will use a minimum scheduling | 
|  | * length of 512 frames instead of 256. | 
|  | */ | 
|  | #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */ | 
|  |  | 
|  | /* Initial IRQ latency:  faster than hw default */ | 
|  | static int log2_irq_thresh; /* 0 to 6 */ | 
|  | module_param(log2_irq_thresh, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); | 
|  |  | 
|  | /* initial park setting:  slower than hw default */ | 
|  | static unsigned park; | 
|  | module_param(park, uint, S_IRUGO); | 
|  | MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); | 
|  |  | 
|  | /* for link power management(LPM) feature */ | 
|  | static unsigned int hird; | 
|  | module_param(hird, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us"); | 
|  |  | 
|  | #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) | 
|  |  | 
|  | #include "fotg210.h" | 
|  |  | 
|  | #define fotg210_dbg(fotg210, fmt, args...) \ | 
|  | dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) | 
|  | #define fotg210_err(fotg210, fmt, args...) \ | 
|  | dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) | 
|  | #define fotg210_info(fotg210, fmt, args...) \ | 
|  | dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) | 
|  | #define fotg210_warn(fotg210, fmt, args...) \ | 
|  | dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) | 
|  |  | 
|  | /* check the values in the HCSPARAMS register (host controller _Structural_ | 
|  | * parameters) see EHCI spec, Table 2-4 for each value | 
|  | */ | 
|  | static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label) | 
|  | { | 
|  | u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params); | 
|  |  | 
|  | fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params, | 
|  | HCS_N_PORTS(params)); | 
|  | } | 
|  |  | 
|  | /* check the values in the HCCPARAMS register (host controller _Capability_ | 
|  | * parameters) see EHCI Spec, Table 2-5 for each value | 
|  | */ | 
|  | static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label) | 
|  | { | 
|  | u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); | 
|  |  | 
|  | fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label, | 
|  | params, | 
|  | HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024", | 
|  | HCC_CANPARK(params) ? " park" : ""); | 
|  | } | 
|  |  | 
|  | static void __maybe_unused | 
|  | dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd) | 
|  | { | 
|  | fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd, | 
|  | hc32_to_cpup(fotg210, &qtd->hw_next), | 
|  | hc32_to_cpup(fotg210, &qtd->hw_alt_next), | 
|  | hc32_to_cpup(fotg210, &qtd->hw_token), | 
|  | hc32_to_cpup(fotg210, &qtd->hw_buf[0])); | 
|  | if (qtd->hw_buf[1]) | 
|  | fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n", | 
|  | hc32_to_cpup(fotg210, &qtd->hw_buf[1]), | 
|  | hc32_to_cpup(fotg210, &qtd->hw_buf[2]), | 
|  | hc32_to_cpup(fotg210, &qtd->hw_buf[3]), | 
|  | hc32_to_cpup(fotg210, &qtd->hw_buf[4])); | 
|  | } | 
|  |  | 
|  | static void __maybe_unused | 
|  | dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh) | 
|  | { | 
|  | struct fotg210_qh_hw *hw = qh->hw; | 
|  |  | 
|  | fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh, | 
|  | hw->hw_next, hw->hw_info1, hw->hw_info2, | 
|  | hw->hw_current); | 
|  |  | 
|  | dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next); | 
|  | } | 
|  |  | 
|  | static void __maybe_unused | 
|  | dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd) | 
|  | { | 
|  | fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label, | 
|  | itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next), | 
|  | itd->urb); | 
|  |  | 
|  | fotg210_dbg(fotg210, | 
|  | "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n", | 
|  | hc32_to_cpu(fotg210, itd->hw_transaction[0]), | 
|  | hc32_to_cpu(fotg210, itd->hw_transaction[1]), | 
|  | hc32_to_cpu(fotg210, itd->hw_transaction[2]), | 
|  | hc32_to_cpu(fotg210, itd->hw_transaction[3]), | 
|  | hc32_to_cpu(fotg210, itd->hw_transaction[4]), | 
|  | hc32_to_cpu(fotg210, itd->hw_transaction[5]), | 
|  | hc32_to_cpu(fotg210, itd->hw_transaction[6]), | 
|  | hc32_to_cpu(fotg210, itd->hw_transaction[7])); | 
|  |  | 
|  | fotg210_dbg(fotg210, | 
|  | "  buf:   %08x %08x %08x %08x %08x %08x %08x\n", | 
|  | hc32_to_cpu(fotg210, itd->hw_bufp[0]), | 
|  | hc32_to_cpu(fotg210, itd->hw_bufp[1]), | 
|  | hc32_to_cpu(fotg210, itd->hw_bufp[2]), | 
|  | hc32_to_cpu(fotg210, itd->hw_bufp[3]), | 
|  | hc32_to_cpu(fotg210, itd->hw_bufp[4]), | 
|  | hc32_to_cpu(fotg210, itd->hw_bufp[5]), | 
|  | hc32_to_cpu(fotg210, itd->hw_bufp[6])); | 
|  |  | 
|  | fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n", | 
|  | itd->index[0], itd->index[1], itd->index[2], | 
|  | itd->index[3], itd->index[4], itd->index[5], | 
|  | itd->index[6], itd->index[7]); | 
|  | } | 
|  |  | 
|  | static int __maybe_unused | 
|  | dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) | 
|  | { | 
|  | return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", | 
|  | label, label[0] ? " " : "", status, | 
|  | (status & STS_ASS) ? " Async" : "", | 
|  | (status & STS_PSS) ? " Periodic" : "", | 
|  | (status & STS_RECL) ? " Recl" : "", | 
|  | (status & STS_HALT) ? " Halt" : "", | 
|  | (status & STS_IAA) ? " IAA" : "", | 
|  | (status & STS_FATAL) ? " FATAL" : "", | 
|  | (status & STS_FLR) ? " FLR" : "", | 
|  | (status & STS_PCD) ? " PCD" : "", | 
|  | (status & STS_ERR) ? " ERR" : "", | 
|  | (status & STS_INT) ? " INT" : ""); | 
|  | } | 
|  |  | 
|  | static int __maybe_unused | 
|  | dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) | 
|  | { | 
|  | return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", | 
|  | label, label[0] ? " " : "", enable, | 
|  | (enable & STS_IAA) ? " IAA" : "", | 
|  | (enable & STS_FATAL) ? " FATAL" : "", | 
|  | (enable & STS_FLR) ? " FLR" : "", | 
|  | (enable & STS_PCD) ? " PCD" : "", | 
|  | (enable & STS_ERR) ? " ERR" : "", | 
|  | (enable & STS_INT) ? " INT" : ""); | 
|  | } | 
|  |  | 
|  | static const char *const fls_strings[] = { "1024", "512", "256", "??" }; | 
|  |  | 
|  | static int dbg_command_buf(char *buf, unsigned len, const char *label, | 
|  | u32 command) | 
|  | { | 
|  | return scnprintf(buf, len, | 
|  | "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s", | 
|  | label, label[0] ? " " : "", command, | 
|  | (command & CMD_PARK) ? " park" : "(park)", | 
|  | CMD_PARK_CNT(command), | 
|  | (command >> 16) & 0x3f, | 
|  | (command & CMD_IAAD) ? " IAAD" : "", | 
|  | (command & CMD_ASE) ? " Async" : "", | 
|  | (command & CMD_PSE) ? " Periodic" : "", | 
|  | fls_strings[(command >> 2) & 0x3], | 
|  | (command & CMD_RESET) ? " Reset" : "", | 
|  | (command & CMD_RUN) ? "RUN" : "HALT"); | 
|  | } | 
|  |  | 
|  | static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port, | 
|  | u32 status) | 
|  | { | 
|  | char *sig; | 
|  |  | 
|  | /* signaling state */ | 
|  | switch (status & (3 << 10)) { | 
|  | case 0 << 10: | 
|  | sig = "se0"; | 
|  | break; | 
|  | case 1 << 10: | 
|  | sig = "k"; | 
|  | break; /* low speed */ | 
|  | case 2 << 10: | 
|  | sig = "j"; | 
|  | break; | 
|  | default: | 
|  | sig = "?"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s", | 
|  | label, label[0] ? " " : "", port, status, | 
|  | status >> 25, /*device address */ | 
|  | sig, | 
|  | (status & PORT_RESET) ? " RESET" : "", | 
|  | (status & PORT_SUSPEND) ? " SUSPEND" : "", | 
|  | (status & PORT_RESUME) ? " RESUME" : "", | 
|  | (status & PORT_PEC) ? " PEC" : "", | 
|  | (status & PORT_PE) ? " PE" : "", | 
|  | (status & PORT_CSC) ? " CSC" : "", | 
|  | (status & PORT_CONNECT) ? " CONNECT" : ""); | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | /* functions have the "wrong" filename when they're output... */ | 
|  | #define dbg_status(fotg210, label, status) {			\ | 
|  | char _buf[80];						\ | 
|  | dbg_status_buf(_buf, sizeof(_buf), label, status);	\ | 
|  | fotg210_dbg(fotg210, "%s\n", _buf);			\ | 
|  | } | 
|  |  | 
|  | #define dbg_cmd(fotg210, label, command) {			\ | 
|  | char _buf[80];						\ | 
|  | dbg_command_buf(_buf, sizeof(_buf), label, command);	\ | 
|  | fotg210_dbg(fotg210, "%s\n", _buf);			\ | 
|  | } | 
|  |  | 
|  | #define dbg_port(fotg210, label, port, status) {			       \ | 
|  | char _buf[80];							       \ | 
|  | fotg210_dbg(fotg210, "%s\n",					       \ | 
|  | dbg_port_buf(_buf, sizeof(_buf), label, port, status));\ | 
|  | } | 
|  |  | 
|  | /* troubleshooting help: expose state in debugfs */ | 
|  | static int debug_async_open(struct inode *, struct file *); | 
|  | static int debug_periodic_open(struct inode *, struct file *); | 
|  | static int debug_registers_open(struct inode *, struct file *); | 
|  | static int debug_async_open(struct inode *, struct file *); | 
|  |  | 
|  | static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*); | 
|  | static int debug_close(struct inode *, struct file *); | 
|  |  | 
|  | static const struct file_operations debug_async_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .open		= debug_async_open, | 
|  | .read		= debug_output, | 
|  | .release	= debug_close, | 
|  | .llseek		= default_llseek, | 
|  | }; | 
|  | static const struct file_operations debug_periodic_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .open		= debug_periodic_open, | 
|  | .read		= debug_output, | 
|  | .release	= debug_close, | 
|  | .llseek		= default_llseek, | 
|  | }; | 
|  | static const struct file_operations debug_registers_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .open		= debug_registers_open, | 
|  | .read		= debug_output, | 
|  | .release	= debug_close, | 
|  | .llseek		= default_llseek, | 
|  | }; | 
|  |  | 
|  | static struct dentry *fotg210_debug_root; | 
|  |  | 
|  | struct debug_buffer { | 
|  | ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */ | 
|  | struct usb_bus *bus; | 
|  | struct mutex mutex;	/* protect filling of buffer */ | 
|  | size_t count;		/* number of characters filled into buffer */ | 
|  | char *output_buf; | 
|  | size_t alloc_size; | 
|  | }; | 
|  |  | 
|  | static inline char speed_char(u32 scratch) | 
|  | { | 
|  | switch (scratch & (3 << 12)) { | 
|  | case QH_FULL_SPEED: | 
|  | return 'f'; | 
|  |  | 
|  | case QH_LOW_SPEED: | 
|  | return 'l'; | 
|  |  | 
|  | case QH_HIGH_SPEED: | 
|  | return 'h'; | 
|  |  | 
|  | default: | 
|  | return '?'; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token) | 
|  | { | 
|  | __u32 v = hc32_to_cpu(fotg210, token); | 
|  |  | 
|  | if (v & QTD_STS_ACTIVE) | 
|  | return '*'; | 
|  | if (v & QTD_STS_HALT) | 
|  | return '-'; | 
|  | if (!IS_SHORT_READ(v)) | 
|  | return ' '; | 
|  | /* tries to advance through hw_alt_next */ | 
|  | return '/'; | 
|  | } | 
|  |  | 
|  | static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh, | 
|  | char **nextp, unsigned *sizep) | 
|  | { | 
|  | u32 scratch; | 
|  | u32 hw_curr; | 
|  | struct fotg210_qtd *td; | 
|  | unsigned temp; | 
|  | unsigned size = *sizep; | 
|  | char *next = *nextp; | 
|  | char mark; | 
|  | __le32 list_end = FOTG210_LIST_END(fotg210); | 
|  | struct fotg210_qh_hw *hw = qh->hw; | 
|  |  | 
|  | if (hw->hw_qtd_next == list_end) /* NEC does this */ | 
|  | mark = '@'; | 
|  | else | 
|  | mark = token_mark(fotg210, hw->hw_token); | 
|  | if (mark == '/') { /* qh_alt_next controls qh advance? */ | 
|  | if ((hw->hw_alt_next & QTD_MASK(fotg210)) == | 
|  | fotg210->async->hw->hw_alt_next) | 
|  | mark = '#'; /* blocked */ | 
|  | else if (hw->hw_alt_next == list_end) | 
|  | mark = '.'; /* use hw_qtd_next */ | 
|  | /* else alt_next points to some other qtd */ | 
|  | } | 
|  | scratch = hc32_to_cpup(fotg210, &hw->hw_info1); | 
|  | hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0; | 
|  | temp = scnprintf(next, size, | 
|  | "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)", | 
|  | qh, scratch & 0x007f, | 
|  | speed_char(scratch), | 
|  | (scratch >> 8) & 0x000f, | 
|  | scratch, hc32_to_cpup(fotg210, &hw->hw_info2), | 
|  | hc32_to_cpup(fotg210, &hw->hw_token), mark, | 
|  | (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token) | 
|  | ? "data1" : "data0", | 
|  | (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | /* hc may be modifying the list as we read it ... */ | 
|  | list_for_each_entry(td, &qh->qtd_list, qtd_list) { | 
|  | scratch = hc32_to_cpup(fotg210, &td->hw_token); | 
|  | mark = ' '; | 
|  | if (hw_curr == td->qtd_dma) | 
|  | mark = '*'; | 
|  | else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma)) | 
|  | mark = '+'; | 
|  | else if (QTD_LENGTH(scratch)) { | 
|  | if (td->hw_alt_next == fotg210->async->hw->hw_alt_next) | 
|  | mark = '#'; | 
|  | else if (td->hw_alt_next != list_end) | 
|  | mark = '/'; | 
|  | } | 
|  | temp = snprintf(next, size, | 
|  | "\n\t%p%c%s len=%d %08x urb %p", | 
|  | td, mark, ({ char *tmp; | 
|  | switch ((scratch>>8)&0x03) { | 
|  | case 0: | 
|  | tmp = "out"; | 
|  | break; | 
|  | case 1: | 
|  | tmp = "in"; | 
|  | break; | 
|  | case 2: | 
|  | tmp = "setup"; | 
|  | break; | 
|  | default: | 
|  | tmp = "?"; | 
|  | break; | 
|  | } tmp; }), | 
|  | (scratch >> 16) & 0x7fff, | 
|  | scratch, | 
|  | td->urb); | 
|  | if (size < temp) | 
|  | temp = size; | 
|  | size -= temp; | 
|  | next += temp; | 
|  | if (temp == size) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | temp = snprintf(next, size, "\n"); | 
|  | if (size < temp) | 
|  | temp = size; | 
|  |  | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | done: | 
|  | *sizep = size; | 
|  | *nextp = next; | 
|  | } | 
|  |  | 
|  | static ssize_t fill_async_buffer(struct debug_buffer *buf) | 
|  | { | 
|  | struct usb_hcd *hcd; | 
|  | struct fotg210_hcd *fotg210; | 
|  | unsigned long flags; | 
|  | unsigned temp, size; | 
|  | char *next; | 
|  | struct fotg210_qh *qh; | 
|  |  | 
|  | hcd = bus_to_hcd(buf->bus); | 
|  | fotg210 = hcd_to_fotg210(hcd); | 
|  | next = buf->output_buf; | 
|  | size = buf->alloc_size; | 
|  |  | 
|  | *next = 0; | 
|  |  | 
|  | /* dumps a snapshot of the async schedule. | 
|  | * usually empty except for long-term bulk reads, or head. | 
|  | * one QH per line, and TDs we know about | 
|  | */ | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | for (qh = fotg210->async->qh_next.qh; size > 0 && qh; | 
|  | qh = qh->qh_next.qh) | 
|  | qh_lines(fotg210, qh, &next, &size); | 
|  | if (fotg210->async_unlink && size > 0) { | 
|  | temp = scnprintf(next, size, "\nunlink =\n"); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | for (qh = fotg210->async_unlink; size > 0 && qh; | 
|  | qh = qh->unlink_next) | 
|  | qh_lines(fotg210, qh, &next, &size); | 
|  | } | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  |  | 
|  | return strlen(buf->output_buf); | 
|  | } | 
|  |  | 
|  | /* count tds, get ep direction */ | 
|  | static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210, | 
|  | struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size) | 
|  | { | 
|  | u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); | 
|  | struct fotg210_qtd *qtd; | 
|  | char *type = ""; | 
|  | unsigned temp = 0; | 
|  |  | 
|  | /* count tds, get ep direction */ | 
|  | list_for_each_entry(qtd, &qh->qtd_list, qtd_list) { | 
|  | temp++; | 
|  | switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) { | 
|  | case 0: | 
|  | type = "out"; | 
|  | continue; | 
|  | case 1: | 
|  | type = "in"; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)", | 
|  | speed_char(scratch), scratch & 0x007f, | 
|  | (scratch >> 8) & 0x000f, type, qh->usecs, | 
|  | qh->c_usecs, temp, (scratch >> 16) & 0x7ff); | 
|  | } | 
|  |  | 
|  | #define DBG_SCHED_LIMIT 64 | 
|  | static ssize_t fill_periodic_buffer(struct debug_buffer *buf) | 
|  | { | 
|  | struct usb_hcd *hcd; | 
|  | struct fotg210_hcd *fotg210; | 
|  | unsigned long flags; | 
|  | union fotg210_shadow p, *seen; | 
|  | unsigned temp, size, seen_count; | 
|  | char *next; | 
|  | unsigned i; | 
|  | __hc32 tag; | 
|  |  | 
|  | seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC); | 
|  | if (!seen) | 
|  | return 0; | 
|  |  | 
|  | seen_count = 0; | 
|  |  | 
|  | hcd = bus_to_hcd(buf->bus); | 
|  | fotg210 = hcd_to_fotg210(hcd); | 
|  | next = buf->output_buf; | 
|  | size = buf->alloc_size; | 
|  |  | 
|  | temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | /* dump a snapshot of the periodic schedule. | 
|  | * iso changes, interrupt usually doesn't. | 
|  | */ | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | for (i = 0; i < fotg210->periodic_size; i++) { | 
|  | p = fotg210->pshadow[i]; | 
|  | if (likely(!p.ptr)) | 
|  | continue; | 
|  |  | 
|  | tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]); | 
|  |  | 
|  | temp = scnprintf(next, size, "%4d: ", i); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | do { | 
|  | struct fotg210_qh_hw *hw; | 
|  |  | 
|  | switch (hc32_to_cpu(fotg210, tag)) { | 
|  | case Q_TYPE_QH: | 
|  | hw = p.qh->hw; | 
|  | temp = scnprintf(next, size, " qh%d-%04x/%p", | 
|  | p.qh->period, | 
|  | hc32_to_cpup(fotg210, | 
|  | &hw->hw_info2) | 
|  | /* uframe masks */ | 
|  | & (QH_CMASK | QH_SMASK), | 
|  | p.qh); | 
|  | size -= temp; | 
|  | next += temp; | 
|  | /* don't repeat what follows this qh */ | 
|  | for (temp = 0; temp < seen_count; temp++) { | 
|  | if (seen[temp].ptr != p.ptr) | 
|  | continue; | 
|  | if (p.qh->qh_next.ptr) { | 
|  | temp = scnprintf(next, size, | 
|  | " ..."); | 
|  | size -= temp; | 
|  | next += temp; | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* show more info the first time around */ | 
|  | if (temp == seen_count) { | 
|  | temp = output_buf_tds_dir(next, | 
|  | fotg210, hw, | 
|  | p.qh, size); | 
|  |  | 
|  | if (seen_count < DBG_SCHED_LIMIT) | 
|  | seen[seen_count++].qh = p.qh; | 
|  | } else | 
|  | temp = 0; | 
|  | tag = Q_NEXT_TYPE(fotg210, hw->hw_next); | 
|  | p = p.qh->qh_next; | 
|  | break; | 
|  | case Q_TYPE_FSTN: | 
|  | temp = scnprintf(next, size, | 
|  | " fstn-%8x/%p", | 
|  | p.fstn->hw_prev, p.fstn); | 
|  | tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next); | 
|  | p = p.fstn->fstn_next; | 
|  | break; | 
|  | case Q_TYPE_ITD: | 
|  | temp = scnprintf(next, size, | 
|  | " itd/%p", p.itd); | 
|  | tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next); | 
|  | p = p.itd->itd_next; | 
|  | break; | 
|  | } | 
|  | size -= temp; | 
|  | next += temp; | 
|  | } while (p.ptr); | 
|  |  | 
|  | temp = scnprintf(next, size, "\n"); | 
|  | size -= temp; | 
|  | next += temp; | 
|  | } | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | kfree(seen); | 
|  |  | 
|  | return buf->alloc_size - size; | 
|  | } | 
|  | #undef DBG_SCHED_LIMIT | 
|  |  | 
|  | static const char *rh_state_string(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | switch (fotg210->rh_state) { | 
|  | case FOTG210_RH_HALTED: | 
|  | return "halted"; | 
|  | case FOTG210_RH_SUSPENDED: | 
|  | return "suspended"; | 
|  | case FOTG210_RH_RUNNING: | 
|  | return "running"; | 
|  | case FOTG210_RH_STOPPING: | 
|  | return "stopping"; | 
|  | } | 
|  | return "?"; | 
|  | } | 
|  |  | 
|  | static ssize_t fill_registers_buffer(struct debug_buffer *buf) | 
|  | { | 
|  | struct usb_hcd *hcd; | 
|  | struct fotg210_hcd *fotg210; | 
|  | unsigned long flags; | 
|  | unsigned temp, size, i; | 
|  | char *next, scratch[80]; | 
|  | static const char fmt[] = "%*s\n"; | 
|  | static const char label[] = ""; | 
|  |  | 
|  | hcd = bus_to_hcd(buf->bus); | 
|  | fotg210 = hcd_to_fotg210(hcd); | 
|  | next = buf->output_buf; | 
|  | size = buf->alloc_size; | 
|  |  | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  |  | 
|  | if (!HCD_HW_ACCESSIBLE(hcd)) { | 
|  | size = scnprintf(next, size, | 
|  | "bus %s, device %s\n" | 
|  | "%s\n" | 
|  | "SUSPENDED(no register access)\n", | 
|  | hcd->self.controller->bus->name, | 
|  | dev_name(hcd->self.controller), | 
|  | hcd->product_desc); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Capability Registers */ | 
|  | i = HC_VERSION(fotg210, fotg210_readl(fotg210, | 
|  | &fotg210->caps->hc_capbase)); | 
|  | temp = scnprintf(next, size, | 
|  | "bus %s, device %s\n" | 
|  | "%s\n" | 
|  | "EHCI %x.%02x, rh state %s\n", | 
|  | hcd->self.controller->bus->name, | 
|  | dev_name(hcd->self.controller), | 
|  | hcd->product_desc, | 
|  | i >> 8, i & 0x0ff, rh_state_string(fotg210)); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | /* FIXME interpret both types of params */ | 
|  | i = fotg210_readl(fotg210, &fotg210->caps->hcs_params); | 
|  | temp = scnprintf(next, size, "structural params 0x%08x\n", i); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | i = fotg210_readl(fotg210, &fotg210->caps->hcc_params); | 
|  | temp = scnprintf(next, size, "capability params 0x%08x\n", i); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | /* Operational Registers */ | 
|  | temp = dbg_status_buf(scratch, sizeof(scratch), label, | 
|  | fotg210_readl(fotg210, &fotg210->regs->status)); | 
|  | temp = scnprintf(next, size, fmt, temp, scratch); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | temp = dbg_command_buf(scratch, sizeof(scratch), label, | 
|  | fotg210_readl(fotg210, &fotg210->regs->command)); | 
|  | temp = scnprintf(next, size, fmt, temp, scratch); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | temp = dbg_intr_buf(scratch, sizeof(scratch), label, | 
|  | fotg210_readl(fotg210, &fotg210->regs->intr_enable)); | 
|  | temp = scnprintf(next, size, fmt, temp, scratch); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | temp = scnprintf(next, size, "uframe %04x\n", | 
|  | fotg210_read_frame_index(fotg210)); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | if (fotg210->async_unlink) { | 
|  | temp = scnprintf(next, size, "async unlink qh %p\n", | 
|  | fotg210->async_unlink); | 
|  | size -= temp; | 
|  | next += temp; | 
|  | } | 
|  |  | 
|  | #ifdef FOTG210_STATS | 
|  | temp = scnprintf(next, size, | 
|  | "irq normal %ld err %ld iaa %ld(lost %ld)\n", | 
|  | fotg210->stats.normal, fotg210->stats.error, | 
|  | fotg210->stats.iaa, fotg210->stats.lost_iaa); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | temp = scnprintf(next, size, "complete %ld unlink %ld\n", | 
|  | fotg210->stats.complete, fotg210->stats.unlink); | 
|  | size -= temp; | 
|  | next += temp; | 
|  | #endif | 
|  |  | 
|  | done: | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  |  | 
|  | return buf->alloc_size - size; | 
|  | } | 
|  |  | 
|  | static struct debug_buffer | 
|  | *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *)) | 
|  | { | 
|  | struct debug_buffer *buf; | 
|  |  | 
|  | buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL); | 
|  |  | 
|  | if (buf) { | 
|  | buf->bus = bus; | 
|  | buf->fill_func = fill_func; | 
|  | mutex_init(&buf->mutex); | 
|  | buf->alloc_size = PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static int fill_buffer(struct debug_buffer *buf) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!buf->output_buf) | 
|  | buf->output_buf = vmalloc(buf->alloc_size); | 
|  |  | 
|  | if (!buf->output_buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = buf->fill_func(buf); | 
|  |  | 
|  | if (ret >= 0) { | 
|  | buf->count = ret; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t debug_output(struct file *file, char __user *user_buf, | 
|  | size_t len, loff_t *offset) | 
|  | { | 
|  | struct debug_buffer *buf = file->private_data; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&buf->mutex); | 
|  | if (buf->count == 0) { | 
|  | ret = fill_buffer(buf); | 
|  | if (ret != 0) { | 
|  | mutex_unlock(&buf->mutex); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&buf->mutex); | 
|  |  | 
|  | ret = simple_read_from_buffer(user_buf, len, offset, | 
|  | buf->output_buf, buf->count); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int debug_close(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct debug_buffer *buf = file->private_data; | 
|  |  | 
|  | if (buf) { | 
|  | vfree(buf->output_buf); | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | static int debug_async_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | file->private_data = alloc_buffer(inode->i_private, fill_async_buffer); | 
|  |  | 
|  | return file->private_data ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int debug_periodic_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct debug_buffer *buf; | 
|  |  | 
|  | buf = alloc_buffer(inode->i_private, fill_periodic_buffer); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE; | 
|  | file->private_data = buf; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int debug_registers_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | file->private_data = alloc_buffer(inode->i_private, | 
|  | fill_registers_buffer); | 
|  |  | 
|  | return file->private_data ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | static inline void create_debug_files(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; | 
|  | struct dentry *root; | 
|  |  | 
|  | root = debugfs_create_dir(bus->bus_name, fotg210_debug_root); | 
|  |  | 
|  | debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops); | 
|  | debugfs_create_file("periodic", S_IRUGO, root, bus, | 
|  | &debug_periodic_fops); | 
|  | debugfs_create_file("registers", S_IRUGO, root, bus, | 
|  | &debug_registers_fops); | 
|  | } | 
|  |  | 
|  | static inline void remove_debug_files(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; | 
|  |  | 
|  | debugfs_remove(debugfs_lookup(bus->bus_name, fotg210_debug_root)); | 
|  | } | 
|  |  | 
|  | /* handshake - spin reading hc until handshake completes or fails | 
|  | * @ptr: address of hc register to be read | 
|  | * @mask: bits to look at in result of read | 
|  | * @done: value of those bits when handshake succeeds | 
|  | * @usec: timeout in microseconds | 
|  | * | 
|  | * Returns negative errno, or zero on success | 
|  | * | 
|  | * Success happens when the "mask" bits have the specified value (hardware | 
|  | * handshake done).  There are two failure modes:  "usec" have passed (major | 
|  | * hardware flakeout), or the register reads as all-ones (hardware removed). | 
|  | * | 
|  | * That last failure should_only happen in cases like physical cardbus eject | 
|  | * before driver shutdown. But it also seems to be caused by bugs in cardbus | 
|  | * bridge shutdown:  shutting down the bridge before the devices using it. | 
|  | */ | 
|  | static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr, | 
|  | u32 mask, u32 done, int usec) | 
|  | { | 
|  | u32 result; | 
|  | int ret; | 
|  |  | 
|  | ret = readl_poll_timeout_atomic(ptr, result, | 
|  | ((result & mask) == done || | 
|  | result == U32_MAX), 1, usec); | 
|  | if (result == U32_MAX)		/* card removed */ | 
|  | return -ENODEV; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Force HC to halt state from unknown (EHCI spec section 2.3). | 
|  | * Must be called with interrupts enabled and the lock not held. | 
|  | */ | 
|  | static int fotg210_halt(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | u32 temp; | 
|  |  | 
|  | spin_lock_irq(&fotg210->lock); | 
|  |  | 
|  | /* disable any irqs left enabled by previous code */ | 
|  | fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); | 
|  |  | 
|  | /* | 
|  | * This routine gets called during probe before fotg210->command | 
|  | * has been initialized, so we can't rely on its value. | 
|  | */ | 
|  | fotg210->command &= ~CMD_RUN; | 
|  | temp = fotg210_readl(fotg210, &fotg210->regs->command); | 
|  | temp &= ~(CMD_RUN | CMD_IAAD); | 
|  | fotg210_writel(fotg210, temp, &fotg210->regs->command); | 
|  |  | 
|  | spin_unlock_irq(&fotg210->lock); | 
|  | synchronize_irq(fotg210_to_hcd(fotg210)->irq); | 
|  |  | 
|  | return handshake(fotg210, &fotg210->regs->status, | 
|  | STS_HALT, STS_HALT, 16 * 125); | 
|  | } | 
|  |  | 
|  | /* Reset a non-running (STS_HALT == 1) controller. | 
|  | * Must be called with interrupts enabled and the lock not held. | 
|  | */ | 
|  | static int fotg210_reset(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | int retval; | 
|  | u32 command = fotg210_readl(fotg210, &fotg210->regs->command); | 
|  |  | 
|  | /* If the EHCI debug controller is active, special care must be | 
|  | * taken before and after a host controller reset | 
|  | */ | 
|  | if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210))) | 
|  | fotg210->debug = NULL; | 
|  |  | 
|  | command |= CMD_RESET; | 
|  | dbg_cmd(fotg210, "reset", command); | 
|  | fotg210_writel(fotg210, command, &fotg210->regs->command); | 
|  | fotg210->rh_state = FOTG210_RH_HALTED; | 
|  | fotg210->next_statechange = jiffies; | 
|  | retval = handshake(fotg210, &fotg210->regs->command, | 
|  | CMD_RESET, 0, 250 * 1000); | 
|  |  | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if (fotg210->debug) | 
|  | dbgp_external_startup(fotg210_to_hcd(fotg210)); | 
|  |  | 
|  | fotg210->port_c_suspend = fotg210->suspended_ports = | 
|  | fotg210->resuming_ports = 0; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Idle the controller (turn off the schedules). | 
|  | * Must be called with interrupts enabled and the lock not held. | 
|  | */ | 
|  | static void fotg210_quiesce(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | u32 temp; | 
|  |  | 
|  | if (fotg210->rh_state != FOTG210_RH_RUNNING) | 
|  | return; | 
|  |  | 
|  | /* wait for any schedule enables/disables to take effect */ | 
|  | temp = (fotg210->command << 10) & (STS_ASS | STS_PSS); | 
|  | handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp, | 
|  | 16 * 125); | 
|  |  | 
|  | /* then disable anything that's still active */ | 
|  | spin_lock_irq(&fotg210->lock); | 
|  | fotg210->command &= ~(CMD_ASE | CMD_PSE); | 
|  | fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); | 
|  | spin_unlock_irq(&fotg210->lock); | 
|  |  | 
|  | /* hardware can take 16 microframes to turn off ... */ | 
|  | handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0, | 
|  | 16 * 125); | 
|  | } | 
|  |  | 
|  | static void end_unlink_async(struct fotg210_hcd *fotg210); | 
|  | static void unlink_empty_async(struct fotg210_hcd *fotg210); | 
|  | static void fotg210_work(struct fotg210_hcd *fotg210); | 
|  | static void start_unlink_intr(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_qh *qh); | 
|  | static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); | 
|  |  | 
|  | /* Set a bit in the USBCMD register */ | 
|  | static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit) | 
|  | { | 
|  | fotg210->command |= bit; | 
|  | fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); | 
|  |  | 
|  | /* unblock posted write */ | 
|  | fotg210_readl(fotg210, &fotg210->regs->command); | 
|  | } | 
|  |  | 
|  | /* Clear a bit in the USBCMD register */ | 
|  | static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit) | 
|  | { | 
|  | fotg210->command &= ~bit; | 
|  | fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); | 
|  |  | 
|  | /* unblock posted write */ | 
|  | fotg210_readl(fotg210, &fotg210->regs->command); | 
|  | } | 
|  |  | 
|  | /* EHCI timer support...  Now using hrtimers. | 
|  | * | 
|  | * Lots of different events are triggered from fotg210->hrtimer.  Whenever | 
|  | * the timer routine runs, it checks each possible event; events that are | 
|  | * currently enabled and whose expiration time has passed get handled. | 
|  | * The set of enabled events is stored as a collection of bitflags in | 
|  | * fotg210->enabled_hrtimer_events, and they are numbered in order of | 
|  | * increasing delay values (ranging between 1 ms and 100 ms). | 
|  | * | 
|  | * Rather than implementing a sorted list or tree of all pending events, | 
|  | * we keep track only of the lowest-numbered pending event, in | 
|  | * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its | 
|  | * expiration time is set to the timeout value for this event. | 
|  | * | 
|  | * As a result, events might not get handled right away; the actual delay | 
|  | * could be anywhere up to twice the requested delay.  This doesn't | 
|  | * matter, because none of the events are especially time-critical.  The | 
|  | * ones that matter most all have a delay of 1 ms, so they will be | 
|  | * handled after 2 ms at most, which is okay.  In addition to this, we | 
|  | * allow for an expiration range of 1 ms. | 
|  | */ | 
|  |  | 
|  | /* Delay lengths for the hrtimer event types. | 
|  | * Keep this list sorted by delay length, in the same order as | 
|  | * the event types indexed by enum fotg210_hrtimer_event in fotg210.h. | 
|  | */ | 
|  | static unsigned event_delays_ns[] = { | 
|  | 1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */ | 
|  | 1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */ | 
|  | 1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */ | 
|  | 1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */ | 
|  | 2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */ | 
|  | 6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */ | 
|  | 10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */ | 
|  | 10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */ | 
|  | 15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */ | 
|  | 100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */ | 
|  | }; | 
|  |  | 
|  | /* Enable a pending hrtimer event */ | 
|  | static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event, | 
|  | bool resched) | 
|  | { | 
|  | ktime_t *timeout = &fotg210->hr_timeouts[event]; | 
|  |  | 
|  | if (resched) | 
|  | *timeout = ktime_add(ktime_get(), event_delays_ns[event]); | 
|  | fotg210->enabled_hrtimer_events |= (1 << event); | 
|  |  | 
|  | /* Track only the lowest-numbered pending event */ | 
|  | if (event < fotg210->next_hrtimer_event) { | 
|  | fotg210->next_hrtimer_event = event; | 
|  | hrtimer_start_range_ns(&fotg210->hrtimer, *timeout, | 
|  | NSEC_PER_MSEC, HRTIMER_MODE_ABS); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */ | 
|  | static void fotg210_poll_ASS(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | unsigned actual, want; | 
|  |  | 
|  | /* Don't enable anything if the controller isn't running (e.g., died) */ | 
|  | if (fotg210->rh_state != FOTG210_RH_RUNNING) | 
|  | return; | 
|  |  | 
|  | want = (fotg210->command & CMD_ASE) ? STS_ASS : 0; | 
|  | actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS; | 
|  |  | 
|  | if (want != actual) { | 
|  |  | 
|  | /* Poll again later, but give up after about 20 ms */ | 
|  | if (fotg210->ASS_poll_count++ < 20) { | 
|  | fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS, | 
|  | true); | 
|  | return; | 
|  | } | 
|  | fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n", | 
|  | want, actual); | 
|  | } | 
|  | fotg210->ASS_poll_count = 0; | 
|  |  | 
|  | /* The status is up-to-date; restart or stop the schedule as needed */ | 
|  | if (want == 0) {	/* Stopped */ | 
|  | if (fotg210->async_count > 0) | 
|  | fotg210_set_command_bit(fotg210, CMD_ASE); | 
|  |  | 
|  | } else {		/* Running */ | 
|  | if (fotg210->async_count == 0) { | 
|  |  | 
|  | /* Turn off the schedule after a while */ | 
|  | fotg210_enable_event(fotg210, | 
|  | FOTG210_HRTIMER_DISABLE_ASYNC, | 
|  | true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Turn off the async schedule after a brief delay */ | 
|  | static void fotg210_disable_ASE(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | fotg210_clear_command_bit(fotg210, CMD_ASE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */ | 
|  | static void fotg210_poll_PSS(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | unsigned actual, want; | 
|  |  | 
|  | /* Don't do anything if the controller isn't running (e.g., died) */ | 
|  | if (fotg210->rh_state != FOTG210_RH_RUNNING) | 
|  | return; | 
|  |  | 
|  | want = (fotg210->command & CMD_PSE) ? STS_PSS : 0; | 
|  | actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS; | 
|  |  | 
|  | if (want != actual) { | 
|  |  | 
|  | /* Poll again later, but give up after about 20 ms */ | 
|  | if (fotg210->PSS_poll_count++ < 20) { | 
|  | fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS, | 
|  | true); | 
|  | return; | 
|  | } | 
|  | fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n", | 
|  | want, actual); | 
|  | } | 
|  | fotg210->PSS_poll_count = 0; | 
|  |  | 
|  | /* The status is up-to-date; restart or stop the schedule as needed */ | 
|  | if (want == 0) {	/* Stopped */ | 
|  | if (fotg210->periodic_count > 0) | 
|  | fotg210_set_command_bit(fotg210, CMD_PSE); | 
|  |  | 
|  | } else {		/* Running */ | 
|  | if (fotg210->periodic_count == 0) { | 
|  |  | 
|  | /* Turn off the schedule after a while */ | 
|  | fotg210_enable_event(fotg210, | 
|  | FOTG210_HRTIMER_DISABLE_PERIODIC, | 
|  | true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Turn off the periodic schedule after a brief delay */ | 
|  | static void fotg210_disable_PSE(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | fotg210_clear_command_bit(fotg210, CMD_PSE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Poll the STS_HALT status bit; see when a dead controller stops */ | 
|  | static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) { | 
|  |  | 
|  | /* Give up after a few milliseconds */ | 
|  | if (fotg210->died_poll_count++ < 5) { | 
|  | /* Try again later */ | 
|  | fotg210_enable_event(fotg210, | 
|  | FOTG210_HRTIMER_POLL_DEAD, true); | 
|  | return; | 
|  | } | 
|  | fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n"); | 
|  | } | 
|  |  | 
|  | /* Clean up the mess */ | 
|  | fotg210->rh_state = FOTG210_RH_HALTED; | 
|  | fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); | 
|  | fotg210_work(fotg210); | 
|  | end_unlink_async(fotg210); | 
|  |  | 
|  | /* Not in process context, so don't try to reset the controller */ | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Handle unlinked interrupt QHs once they are gone from the hardware */ | 
|  | static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); | 
|  |  | 
|  | /* | 
|  | * Process all the QHs on the intr_unlink list that were added | 
|  | * before the current unlink cycle began.  The list is in | 
|  | * temporal order, so stop when we reach the first entry in the | 
|  | * current cycle.  But if the root hub isn't running then | 
|  | * process all the QHs on the list. | 
|  | */ | 
|  | fotg210->intr_unlinking = true; | 
|  | while (fotg210->intr_unlink) { | 
|  | struct fotg210_qh *qh = fotg210->intr_unlink; | 
|  |  | 
|  | if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle) | 
|  | break; | 
|  | fotg210->intr_unlink = qh->unlink_next; | 
|  | qh->unlink_next = NULL; | 
|  | end_unlink_intr(fotg210, qh); | 
|  | } | 
|  |  | 
|  | /* Handle remaining entries later */ | 
|  | if (fotg210->intr_unlink) { | 
|  | fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, | 
|  | true); | 
|  | ++fotg210->intr_unlink_cycle; | 
|  | } | 
|  | fotg210->intr_unlinking = false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Start another free-iTDs/siTDs cycle */ | 
|  | static void start_free_itds(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | if (!(fotg210->enabled_hrtimer_events & | 
|  | BIT(FOTG210_HRTIMER_FREE_ITDS))) { | 
|  | fotg210->last_itd_to_free = list_entry( | 
|  | fotg210->cached_itd_list.prev, | 
|  | struct fotg210_itd, itd_list); | 
|  | fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Wait for controller to stop using old iTDs and siTDs */ | 
|  | static void end_free_itds(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | struct fotg210_itd *itd, *n; | 
|  |  | 
|  | if (fotg210->rh_state < FOTG210_RH_RUNNING) | 
|  | fotg210->last_itd_to_free = NULL; | 
|  |  | 
|  | list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) { | 
|  | list_del(&itd->itd_list); | 
|  | dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma); | 
|  | if (itd == fotg210->last_itd_to_free) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!list_empty(&fotg210->cached_itd_list)) | 
|  | start_free_itds(fotg210); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Handle lost (or very late) IAA interrupts */ | 
|  | static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | if (fotg210->rh_state != FOTG210_RH_RUNNING) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Lost IAA irqs wedge things badly; seen first with a vt8235. | 
|  | * So we need this watchdog, but must protect it against both | 
|  | * (a) SMP races against real IAA firing and retriggering, and | 
|  | * (b) clean HC shutdown, when IAA watchdog was pending. | 
|  | */ | 
|  | if (fotg210->async_iaa) { | 
|  | u32 cmd, status; | 
|  |  | 
|  | /* If we get here, IAA is *REALLY* late.  It's barely | 
|  | * conceivable that the system is so busy that CMD_IAAD | 
|  | * is still legitimately set, so let's be sure it's | 
|  | * clear before we read STS_IAA.  (The HC should clear | 
|  | * CMD_IAAD when it sets STS_IAA.) | 
|  | */ | 
|  | cmd = fotg210_readl(fotg210, &fotg210->regs->command); | 
|  |  | 
|  | /* | 
|  | * If IAA is set here it either legitimately triggered | 
|  | * after the watchdog timer expired (_way_ late, so we'll | 
|  | * still count it as lost) ... or a silicon erratum: | 
|  | * - VIA seems to set IAA without triggering the IRQ; | 
|  | * - IAAD potentially cleared without setting IAA. | 
|  | */ | 
|  | status = fotg210_readl(fotg210, &fotg210->regs->status); | 
|  | if ((status & STS_IAA) || !(cmd & CMD_IAAD)) { | 
|  | INCR(fotg210->stats.lost_iaa); | 
|  | fotg210_writel(fotg210, STS_IAA, | 
|  | &fotg210->regs->status); | 
|  | } | 
|  |  | 
|  | fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n", | 
|  | status, cmd); | 
|  | end_unlink_async(fotg210); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Enable the I/O watchdog, if appropriate */ | 
|  | static void turn_on_io_watchdog(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | /* Not needed if the controller isn't running or it's already enabled */ | 
|  | if (fotg210->rh_state != FOTG210_RH_RUNNING || | 
|  | (fotg210->enabled_hrtimer_events & | 
|  | BIT(FOTG210_HRTIMER_IO_WATCHDOG))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Isochronous transfers always need the watchdog. | 
|  | * For other sorts we use it only if the flag is set. | 
|  | */ | 
|  | if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog && | 
|  | fotg210->async_count + fotg210->intr_count > 0)) | 
|  | fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG, | 
|  | true); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Handler functions for the hrtimer event types. | 
|  | * Keep this array in the same order as the event types indexed by | 
|  | * enum fotg210_hrtimer_event in fotg210.h. | 
|  | */ | 
|  | static void (*event_handlers[])(struct fotg210_hcd *) = { | 
|  | fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */ | 
|  | fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */ | 
|  | fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */ | 
|  | fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */ | 
|  | end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */ | 
|  | unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */ | 
|  | fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */ | 
|  | fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */ | 
|  | fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */ | 
|  | fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */ | 
|  | }; | 
|  |  | 
|  | static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = | 
|  | container_of(t, struct fotg210_hcd, hrtimer); | 
|  | ktime_t now; | 
|  | unsigned long events; | 
|  | unsigned long flags; | 
|  | unsigned e; | 
|  |  | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  |  | 
|  | events = fotg210->enabled_hrtimer_events; | 
|  | fotg210->enabled_hrtimer_events = 0; | 
|  | fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; | 
|  |  | 
|  | /* | 
|  | * Check each pending event.  If its time has expired, handle | 
|  | * the event; otherwise re-enable it. | 
|  | */ | 
|  | now = ktime_get(); | 
|  | for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) { | 
|  | if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0) | 
|  | event_handlers[e](fotg210); | 
|  | else | 
|  | fotg210_enable_event(fotg210, e, false); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | #define fotg210_bus_suspend NULL | 
|  | #define fotg210_bus_resume NULL | 
|  |  | 
|  | static int check_reset_complete(struct fotg210_hcd *fotg210, int index, | 
|  | u32 __iomem *status_reg, int port_status) | 
|  | { | 
|  | if (!(port_status & PORT_CONNECT)) | 
|  | return port_status; | 
|  |  | 
|  | /* if reset finished and it's still not enabled -- handoff */ | 
|  | if (!(port_status & PORT_PE)) | 
|  | /* with integrated TT, there's nobody to hand it to! */ | 
|  | fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n", | 
|  | index + 1); | 
|  | else | 
|  | fotg210_dbg(fotg210, "port %d reset complete, port enabled\n", | 
|  | index + 1); | 
|  |  | 
|  | return port_status; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* build "status change" packet (one or two bytes) from HC registers */ | 
|  |  | 
|  | static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  | u32 temp, status; | 
|  | u32 mask; | 
|  | int retval = 1; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* init status to no-changes */ | 
|  | buf[0] = 0; | 
|  |  | 
|  | /* Inform the core about resumes-in-progress by returning | 
|  | * a non-zero value even if there are no status changes. | 
|  | */ | 
|  | status = fotg210->resuming_ports; | 
|  |  | 
|  | mask = PORT_CSC | PORT_PEC; | 
|  | /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */ | 
|  |  | 
|  | /* no hub change reports (bit 0) for now (power, ...) */ | 
|  |  | 
|  | /* port N changes (bit N)? */ | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  |  | 
|  | temp = fotg210_readl(fotg210, &fotg210->regs->port_status); | 
|  |  | 
|  | /* | 
|  | * Return status information even for ports with OWNER set. | 
|  | * Otherwise hub_wq wouldn't see the disconnect event when a | 
|  | * high-speed device is switched over to the companion | 
|  | * controller by the user. | 
|  | */ | 
|  |  | 
|  | if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) || | 
|  | (fotg210->reset_done[0] && | 
|  | time_after_eq(jiffies, fotg210->reset_done[0]))) { | 
|  | buf[0] |= 1 << 1; | 
|  | status = STS_PCD; | 
|  | } | 
|  | /* FIXME autosuspend idle root hubs */ | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | return status ? retval : 0; | 
|  | } | 
|  |  | 
|  | static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210, | 
|  | struct usb_hub_descriptor *desc) | 
|  | { | 
|  | int ports = HCS_N_PORTS(fotg210->hcs_params); | 
|  | u16 temp; | 
|  |  | 
|  | desc->bDescriptorType = USB_DT_HUB; | 
|  | desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */ | 
|  | desc->bHubContrCurrent = 0; | 
|  |  | 
|  | desc->bNbrPorts = ports; | 
|  | temp = 1 + (ports / 8); | 
|  | desc->bDescLength = 7 + 2 * temp; | 
|  |  | 
|  | /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */ | 
|  | memset(&desc->u.hs.DeviceRemovable[0], 0, temp); | 
|  | memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); | 
|  |  | 
|  | temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */ | 
|  | temp |= HUB_CHAR_NO_LPSM;	/* no power switching */ | 
|  | desc->wHubCharacteristics = cpu_to_le16(temp); | 
|  | } | 
|  |  | 
|  | static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, | 
|  | u16 wIndex, char *buf, u16 wLength) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  | int ports = HCS_N_PORTS(fotg210->hcs_params); | 
|  | u32 __iomem *status_reg = &fotg210->regs->port_status; | 
|  | u32 temp, temp1, status; | 
|  | unsigned long flags; | 
|  | int retval = 0; | 
|  | unsigned selector; | 
|  |  | 
|  | /* | 
|  | * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR. | 
|  | * HCS_INDICATOR may say we can change LEDs to off/amber/green. | 
|  | * (track current state ourselves) ... blink for diagnostics, | 
|  | * power, "this is the one", etc.  EHCI spec supports this. | 
|  | */ | 
|  |  | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | switch (typeReq) { | 
|  | case ClearHubFeature: | 
|  | switch (wValue) { | 
|  | case C_HUB_LOCAL_POWER: | 
|  | case C_HUB_OVER_CURRENT: | 
|  | /* no hub-wide feature/status flags */ | 
|  | break; | 
|  | default: | 
|  | goto error; | 
|  | } | 
|  | break; | 
|  | case ClearPortFeature: | 
|  | if (!wIndex || wIndex > ports) | 
|  | goto error; | 
|  | wIndex--; | 
|  | temp = fotg210_readl(fotg210, status_reg); | 
|  | temp &= ~PORT_RWC_BITS; | 
|  |  | 
|  | /* | 
|  | * Even if OWNER is set, so the port is owned by the | 
|  | * companion controller, hub_wq needs to be able to clear | 
|  | * the port-change status bits (especially | 
|  | * USB_PORT_STAT_C_CONNECTION). | 
|  | */ | 
|  |  | 
|  | switch (wValue) { | 
|  | case USB_PORT_FEAT_ENABLE: | 
|  | fotg210_writel(fotg210, temp & ~PORT_PE, status_reg); | 
|  | break; | 
|  | case USB_PORT_FEAT_C_ENABLE: | 
|  | fotg210_writel(fotg210, temp | PORT_PEC, status_reg); | 
|  | break; | 
|  | case USB_PORT_FEAT_SUSPEND: | 
|  | if (temp & PORT_RESET) | 
|  | goto error; | 
|  | if (!(temp & PORT_SUSPEND)) | 
|  | break; | 
|  | if ((temp & PORT_PE) == 0) | 
|  | goto error; | 
|  |  | 
|  | /* resume signaling for 20 msec */ | 
|  | fotg210_writel(fotg210, temp | PORT_RESUME, status_reg); | 
|  | fotg210->reset_done[wIndex] = jiffies | 
|  | + msecs_to_jiffies(USB_RESUME_TIMEOUT); | 
|  | break; | 
|  | case USB_PORT_FEAT_C_SUSPEND: | 
|  | clear_bit(wIndex, &fotg210->port_c_suspend); | 
|  | break; | 
|  | case USB_PORT_FEAT_C_CONNECTION: | 
|  | fotg210_writel(fotg210, temp | PORT_CSC, status_reg); | 
|  | break; | 
|  | case USB_PORT_FEAT_C_OVER_CURRENT: | 
|  | fotg210_writel(fotg210, temp | OTGISR_OVC, | 
|  | &fotg210->regs->otgisr); | 
|  | break; | 
|  | case USB_PORT_FEAT_C_RESET: | 
|  | /* GetPortStatus clears reset */ | 
|  | break; | 
|  | default: | 
|  | goto error; | 
|  | } | 
|  | fotg210_readl(fotg210, &fotg210->regs->command); | 
|  | break; | 
|  | case GetHubDescriptor: | 
|  | fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *) | 
|  | buf); | 
|  | break; | 
|  | case GetHubStatus: | 
|  | /* no hub-wide feature/status flags */ | 
|  | memset(buf, 0, 4); | 
|  | /*cpu_to_le32s ((u32 *) buf); */ | 
|  | break; | 
|  | case GetPortStatus: | 
|  | if (!wIndex || wIndex > ports) | 
|  | goto error; | 
|  | wIndex--; | 
|  | status = 0; | 
|  | temp = fotg210_readl(fotg210, status_reg); | 
|  |  | 
|  | /* wPortChange bits */ | 
|  | if (temp & PORT_CSC) | 
|  | status |= USB_PORT_STAT_C_CONNECTION << 16; | 
|  | if (temp & PORT_PEC) | 
|  | status |= USB_PORT_STAT_C_ENABLE << 16; | 
|  |  | 
|  | temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); | 
|  | if (temp1 & OTGISR_OVC) | 
|  | status |= USB_PORT_STAT_C_OVERCURRENT << 16; | 
|  |  | 
|  | /* whoever resumes must GetPortStatus to complete it!! */ | 
|  | if (temp & PORT_RESUME) { | 
|  |  | 
|  | /* Remote Wakeup received? */ | 
|  | if (!fotg210->reset_done[wIndex]) { | 
|  | /* resume signaling for 20 msec */ | 
|  | fotg210->reset_done[wIndex] = jiffies | 
|  | + msecs_to_jiffies(20); | 
|  | /* check the port again */ | 
|  | mod_timer(&fotg210_to_hcd(fotg210)->rh_timer, | 
|  | fotg210->reset_done[wIndex]); | 
|  | } | 
|  |  | 
|  | /* resume completed? */ | 
|  | else if (time_after_eq(jiffies, | 
|  | fotg210->reset_done[wIndex])) { | 
|  | clear_bit(wIndex, &fotg210->suspended_ports); | 
|  | set_bit(wIndex, &fotg210->port_c_suspend); | 
|  | fotg210->reset_done[wIndex] = 0; | 
|  |  | 
|  | /* stop resume signaling */ | 
|  | temp = fotg210_readl(fotg210, status_reg); | 
|  | fotg210_writel(fotg210, temp & | 
|  | ~(PORT_RWC_BITS | PORT_RESUME), | 
|  | status_reg); | 
|  | clear_bit(wIndex, &fotg210->resuming_ports); | 
|  | retval = handshake(fotg210, status_reg, | 
|  | PORT_RESUME, 0, 2000);/* 2ms */ | 
|  | if (retval != 0) { | 
|  | fotg210_err(fotg210, | 
|  | "port %d resume error %d\n", | 
|  | wIndex + 1, retval); | 
|  | goto error; | 
|  | } | 
|  | temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* whoever resets must GetPortStatus to complete it!! */ | 
|  | if ((temp & PORT_RESET) && time_after_eq(jiffies, | 
|  | fotg210->reset_done[wIndex])) { | 
|  | status |= USB_PORT_STAT_C_RESET << 16; | 
|  | fotg210->reset_done[wIndex] = 0; | 
|  | clear_bit(wIndex, &fotg210->resuming_ports); | 
|  |  | 
|  | /* force reset to complete */ | 
|  | fotg210_writel(fotg210, | 
|  | temp & ~(PORT_RWC_BITS | PORT_RESET), | 
|  | status_reg); | 
|  | /* REVISIT:  some hardware needs 550+ usec to clear | 
|  | * this bit; seems too long to spin routinely... | 
|  | */ | 
|  | retval = handshake(fotg210, status_reg, | 
|  | PORT_RESET, 0, 1000); | 
|  | if (retval != 0) { | 
|  | fotg210_err(fotg210, "port %d reset error %d\n", | 
|  | wIndex + 1, retval); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* see what we found out */ | 
|  | temp = check_reset_complete(fotg210, wIndex, status_reg, | 
|  | fotg210_readl(fotg210, status_reg)); | 
|  |  | 
|  | /* restart schedule */ | 
|  | fotg210->command |= CMD_RUN; | 
|  | fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); | 
|  | } | 
|  |  | 
|  | if (!(temp & (PORT_RESUME|PORT_RESET))) { | 
|  | fotg210->reset_done[wIndex] = 0; | 
|  | clear_bit(wIndex, &fotg210->resuming_ports); | 
|  | } | 
|  |  | 
|  | /* transfer dedicated ports to the companion hc */ | 
|  | if ((temp & PORT_CONNECT) && | 
|  | test_bit(wIndex, &fotg210->companion_ports)) { | 
|  | temp &= ~PORT_RWC_BITS; | 
|  | fotg210_writel(fotg210, temp, status_reg); | 
|  | fotg210_dbg(fotg210, "port %d --> companion\n", | 
|  | wIndex + 1); | 
|  | temp = fotg210_readl(fotg210, status_reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Even if OWNER is set, there's no harm letting hub_wq | 
|  | * see the wPortStatus values (they should all be 0 except | 
|  | * for PORT_POWER anyway). | 
|  | */ | 
|  |  | 
|  | if (temp & PORT_CONNECT) { | 
|  | status |= USB_PORT_STAT_CONNECTION; | 
|  | status |= fotg210_port_speed(fotg210, temp); | 
|  | } | 
|  | if (temp & PORT_PE) | 
|  | status |= USB_PORT_STAT_ENABLE; | 
|  |  | 
|  | /* maybe the port was unsuspended without our knowledge */ | 
|  | if (temp & (PORT_SUSPEND|PORT_RESUME)) { | 
|  | status |= USB_PORT_STAT_SUSPEND; | 
|  | } else if (test_bit(wIndex, &fotg210->suspended_ports)) { | 
|  | clear_bit(wIndex, &fotg210->suspended_ports); | 
|  | clear_bit(wIndex, &fotg210->resuming_ports); | 
|  | fotg210->reset_done[wIndex] = 0; | 
|  | if (temp & PORT_PE) | 
|  | set_bit(wIndex, &fotg210->port_c_suspend); | 
|  | } | 
|  |  | 
|  | temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); | 
|  | if (temp1 & OTGISR_OVC) | 
|  | status |= USB_PORT_STAT_OVERCURRENT; | 
|  | if (temp & PORT_RESET) | 
|  | status |= USB_PORT_STAT_RESET; | 
|  | if (test_bit(wIndex, &fotg210->port_c_suspend)) | 
|  | status |= USB_PORT_STAT_C_SUSPEND << 16; | 
|  |  | 
|  | if (status & ~0xffff)	/* only if wPortChange is interesting */ | 
|  | dbg_port(fotg210, "GetStatus", wIndex + 1, temp); | 
|  | put_unaligned_le32(status, buf); | 
|  | break; | 
|  | case SetHubFeature: | 
|  | switch (wValue) { | 
|  | case C_HUB_LOCAL_POWER: | 
|  | case C_HUB_OVER_CURRENT: | 
|  | /* no hub-wide feature/status flags */ | 
|  | break; | 
|  | default: | 
|  | goto error; | 
|  | } | 
|  | break; | 
|  | case SetPortFeature: | 
|  | selector = wIndex >> 8; | 
|  | wIndex &= 0xff; | 
|  |  | 
|  | if (!wIndex || wIndex > ports) | 
|  | goto error; | 
|  | wIndex--; | 
|  | temp = fotg210_readl(fotg210, status_reg); | 
|  | temp &= ~PORT_RWC_BITS; | 
|  | switch (wValue) { | 
|  | case USB_PORT_FEAT_SUSPEND: | 
|  | if ((temp & PORT_PE) == 0 | 
|  | || (temp & PORT_RESET) != 0) | 
|  | goto error; | 
|  |  | 
|  | /* After above check the port must be connected. | 
|  | * Set appropriate bit thus could put phy into low power | 
|  | * mode if we have hostpc feature | 
|  | */ | 
|  | fotg210_writel(fotg210, temp | PORT_SUSPEND, | 
|  | status_reg); | 
|  | set_bit(wIndex, &fotg210->suspended_ports); | 
|  | break; | 
|  | case USB_PORT_FEAT_RESET: | 
|  | if (temp & PORT_RESUME) | 
|  | goto error; | 
|  | /* line status bits may report this as low speed, | 
|  | * which can be fine if this root hub has a | 
|  | * transaction translator built in. | 
|  | */ | 
|  | fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1); | 
|  | temp |= PORT_RESET; | 
|  | temp &= ~PORT_PE; | 
|  |  | 
|  | /* | 
|  | * caller must wait, then call GetPortStatus | 
|  | * usb 2.0 spec says 50 ms resets on root | 
|  | */ | 
|  | fotg210->reset_done[wIndex] = jiffies | 
|  | + msecs_to_jiffies(50); | 
|  | fotg210_writel(fotg210, temp, status_reg); | 
|  | break; | 
|  |  | 
|  | /* For downstream facing ports (these):  one hub port is put | 
|  | * into test mode according to USB2 11.24.2.13, then the hub | 
|  | * must be reset (which for root hub now means rmmod+modprobe, | 
|  | * or else system reboot).  See EHCI 2.3.9 and 4.14 for info | 
|  | * about the EHCI-specific stuff. | 
|  | */ | 
|  | case USB_PORT_FEAT_TEST: | 
|  | if (!selector || selector > 5) | 
|  | goto error; | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | fotg210_quiesce(fotg210); | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  |  | 
|  | /* Put all enabled ports into suspend */ | 
|  | temp = fotg210_readl(fotg210, status_reg) & | 
|  | ~PORT_RWC_BITS; | 
|  | if (temp & PORT_PE) | 
|  | fotg210_writel(fotg210, temp | PORT_SUSPEND, | 
|  | status_reg); | 
|  |  | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | fotg210_halt(fotg210); | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  |  | 
|  | temp = fotg210_readl(fotg210, status_reg); | 
|  | temp |= selector << 16; | 
|  | fotg210_writel(fotg210, temp, status_reg); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | goto error; | 
|  | } | 
|  | fotg210_readl(fotg210, &fotg210->regs->command); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | error: | 
|  | /* "stall" on error */ | 
|  | retval = -EPIPE; | 
|  | } | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd, | 
|  | int portnum) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd, | 
|  | int portnum) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* There's basically three types of memory: | 
|  | *	- data used only by the HCD ... kmalloc is fine | 
|  | *	- async and periodic schedules, shared by HC and HCD ... these | 
|  | *	  need to use dma_pool or dma_alloc_coherent | 
|  | *	- driver buffers, read/written by HC ... single shot DMA mapped | 
|  | * | 
|  | * There's also "register" data (e.g. PCI or SOC), which is memory mapped. | 
|  | * No memory seen by this driver is pageable. | 
|  | */ | 
|  |  | 
|  | /* Allocate the key transfer structures from the previously allocated pool */ | 
|  | static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_qtd *qtd, dma_addr_t dma) | 
|  | { | 
|  | memset(qtd, 0, sizeof(*qtd)); | 
|  | qtd->qtd_dma = dma; | 
|  | qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); | 
|  | qtd->hw_next = FOTG210_LIST_END(fotg210); | 
|  | qtd->hw_alt_next = FOTG210_LIST_END(fotg210); | 
|  | INIT_LIST_HEAD(&qtd->qtd_list); | 
|  | } | 
|  |  | 
|  | static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210, | 
|  | gfp_t flags) | 
|  | { | 
|  | struct fotg210_qtd *qtd; | 
|  | dma_addr_t dma; | 
|  |  | 
|  | qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma); | 
|  | if (qtd != NULL) | 
|  | fotg210_qtd_init(fotg210, qtd, dma); | 
|  |  | 
|  | return qtd; | 
|  | } | 
|  |  | 
|  | static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_qtd *qtd) | 
|  | { | 
|  | dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) | 
|  | { | 
|  | /* clean qtds first, and know this is not linked */ | 
|  | if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { | 
|  | fotg210_dbg(fotg210, "unused qh not empty!\n"); | 
|  | BUG(); | 
|  | } | 
|  | if (qh->dummy) | 
|  | fotg210_qtd_free(fotg210, qh->dummy); | 
|  | dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); | 
|  | kfree(qh); | 
|  | } | 
|  |  | 
|  | static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210, | 
|  | gfp_t flags) | 
|  | { | 
|  | struct fotg210_qh *qh; | 
|  | dma_addr_t dma; | 
|  |  | 
|  | qh = kzalloc(sizeof(*qh), GFP_ATOMIC); | 
|  | if (!qh) | 
|  | goto done; | 
|  | qh->hw = (struct fotg210_qh_hw *) | 
|  | dma_pool_alloc(fotg210->qh_pool, flags, &dma); | 
|  | if (!qh->hw) | 
|  | goto fail; | 
|  | memset(qh->hw, 0, sizeof(*qh->hw)); | 
|  | qh->qh_dma = dma; | 
|  | INIT_LIST_HEAD(&qh->qtd_list); | 
|  |  | 
|  | /* dummy td enables safe urb queuing */ | 
|  | qh->dummy = fotg210_qtd_alloc(fotg210, flags); | 
|  | if (qh->dummy == NULL) { | 
|  | fotg210_dbg(fotg210, "no dummy td\n"); | 
|  | goto fail1; | 
|  | } | 
|  | done: | 
|  | return qh; | 
|  | fail1: | 
|  | dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); | 
|  | fail: | 
|  | kfree(qh); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* The queue heads and transfer descriptors are managed from pools tied | 
|  | * to each of the "per device" structures. | 
|  | * This is the initialisation and cleanup code. | 
|  | */ | 
|  |  | 
|  | static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | if (fotg210->async) | 
|  | qh_destroy(fotg210, fotg210->async); | 
|  | fotg210->async = NULL; | 
|  |  | 
|  | if (fotg210->dummy) | 
|  | qh_destroy(fotg210, fotg210->dummy); | 
|  | fotg210->dummy = NULL; | 
|  |  | 
|  | /* DMA consistent memory and pools */ | 
|  | dma_pool_destroy(fotg210->qtd_pool); | 
|  | fotg210->qtd_pool = NULL; | 
|  |  | 
|  | dma_pool_destroy(fotg210->qh_pool); | 
|  | fotg210->qh_pool = NULL; | 
|  |  | 
|  | dma_pool_destroy(fotg210->itd_pool); | 
|  | fotg210->itd_pool = NULL; | 
|  |  | 
|  | if (fotg210->periodic) | 
|  | dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller, | 
|  | fotg210->periodic_size * sizeof(u32), | 
|  | fotg210->periodic, fotg210->periodic_dma); | 
|  | fotg210->periodic = NULL; | 
|  |  | 
|  | /* shadow periodic table */ | 
|  | kfree(fotg210->pshadow); | 
|  | fotg210->pshadow = NULL; | 
|  | } | 
|  |  | 
|  | /* remember to add cleanup code (above) if you add anything here */ | 
|  | static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* QTDs for control/bulk/intr transfers */ | 
|  | fotg210->qtd_pool = dma_pool_create("fotg210_qtd", | 
|  | fotg210_to_hcd(fotg210)->self.controller, | 
|  | sizeof(struct fotg210_qtd), | 
|  | 32 /* byte alignment (for hw parts) */, | 
|  | 4096 /* can't cross 4K */); | 
|  | if (!fotg210->qtd_pool) | 
|  | goto fail; | 
|  |  | 
|  | /* QHs for control/bulk/intr transfers */ | 
|  | fotg210->qh_pool = dma_pool_create("fotg210_qh", | 
|  | fotg210_to_hcd(fotg210)->self.controller, | 
|  | sizeof(struct fotg210_qh_hw), | 
|  | 32 /* byte alignment (for hw parts) */, | 
|  | 4096 /* can't cross 4K */); | 
|  | if (!fotg210->qh_pool) | 
|  | goto fail; | 
|  |  | 
|  | fotg210->async = fotg210_qh_alloc(fotg210, flags); | 
|  | if (!fotg210->async) | 
|  | goto fail; | 
|  |  | 
|  | /* ITD for high speed ISO transfers */ | 
|  | fotg210->itd_pool = dma_pool_create("fotg210_itd", | 
|  | fotg210_to_hcd(fotg210)->self.controller, | 
|  | sizeof(struct fotg210_itd), | 
|  | 64 /* byte alignment (for hw parts) */, | 
|  | 4096 /* can't cross 4K */); | 
|  | if (!fotg210->itd_pool) | 
|  | goto fail; | 
|  |  | 
|  | /* Hardware periodic table */ | 
|  | fotg210->periodic = | 
|  | dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller, | 
|  | fotg210->periodic_size * sizeof(__le32), | 
|  | &fotg210->periodic_dma, 0); | 
|  | if (fotg210->periodic == NULL) | 
|  | goto fail; | 
|  |  | 
|  | for (i = 0; i < fotg210->periodic_size; i++) | 
|  | fotg210->periodic[i] = FOTG210_LIST_END(fotg210); | 
|  |  | 
|  | /* software shadow of hardware table */ | 
|  | fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *), | 
|  | flags); | 
|  | if (fotg210->pshadow != NULL) | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | fotg210_dbg(fotg210, "couldn't init memory\n"); | 
|  | fotg210_mem_cleanup(fotg210); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation. | 
|  | * | 
|  | * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd" | 
|  | * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned | 
|  | * buffers needed for the larger number).  We use one QH per endpoint, queue | 
|  | * multiple urbs (all three types) per endpoint.  URBs may need several qtds. | 
|  | * | 
|  | * ISO traffic uses "ISO TD" (itd) records, and (along with | 
|  | * interrupts) needs careful scheduling.  Performance improvements can be | 
|  | * an ongoing challenge.  That's in "ehci-sched.c". | 
|  | * | 
|  | * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, | 
|  | * or otherwise through transaction translators (TTs) in USB 2.0 hubs using | 
|  | * (b) special fields in qh entries or (c) split iso entries.  TTs will | 
|  | * buffer low/full speed data so the host collects it at high speed. | 
|  | */ | 
|  |  | 
|  | /* fill a qtd, returning how much of the buffer we were able to queue up */ | 
|  | static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, | 
|  | dma_addr_t buf, size_t len, int token, int maxpacket) | 
|  | { | 
|  | int i, count; | 
|  | u64 addr = buf; | 
|  |  | 
|  | /* one buffer entry per 4K ... first might be short or unaligned */ | 
|  | qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr); | 
|  | qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32)); | 
|  | count = 0x1000 - (buf & 0x0fff);	/* rest of that page */ | 
|  | if (likely(len < count))		/* ... iff needed */ | 
|  | count = len; | 
|  | else { | 
|  | buf +=  0x1000; | 
|  | buf &= ~0x0fff; | 
|  |  | 
|  | /* per-qtd limit: from 16K to 20K (best alignment) */ | 
|  | for (i = 1; count < len && i < 5; i++) { | 
|  | addr = buf; | 
|  | qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr); | 
|  | qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210, | 
|  | (u32)(addr >> 32)); | 
|  | buf += 0x1000; | 
|  | if ((count + 0x1000) < len) | 
|  | count += 0x1000; | 
|  | else | 
|  | count = len; | 
|  | } | 
|  |  | 
|  | /* short packets may only terminate transfers */ | 
|  | if (count != len) | 
|  | count -= (count % maxpacket); | 
|  | } | 
|  | qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token); | 
|  | qtd->length = count; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static inline void qh_update(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_qh *qh, struct fotg210_qtd *qtd) | 
|  | { | 
|  | struct fotg210_qh_hw *hw = qh->hw; | 
|  |  | 
|  | /* writes to an active overlay are unsafe */ | 
|  | BUG_ON(qh->qh_state != QH_STATE_IDLE); | 
|  |  | 
|  | hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma); | 
|  | hw->hw_alt_next = FOTG210_LIST_END(fotg210); | 
|  |  | 
|  | /* Except for control endpoints, we make hardware maintain data | 
|  | * toggle (like OHCI) ... here (re)initialize the toggle in the QH, | 
|  | * and set the pseudo-toggle in udev. Only usb_clear_halt() will | 
|  | * ever clear it. | 
|  | */ | 
|  | if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) { | 
|  | unsigned is_out, epnum; | 
|  |  | 
|  | is_out = qh->is_out; | 
|  | epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f; | 
|  | if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { | 
|  | hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE); | 
|  | usb_settoggle(qh->dev, epnum, is_out, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING); | 
|  | } | 
|  |  | 
|  | /* if it weren't for a common silicon quirk (writing the dummy into the qh | 
|  | * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault | 
|  | * recovery (including urb dequeue) would need software changes to a QH... | 
|  | */ | 
|  | static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) | 
|  | { | 
|  | struct fotg210_qtd *qtd; | 
|  |  | 
|  | if (list_empty(&qh->qtd_list)) | 
|  | qtd = qh->dummy; | 
|  | else { | 
|  | qtd = list_entry(qh->qtd_list.next, | 
|  | struct fotg210_qtd, qtd_list); | 
|  | /* | 
|  | * first qtd may already be partially processed. | 
|  | * If we come here during unlink, the QH overlay region | 
|  | * might have reference to the just unlinked qtd. The | 
|  | * qtd is updated in qh_completions(). Update the QH | 
|  | * overlay here. | 
|  | */ | 
|  | if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) { | 
|  | qh->hw->hw_qtd_next = qtd->hw_next; | 
|  | qtd = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (qtd) | 
|  | qh_update(fotg210, qh, qtd); | 
|  | } | 
|  |  | 
|  | static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); | 
|  |  | 
|  | static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  | struct fotg210_qh *qh = ep->hcpriv; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | qh->clearing_tt = 0; | 
|  | if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) | 
|  | && fotg210->rh_state == FOTG210_RH_RUNNING) | 
|  | qh_link_async(fotg210, qh); | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | } | 
|  |  | 
|  | static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_qh *qh, struct urb *urb, u32 token) | 
|  | { | 
|  |  | 
|  | /* If an async split transaction gets an error or is unlinked, | 
|  | * the TT buffer may be left in an indeterminate state.  We | 
|  | * have to clear the TT buffer. | 
|  | * | 
|  | * Note: this routine is never called for Isochronous transfers. | 
|  | */ | 
|  | if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { | 
|  | struct usb_device *tt = urb->dev->tt->hub; | 
|  |  | 
|  | dev_dbg(&tt->dev, | 
|  | "clear tt buffer port %d, a%d ep%d t%08x\n", | 
|  | urb->dev->ttport, urb->dev->devnum, | 
|  | usb_pipeendpoint(urb->pipe), token); | 
|  |  | 
|  | if (urb->dev->tt->hub != | 
|  | fotg210_to_hcd(fotg210)->self.root_hub) { | 
|  | if (usb_hub_clear_tt_buffer(urb) == 0) | 
|  | qh->clearing_tt = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb, | 
|  | size_t length, u32 token) | 
|  | { | 
|  | int status = -EINPROGRESS; | 
|  |  | 
|  | /* count IN/OUT bytes, not SETUP (even short packets) */ | 
|  | if (likely(QTD_PID(token) != 2)) | 
|  | urb->actual_length += length - QTD_LENGTH(token); | 
|  |  | 
|  | /* don't modify error codes */ | 
|  | if (unlikely(urb->unlinked)) | 
|  | return status; | 
|  |  | 
|  | /* force cleanup after short read; not always an error */ | 
|  | if (unlikely(IS_SHORT_READ(token))) | 
|  | status = -EREMOTEIO; | 
|  |  | 
|  | /* serious "can't proceed" faults reported by the hardware */ | 
|  | if (token & QTD_STS_HALT) { | 
|  | if (token & QTD_STS_BABBLE) { | 
|  | /* FIXME "must" disable babbling device's port too */ | 
|  | status = -EOVERFLOW; | 
|  | /* CERR nonzero + halt --> stall */ | 
|  | } else if (QTD_CERR(token)) { | 
|  | status = -EPIPE; | 
|  |  | 
|  | /* In theory, more than one of the following bits can be set | 
|  | * since they are sticky and the transaction is retried. | 
|  | * Which to test first is rather arbitrary. | 
|  | */ | 
|  | } else if (token & QTD_STS_MMF) { | 
|  | /* fs/ls interrupt xfer missed the complete-split */ | 
|  | status = -EPROTO; | 
|  | } else if (token & QTD_STS_DBE) { | 
|  | status = (QTD_PID(token) == 1) /* IN ? */ | 
|  | ? -ENOSR  /* hc couldn't read data */ | 
|  | : -ECOMM; /* hc couldn't write data */ | 
|  | } else if (token & QTD_STS_XACT) { | 
|  | /* timeout, bad CRC, wrong PID, etc */ | 
|  | fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n", | 
|  | urb->dev->devpath, | 
|  | usb_pipeendpoint(urb->pipe), | 
|  | usb_pipein(urb->pipe) ? "in" : "out"); | 
|  | status = -EPROTO; | 
|  | } else {	/* unknown */ | 
|  | status = -EPROTO; | 
|  | } | 
|  |  | 
|  | fotg210_dbg(fotg210, | 
|  | "dev%d ep%d%s qtd token %08x --> status %d\n", | 
|  | usb_pipedevice(urb->pipe), | 
|  | usb_pipeendpoint(urb->pipe), | 
|  | usb_pipein(urb->pipe) ? "in" : "out", | 
|  | token, status); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, | 
|  | int status) | 
|  | __releases(fotg210->lock) | 
|  | __acquires(fotg210->lock) | 
|  | { | 
|  | if (likely(urb->hcpriv != NULL)) { | 
|  | struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv; | 
|  |  | 
|  | /* S-mask in a QH means it's an interrupt urb */ | 
|  | if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) { | 
|  |  | 
|  | /* ... update hc-wide periodic stats (for usbfs) */ | 
|  | fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(urb->unlinked)) { | 
|  | INCR(fotg210->stats.unlink); | 
|  | } else { | 
|  | /* report non-error and short read status as zero */ | 
|  | if (status == -EINPROGRESS || status == -EREMOTEIO) | 
|  | status = 0; | 
|  | INCR(fotg210->stats.complete); | 
|  | } | 
|  |  | 
|  | #ifdef FOTG210_URB_TRACE | 
|  | fotg210_dbg(fotg210, | 
|  | "%s %s urb %p ep%d%s status %d len %d/%d\n", | 
|  | __func__, urb->dev->devpath, urb, | 
|  | usb_pipeendpoint(urb->pipe), | 
|  | usb_pipein(urb->pipe) ? "in" : "out", | 
|  | status, | 
|  | urb->actual_length, urb->transfer_buffer_length); | 
|  | #endif | 
|  |  | 
|  | /* complete() can reenter this HCD */ | 
|  | usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); | 
|  | spin_unlock(&fotg210->lock); | 
|  | usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status); | 
|  | spin_lock(&fotg210->lock); | 
|  | } | 
|  |  | 
|  | static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); | 
|  |  | 
|  | /* Process and free completed qtds for a qh, returning URBs to drivers. | 
|  | * Chases up to qh->hw_current.  Returns number of completions called, | 
|  | * indicating how much "real" work we did. | 
|  | */ | 
|  | static unsigned qh_completions(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_qh *qh) | 
|  | { | 
|  | struct fotg210_qtd *last, *end = qh->dummy; | 
|  | struct fotg210_qtd *qtd, *tmp; | 
|  | int last_status; | 
|  | int stopped; | 
|  | unsigned count = 0; | 
|  | u8 state; | 
|  | struct fotg210_qh_hw *hw = qh->hw; | 
|  |  | 
|  | if (unlikely(list_empty(&qh->qtd_list))) | 
|  | return count; | 
|  |  | 
|  | /* completions (or tasks on other cpus) must never clobber HALT | 
|  | * till we've gone through and cleaned everything up, even when | 
|  | * they add urbs to this qh's queue or mark them for unlinking. | 
|  | * | 
|  | * NOTE:  unlinking expects to be done in queue order. | 
|  | * | 
|  | * It's a bug for qh->qh_state to be anything other than | 
|  | * QH_STATE_IDLE, unless our caller is scan_async() or | 
|  | * scan_intr(). | 
|  | */ | 
|  | state = qh->qh_state; | 
|  | qh->qh_state = QH_STATE_COMPLETING; | 
|  | stopped = (state == QH_STATE_IDLE); | 
|  |  | 
|  | rescan: | 
|  | last = NULL; | 
|  | last_status = -EINPROGRESS; | 
|  | qh->needs_rescan = 0; | 
|  |  | 
|  | /* remove de-activated QTDs from front of queue. | 
|  | * after faults (including short reads), cleanup this urb | 
|  | * then let the queue advance. | 
|  | * if queue is stopped, handles unlinks. | 
|  | */ | 
|  | list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { | 
|  | struct urb *urb; | 
|  | u32 token = 0; | 
|  |  | 
|  | urb = qtd->urb; | 
|  |  | 
|  | /* clean up any state from previous QTD ...*/ | 
|  | if (last) { | 
|  | if (likely(last->urb != urb)) { | 
|  | fotg210_urb_done(fotg210, last->urb, | 
|  | last_status); | 
|  | count++; | 
|  | last_status = -EINPROGRESS; | 
|  | } | 
|  | fotg210_qtd_free(fotg210, last); | 
|  | last = NULL; | 
|  | } | 
|  |  | 
|  | /* ignore urbs submitted during completions we reported */ | 
|  | if (qtd == end) | 
|  | break; | 
|  |  | 
|  | /* hardware copies qtd out of qh overlay */ | 
|  | rmb(); | 
|  | token = hc32_to_cpu(fotg210, qtd->hw_token); | 
|  |  | 
|  | /* always clean up qtds the hc de-activated */ | 
|  | retry_xacterr: | 
|  | if ((token & QTD_STS_ACTIVE) == 0) { | 
|  |  | 
|  | /* Report Data Buffer Error: non-fatal but useful */ | 
|  | if (token & QTD_STS_DBE) | 
|  | fotg210_dbg(fotg210, | 
|  | "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", | 
|  | urb, usb_endpoint_num(&urb->ep->desc), | 
|  | usb_endpoint_dir_in(&urb->ep->desc) | 
|  | ? "in" : "out", | 
|  | urb->transfer_buffer_length, qtd, qh); | 
|  |  | 
|  | /* on STALL, error, and short reads this urb must | 
|  | * complete and all its qtds must be recycled. | 
|  | */ | 
|  | if ((token & QTD_STS_HALT) != 0) { | 
|  |  | 
|  | /* retry transaction errors until we | 
|  | * reach the software xacterr limit | 
|  | */ | 
|  | if ((token & QTD_STS_XACT) && | 
|  | QTD_CERR(token) == 0 && | 
|  | ++qh->xacterrs < QH_XACTERR_MAX && | 
|  | !urb->unlinked) { | 
|  | fotg210_dbg(fotg210, | 
|  | "detected XactErr len %zu/%zu retry %d\n", | 
|  | qtd->length - QTD_LENGTH(token), | 
|  | qtd->length, | 
|  | qh->xacterrs); | 
|  |  | 
|  | /* reset the token in the qtd and the | 
|  | * qh overlay (which still contains | 
|  | * the qtd) so that we pick up from | 
|  | * where we left off | 
|  | */ | 
|  | token &= ~QTD_STS_HALT; | 
|  | token |= QTD_STS_ACTIVE | | 
|  | (FOTG210_TUNE_CERR << 10); | 
|  | qtd->hw_token = cpu_to_hc32(fotg210, | 
|  | token); | 
|  | wmb(); | 
|  | hw->hw_token = cpu_to_hc32(fotg210, | 
|  | token); | 
|  | goto retry_xacterr; | 
|  | } | 
|  | stopped = 1; | 
|  |  | 
|  | /* magic dummy for some short reads; qh won't advance. | 
|  | * that silicon quirk can kick in with this dummy too. | 
|  | * | 
|  | * other short reads won't stop the queue, including | 
|  | * control transfers (status stage handles that) or | 
|  | * most other single-qtd reads ... the queue stops if | 
|  | * URB_SHORT_NOT_OK was set so the driver submitting | 
|  | * the urbs could clean it up. | 
|  | */ | 
|  | } else if (IS_SHORT_READ(token) && | 
|  | !(qtd->hw_alt_next & | 
|  | FOTG210_LIST_END(fotg210))) { | 
|  | stopped = 1; | 
|  | } | 
|  |  | 
|  | /* stop scanning when we reach qtds the hc is using */ | 
|  | } else if (likely(!stopped | 
|  | && fotg210->rh_state >= FOTG210_RH_RUNNING)) { | 
|  | break; | 
|  |  | 
|  | /* scan the whole queue for unlinks whenever it stops */ | 
|  | } else { | 
|  | stopped = 1; | 
|  |  | 
|  | /* cancel everything if we halt, suspend, etc */ | 
|  | if (fotg210->rh_state < FOTG210_RH_RUNNING) | 
|  | last_status = -ESHUTDOWN; | 
|  |  | 
|  | /* this qtd is active; skip it unless a previous qtd | 
|  | * for its urb faulted, or its urb was canceled. | 
|  | */ | 
|  | else if (last_status == -EINPROGRESS && !urb->unlinked) | 
|  | continue; | 
|  |  | 
|  | /* qh unlinked; token in overlay may be most current */ | 
|  | if (state == QH_STATE_IDLE && | 
|  | cpu_to_hc32(fotg210, qtd->qtd_dma) | 
|  | == hw->hw_current) { | 
|  | token = hc32_to_cpu(fotg210, hw->hw_token); | 
|  |  | 
|  | /* An unlink may leave an incomplete | 
|  | * async transaction in the TT buffer. | 
|  | * We have to clear it. | 
|  | */ | 
|  | fotg210_clear_tt_buffer(fotg210, qh, urb, | 
|  | token); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* unless we already know the urb's status, collect qtd status | 
|  | * and update count of bytes transferred.  in common short read | 
|  | * cases with only one data qtd (including control transfers), | 
|  | * queue processing won't halt.  but with two or more qtds (for | 
|  | * example, with a 32 KB transfer), when the first qtd gets a | 
|  | * short read the second must be removed by hand. | 
|  | */ | 
|  | if (last_status == -EINPROGRESS) { | 
|  | last_status = qtd_copy_status(fotg210, urb, | 
|  | qtd->length, token); | 
|  | if (last_status == -EREMOTEIO && | 
|  | (qtd->hw_alt_next & | 
|  | FOTG210_LIST_END(fotg210))) | 
|  | last_status = -EINPROGRESS; | 
|  |  | 
|  | /* As part of low/full-speed endpoint-halt processing | 
|  | * we must clear the TT buffer (11.17.5). | 
|  | */ | 
|  | if (unlikely(last_status != -EINPROGRESS && | 
|  | last_status != -EREMOTEIO)) { | 
|  | /* The TT's in some hubs malfunction when they | 
|  | * receive this request following a STALL (they | 
|  | * stop sending isochronous packets).  Since a | 
|  | * STALL can't leave the TT buffer in a busy | 
|  | * state (if you believe Figures 11-48 - 11-51 | 
|  | * in the USB 2.0 spec), we won't clear the TT | 
|  | * buffer in this case.  Strictly speaking this | 
|  | * is a violation of the spec. | 
|  | */ | 
|  | if (last_status != -EPIPE) | 
|  | fotg210_clear_tt_buffer(fotg210, qh, | 
|  | urb, token); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if we're removing something not at the queue head, | 
|  | * patch the hardware queue pointer. | 
|  | */ | 
|  | if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { | 
|  | last = list_entry(qtd->qtd_list.prev, | 
|  | struct fotg210_qtd, qtd_list); | 
|  | last->hw_next = qtd->hw_next; | 
|  | } | 
|  |  | 
|  | /* remove qtd; it's recycled after possible urb completion */ | 
|  | list_del(&qtd->qtd_list); | 
|  | last = qtd; | 
|  |  | 
|  | /* reinit the xacterr counter for the next qtd */ | 
|  | qh->xacterrs = 0; | 
|  | } | 
|  |  | 
|  | /* last urb's completion might still need calling */ | 
|  | if (likely(last != NULL)) { | 
|  | fotg210_urb_done(fotg210, last->urb, last_status); | 
|  | count++; | 
|  | fotg210_qtd_free(fotg210, last); | 
|  | } | 
|  |  | 
|  | /* Do we need to rescan for URBs dequeued during a giveback? */ | 
|  | if (unlikely(qh->needs_rescan)) { | 
|  | /* If the QH is already unlinked, do the rescan now. */ | 
|  | if (state == QH_STATE_IDLE) | 
|  | goto rescan; | 
|  |  | 
|  | /* Otherwise we have to wait until the QH is fully unlinked. | 
|  | * Our caller will start an unlink if qh->needs_rescan is | 
|  | * set.  But if an unlink has already started, nothing needs | 
|  | * to be done. | 
|  | */ | 
|  | if (state != QH_STATE_LINKED) | 
|  | qh->needs_rescan = 0; | 
|  | } | 
|  |  | 
|  | /* restore original state; caller must unlink or relink */ | 
|  | qh->qh_state = state; | 
|  |  | 
|  | /* be sure the hardware's done with the qh before refreshing | 
|  | * it after fault cleanup, or recovering from silicon wrongly | 
|  | * overlaying the dummy qtd (which reduces DMA chatter). | 
|  | */ | 
|  | if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) { | 
|  | switch (state) { | 
|  | case QH_STATE_IDLE: | 
|  | qh_refresh(fotg210, qh); | 
|  | break; | 
|  | case QH_STATE_LINKED: | 
|  | /* We won't refresh a QH that's linked (after the HC | 
|  | * stopped the queue).  That avoids a race: | 
|  | *  - HC reads first part of QH; | 
|  | *  - CPU updates that first part and the token; | 
|  | *  - HC reads rest of that QH, including token | 
|  | * Result:  HC gets an inconsistent image, and then | 
|  | * DMAs to/from the wrong memory (corrupting it). | 
|  | * | 
|  | * That should be rare for interrupt transfers, | 
|  | * except maybe high bandwidth ... | 
|  | */ | 
|  |  | 
|  | /* Tell the caller to start an unlink */ | 
|  | qh->needs_rescan = 1; | 
|  | break; | 
|  | /* otherwise, unlink already started */ | 
|  | } | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* reverse of qh_urb_transaction:  free a list of TDs. | 
|  | * used for cleanup after errors, before HC sees an URB's TDs. | 
|  | */ | 
|  | static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb, | 
|  | struct list_head *head) | 
|  | { | 
|  | struct fotg210_qtd *qtd, *temp; | 
|  |  | 
|  | list_for_each_entry_safe(qtd, temp, head, qtd_list) { | 
|  | list_del(&qtd->qtd_list); | 
|  | fotg210_qtd_free(fotg210, qtd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* create a list of filled qtds for this URB; won't link into qh. | 
|  | */ | 
|  | static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210, | 
|  | struct urb *urb, struct list_head *head, gfp_t flags) | 
|  | { | 
|  | struct fotg210_qtd *qtd, *qtd_prev; | 
|  | dma_addr_t buf; | 
|  | int len, this_sg_len, maxpacket; | 
|  | int is_input; | 
|  | u32 token; | 
|  | int i; | 
|  | struct scatterlist *sg; | 
|  |  | 
|  | /* | 
|  | * URBs map to sequences of QTDs:  one logical transaction | 
|  | */ | 
|  | qtd = fotg210_qtd_alloc(fotg210, flags); | 
|  | if (unlikely(!qtd)) | 
|  | return NULL; | 
|  | list_add_tail(&qtd->qtd_list, head); | 
|  | qtd->urb = urb; | 
|  |  | 
|  | token = QTD_STS_ACTIVE; | 
|  | token |= (FOTG210_TUNE_CERR << 10); | 
|  | /* for split transactions, SplitXState initialized to zero */ | 
|  |  | 
|  | len = urb->transfer_buffer_length; | 
|  | is_input = usb_pipein(urb->pipe); | 
|  | if (usb_pipecontrol(urb->pipe)) { | 
|  | /* SETUP pid */ | 
|  | qtd_fill(fotg210, qtd, urb->setup_dma, | 
|  | sizeof(struct usb_ctrlrequest), | 
|  | token | (2 /* "setup" */ << 8), 8); | 
|  |  | 
|  | /* ... and always at least one more pid */ | 
|  | token ^= QTD_TOGGLE; | 
|  | qtd_prev = qtd; | 
|  | qtd = fotg210_qtd_alloc(fotg210, flags); | 
|  | if (unlikely(!qtd)) | 
|  | goto cleanup; | 
|  | qtd->urb = urb; | 
|  | qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); | 
|  | list_add_tail(&qtd->qtd_list, head); | 
|  |  | 
|  | /* for zero length DATA stages, STATUS is always IN */ | 
|  | if (len == 0) | 
|  | token |= (1 /* "in" */ << 8); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * data transfer stage:  buffer setup | 
|  | */ | 
|  | i = urb->num_mapped_sgs; | 
|  | if (len > 0 && i > 0) { | 
|  | sg = urb->sg; | 
|  | buf = sg_dma_address(sg); | 
|  |  | 
|  | /* urb->transfer_buffer_length may be smaller than the | 
|  | * size of the scatterlist (or vice versa) | 
|  | */ | 
|  | this_sg_len = min_t(int, sg_dma_len(sg), len); | 
|  | } else { | 
|  | sg = NULL; | 
|  | buf = urb->transfer_dma; | 
|  | this_sg_len = len; | 
|  | } | 
|  |  | 
|  | if (is_input) | 
|  | token |= (1 /* "in" */ << 8); | 
|  | /* else it's already initted to "out" pid (0 << 8) */ | 
|  |  | 
|  | maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input); | 
|  |  | 
|  | /* | 
|  | * buffer gets wrapped in one or more qtds; | 
|  | * last one may be "short" (including zero len) | 
|  | * and may serve as a control status ack | 
|  | */ | 
|  | for (;;) { | 
|  | int this_qtd_len; | 
|  |  | 
|  | this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token, | 
|  | maxpacket); | 
|  | this_sg_len -= this_qtd_len; | 
|  | len -= this_qtd_len; | 
|  | buf += this_qtd_len; | 
|  |  | 
|  | /* | 
|  | * short reads advance to a "magic" dummy instead of the next | 
|  | * qtd ... that forces the queue to stop, for manual cleanup. | 
|  | * (this will usually be overridden later.) | 
|  | */ | 
|  | if (is_input) | 
|  | qtd->hw_alt_next = fotg210->async->hw->hw_alt_next; | 
|  |  | 
|  | /* qh makes control packets use qtd toggle; maybe switch it */ | 
|  | if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) | 
|  | token ^= QTD_TOGGLE; | 
|  |  | 
|  | if (likely(this_sg_len <= 0)) { | 
|  | if (--i <= 0 || len <= 0) | 
|  | break; | 
|  | sg = sg_next(sg); | 
|  | buf = sg_dma_address(sg); | 
|  | this_sg_len = min_t(int, sg_dma_len(sg), len); | 
|  | } | 
|  |  | 
|  | qtd_prev = qtd; | 
|  | qtd = fotg210_qtd_alloc(fotg210, flags); | 
|  | if (unlikely(!qtd)) | 
|  | goto cleanup; | 
|  | qtd->urb = urb; | 
|  | qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); | 
|  | list_add_tail(&qtd->qtd_list, head); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unless the caller requires manual cleanup after short reads, | 
|  | * have the alt_next mechanism keep the queue running after the | 
|  | * last data qtd (the only one, for control and most other cases). | 
|  | */ | 
|  | if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 || | 
|  | usb_pipecontrol(urb->pipe))) | 
|  | qtd->hw_alt_next = FOTG210_LIST_END(fotg210); | 
|  |  | 
|  | /* | 
|  | * control requests may need a terminating data "status" ack; | 
|  | * other OUT ones may need a terminating short packet | 
|  | * (zero length). | 
|  | */ | 
|  | if (likely(urb->transfer_buffer_length != 0)) { | 
|  | int one_more = 0; | 
|  |  | 
|  | if (usb_pipecontrol(urb->pipe)) { | 
|  | one_more = 1; | 
|  | token ^= 0x0100;	/* "in" <--> "out"  */ | 
|  | token |= QTD_TOGGLE;	/* force DATA1 */ | 
|  | } else if (usb_pipeout(urb->pipe) | 
|  | && (urb->transfer_flags & URB_ZERO_PACKET) | 
|  | && !(urb->transfer_buffer_length % maxpacket)) { | 
|  | one_more = 1; | 
|  | } | 
|  | if (one_more) { | 
|  | qtd_prev = qtd; | 
|  | qtd = fotg210_qtd_alloc(fotg210, flags); | 
|  | if (unlikely(!qtd)) | 
|  | goto cleanup; | 
|  | qtd->urb = urb; | 
|  | qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); | 
|  | list_add_tail(&qtd->qtd_list, head); | 
|  |  | 
|  | /* never any data in such packets */ | 
|  | qtd_fill(fotg210, qtd, 0, 0, token, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* by default, enable interrupt on urb completion */ | 
|  | if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT))) | 
|  | qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC); | 
|  | return head; | 
|  |  | 
|  | cleanup: | 
|  | qtd_list_free(fotg210, urb, head); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Would be best to create all qh's from config descriptors, | 
|  | * when each interface/altsetting is established.  Unlink | 
|  | * any previous qh and cancel its urbs first; endpoints are | 
|  | * implicitly reset then (data toggle too). | 
|  | * That'd mean updating how usbcore talks to HCDs. (2.7?) | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* Each QH holds a qtd list; a QH is used for everything except iso. | 
|  | * | 
|  | * For interrupt urbs, the scheduler must set the microframe scheduling | 
|  | * mask(s) each time the QH gets scheduled.  For highspeed, that's | 
|  | * just one microframe in the s-mask.  For split interrupt transactions | 
|  | * there are additional complications: c-mask, maybe FSTNs. | 
|  | */ | 
|  | static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb, | 
|  | gfp_t flags) | 
|  | { | 
|  | struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags); | 
|  | struct usb_host_endpoint *ep; | 
|  | u32 info1 = 0, info2 = 0; | 
|  | int is_input, type; | 
|  | int maxp = 0; | 
|  | int mult; | 
|  | struct usb_tt *tt = urb->dev->tt; | 
|  | struct fotg210_qh_hw *hw; | 
|  |  | 
|  | if (!qh) | 
|  | return qh; | 
|  |  | 
|  | /* | 
|  | * init endpoint/device data for this QH | 
|  | */ | 
|  | info1 |= usb_pipeendpoint(urb->pipe) << 8; | 
|  | info1 |= usb_pipedevice(urb->pipe) << 0; | 
|  |  | 
|  | is_input = usb_pipein(urb->pipe); | 
|  | type = usb_pipetype(urb->pipe); | 
|  | ep = usb_pipe_endpoint(urb->dev, urb->pipe); | 
|  | maxp = usb_endpoint_maxp(&ep->desc); | 
|  | mult = usb_endpoint_maxp_mult(&ep->desc); | 
|  |  | 
|  | /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth | 
|  | * acts like up to 3KB, but is built from smaller packets. | 
|  | */ | 
|  | if (maxp > 1024) { | 
|  | fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Compute interrupt scheduling parameters just once, and save. | 
|  | * - allowing for high bandwidth, how many nsec/uframe are used? | 
|  | * - split transactions need a second CSPLIT uframe; same question | 
|  | * - splits also need a schedule gap (for full/low speed I/O) | 
|  | * - qh has a polling interval | 
|  | * | 
|  | * For control/bulk requests, the HC or TT handles these. | 
|  | */ | 
|  | if (type == PIPE_INTERRUPT) { | 
|  | qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, | 
|  | is_input, 0, mult * maxp)); | 
|  | qh->start = NO_FRAME; | 
|  |  | 
|  | if (urb->dev->speed == USB_SPEED_HIGH) { | 
|  | qh->c_usecs = 0; | 
|  | qh->gap_uf = 0; | 
|  |  | 
|  | qh->period = urb->interval >> 3; | 
|  | if (qh->period == 0 && urb->interval != 1) { | 
|  | /* NOTE interval 2 or 4 uframes could work. | 
|  | * But interval 1 scheduling is simpler, and | 
|  | * includes high bandwidth. | 
|  | */ | 
|  | urb->interval = 1; | 
|  | } else if (qh->period > fotg210->periodic_size) { | 
|  | qh->period = fotg210->periodic_size; | 
|  | urb->interval = qh->period << 3; | 
|  | } | 
|  | } else { | 
|  | int think_time; | 
|  |  | 
|  | /* gap is f(FS/LS transfer times) */ | 
|  | qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, | 
|  | is_input, 0, maxp) / (125 * 1000); | 
|  |  | 
|  | /* FIXME this just approximates SPLIT/CSPLIT times */ | 
|  | if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */ | 
|  | qh->c_usecs = qh->usecs + HS_USECS(0); | 
|  | qh->usecs = HS_USECS(1); | 
|  | } else {		/* SPLIT+DATA, gap, CSPLIT */ | 
|  | qh->usecs += HS_USECS(1); | 
|  | qh->c_usecs = HS_USECS(0); | 
|  | } | 
|  |  | 
|  | think_time = tt ? tt->think_time : 0; | 
|  | qh->tt_usecs = NS_TO_US(think_time + | 
|  | usb_calc_bus_time(urb->dev->speed, | 
|  | is_input, 0, maxp)); | 
|  | qh->period = urb->interval; | 
|  | if (qh->period > fotg210->periodic_size) { | 
|  | qh->period = fotg210->periodic_size; | 
|  | urb->interval = qh->period; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* support for tt scheduling, and access to toggles */ | 
|  | qh->dev = urb->dev; | 
|  |  | 
|  | /* using TT? */ | 
|  | switch (urb->dev->speed) { | 
|  | case USB_SPEED_LOW: | 
|  | info1 |= QH_LOW_SPEED; | 
|  | fallthrough; | 
|  |  | 
|  | case USB_SPEED_FULL: | 
|  | /* EPS 0 means "full" */ | 
|  | if (type != PIPE_INTERRUPT) | 
|  | info1 |= (FOTG210_TUNE_RL_TT << 28); | 
|  | if (type == PIPE_CONTROL) { | 
|  | info1 |= QH_CONTROL_EP;		/* for TT */ | 
|  | info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */ | 
|  | } | 
|  | info1 |= maxp << 16; | 
|  |  | 
|  | info2 |= (FOTG210_TUNE_MULT_TT << 30); | 
|  |  | 
|  | /* Some Freescale processors have an erratum in which the | 
|  | * port number in the queue head was 0..N-1 instead of 1..N. | 
|  | */ | 
|  | if (fotg210_has_fsl_portno_bug(fotg210)) | 
|  | info2 |= (urb->dev->ttport-1) << 23; | 
|  | else | 
|  | info2 |= urb->dev->ttport << 23; | 
|  |  | 
|  | /* set the address of the TT; for TDI's integrated | 
|  | * root hub tt, leave it zeroed. | 
|  | */ | 
|  | if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub) | 
|  | info2 |= tt->hub->devnum << 16; | 
|  |  | 
|  | /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */ | 
|  |  | 
|  | break; | 
|  |  | 
|  | case USB_SPEED_HIGH:		/* no TT involved */ | 
|  | info1 |= QH_HIGH_SPEED; | 
|  | if (type == PIPE_CONTROL) { | 
|  | info1 |= (FOTG210_TUNE_RL_HS << 28); | 
|  | info1 |= 64 << 16;	/* usb2 fixed maxpacket */ | 
|  | info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */ | 
|  | info2 |= (FOTG210_TUNE_MULT_HS << 30); | 
|  | } else if (type == PIPE_BULK) { | 
|  | info1 |= (FOTG210_TUNE_RL_HS << 28); | 
|  | /* The USB spec says that high speed bulk endpoints | 
|  | * always use 512 byte maxpacket.  But some device | 
|  | * vendors decided to ignore that, and MSFT is happy | 
|  | * to help them do so.  So now people expect to use | 
|  | * such nonconformant devices with Linux too; sigh. | 
|  | */ | 
|  | info1 |= maxp << 16; | 
|  | info2 |= (FOTG210_TUNE_MULT_HS << 30); | 
|  | } else {		/* PIPE_INTERRUPT */ | 
|  | info1 |= maxp << 16; | 
|  | info2 |= mult << 30; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev, | 
|  | urb->dev->speed); | 
|  | done: | 
|  | qh_destroy(fotg210, qh); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */ | 
|  |  | 
|  | /* init as live, toggle clear, advance to dummy */ | 
|  | qh->qh_state = QH_STATE_IDLE; | 
|  | hw = qh->hw; | 
|  | hw->hw_info1 = cpu_to_hc32(fotg210, info1); | 
|  | hw->hw_info2 = cpu_to_hc32(fotg210, info2); | 
|  | qh->is_out = !is_input; | 
|  | usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); | 
|  | qh_refresh(fotg210, qh); | 
|  | return qh; | 
|  | } | 
|  |  | 
|  | static void enable_async(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | if (fotg210->async_count++) | 
|  | return; | 
|  |  | 
|  | /* Stop waiting to turn off the async schedule */ | 
|  | fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC); | 
|  |  | 
|  | /* Don't start the schedule until ASS is 0 */ | 
|  | fotg210_poll_ASS(fotg210); | 
|  | turn_on_io_watchdog(fotg210); | 
|  | } | 
|  |  | 
|  | static void disable_async(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | if (--fotg210->async_count) | 
|  | return; | 
|  |  | 
|  | /* The async schedule and async_unlink list are supposed to be empty */ | 
|  | WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink); | 
|  |  | 
|  | /* Don't turn off the schedule until ASS is 1 */ | 
|  | fotg210_poll_ASS(fotg210); | 
|  | } | 
|  |  | 
|  | /* move qh (and its qtds) onto async queue; maybe enable queue.  */ | 
|  |  | 
|  | static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) | 
|  | { | 
|  | __hc32 dma = QH_NEXT(fotg210, qh->qh_dma); | 
|  | struct fotg210_qh *head; | 
|  |  | 
|  | /* Don't link a QH if there's a Clear-TT-Buffer pending */ | 
|  | if (unlikely(qh->clearing_tt)) | 
|  | return; | 
|  |  | 
|  | WARN_ON(qh->qh_state != QH_STATE_IDLE); | 
|  |  | 
|  | /* clear halt and/or toggle; and maybe recover from silicon quirk */ | 
|  | qh_refresh(fotg210, qh); | 
|  |  | 
|  | /* splice right after start */ | 
|  | head = fotg210->async; | 
|  | qh->qh_next = head->qh_next; | 
|  | qh->hw->hw_next = head->hw->hw_next; | 
|  | wmb(); | 
|  |  | 
|  | head->qh_next.qh = qh; | 
|  | head->hw->hw_next = dma; | 
|  |  | 
|  | qh->xacterrs = 0; | 
|  | qh->qh_state = QH_STATE_LINKED; | 
|  | /* qtd completions reported later by interrupt */ | 
|  |  | 
|  | enable_async(fotg210); | 
|  | } | 
|  |  | 
|  | /* For control/bulk/interrupt, return QH with these TDs appended. | 
|  | * Allocates and initializes the QH if necessary. | 
|  | * Returns null if it can't allocate a QH it needs to. | 
|  | * If the QH has TDs (urbs) already, that's great. | 
|  | */ | 
|  | static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210, | 
|  | struct urb *urb, struct list_head *qtd_list, | 
|  | int epnum, void **ptr) | 
|  | { | 
|  | struct fotg210_qh *qh = NULL; | 
|  | __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f); | 
|  |  | 
|  | qh = (struct fotg210_qh *) *ptr; | 
|  | if (unlikely(qh == NULL)) { | 
|  | /* can't sleep here, we have fotg210->lock... */ | 
|  | qh = qh_make(fotg210, urb, GFP_ATOMIC); | 
|  | *ptr = qh; | 
|  | } | 
|  | if (likely(qh != NULL)) { | 
|  | struct fotg210_qtd *qtd; | 
|  |  | 
|  | if (unlikely(list_empty(qtd_list))) | 
|  | qtd = NULL; | 
|  | else | 
|  | qtd = list_entry(qtd_list->next, struct fotg210_qtd, | 
|  | qtd_list); | 
|  |  | 
|  | /* control qh may need patching ... */ | 
|  | if (unlikely(epnum == 0)) { | 
|  | /* usb_reset_device() briefly reverts to address 0 */ | 
|  | if (usb_pipedevice(urb->pipe) == 0) | 
|  | qh->hw->hw_info1 &= ~qh_addr_mask; | 
|  | } | 
|  |  | 
|  | /* just one way to queue requests: swap with the dummy qtd. | 
|  | * only hc or qh_refresh() ever modify the overlay. | 
|  | */ | 
|  | if (likely(qtd != NULL)) { | 
|  | struct fotg210_qtd *dummy; | 
|  | dma_addr_t dma; | 
|  | __hc32 token; | 
|  |  | 
|  | /* to avoid racing the HC, use the dummy td instead of | 
|  | * the first td of our list (becomes new dummy).  both | 
|  | * tds stay deactivated until we're done, when the | 
|  | * HC is allowed to fetch the old dummy (4.10.2). | 
|  | */ | 
|  | token = qtd->hw_token; | 
|  | qtd->hw_token = HALT_BIT(fotg210); | 
|  |  | 
|  | dummy = qh->dummy; | 
|  |  | 
|  | dma = dummy->qtd_dma; | 
|  | *dummy = *qtd; | 
|  | dummy->qtd_dma = dma; | 
|  |  | 
|  | list_del(&qtd->qtd_list); | 
|  | list_add(&dummy->qtd_list, qtd_list); | 
|  | list_splice_tail(qtd_list, &qh->qtd_list); | 
|  |  | 
|  | fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma); | 
|  | qh->dummy = qtd; | 
|  |  | 
|  | /* hc must see the new dummy at list end */ | 
|  | dma = qtd->qtd_dma; | 
|  | qtd = list_entry(qh->qtd_list.prev, | 
|  | struct fotg210_qtd, qtd_list); | 
|  | qtd->hw_next = QTD_NEXT(fotg210, dma); | 
|  |  | 
|  | /* let the hc process these next qtds */ | 
|  | wmb(); | 
|  | dummy->hw_token = token; | 
|  |  | 
|  | urb->hcpriv = qh; | 
|  | } | 
|  | } | 
|  | return qh; | 
|  | } | 
|  |  | 
|  | static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb, | 
|  | struct list_head *qtd_list, gfp_t mem_flags) | 
|  | { | 
|  | int epnum; | 
|  | unsigned long flags; | 
|  | struct fotg210_qh *qh = NULL; | 
|  | int rc; | 
|  |  | 
|  | epnum = urb->ep->desc.bEndpointAddress; | 
|  |  | 
|  | #ifdef FOTG210_URB_TRACE | 
|  | { | 
|  | struct fotg210_qtd *qtd; | 
|  |  | 
|  | qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list); | 
|  | fotg210_dbg(fotg210, | 
|  | "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", | 
|  | __func__, urb->dev->devpath, urb, | 
|  | epnum & 0x0f, (epnum & USB_DIR_IN) | 
|  | ? "in" : "out", | 
|  | urb->transfer_buffer_length, | 
|  | qtd, urb->ep->hcpriv); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { | 
|  | rc = -ESHUTDOWN; | 
|  | goto done; | 
|  | } | 
|  | rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); | 
|  | if (unlikely(rc)) | 
|  | goto done; | 
|  |  | 
|  | qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); | 
|  | if (unlikely(qh == NULL)) { | 
|  | usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); | 
|  | rc = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Control/bulk operations through TTs don't need scheduling, | 
|  | * the HC and TT handle it when the TT has a buffer ready. | 
|  | */ | 
|  | if (likely(qh->qh_state == QH_STATE_IDLE)) | 
|  | qh_link_async(fotg210, qh); | 
|  | done: | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | if (unlikely(qh == NULL)) | 
|  | qtd_list_free(fotg210, urb, qtd_list); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void single_unlink_async(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_qh *qh) | 
|  | { | 
|  | struct fotg210_qh *prev; | 
|  |  | 
|  | /* Add to the end of the list of QHs waiting for the next IAAD */ | 
|  | qh->qh_state = QH_STATE_UNLINK; | 
|  | if (fotg210->async_unlink) | 
|  | fotg210->async_unlink_last->unlink_next = qh; | 
|  | else | 
|  | fotg210->async_unlink = qh; | 
|  | fotg210->async_unlink_last = qh; | 
|  |  | 
|  | /* Unlink it from the schedule */ | 
|  | prev = fotg210->async; | 
|  | while (prev->qh_next.qh != qh) | 
|  | prev = prev->qh_next.qh; | 
|  |  | 
|  | prev->hw->hw_next = qh->hw->hw_next; | 
|  | prev->qh_next = qh->qh_next; | 
|  | if (fotg210->qh_scan_next == qh) | 
|  | fotg210->qh_scan_next = qh->qh_next.qh; | 
|  | } | 
|  |  | 
|  | static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested) | 
|  | { | 
|  | /* | 
|  | * Do nothing if an IAA cycle is already running or | 
|  | * if one will be started shortly. | 
|  | */ | 
|  | if (fotg210->async_iaa || fotg210->async_unlinking) | 
|  | return; | 
|  |  | 
|  | /* Do all the waiting QHs at once */ | 
|  | fotg210->async_iaa = fotg210->async_unlink; | 
|  | fotg210->async_unlink = NULL; | 
|  |  | 
|  | /* If the controller isn't running, we don't have to wait for it */ | 
|  | if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) { | 
|  | if (!nested)		/* Avoid recursion */ | 
|  | end_unlink_async(fotg210); | 
|  |  | 
|  | /* Otherwise start a new IAA cycle */ | 
|  | } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) { | 
|  | /* Make sure the unlinks are all visible to the hardware */ | 
|  | wmb(); | 
|  |  | 
|  | fotg210_writel(fotg210, fotg210->command | CMD_IAAD, | 
|  | &fotg210->regs->command); | 
|  | fotg210_readl(fotg210, &fotg210->regs->command); | 
|  | fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG, | 
|  | true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* the async qh for the qtds being unlinked are now gone from the HC */ | 
|  |  | 
|  | static void end_unlink_async(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | struct fotg210_qh *qh; | 
|  |  | 
|  | /* Process the idle QHs */ | 
|  | restart: | 
|  | fotg210->async_unlinking = true; | 
|  | while (fotg210->async_iaa) { | 
|  | qh = fotg210->async_iaa; | 
|  | fotg210->async_iaa = qh->unlink_next; | 
|  | qh->unlink_next = NULL; | 
|  |  | 
|  | qh->qh_state = QH_STATE_IDLE; | 
|  | qh->qh_next.qh = NULL; | 
|  |  | 
|  | qh_completions(fotg210, qh); | 
|  | if (!list_empty(&qh->qtd_list) && | 
|  | fotg210->rh_state == FOTG210_RH_RUNNING) | 
|  | qh_link_async(fotg210, qh); | 
|  | disable_async(fotg210); | 
|  | } | 
|  | fotg210->async_unlinking = false; | 
|  |  | 
|  | /* Start a new IAA cycle if any QHs are waiting for it */ | 
|  | if (fotg210->async_unlink) { | 
|  | start_iaa_cycle(fotg210, true); | 
|  | if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void unlink_empty_async(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | struct fotg210_qh *qh, *next; | 
|  | bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); | 
|  | bool check_unlinks_later = false; | 
|  |  | 
|  | /* Unlink all the async QHs that have been empty for a timer cycle */ | 
|  | next = fotg210->async->qh_next.qh; | 
|  | while (next) { | 
|  | qh = next; | 
|  | next = qh->qh_next.qh; | 
|  |  | 
|  | if (list_empty(&qh->qtd_list) && | 
|  | qh->qh_state == QH_STATE_LINKED) { | 
|  | if (!stopped && qh->unlink_cycle == | 
|  | fotg210->async_unlink_cycle) | 
|  | check_unlinks_later = true; | 
|  | else | 
|  | single_unlink_async(fotg210, qh); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Start a new IAA cycle if any QHs are waiting for it */ | 
|  | if (fotg210->async_unlink) | 
|  | start_iaa_cycle(fotg210, false); | 
|  |  | 
|  | /* QHs that haven't been empty for long enough will be handled later */ | 
|  | if (check_unlinks_later) { | 
|  | fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS, | 
|  | true); | 
|  | ++fotg210->async_unlink_cycle; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* makes sure the async qh will become idle */ | 
|  | /* caller must own fotg210->lock */ | 
|  |  | 
|  | static void start_unlink_async(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_qh *qh) | 
|  | { | 
|  | /* | 
|  | * If the QH isn't linked then there's nothing we can do | 
|  | * unless we were called during a giveback, in which case | 
|  | * qh_completions() has to deal with it. | 
|  | */ | 
|  | if (qh->qh_state != QH_STATE_LINKED) { | 
|  | if (qh->qh_state == QH_STATE_COMPLETING) | 
|  | qh->needs_rescan = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | single_unlink_async(fotg210, qh); | 
|  | start_iaa_cycle(fotg210, false); | 
|  | } | 
|  |  | 
|  | static void scan_async(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | struct fotg210_qh *qh; | 
|  | bool check_unlinks_later = false; | 
|  |  | 
|  | fotg210->qh_scan_next = fotg210->async->qh_next.qh; | 
|  | while (fotg210->qh_scan_next) { | 
|  | qh = fotg210->qh_scan_next; | 
|  | fotg210->qh_scan_next = qh->qh_next.qh; | 
|  | rescan: | 
|  | /* clean any finished work for this qh */ | 
|  | if (!list_empty(&qh->qtd_list)) { | 
|  | int temp; | 
|  |  | 
|  | /* | 
|  | * Unlinks could happen here; completion reporting | 
|  | * drops the lock.  That's why fotg210->qh_scan_next | 
|  | * always holds the next qh to scan; if the next qh | 
|  | * gets unlinked then fotg210->qh_scan_next is adjusted | 
|  | * in single_unlink_async(). | 
|  | */ | 
|  | temp = qh_completions(fotg210, qh); | 
|  | if (qh->needs_rescan) { | 
|  | start_unlink_async(fotg210, qh); | 
|  | } else if (list_empty(&qh->qtd_list) | 
|  | && qh->qh_state == QH_STATE_LINKED) { | 
|  | qh->unlink_cycle = fotg210->async_unlink_cycle; | 
|  | check_unlinks_later = true; | 
|  | } else if (temp != 0) | 
|  | goto rescan; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlink empty entries, reducing DMA usage as well | 
|  | * as HCD schedule-scanning costs.  Delay for any qh | 
|  | * we just scanned, there's a not-unusual case that it | 
|  | * doesn't stay idle for long. | 
|  | */ | 
|  | if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING && | 
|  | !(fotg210->enabled_hrtimer_events & | 
|  | BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) { | 
|  | fotg210_enable_event(fotg210, | 
|  | FOTG210_HRTIMER_ASYNC_UNLINKS, true); | 
|  | ++fotg210->async_unlink_cycle; | 
|  | } | 
|  | } | 
|  | /* EHCI scheduled transaction support:  interrupt, iso, split iso | 
|  | * These are called "periodic" transactions in the EHCI spec. | 
|  | * | 
|  | * Note that for interrupt transfers, the QH/QTD manipulation is shared | 
|  | * with the "asynchronous" transaction support (control/bulk transfers). | 
|  | * The only real difference is in how interrupt transfers are scheduled. | 
|  | * | 
|  | * For ISO, we make an "iso_stream" head to serve the same role as a QH. | 
|  | * It keeps track of every ITD (or SITD) that's linked, and holds enough | 
|  | * pre-calculated schedule data to make appending to the queue be quick. | 
|  | */ | 
|  | static int fotg210_get_frame(struct usb_hcd *hcd); | 
|  |  | 
|  | /* periodic_next_shadow - return "next" pointer on shadow list | 
|  | * @periodic: host pointer to qh/itd | 
|  | * @tag: hardware tag for type of this record | 
|  | */ | 
|  | static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210, | 
|  | union fotg210_shadow *periodic, __hc32 tag) | 
|  | { | 
|  | switch (hc32_to_cpu(fotg210, tag)) { | 
|  | case Q_TYPE_QH: | 
|  | return &periodic->qh->qh_next; | 
|  | case Q_TYPE_FSTN: | 
|  | return &periodic->fstn->fstn_next; | 
|  | default: | 
|  | return &periodic->itd->itd_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210, | 
|  | union fotg210_shadow *periodic, __hc32 tag) | 
|  | { | 
|  | switch (hc32_to_cpu(fotg210, tag)) { | 
|  | /* our fotg210_shadow.qh is actually software part */ | 
|  | case Q_TYPE_QH: | 
|  | return &periodic->qh->hw->hw_next; | 
|  | /* others are hw parts */ | 
|  | default: | 
|  | return periodic->hw_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* caller must hold fotg210->lock */ | 
|  | static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame, | 
|  | void *ptr) | 
|  | { | 
|  | union fotg210_shadow *prev_p = &fotg210->pshadow[frame]; | 
|  | __hc32 *hw_p = &fotg210->periodic[frame]; | 
|  | union fotg210_shadow here = *prev_p; | 
|  |  | 
|  | /* find predecessor of "ptr"; hw and shadow lists are in sync */ | 
|  | while (here.ptr && here.ptr != ptr) { | 
|  | prev_p = periodic_next_shadow(fotg210, prev_p, | 
|  | Q_NEXT_TYPE(fotg210, *hw_p)); | 
|  | hw_p = shadow_next_periodic(fotg210, &here, | 
|  | Q_NEXT_TYPE(fotg210, *hw_p)); | 
|  | here = *prev_p; | 
|  | } | 
|  | /* an interrupt entry (at list end) could have been shared */ | 
|  | if (!here.ptr) | 
|  | return; | 
|  |  | 
|  | /* update shadow and hardware lists ... the old "next" pointers | 
|  | * from ptr may still be in use, the caller updates them. | 
|  | */ | 
|  | *prev_p = *periodic_next_shadow(fotg210, &here, | 
|  | Q_NEXT_TYPE(fotg210, *hw_p)); | 
|  |  | 
|  | *hw_p = *shadow_next_periodic(fotg210, &here, | 
|  | Q_NEXT_TYPE(fotg210, *hw_p)); | 
|  | } | 
|  |  | 
|  | /* how many of the uframe's 125 usecs are allocated? */ | 
|  | static unsigned short periodic_usecs(struct fotg210_hcd *fotg210, | 
|  | unsigned frame, unsigned uframe) | 
|  | { | 
|  | __hc32 *hw_p = &fotg210->periodic[frame]; | 
|  | union fotg210_shadow *q = &fotg210->pshadow[frame]; | 
|  | unsigned usecs = 0; | 
|  | struct fotg210_qh_hw *hw; | 
|  |  | 
|  | while (q->ptr) { | 
|  | switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) { | 
|  | case Q_TYPE_QH: | 
|  | hw = q->qh->hw; | 
|  | /* is it in the S-mask? */ | 
|  | if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe)) | 
|  | usecs += q->qh->usecs; | 
|  | /* ... or C-mask? */ | 
|  | if (hw->hw_info2 & cpu_to_hc32(fotg210, | 
|  | 1 << (8 + uframe))) | 
|  | usecs += q->qh->c_usecs; | 
|  | hw_p = &hw->hw_next; | 
|  | q = &q->qh->qh_next; | 
|  | break; | 
|  | /* case Q_TYPE_FSTN: */ | 
|  | default: | 
|  | /* for "save place" FSTNs, count the relevant INTR | 
|  | * bandwidth from the previous frame | 
|  | */ | 
|  | if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210)) | 
|  | fotg210_dbg(fotg210, "ignoring FSTN cost ...\n"); | 
|  |  | 
|  | hw_p = &q->fstn->hw_next; | 
|  | q = &q->fstn->fstn_next; | 
|  | break; | 
|  | case Q_TYPE_ITD: | 
|  | if (q->itd->hw_transaction[uframe]) | 
|  | usecs += q->itd->stream->usecs; | 
|  | hw_p = &q->itd->hw_next; | 
|  | q = &q->itd->itd_next; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (usecs > fotg210->uframe_periodic_max) | 
|  | fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n", | 
|  | frame * 8 + uframe, usecs); | 
|  | return usecs; | 
|  | } | 
|  |  | 
|  | static int same_tt(struct usb_device *dev1, struct usb_device *dev2) | 
|  | { | 
|  | if (!dev1->tt || !dev2->tt) | 
|  | return 0; | 
|  | if (dev1->tt != dev2->tt) | 
|  | return 0; | 
|  | if (dev1->tt->multi) | 
|  | return dev1->ttport == dev2->ttport; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* return true iff the device's transaction translator is available | 
|  | * for a periodic transfer starting at the specified frame, using | 
|  | * all the uframes in the mask. | 
|  | */ | 
|  | static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period, | 
|  | struct usb_device *dev, unsigned frame, u32 uf_mask) | 
|  | { | 
|  | if (period == 0)	/* error */ | 
|  | return 0; | 
|  |  | 
|  | /* note bandwidth wastage:  split never follows csplit | 
|  | * (different dev or endpoint) until the next uframe. | 
|  | * calling convention doesn't make that distinction. | 
|  | */ | 
|  | for (; frame < fotg210->periodic_size; frame += period) { | 
|  | union fotg210_shadow here; | 
|  | __hc32 type; | 
|  | struct fotg210_qh_hw *hw; | 
|  |  | 
|  | here = fotg210->pshadow[frame]; | 
|  | type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]); | 
|  | while (here.ptr) { | 
|  | switch (hc32_to_cpu(fotg210, type)) { | 
|  | case Q_TYPE_ITD: | 
|  | type = Q_NEXT_TYPE(fotg210, here.itd->hw_next); | 
|  | here = here.itd->itd_next; | 
|  | continue; | 
|  | case Q_TYPE_QH: | 
|  | hw = here.qh->hw; | 
|  | if (same_tt(dev, here.qh->dev)) { | 
|  | u32 mask; | 
|  |  | 
|  | mask = hc32_to_cpu(fotg210, | 
|  | hw->hw_info2); | 
|  | /* "knows" no gap is needed */ | 
|  | mask |= mask >> 8; | 
|  | if (mask & uf_mask) | 
|  | break; | 
|  | } | 
|  | type = Q_NEXT_TYPE(fotg210, hw->hw_next); | 
|  | here = here.qh->qh_next; | 
|  | continue; | 
|  | /* case Q_TYPE_FSTN: */ | 
|  | default: | 
|  | fotg210_dbg(fotg210, | 
|  | "periodic frame %d bogus type %d\n", | 
|  | frame, type); | 
|  | } | 
|  |  | 
|  | /* collision or error */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* no collision */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void enable_periodic(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | if (fotg210->periodic_count++) | 
|  | return; | 
|  |  | 
|  | /* Stop waiting to turn off the periodic schedule */ | 
|  | fotg210->enabled_hrtimer_events &= | 
|  | ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC); | 
|  |  | 
|  | /* Don't start the schedule until PSS is 0 */ | 
|  | fotg210_poll_PSS(fotg210); | 
|  | turn_on_io_watchdog(fotg210); | 
|  | } | 
|  |  | 
|  | static void disable_periodic(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | if (--fotg210->periodic_count) | 
|  | return; | 
|  |  | 
|  | /* Don't turn off the schedule until PSS is 1 */ | 
|  | fotg210_poll_PSS(fotg210); | 
|  | } | 
|  |  | 
|  | /* periodic schedule slots have iso tds (normal or split) first, then a | 
|  | * sparse tree for active interrupt transfers. | 
|  | * | 
|  | * this just links in a qh; caller guarantees uframe masks are set right. | 
|  | * no FSTN support (yet; fotg210 0.96+) | 
|  | */ | 
|  | static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) | 
|  | { | 
|  | unsigned i; | 
|  | unsigned period = qh->period; | 
|  |  | 
|  | dev_dbg(&qh->dev->dev, | 
|  | "link qh%d-%04x/%p start %d [%d/%d us]\n", period, | 
|  | hc32_to_cpup(fotg210, &qh->hw->hw_info2) & | 
|  | (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, | 
|  | qh->c_usecs); | 
|  |  | 
|  | /* high bandwidth, or otherwise every microframe */ | 
|  | if (period == 0) | 
|  | period = 1; | 
|  |  | 
|  | for (i = qh->start; i < fotg210->periodic_size; i += period) { | 
|  | union fotg210_shadow *prev = &fotg210->pshadow[i]; | 
|  | __hc32 *hw_p = &fotg210->periodic[i]; | 
|  | union fotg210_shadow here = *prev; | 
|  | __hc32 type = 0; | 
|  |  | 
|  | /* skip the iso nodes at list head */ | 
|  | while (here.ptr) { | 
|  | type = Q_NEXT_TYPE(fotg210, *hw_p); | 
|  | if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) | 
|  | break; | 
|  | prev = periodic_next_shadow(fotg210, prev, type); | 
|  | hw_p = shadow_next_periodic(fotg210, &here, type); | 
|  | here = *prev; | 
|  | } | 
|  |  | 
|  | /* sorting each branch by period (slow-->fast) | 
|  | * enables sharing interior tree nodes | 
|  | */ | 
|  | while (here.ptr && qh != here.qh) { | 
|  | if (qh->period > here.qh->period) | 
|  | break; | 
|  | prev = &here.qh->qh_next; | 
|  | hw_p = &here.qh->hw->hw_next; | 
|  | here = *prev; | 
|  | } | 
|  | /* link in this qh, unless some earlier pass did that */ | 
|  | if (qh != here.qh) { | 
|  | qh->qh_next = here; | 
|  | if (here.qh) | 
|  | qh->hw->hw_next = *hw_p; | 
|  | wmb(); | 
|  | prev->qh = qh; | 
|  | *hw_p = QH_NEXT(fotg210, qh->qh_dma); | 
|  | } | 
|  | } | 
|  | qh->qh_state = QH_STATE_LINKED; | 
|  | qh->xacterrs = 0; | 
|  |  | 
|  | /* update per-qh bandwidth for usbfs */ | 
|  | fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period | 
|  | ? ((qh->usecs + qh->c_usecs) / qh->period) | 
|  | : (qh->usecs * 8); | 
|  |  | 
|  | list_add(&qh->intr_node, &fotg210->intr_qh_list); | 
|  |  | 
|  | /* maybe enable periodic schedule processing */ | 
|  | ++fotg210->intr_count; | 
|  | enable_periodic(fotg210); | 
|  | } | 
|  |  | 
|  | static void qh_unlink_periodic(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_qh *qh) | 
|  | { | 
|  | unsigned i; | 
|  | unsigned period; | 
|  |  | 
|  | /* | 
|  | * If qh is for a low/full-speed device, simply unlinking it | 
|  | * could interfere with an ongoing split transaction.  To unlink | 
|  | * it safely would require setting the QH_INACTIVATE bit and | 
|  | * waiting at least one frame, as described in EHCI 4.12.2.5. | 
|  | * | 
|  | * We won't bother with any of this.  Instead, we assume that the | 
|  | * only reason for unlinking an interrupt QH while the current URB | 
|  | * is still active is to dequeue all the URBs (flush the whole | 
|  | * endpoint queue). | 
|  | * | 
|  | * If rebalancing the periodic schedule is ever implemented, this | 
|  | * approach will no longer be valid. | 
|  | */ | 
|  |  | 
|  | /* high bandwidth, or otherwise part of every microframe */ | 
|  | period = qh->period; | 
|  | if (!period) | 
|  | period = 1; | 
|  |  | 
|  | for (i = qh->start; i < fotg210->periodic_size; i += period) | 
|  | periodic_unlink(fotg210, i, qh); | 
|  |  | 
|  | /* update per-qh bandwidth for usbfs */ | 
|  | fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period | 
|  | ? ((qh->usecs + qh->c_usecs) / qh->period) | 
|  | : (qh->usecs * 8); | 
|  |  | 
|  | dev_dbg(&qh->dev->dev, | 
|  | "unlink qh%d-%04x/%p start %d [%d/%d us]\n", | 
|  | qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) & | 
|  | (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, | 
|  | qh->c_usecs); | 
|  |  | 
|  | /* qh->qh_next still "live" to HC */ | 
|  | qh->qh_state = QH_STATE_UNLINK; | 
|  | qh->qh_next.ptr = NULL; | 
|  |  | 
|  | if (fotg210->qh_scan_next == qh) | 
|  | fotg210->qh_scan_next = list_entry(qh->intr_node.next, | 
|  | struct fotg210_qh, intr_node); | 
|  | list_del(&qh->intr_node); | 
|  | } | 
|  |  | 
|  | static void start_unlink_intr(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_qh *qh) | 
|  | { | 
|  | /* If the QH isn't linked then there's nothing we can do | 
|  | * unless we were called during a giveback, in which case | 
|  | * qh_completions() has to deal with it. | 
|  | */ | 
|  | if (qh->qh_state != QH_STATE_LINKED) { | 
|  | if (qh->qh_state == QH_STATE_COMPLETING) | 
|  | qh->needs_rescan = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | qh_unlink_periodic(fotg210, qh); | 
|  |  | 
|  | /* Make sure the unlinks are visible before starting the timer */ | 
|  | wmb(); | 
|  |  | 
|  | /* | 
|  | * The EHCI spec doesn't say how long it takes the controller to | 
|  | * stop accessing an unlinked interrupt QH.  The timer delay is | 
|  | * 9 uframes; presumably that will be long enough. | 
|  | */ | 
|  | qh->unlink_cycle = fotg210->intr_unlink_cycle; | 
|  |  | 
|  | /* New entries go at the end of the intr_unlink list */ | 
|  | if (fotg210->intr_unlink) | 
|  | fotg210->intr_unlink_last->unlink_next = qh; | 
|  | else | 
|  | fotg210->intr_unlink = qh; | 
|  | fotg210->intr_unlink_last = qh; | 
|  |  | 
|  | if (fotg210->intr_unlinking) | 
|  | ;	/* Avoid recursive calls */ | 
|  | else if (fotg210->rh_state < FOTG210_RH_RUNNING) | 
|  | fotg210_handle_intr_unlinks(fotg210); | 
|  | else if (fotg210->intr_unlink == qh) { | 
|  | fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, | 
|  | true); | 
|  | ++fotg210->intr_unlink_cycle; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) | 
|  | { | 
|  | struct fotg210_qh_hw *hw = qh->hw; | 
|  | int rc; | 
|  |  | 
|  | qh->qh_state = QH_STATE_IDLE; | 
|  | hw->hw_next = FOTG210_LIST_END(fotg210); | 
|  |  | 
|  | qh_completions(fotg210, qh); | 
|  |  | 
|  | /* reschedule QH iff another request is queued */ | 
|  | if (!list_empty(&qh->qtd_list) && | 
|  | fotg210->rh_state == FOTG210_RH_RUNNING) { | 
|  | rc = qh_schedule(fotg210, qh); | 
|  |  | 
|  | /* An error here likely indicates handshake failure | 
|  | * or no space left in the schedule.  Neither fault | 
|  | * should happen often ... | 
|  | * | 
|  | * FIXME kill the now-dysfunctional queued urbs | 
|  | */ | 
|  | if (rc != 0) | 
|  | fotg210_err(fotg210, "can't reschedule qh %p, err %d\n", | 
|  | qh, rc); | 
|  | } | 
|  |  | 
|  | /* maybe turn off periodic schedule */ | 
|  | --fotg210->intr_count; | 
|  | disable_periodic(fotg210); | 
|  | } | 
|  |  | 
|  | static int check_period(struct fotg210_hcd *fotg210, unsigned frame, | 
|  | unsigned uframe, unsigned period, unsigned usecs) | 
|  | { | 
|  | int claimed; | 
|  |  | 
|  | /* complete split running into next frame? | 
|  | * given FSTN support, we could sometimes check... | 
|  | */ | 
|  | if (uframe >= 8) | 
|  | return 0; | 
|  |  | 
|  | /* convert "usecs we need" to "max already claimed" */ | 
|  | usecs = fotg210->uframe_periodic_max - usecs; | 
|  |  | 
|  | /* we "know" 2 and 4 uframe intervals were rejected; so | 
|  | * for period 0, check _every_ microframe in the schedule. | 
|  | */ | 
|  | if (unlikely(period == 0)) { | 
|  | do { | 
|  | for (uframe = 0; uframe < 7; uframe++) { | 
|  | claimed = periodic_usecs(fotg210, frame, | 
|  | uframe); | 
|  | if (claimed > usecs) | 
|  | return 0; | 
|  | } | 
|  | } while ((frame += 1) < fotg210->periodic_size); | 
|  |  | 
|  | /* just check the specified uframe, at that period */ | 
|  | } else { | 
|  | do { | 
|  | claimed = periodic_usecs(fotg210, frame, uframe); | 
|  | if (claimed > usecs) | 
|  | return 0; | 
|  | } while ((frame += period) < fotg210->periodic_size); | 
|  | } | 
|  |  | 
|  | /* success! */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame, | 
|  | unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp) | 
|  | { | 
|  | int retval = -ENOSPC; | 
|  | u8 mask = 0; | 
|  |  | 
|  | if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */ | 
|  | goto done; | 
|  |  | 
|  | if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs)) | 
|  | goto done; | 
|  | if (!qh->c_usecs) { | 
|  | retval = 0; | 
|  | *c_maskp = 0; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Make sure this tt's buffer is also available for CSPLITs. | 
|  | * We pessimize a bit; probably the typical full speed case | 
|  | * doesn't need the second CSPLIT. | 
|  | * | 
|  | * NOTE:  both SPLIT and CSPLIT could be checked in just | 
|  | * one smart pass... | 
|  | */ | 
|  | mask = 0x03 << (uframe + qh->gap_uf); | 
|  | *c_maskp = cpu_to_hc32(fotg210, mask << 8); | 
|  |  | 
|  | mask |= 1 << uframe; | 
|  | if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) { | 
|  | if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1, | 
|  | qh->period, qh->c_usecs)) | 
|  | goto done; | 
|  | if (!check_period(fotg210, frame, uframe + qh->gap_uf, | 
|  | qh->period, qh->c_usecs)) | 
|  | goto done; | 
|  | retval = 0; | 
|  | } | 
|  | done: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* "first fit" scheduling policy used the first time through, | 
|  | * or when the previous schedule slot can't be re-used. | 
|  | */ | 
|  | static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) | 
|  | { | 
|  | int status; | 
|  | unsigned uframe; | 
|  | __hc32 c_mask; | 
|  | unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */ | 
|  | struct fotg210_qh_hw *hw = qh->hw; | 
|  |  | 
|  | qh_refresh(fotg210, qh); | 
|  | hw->hw_next = FOTG210_LIST_END(fotg210); | 
|  | frame = qh->start; | 
|  |  | 
|  | /* reuse the previous schedule slots, if we can */ | 
|  | if (frame < qh->period) { | 
|  | uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK); | 
|  | status = check_intr_schedule(fotg210, frame, --uframe, | 
|  | qh, &c_mask); | 
|  | } else { | 
|  | uframe = 0; | 
|  | c_mask = 0; | 
|  | status = -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* else scan the schedule to find a group of slots such that all | 
|  | * uframes have enough periodic bandwidth available. | 
|  | */ | 
|  | if (status) { | 
|  | /* "normal" case, uframing flexible except with splits */ | 
|  | if (qh->period) { | 
|  | int i; | 
|  |  | 
|  | for (i = qh->period; status && i > 0; --i) { | 
|  | frame = ++fotg210->random_frame % qh->period; | 
|  | for (uframe = 0; uframe < 8; uframe++) { | 
|  | status = check_intr_schedule(fotg210, | 
|  | frame, uframe, qh, | 
|  | &c_mask); | 
|  | if (status == 0) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* qh->period == 0 means every uframe */ | 
|  | } else { | 
|  | frame = 0; | 
|  | status = check_intr_schedule(fotg210, 0, 0, qh, | 
|  | &c_mask); | 
|  | } | 
|  | if (status) | 
|  | goto done; | 
|  | qh->start = frame; | 
|  |  | 
|  | /* reset S-frame and (maybe) C-frame masks */ | 
|  | hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK)); | 
|  | hw->hw_info2 |= qh->period | 
|  | ? cpu_to_hc32(fotg210, 1 << uframe) | 
|  | : cpu_to_hc32(fotg210, QH_SMASK); | 
|  | hw->hw_info2 |= c_mask; | 
|  | } else | 
|  | fotg210_dbg(fotg210, "reused qh %p schedule\n", qh); | 
|  |  | 
|  | /* stuff into the periodic schedule */ | 
|  | qh_link_periodic(fotg210, qh); | 
|  | done: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb, | 
|  | struct list_head *qtd_list, gfp_t mem_flags) | 
|  | { | 
|  | unsigned epnum; | 
|  | unsigned long flags; | 
|  | struct fotg210_qh *qh; | 
|  | int status; | 
|  | struct list_head empty; | 
|  |  | 
|  | /* get endpoint and transfer/schedule data */ | 
|  | epnum = urb->ep->desc.bEndpointAddress; | 
|  |  | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  |  | 
|  | if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { | 
|  | status = -ESHUTDOWN; | 
|  | goto done_not_linked; | 
|  | } | 
|  | status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); | 
|  | if (unlikely(status)) | 
|  | goto done_not_linked; | 
|  |  | 
|  | /* get qh and force any scheduling errors */ | 
|  | INIT_LIST_HEAD(&empty); | 
|  | qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv); | 
|  | if (qh == NULL) { | 
|  | status = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  | if (qh->qh_state == QH_STATE_IDLE) { | 
|  | status = qh_schedule(fotg210, qh); | 
|  | if (status) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* then queue the urb's tds to the qh */ | 
|  | qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); | 
|  | BUG_ON(qh == NULL); | 
|  |  | 
|  | /* ... update usbfs periodic stats */ | 
|  | fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++; | 
|  |  | 
|  | done: | 
|  | if (unlikely(status)) | 
|  | usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); | 
|  | done_not_linked: | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | if (status) | 
|  | qtd_list_free(fotg210, urb, qtd_list); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void scan_intr(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | struct fotg210_qh *qh; | 
|  |  | 
|  | list_for_each_entry_safe(qh, fotg210->qh_scan_next, | 
|  | &fotg210->intr_qh_list, intr_node) { | 
|  | rescan: | 
|  | /* clean any finished work for this qh */ | 
|  | if (!list_empty(&qh->qtd_list)) { | 
|  | int temp; | 
|  |  | 
|  | /* | 
|  | * Unlinks could happen here; completion reporting | 
|  | * drops the lock.  That's why fotg210->qh_scan_next | 
|  | * always holds the next qh to scan; if the next qh | 
|  | * gets unlinked then fotg210->qh_scan_next is adjusted | 
|  | * in qh_unlink_periodic(). | 
|  | */ | 
|  | temp = qh_completions(fotg210, qh); | 
|  | if (unlikely(qh->needs_rescan || | 
|  | (list_empty(&qh->qtd_list) && | 
|  | qh->qh_state == QH_STATE_LINKED))) | 
|  | start_unlink_intr(fotg210, qh); | 
|  | else if (temp != 0) | 
|  | goto rescan; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* fotg210_iso_stream ops work with both ITD and SITD */ | 
|  |  | 
|  | static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags) | 
|  | { | 
|  | struct fotg210_iso_stream *stream; | 
|  |  | 
|  | stream = kzalloc(sizeof(*stream), mem_flags); | 
|  | if (likely(stream != NULL)) { | 
|  | INIT_LIST_HEAD(&stream->td_list); | 
|  | INIT_LIST_HEAD(&stream->free_list); | 
|  | stream->next_uframe = -1; | 
|  | } | 
|  | return stream; | 
|  | } | 
|  |  | 
|  | static void iso_stream_init(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_iso_stream *stream, struct usb_device *dev, | 
|  | int pipe, unsigned interval) | 
|  | { | 
|  | u32 buf1; | 
|  | unsigned epnum, maxp; | 
|  | int is_input; | 
|  | long bandwidth; | 
|  | unsigned multi; | 
|  | struct usb_host_endpoint *ep; | 
|  |  | 
|  | /* | 
|  | * this might be a "high bandwidth" highspeed endpoint, | 
|  | * as encoded in the ep descriptor's wMaxPacket field | 
|  | */ | 
|  | epnum = usb_pipeendpoint(pipe); | 
|  | is_input = usb_pipein(pipe) ? USB_DIR_IN : 0; | 
|  | ep = usb_pipe_endpoint(dev, pipe); | 
|  | maxp = usb_endpoint_maxp(&ep->desc); | 
|  | if (is_input) | 
|  | buf1 = (1 << 11); | 
|  | else | 
|  | buf1 = 0; | 
|  |  | 
|  | multi = usb_endpoint_maxp_mult(&ep->desc); | 
|  | buf1 |= maxp; | 
|  | maxp *= multi; | 
|  |  | 
|  | stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum); | 
|  | stream->buf1 = cpu_to_hc32(fotg210, buf1); | 
|  | stream->buf2 = cpu_to_hc32(fotg210, multi); | 
|  |  | 
|  | /* usbfs wants to report the average usecs per frame tied up | 
|  | * when transfers on this endpoint are scheduled ... | 
|  | */ | 
|  | if (dev->speed == USB_SPEED_FULL) { | 
|  | interval <<= 3; | 
|  | stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed, | 
|  | is_input, 1, maxp)); | 
|  | stream->usecs /= 8; | 
|  | } else { | 
|  | stream->highspeed = 1; | 
|  | stream->usecs = HS_USECS_ISO(maxp); | 
|  | } | 
|  | bandwidth = stream->usecs * 8; | 
|  | bandwidth /= interval; | 
|  |  | 
|  | stream->bandwidth = bandwidth; | 
|  | stream->udev = dev; | 
|  | stream->bEndpointAddress = is_input | epnum; | 
|  | stream->interval = interval; | 
|  | stream->maxp = maxp; | 
|  | } | 
|  |  | 
|  | static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210, | 
|  | struct urb *urb) | 
|  | { | 
|  | unsigned epnum; | 
|  | struct fotg210_iso_stream *stream; | 
|  | struct usb_host_endpoint *ep; | 
|  | unsigned long flags; | 
|  |  | 
|  | epnum = usb_pipeendpoint(urb->pipe); | 
|  | if (usb_pipein(urb->pipe)) | 
|  | ep = urb->dev->ep_in[epnum]; | 
|  | else | 
|  | ep = urb->dev->ep_out[epnum]; | 
|  |  | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | stream = ep->hcpriv; | 
|  |  | 
|  | if (unlikely(stream == NULL)) { | 
|  | stream = iso_stream_alloc(GFP_ATOMIC); | 
|  | if (likely(stream != NULL)) { | 
|  | ep->hcpriv = stream; | 
|  | stream->ep = ep; | 
|  | iso_stream_init(fotg210, stream, urb->dev, urb->pipe, | 
|  | urb->interval); | 
|  | } | 
|  |  | 
|  | /* if dev->ep[epnum] is a QH, hw is set */ | 
|  | } else if (unlikely(stream->hw != NULL)) { | 
|  | fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n", | 
|  | urb->dev->devpath, epnum, | 
|  | usb_pipein(urb->pipe) ? "in" : "out"); | 
|  | stream = NULL; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | return stream; | 
|  | } | 
|  |  | 
|  | /* fotg210_iso_sched ops can be ITD-only or SITD-only */ | 
|  |  | 
|  | static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | struct fotg210_iso_sched *iso_sched; | 
|  | int size = sizeof(*iso_sched); | 
|  |  | 
|  | size += packets * sizeof(struct fotg210_iso_packet); | 
|  | iso_sched = kzalloc(size, mem_flags); | 
|  | if (likely(iso_sched != NULL)) | 
|  | INIT_LIST_HEAD(&iso_sched->td_list); | 
|  |  | 
|  | return iso_sched; | 
|  | } | 
|  |  | 
|  | static inline void itd_sched_init(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_iso_sched *iso_sched, | 
|  | struct fotg210_iso_stream *stream, struct urb *urb) | 
|  | { | 
|  | unsigned i; | 
|  | dma_addr_t dma = urb->transfer_dma; | 
|  |  | 
|  | /* how many uframes are needed for these transfers */ | 
|  | iso_sched->span = urb->number_of_packets * stream->interval; | 
|  |  | 
|  | /* figure out per-uframe itd fields that we'll need later | 
|  | * when we fit new itds into the schedule. | 
|  | */ | 
|  | for (i = 0; i < urb->number_of_packets; i++) { | 
|  | struct fotg210_iso_packet *uframe = &iso_sched->packet[i]; | 
|  | unsigned length; | 
|  | dma_addr_t buf; | 
|  | u32 trans; | 
|  |  | 
|  | length = urb->iso_frame_desc[i].length; | 
|  | buf = dma + urb->iso_frame_desc[i].offset; | 
|  |  | 
|  | trans = FOTG210_ISOC_ACTIVE; | 
|  | trans |= buf & 0x0fff; | 
|  | if (unlikely(((i + 1) == urb->number_of_packets)) | 
|  | && !(urb->transfer_flags & URB_NO_INTERRUPT)) | 
|  | trans |= FOTG210_ITD_IOC; | 
|  | trans |= length << 16; | 
|  | uframe->transaction = cpu_to_hc32(fotg210, trans); | 
|  |  | 
|  | /* might need to cross a buffer page within a uframe */ | 
|  | uframe->bufp = (buf & ~(u64)0x0fff); | 
|  | buf += length; | 
|  | if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) | 
|  | uframe->cross = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void iso_sched_free(struct fotg210_iso_stream *stream, | 
|  | struct fotg210_iso_sched *iso_sched) | 
|  | { | 
|  | if (!iso_sched) | 
|  | return; | 
|  | /* caller must hold fotg210->lock!*/ | 
|  | list_splice(&iso_sched->td_list, &stream->free_list); | 
|  | kfree(iso_sched); | 
|  | } | 
|  |  | 
|  | static int itd_urb_transaction(struct fotg210_iso_stream *stream, | 
|  | struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags) | 
|  | { | 
|  | struct fotg210_itd *itd; | 
|  | dma_addr_t itd_dma; | 
|  | int i; | 
|  | unsigned num_itds; | 
|  | struct fotg210_iso_sched *sched; | 
|  | unsigned long flags; | 
|  |  | 
|  | sched = iso_sched_alloc(urb->number_of_packets, mem_flags); | 
|  | if (unlikely(sched == NULL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | itd_sched_init(fotg210, sched, stream, urb); | 
|  |  | 
|  | if (urb->interval < 8) | 
|  | num_itds = 1 + (sched->span + 7) / 8; | 
|  | else | 
|  | num_itds = urb->number_of_packets; | 
|  |  | 
|  | /* allocate/init ITDs */ | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | for (i = 0; i < num_itds; i++) { | 
|  |  | 
|  | /* | 
|  | * Use iTDs from the free list, but not iTDs that may | 
|  | * still be in use by the hardware. | 
|  | */ | 
|  | if (likely(!list_empty(&stream->free_list))) { | 
|  | itd = list_first_entry(&stream->free_list, | 
|  | struct fotg210_itd, itd_list); | 
|  | if (itd->frame == fotg210->now_frame) | 
|  | goto alloc_itd; | 
|  | list_del(&itd->itd_list); | 
|  | itd_dma = itd->itd_dma; | 
|  | } else { | 
|  | alloc_itd: | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | itd = dma_pool_alloc(fotg210->itd_pool, mem_flags, | 
|  | &itd_dma); | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | if (!itd) { | 
|  | iso_sched_free(stream, sched); | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | memset(itd, 0, sizeof(*itd)); | 
|  | itd->itd_dma = itd_dma; | 
|  | list_add(&itd->itd_list, &sched->td_list); | 
|  | } | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  |  | 
|  | /* temporarily store schedule info in hcpriv */ | 
|  | urb->hcpriv = sched; | 
|  | urb->error_count = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe, | 
|  | u8 usecs, u32 period) | 
|  | { | 
|  | uframe %= period; | 
|  | do { | 
|  | /* can't commit more than uframe_periodic_max usec */ | 
|  | if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7) | 
|  | > (fotg210->uframe_periodic_max - usecs)) | 
|  | return 0; | 
|  |  | 
|  | /* we know urb->interval is 2^N uframes */ | 
|  | uframe += period; | 
|  | } while (uframe < mod); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* This scheduler plans almost as far into the future as it has actual | 
|  | * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to | 
|  | * "as small as possible" to be cache-friendlier.)  That limits the size | 
|  | * transfers you can stream reliably; avoid more than 64 msec per urb. | 
|  | * Also avoid queue depths of less than fotg210's worst irq latency (affected | 
|  | * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, | 
|  | * and other factors); or more than about 230 msec total (for portability, | 
|  | * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler! | 
|  | */ | 
|  |  | 
|  | #define SCHEDULE_SLOP 80 /* microframes */ | 
|  |  | 
|  | static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb, | 
|  | struct fotg210_iso_stream *stream) | 
|  | { | 
|  | u32 now, next, start, period, span; | 
|  | int status; | 
|  | unsigned mod = fotg210->periodic_size << 3; | 
|  | struct fotg210_iso_sched *sched = urb->hcpriv; | 
|  |  | 
|  | period = urb->interval; | 
|  | span = sched->span; | 
|  |  | 
|  | if (span > mod - SCHEDULE_SLOP) { | 
|  | fotg210_dbg(fotg210, "iso request %p too long\n", urb); | 
|  | status = -EFBIG; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | now = fotg210_read_frame_index(fotg210) & (mod - 1); | 
|  |  | 
|  | /* Typical case: reuse current schedule, stream is still active. | 
|  | * Hopefully there are no gaps from the host falling behind | 
|  | * (irq delays etc), but if there are we'll take the next | 
|  | * slot in the schedule, implicitly assuming URB_ISO_ASAP. | 
|  | */ | 
|  | if (likely(!list_empty(&stream->td_list))) { | 
|  | u32 excess; | 
|  |  | 
|  | /* For high speed devices, allow scheduling within the | 
|  | * isochronous scheduling threshold.  For full speed devices | 
|  | * and Intel PCI-based controllers, don't (work around for | 
|  | * Intel ICH9 bug). | 
|  | */ | 
|  | if (!stream->highspeed && fotg210->fs_i_thresh) | 
|  | next = now + fotg210->i_thresh; | 
|  | else | 
|  | next = now; | 
|  |  | 
|  | /* Fell behind (by up to twice the slop amount)? | 
|  | * We decide based on the time of the last currently-scheduled | 
|  | * slot, not the time of the next available slot. | 
|  | */ | 
|  | excess = (stream->next_uframe - period - next) & (mod - 1); | 
|  | if (excess >= mod - 2 * SCHEDULE_SLOP) | 
|  | start = next + excess - mod + period * | 
|  | DIV_ROUND_UP(mod - excess, period); | 
|  | else | 
|  | start = next + excess + period; | 
|  | if (start - now >= mod) { | 
|  | fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", | 
|  | urb, start - now - period, period, | 
|  | mod); | 
|  | status = -EFBIG; | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* need to schedule; when's the next (u)frame we could start? | 
|  | * this is bigger than fotg210->i_thresh allows; scheduling itself | 
|  | * isn't free, the slop should handle reasonably slow cpus.  it | 
|  | * can also help high bandwidth if the dma and irq loads don't | 
|  | * jump until after the queue is primed. | 
|  | */ | 
|  | else { | 
|  | int done = 0; | 
|  |  | 
|  | start = SCHEDULE_SLOP + (now & ~0x07); | 
|  |  | 
|  | /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */ | 
|  |  | 
|  | /* find a uframe slot with enough bandwidth. | 
|  | * Early uframes are more precious because full-speed | 
|  | * iso IN transfers can't use late uframes, | 
|  | * and therefore they should be allocated last. | 
|  | */ | 
|  | next = start; | 
|  | start += period; | 
|  | do { | 
|  | start--; | 
|  | /* check schedule: enough space? */ | 
|  | if (itd_slot_ok(fotg210, mod, start, | 
|  | stream->usecs, period)) | 
|  | done = 1; | 
|  | } while (start > next && !done); | 
|  |  | 
|  | /* no room in the schedule */ | 
|  | if (!done) { | 
|  | fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n", | 
|  | urb, now, now + mod); | 
|  | status = -ENOSPC; | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Tried to schedule too far into the future? */ | 
|  | if (unlikely(start - now + span - period >= | 
|  | mod - 2 * SCHEDULE_SLOP)) { | 
|  | fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", | 
|  | urb, start - now, span - period, | 
|  | mod - 2 * SCHEDULE_SLOP); | 
|  | status = -EFBIG; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | stream->next_uframe = start & (mod - 1); | 
|  |  | 
|  | /* report high speed start in uframes; full speed, in frames */ | 
|  | urb->start_frame = stream->next_uframe; | 
|  | if (!stream->highspeed) | 
|  | urb->start_frame >>= 3; | 
|  |  | 
|  | /* Make sure scan_isoc() sees these */ | 
|  | if (fotg210->isoc_count == 0) | 
|  | fotg210->next_frame = now >> 3; | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | iso_sched_free(stream, sched); | 
|  | urb->hcpriv = NULL; | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static inline void itd_init(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_iso_stream *stream, struct fotg210_itd *itd) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* it's been recently zeroed */ | 
|  | itd->hw_next = FOTG210_LIST_END(fotg210); | 
|  | itd->hw_bufp[0] = stream->buf0; | 
|  | itd->hw_bufp[1] = stream->buf1; | 
|  | itd->hw_bufp[2] = stream->buf2; | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | itd->index[i] = -1; | 
|  |  | 
|  | /* All other fields are filled when scheduling */ | 
|  | } | 
|  |  | 
|  | static inline void itd_patch(struct fotg210_hcd *fotg210, | 
|  | struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched, | 
|  | unsigned index, u16 uframe) | 
|  | { | 
|  | struct fotg210_iso_packet *uf = &iso_sched->packet[index]; | 
|  | unsigned pg = itd->pg; | 
|  |  | 
|  | uframe &= 0x07; | 
|  | itd->index[uframe] = index; | 
|  |  | 
|  | itd->hw_transaction[uframe] = uf->transaction; | 
|  | itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12); | 
|  | itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0); | 
|  | itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32)); | 
|  |  | 
|  | /* iso_frame_desc[].offset must be strictly increasing */ | 
|  | if (unlikely(uf->cross)) { | 
|  | u64 bufp = uf->bufp + 4096; | 
|  |  | 
|  | itd->pg = ++pg; | 
|  | itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0); | 
|  | itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame, | 
|  | struct fotg210_itd *itd) | 
|  | { | 
|  | union fotg210_shadow *prev = &fotg210->pshadow[frame]; | 
|  | __hc32 *hw_p = &fotg210->periodic[frame]; | 
|  | union fotg210_shadow here = *prev; | 
|  | __hc32 type = 0; | 
|  |  | 
|  | /* skip any iso nodes which might belong to previous microframes */ | 
|  | while (here.ptr) { | 
|  | type = Q_NEXT_TYPE(fotg210, *hw_p); | 
|  | if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) | 
|  | break; | 
|  | prev = periodic_next_shadow(fotg210, prev, type); | 
|  | hw_p = shadow_next_periodic(fotg210, &here, type); | 
|  | here = *prev; | 
|  | } | 
|  |  | 
|  | itd->itd_next = here; | 
|  | itd->hw_next = *hw_p; | 
|  | prev->itd = itd; | 
|  | itd->frame = frame; | 
|  | wmb(); | 
|  | *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD); | 
|  | } | 
|  |  | 
|  | /* fit urb's itds into the selected schedule slot; activate as needed */ | 
|  | static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb, | 
|  | unsigned mod, struct fotg210_iso_stream *stream) | 
|  | { | 
|  | int packet; | 
|  | unsigned next_uframe, uframe, frame; | 
|  | struct fotg210_iso_sched *iso_sched = urb->hcpriv; | 
|  | struct fotg210_itd *itd; | 
|  |  | 
|  | next_uframe = stream->next_uframe & (mod - 1); | 
|  |  | 
|  | if (unlikely(list_empty(&stream->td_list))) { | 
|  | fotg210_to_hcd(fotg210)->self.bandwidth_allocated | 
|  | += stream->bandwidth; | 
|  | fotg210_dbg(fotg210, | 
|  | "schedule devp %s ep%d%s-iso period %d start %d.%d\n", | 
|  | urb->dev->devpath, stream->bEndpointAddress & 0x0f, | 
|  | (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", | 
|  | urb->interval, | 
|  | next_uframe >> 3, next_uframe & 0x7); | 
|  | } | 
|  |  | 
|  | /* fill iTDs uframe by uframe */ | 
|  | for (packet = 0, itd = NULL; packet < urb->number_of_packets;) { | 
|  | if (itd == NULL) { | 
|  | /* ASSERT:  we have all necessary itds */ | 
|  |  | 
|  | /* ASSERT:  no itds for this endpoint in this uframe */ | 
|  |  | 
|  | itd = list_entry(iso_sched->td_list.next, | 
|  | struct fotg210_itd, itd_list); | 
|  | list_move_tail(&itd->itd_list, &stream->td_list); | 
|  | itd->stream = stream; | 
|  | itd->urb = urb; | 
|  | itd_init(fotg210, stream, itd); | 
|  | } | 
|  |  | 
|  | uframe = next_uframe & 0x07; | 
|  | frame = next_uframe >> 3; | 
|  |  | 
|  | itd_patch(fotg210, itd, iso_sched, packet, uframe); | 
|  |  | 
|  | next_uframe += stream->interval; | 
|  | next_uframe &= mod - 1; | 
|  | packet++; | 
|  |  | 
|  | /* link completed itds into the schedule */ | 
|  | if (((next_uframe >> 3) != frame) | 
|  | || packet == urb->number_of_packets) { | 
|  | itd_link(fotg210, frame & (fotg210->periodic_size - 1), | 
|  | itd); | 
|  | itd = NULL; | 
|  | } | 
|  | } | 
|  | stream->next_uframe = next_uframe; | 
|  |  | 
|  | /* don't need that schedule data any more */ | 
|  | iso_sched_free(stream, iso_sched); | 
|  | urb->hcpriv = NULL; | 
|  |  | 
|  | ++fotg210->isoc_count; | 
|  | enable_periodic(fotg210); | 
|  | } | 
|  |  | 
|  | #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\ | 
|  | FOTG210_ISOC_XACTERR) | 
|  |  | 
|  | /* Process and recycle a completed ITD.  Return true iff its urb completed, | 
|  | * and hence its completion callback probably added things to the hardware | 
|  | * schedule. | 
|  | * | 
|  | * Note that we carefully avoid recycling this descriptor until after any | 
|  | * completion callback runs, so that it won't be reused quickly.  That is, | 
|  | * assuming (a) no more than two urbs per frame on this endpoint, and also | 
|  | * (b) only this endpoint's completions submit URBs.  It seems some silicon | 
|  | * corrupts things if you reuse completed descriptors very quickly... | 
|  | */ | 
|  | static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd) | 
|  | { | 
|  | struct urb *urb = itd->urb; | 
|  | struct usb_iso_packet_descriptor *desc; | 
|  | u32 t; | 
|  | unsigned uframe; | 
|  | int urb_index = -1; | 
|  | struct fotg210_iso_stream *stream = itd->stream; | 
|  | struct usb_device *dev; | 
|  | bool retval = false; | 
|  |  | 
|  | /* for each uframe with a packet */ | 
|  | for (uframe = 0; uframe < 8; uframe++) { | 
|  | if (likely(itd->index[uframe] == -1)) | 
|  | continue; | 
|  | urb_index = itd->index[uframe]; | 
|  | desc = &urb->iso_frame_desc[urb_index]; | 
|  |  | 
|  | t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]); | 
|  | itd->hw_transaction[uframe] = 0; | 
|  |  | 
|  | /* report transfer status */ | 
|  | if (unlikely(t & ISO_ERRS)) { | 
|  | urb->error_count++; | 
|  | if (t & FOTG210_ISOC_BUF_ERR) | 
|  | desc->status = usb_pipein(urb->pipe) | 
|  | ? -ENOSR  /* hc couldn't read */ | 
|  | : -ECOMM; /* hc couldn't write */ | 
|  | else if (t & FOTG210_ISOC_BABBLE) | 
|  | desc->status = -EOVERFLOW; | 
|  | else /* (t & FOTG210_ISOC_XACTERR) */ | 
|  | desc->status = -EPROTO; | 
|  |  | 
|  | /* HC need not update length with this error */ | 
|  | if (!(t & FOTG210_ISOC_BABBLE)) { | 
|  | desc->actual_length = FOTG210_ITD_LENGTH(t); | 
|  | urb->actual_length += desc->actual_length; | 
|  | } | 
|  | } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) { | 
|  | desc->status = 0; | 
|  | desc->actual_length = FOTG210_ITD_LENGTH(t); | 
|  | urb->actual_length += desc->actual_length; | 
|  | } else { | 
|  | /* URB was too late */ | 
|  | desc->status = -EXDEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* handle completion now? */ | 
|  | if (likely((urb_index + 1) != urb->number_of_packets)) | 
|  | goto done; | 
|  |  | 
|  | /* ASSERT: it's really the last itd for this urb | 
|  | * list_for_each_entry (itd, &stream->td_list, itd_list) | 
|  | *	BUG_ON (itd->urb == urb); | 
|  | */ | 
|  |  | 
|  | /* give urb back to the driver; completion often (re)submits */ | 
|  | dev = urb->dev; | 
|  | fotg210_urb_done(fotg210, urb, 0); | 
|  | retval = true; | 
|  | urb = NULL; | 
|  |  | 
|  | --fotg210->isoc_count; | 
|  | disable_periodic(fotg210); | 
|  |  | 
|  | if (unlikely(list_is_singular(&stream->td_list))) { | 
|  | fotg210_to_hcd(fotg210)->self.bandwidth_allocated | 
|  | -= stream->bandwidth; | 
|  | fotg210_dbg(fotg210, | 
|  | "deschedule devp %s ep%d%s-iso\n", | 
|  | dev->devpath, stream->bEndpointAddress & 0x0f, | 
|  | (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); | 
|  | } | 
|  |  | 
|  | done: | 
|  | itd->urb = NULL; | 
|  |  | 
|  | /* Add to the end of the free list for later reuse */ | 
|  | list_move_tail(&itd->itd_list, &stream->free_list); | 
|  |  | 
|  | /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ | 
|  | if (list_empty(&stream->td_list)) { | 
|  | list_splice_tail_init(&stream->free_list, | 
|  | &fotg210->cached_itd_list); | 
|  | start_free_itds(fotg210); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | int status = -EINVAL; | 
|  | unsigned long flags; | 
|  | struct fotg210_iso_stream *stream; | 
|  |  | 
|  | /* Get iso_stream head */ | 
|  | stream = iso_stream_find(fotg210, urb); | 
|  | if (unlikely(stream == NULL)) { | 
|  | fotg210_dbg(fotg210, "can't get iso stream\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (unlikely(urb->interval != stream->interval && | 
|  | fotg210_port_speed(fotg210, 0) == | 
|  | USB_PORT_STAT_HIGH_SPEED)) { | 
|  | fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n", | 
|  | stream->interval, urb->interval); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | #ifdef FOTG210_URB_TRACE | 
|  | fotg210_dbg(fotg210, | 
|  | "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n", | 
|  | __func__, urb->dev->devpath, urb, | 
|  | usb_pipeendpoint(urb->pipe), | 
|  | usb_pipein(urb->pipe) ? "in" : "out", | 
|  | urb->transfer_buffer_length, | 
|  | urb->number_of_packets, urb->interval, | 
|  | stream); | 
|  | #endif | 
|  |  | 
|  | /* allocate ITDs w/o locking anything */ | 
|  | status = itd_urb_transaction(stream, fotg210, urb, mem_flags); | 
|  | if (unlikely(status < 0)) { | 
|  | fotg210_dbg(fotg210, "can't init itds\n"); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* schedule ... need to lock */ | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { | 
|  | status = -ESHUTDOWN; | 
|  | goto done_not_linked; | 
|  | } | 
|  | status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); | 
|  | if (unlikely(status)) | 
|  | goto done_not_linked; | 
|  | status = iso_stream_schedule(fotg210, urb, stream); | 
|  | if (likely(status == 0)) | 
|  | itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream); | 
|  | else | 
|  | usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); | 
|  | done_not_linked: | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | done: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame, | 
|  | unsigned now_frame, bool live) | 
|  | { | 
|  | unsigned uf; | 
|  | bool modified; | 
|  | union fotg210_shadow q, *q_p; | 
|  | __hc32 type, *hw_p; | 
|  |  | 
|  | /* scan each element in frame's queue for completions */ | 
|  | q_p = &fotg210->pshadow[frame]; | 
|  | hw_p = &fotg210->periodic[frame]; | 
|  | q.ptr = q_p->ptr; | 
|  | type = Q_NEXT_TYPE(fotg210, *hw_p); | 
|  | modified = false; | 
|  |  | 
|  | while (q.ptr) { | 
|  | switch (hc32_to_cpu(fotg210, type)) { | 
|  | case Q_TYPE_ITD: | 
|  | /* If this ITD is still active, leave it for | 
|  | * later processing ... check the next entry. | 
|  | * No need to check for activity unless the | 
|  | * frame is current. | 
|  | */ | 
|  | if (frame == now_frame && live) { | 
|  | rmb(); | 
|  | for (uf = 0; uf < 8; uf++) { | 
|  | if (q.itd->hw_transaction[uf] & | 
|  | ITD_ACTIVE(fotg210)) | 
|  | break; | 
|  | } | 
|  | if (uf < 8) { | 
|  | q_p = &q.itd->itd_next; | 
|  | hw_p = &q.itd->hw_next; | 
|  | type = Q_NEXT_TYPE(fotg210, | 
|  | q.itd->hw_next); | 
|  | q = *q_p; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Take finished ITDs out of the schedule | 
|  | * and process them:  recycle, maybe report | 
|  | * URB completion.  HC won't cache the | 
|  | * pointer for much longer, if at all. | 
|  | */ | 
|  | *q_p = q.itd->itd_next; | 
|  | *hw_p = q.itd->hw_next; | 
|  | type = Q_NEXT_TYPE(fotg210, q.itd->hw_next); | 
|  | wmb(); | 
|  | modified = itd_complete(fotg210, q.itd); | 
|  | q = *q_p; | 
|  | break; | 
|  | default: | 
|  | fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n", | 
|  | type, frame, q.ptr); | 
|  | fallthrough; | 
|  | case Q_TYPE_QH: | 
|  | case Q_TYPE_FSTN: | 
|  | /* End of the iTDs and siTDs */ | 
|  | q.ptr = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* assume completion callbacks modify the queue */ | 
|  | if (unlikely(modified && fotg210->isoc_count > 0)) | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scan_isoc(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | unsigned uf, now_frame, frame, ret; | 
|  | unsigned fmask = fotg210->periodic_size - 1; | 
|  | bool live; | 
|  |  | 
|  | /* | 
|  | * When running, scan from last scan point up to "now" | 
|  | * else clean up by scanning everything that's left. | 
|  | * Touches as few pages as possible:  cache-friendly. | 
|  | */ | 
|  | if (fotg210->rh_state >= FOTG210_RH_RUNNING) { | 
|  | uf = fotg210_read_frame_index(fotg210); | 
|  | now_frame = (uf >> 3) & fmask; | 
|  | live = true; | 
|  | } else  { | 
|  | now_frame = (fotg210->next_frame - 1) & fmask; | 
|  | live = false; | 
|  | } | 
|  | fotg210->now_frame = now_frame; | 
|  |  | 
|  | frame = fotg210->next_frame; | 
|  | for (;;) { | 
|  | ret = 1; | 
|  | while (ret != 0) | 
|  | ret = scan_frame_queue(fotg210, frame, | 
|  | now_frame, live); | 
|  |  | 
|  | /* Stop when we have reached the current frame */ | 
|  | if (frame == now_frame) | 
|  | break; | 
|  | frame = (frame + 1) & fmask; | 
|  | } | 
|  | fotg210->next_frame = now_frame; | 
|  | } | 
|  |  | 
|  | /* Display / Set uframe_periodic_max | 
|  | */ | 
|  | static ssize_t uframe_periodic_max_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct fotg210_hcd *fotg210; | 
|  | int n; | 
|  |  | 
|  | fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); | 
|  | n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max); | 
|  | return n; | 
|  | } | 
|  |  | 
|  |  | 
|  | static ssize_t uframe_periodic_max_store(struct device *dev, | 
|  | struct device_attribute *attr, const char *buf, size_t count) | 
|  | { | 
|  | struct fotg210_hcd *fotg210; | 
|  | unsigned uframe_periodic_max; | 
|  | unsigned frame, uframe; | 
|  | unsigned short allocated_max; | 
|  | unsigned long flags; | 
|  | ssize_t ret; | 
|  |  | 
|  | fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); | 
|  | if (kstrtouint(buf, 0, &uframe_periodic_max) < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) { | 
|  | fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n", | 
|  | uframe_periodic_max); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = -EINVAL; | 
|  |  | 
|  | /* | 
|  | * lock, so that our checking does not race with possible periodic | 
|  | * bandwidth allocation through submitting new urbs. | 
|  | */ | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  |  | 
|  | /* | 
|  | * for request to decrease max periodic bandwidth, we have to check | 
|  | * every microframe in the schedule to see whether the decrease is | 
|  | * possible. | 
|  | */ | 
|  | if (uframe_periodic_max < fotg210->uframe_periodic_max) { | 
|  | allocated_max = 0; | 
|  |  | 
|  | for (frame = 0; frame < fotg210->periodic_size; ++frame) | 
|  | for (uframe = 0; uframe < 7; ++uframe) | 
|  | allocated_max = max(allocated_max, | 
|  | periodic_usecs(fotg210, frame, | 
|  | uframe)); | 
|  |  | 
|  | if (allocated_max > uframe_periodic_max) { | 
|  | fotg210_info(fotg210, | 
|  | "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n", | 
|  | allocated_max, uframe_periodic_max); | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* increasing is always ok */ | 
|  |  | 
|  | fotg210_info(fotg210, | 
|  | "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n", | 
|  | 100 * uframe_periodic_max/125, uframe_periodic_max); | 
|  |  | 
|  | if (uframe_periodic_max != 100) | 
|  | fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n"); | 
|  |  | 
|  | fotg210->uframe_periodic_max = uframe_periodic_max; | 
|  | ret = count; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR_RW(uframe_periodic_max); | 
|  |  | 
|  | static inline int create_sysfs_files(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | struct device *controller = fotg210_to_hcd(fotg210)->self.controller; | 
|  |  | 
|  | return device_create_file(controller, &dev_attr_uframe_periodic_max); | 
|  | } | 
|  |  | 
|  | static inline void remove_sysfs_files(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | struct device *controller = fotg210_to_hcd(fotg210)->self.controller; | 
|  |  | 
|  | device_remove_file(controller, &dev_attr_uframe_periodic_max); | 
|  | } | 
|  | /* On some systems, leaving remote wakeup enabled prevents system shutdown. | 
|  | * The firmware seems to think that powering off is a wakeup event! | 
|  | * This routine turns off remote wakeup and everything else, on all ports. | 
|  | */ | 
|  | static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | u32 __iomem *status_reg = &fotg210->regs->port_status; | 
|  |  | 
|  | fotg210_writel(fotg210, PORT_RWC_BITS, status_reg); | 
|  | } | 
|  |  | 
|  | /* Halt HC, turn off all ports, and let the BIOS use the companion controllers. | 
|  | * Must be called with interrupts enabled and the lock not held. | 
|  | */ | 
|  | static void fotg210_silence_controller(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | fotg210_halt(fotg210); | 
|  |  | 
|  | spin_lock_irq(&fotg210->lock); | 
|  | fotg210->rh_state = FOTG210_RH_HALTED; | 
|  | fotg210_turn_off_all_ports(fotg210); | 
|  | spin_unlock_irq(&fotg210->lock); | 
|  | } | 
|  |  | 
|  | /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc). | 
|  | * This forcibly disables dma and IRQs, helping kexec and other cases | 
|  | * where the next system software may expect clean state. | 
|  | */ | 
|  | static void fotg210_shutdown(struct usb_hcd *hcd) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  |  | 
|  | spin_lock_irq(&fotg210->lock); | 
|  | fotg210->shutdown = true; | 
|  | fotg210->rh_state = FOTG210_RH_STOPPING; | 
|  | fotg210->enabled_hrtimer_events = 0; | 
|  | spin_unlock_irq(&fotg210->lock); | 
|  |  | 
|  | fotg210_silence_controller(fotg210); | 
|  |  | 
|  | hrtimer_cancel(&fotg210->hrtimer); | 
|  | } | 
|  |  | 
|  | /* fotg210_work is called from some interrupts, timers, and so on. | 
|  | * it calls driver completion functions, after dropping fotg210->lock. | 
|  | */ | 
|  | static void fotg210_work(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | /* another CPU may drop fotg210->lock during a schedule scan while | 
|  | * it reports urb completions.  this flag guards against bogus | 
|  | * attempts at re-entrant schedule scanning. | 
|  | */ | 
|  | if (fotg210->scanning) { | 
|  | fotg210->need_rescan = true; | 
|  | return; | 
|  | } | 
|  | fotg210->scanning = true; | 
|  |  | 
|  | rescan: | 
|  | fotg210->need_rescan = false; | 
|  | if (fotg210->async_count) | 
|  | scan_async(fotg210); | 
|  | if (fotg210->intr_count > 0) | 
|  | scan_intr(fotg210); | 
|  | if (fotg210->isoc_count > 0) | 
|  | scan_isoc(fotg210); | 
|  | if (fotg210->need_rescan) | 
|  | goto rescan; | 
|  | fotg210->scanning = false; | 
|  |  | 
|  | /* the IO watchdog guards against hardware or driver bugs that | 
|  | * misplace IRQs, and should let us run completely without IRQs. | 
|  | * such lossage has been observed on both VT6202 and VT8235. | 
|  | */ | 
|  | turn_on_io_watchdog(fotg210); | 
|  | } | 
|  |  | 
|  | /* Called when the fotg210_hcd module is removed. | 
|  | */ | 
|  | static void fotg210_stop(struct usb_hcd *hcd) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  |  | 
|  | fotg210_dbg(fotg210, "stop\n"); | 
|  |  | 
|  | /* no more interrupts ... */ | 
|  |  | 
|  | spin_lock_irq(&fotg210->lock); | 
|  | fotg210->enabled_hrtimer_events = 0; | 
|  | spin_unlock_irq(&fotg210->lock); | 
|  |  | 
|  | fotg210_quiesce(fotg210); | 
|  | fotg210_silence_controller(fotg210); | 
|  | fotg210_reset(fotg210); | 
|  |  | 
|  | hrtimer_cancel(&fotg210->hrtimer); | 
|  | remove_sysfs_files(fotg210); | 
|  | remove_debug_files(fotg210); | 
|  |  | 
|  | /* root hub is shut down separately (first, when possible) */ | 
|  | spin_lock_irq(&fotg210->lock); | 
|  | end_free_itds(fotg210); | 
|  | spin_unlock_irq(&fotg210->lock); | 
|  | fotg210_mem_cleanup(fotg210); | 
|  |  | 
|  | #ifdef FOTG210_STATS | 
|  | fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n", | 
|  | fotg210->stats.normal, fotg210->stats.error, | 
|  | fotg210->stats.iaa, fotg210->stats.lost_iaa); | 
|  | fotg210_dbg(fotg210, "complete %ld unlink %ld\n", | 
|  | fotg210->stats.complete, fotg210->stats.unlink); | 
|  | #endif | 
|  |  | 
|  | dbg_status(fotg210, "fotg210_stop completed", | 
|  | fotg210_readl(fotg210, &fotg210->regs->status)); | 
|  | } | 
|  |  | 
|  | /* one-time init, only for memory state */ | 
|  | static int hcd_fotg210_init(struct usb_hcd *hcd) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  | u32 temp; | 
|  | int retval; | 
|  | u32 hcc_params; | 
|  | struct fotg210_qh_hw *hw; | 
|  |  | 
|  | spin_lock_init(&fotg210->lock); | 
|  |  | 
|  | /* | 
|  | * keep io watchdog by default, those good HCDs could turn off it later | 
|  | */ | 
|  | fotg210->need_io_watchdog = 1; | 
|  |  | 
|  | hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | 
|  | fotg210->hrtimer.function = fotg210_hrtimer_func; | 
|  | fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; | 
|  |  | 
|  | hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); | 
|  |  | 
|  | /* | 
|  | * by default set standard 80% (== 100 usec/uframe) max periodic | 
|  | * bandwidth as required by USB 2.0 | 
|  | */ | 
|  | fotg210->uframe_periodic_max = 100; | 
|  |  | 
|  | /* | 
|  | * hw default: 1K periodic list heads, one per frame. | 
|  | * periodic_size can shrink by USBCMD update if hcc_params allows. | 
|  | */ | 
|  | fotg210->periodic_size = DEFAULT_I_TDPS; | 
|  | INIT_LIST_HEAD(&fotg210->intr_qh_list); | 
|  | INIT_LIST_HEAD(&fotg210->cached_itd_list); | 
|  |  | 
|  | if (HCC_PGM_FRAMELISTLEN(hcc_params)) { | 
|  | /* periodic schedule size can be smaller than default */ | 
|  | switch (FOTG210_TUNE_FLS) { | 
|  | case 0: | 
|  | fotg210->periodic_size = 1024; | 
|  | break; | 
|  | case 1: | 
|  | fotg210->periodic_size = 512; | 
|  | break; | 
|  | case 2: | 
|  | fotg210->periodic_size = 256; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | retval = fotg210_mem_init(fotg210, GFP_KERNEL); | 
|  | if (retval < 0) | 
|  | return retval; | 
|  |  | 
|  | /* controllers may cache some of the periodic schedule ... */ | 
|  | fotg210->i_thresh = 2; | 
|  |  | 
|  | /* | 
|  | * dedicate a qh for the async ring head, since we couldn't unlink | 
|  | * a 'real' qh without stopping the async schedule [4.8].  use it | 
|  | * as the 'reclamation list head' too. | 
|  | * its dummy is used in hw_alt_next of many tds, to prevent the qh | 
|  | * from automatically advancing to the next td after short reads. | 
|  | */ | 
|  | fotg210->async->qh_next.qh = NULL; | 
|  | hw = fotg210->async->hw; | 
|  | hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma); | 
|  | hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD); | 
|  | hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); | 
|  | hw->hw_qtd_next = FOTG210_LIST_END(fotg210); | 
|  | fotg210->async->qh_state = QH_STATE_LINKED; | 
|  | hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma); | 
|  |  | 
|  | /* clear interrupt enables, set irq latency */ | 
|  | if (log2_irq_thresh < 0 || log2_irq_thresh > 6) | 
|  | log2_irq_thresh = 0; | 
|  | temp = 1 << (16 + log2_irq_thresh); | 
|  | if (HCC_CANPARK(hcc_params)) { | 
|  | /* HW default park == 3, on hardware that supports it (like | 
|  | * NVidia and ALI silicon), maximizes throughput on the async | 
|  | * schedule by avoiding QH fetches between transfers. | 
|  | * | 
|  | * With fast usb storage devices and NForce2, "park" seems to | 
|  | * make problems:  throughput reduction (!), data errors... | 
|  | */ | 
|  | if (park) { | 
|  | park = min_t(unsigned, park, 3); | 
|  | temp |= CMD_PARK; | 
|  | temp |= park << 8; | 
|  | } | 
|  | fotg210_dbg(fotg210, "park %d\n", park); | 
|  | } | 
|  | if (HCC_PGM_FRAMELISTLEN(hcc_params)) { | 
|  | /* periodic schedule size can be smaller than default */ | 
|  | temp &= ~(3 << 2); | 
|  | temp |= (FOTG210_TUNE_FLS << 2); | 
|  | } | 
|  | fotg210->command = temp; | 
|  |  | 
|  | /* Accept arbitrarily long scatter-gather lists */ | 
|  | if (!hcd->localmem_pool) | 
|  | hcd->self.sg_tablesize = ~0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */ | 
|  | static int fotg210_run(struct usb_hcd *hcd) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  | u32 temp; | 
|  |  | 
|  | hcd->uses_new_polling = 1; | 
|  |  | 
|  | /* EHCI spec section 4.1 */ | 
|  |  | 
|  | fotg210_writel(fotg210, fotg210->periodic_dma, | 
|  | &fotg210->regs->frame_list); | 
|  | fotg210_writel(fotg210, (u32)fotg210->async->qh_dma, | 
|  | &fotg210->regs->async_next); | 
|  |  | 
|  | /* | 
|  | * hcc_params controls whether fotg210->regs->segment must (!!!) | 
|  | * be used; it constrains QH/ITD/SITD and QTD locations. | 
|  | * dma_pool consistent memory always uses segment zero. | 
|  | * streaming mappings for I/O buffers, like pci_map_single(), | 
|  | * can return segments above 4GB, if the device allows. | 
|  | * | 
|  | * NOTE:  the dma mask is visible through dev->dma_mask, so | 
|  | * drivers can pass this info along ... like NETIF_F_HIGHDMA, | 
|  | * Scsi_Host.highmem_io, and so forth.  It's readonly to all | 
|  | * host side drivers though. | 
|  | */ | 
|  | fotg210_readl(fotg210, &fotg210->caps->hcc_params); | 
|  |  | 
|  | /* | 
|  | * Philips, Intel, and maybe others need CMD_RUN before the | 
|  | * root hub will detect new devices (why?); NEC doesn't | 
|  | */ | 
|  | fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET); | 
|  | fotg210->command |= CMD_RUN; | 
|  | fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); | 
|  | dbg_cmd(fotg210, "init", fotg210->command); | 
|  |  | 
|  | /* | 
|  | * Start, enabling full USB 2.0 functionality ... usb 1.1 devices | 
|  | * are explicitly handed to companion controller(s), so no TT is | 
|  | * involved with the root hub.  (Except where one is integrated, | 
|  | * and there's no companion controller unless maybe for USB OTG.) | 
|  | * | 
|  | * Turning on the CF flag will transfer ownership of all ports | 
|  | * from the companions to the EHCI controller.  If any of the | 
|  | * companions are in the middle of a port reset at the time, it | 
|  | * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem | 
|  | * guarantees that no resets are in progress.  After we set CF, | 
|  | * a short delay lets the hardware catch up; new resets shouldn't | 
|  | * be started before the port switching actions could complete. | 
|  | */ | 
|  | down_write(&ehci_cf_port_reset_rwsem); | 
|  | fotg210->rh_state = FOTG210_RH_RUNNING; | 
|  | /* unblock posted writes */ | 
|  | fotg210_readl(fotg210, &fotg210->regs->command); | 
|  | usleep_range(5000, 10000); | 
|  | up_write(&ehci_cf_port_reset_rwsem); | 
|  | fotg210->last_periodic_enable = ktime_get_real(); | 
|  |  | 
|  | temp = HC_VERSION(fotg210, | 
|  | fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); | 
|  | fotg210_info(fotg210, | 
|  | "USB %x.%x started, EHCI %x.%02x\n", | 
|  | ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f), | 
|  | temp >> 8, temp & 0xff); | 
|  |  | 
|  | fotg210_writel(fotg210, INTR_MASK, | 
|  | &fotg210->regs->intr_enable); /* Turn On Interrupts */ | 
|  |  | 
|  | /* GRR this is run-once init(), being done every time the HC starts. | 
|  | * So long as they're part of class devices, we can't do it init() | 
|  | * since the class device isn't created that early. | 
|  | */ | 
|  | create_debug_files(fotg210); | 
|  | create_sysfs_files(fotg210); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fotg210_setup(struct usb_hcd *hcd) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  | int retval; | 
|  |  | 
|  | fotg210->regs = (void __iomem *)fotg210->caps + | 
|  | HC_LENGTH(fotg210, | 
|  | fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); | 
|  | dbg_hcs_params(fotg210, "reset"); | 
|  | dbg_hcc_params(fotg210, "reset"); | 
|  |  | 
|  | /* cache this readonly data; minimize chip reads */ | 
|  | fotg210->hcs_params = fotg210_readl(fotg210, | 
|  | &fotg210->caps->hcs_params); | 
|  |  | 
|  | fotg210->sbrn = HCD_USB2; | 
|  |  | 
|  | /* data structure init */ | 
|  | retval = hcd_fotg210_init(hcd); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = fotg210_halt(fotg210); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | fotg210_reset(fotg210); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t fotg210_irq(struct usb_hcd *hcd) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  | u32 status, masked_status, pcd_status = 0, cmd; | 
|  | int bh; | 
|  |  | 
|  | spin_lock(&fotg210->lock); | 
|  |  | 
|  | status = fotg210_readl(fotg210, &fotg210->regs->status); | 
|  |  | 
|  | /* e.g. cardbus physical eject */ | 
|  | if (status == ~(u32) 0) { | 
|  | fotg210_dbg(fotg210, "device removed\n"); | 
|  | goto dead; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't use STS_FLR, but some controllers don't like it to | 
|  | * remain on, so mask it out along with the other status bits. | 
|  | */ | 
|  | masked_status = status & (INTR_MASK | STS_FLR); | 
|  |  | 
|  | /* Shared IRQ? */ | 
|  | if (!masked_status || | 
|  | unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) { | 
|  | spin_unlock(&fotg210->lock); | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | /* clear (just) interrupts */ | 
|  | fotg210_writel(fotg210, masked_status, &fotg210->regs->status); | 
|  | cmd = fotg210_readl(fotg210, &fotg210->regs->command); | 
|  | bh = 0; | 
|  |  | 
|  | /* unrequested/ignored: Frame List Rollover */ | 
|  | dbg_status(fotg210, "irq", status); | 
|  |  | 
|  | /* INT, ERR, and IAA interrupt rates can be throttled */ | 
|  |  | 
|  | /* normal [4.15.1.2] or error [4.15.1.1] completion */ | 
|  | if (likely((status & (STS_INT|STS_ERR)) != 0)) { | 
|  | if (likely((status & STS_ERR) == 0)) | 
|  | INCR(fotg210->stats.normal); | 
|  | else | 
|  | INCR(fotg210->stats.error); | 
|  | bh = 1; | 
|  | } | 
|  |  | 
|  | /* complete the unlinking of some qh [4.15.2.3] */ | 
|  | if (status & STS_IAA) { | 
|  |  | 
|  | /* Turn off the IAA watchdog */ | 
|  | fotg210->enabled_hrtimer_events &= | 
|  | ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG); | 
|  |  | 
|  | /* | 
|  | * Mild optimization: Allow another IAAD to reset the | 
|  | * hrtimer, if one occurs before the next expiration. | 
|  | * In theory we could always cancel the hrtimer, but | 
|  | * tests show that about half the time it will be reset | 
|  | * for some other event anyway. | 
|  | */ | 
|  | if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG) | 
|  | ++fotg210->next_hrtimer_event; | 
|  |  | 
|  | /* guard against (alleged) silicon errata */ | 
|  | if (cmd & CMD_IAAD) | 
|  | fotg210_dbg(fotg210, "IAA with IAAD still set?\n"); | 
|  | if (fotg210->async_iaa) { | 
|  | INCR(fotg210->stats.iaa); | 
|  | end_unlink_async(fotg210); | 
|  | } else | 
|  | fotg210_dbg(fotg210, "IAA with nothing unlinked?\n"); | 
|  | } | 
|  |  | 
|  | /* remote wakeup [4.3.1] */ | 
|  | if (status & STS_PCD) { | 
|  | int pstatus; | 
|  | u32 __iomem *status_reg = &fotg210->regs->port_status; | 
|  |  | 
|  | /* kick root hub later */ | 
|  | pcd_status = status; | 
|  |  | 
|  | /* resume root hub? */ | 
|  | if (fotg210->rh_state == FOTG210_RH_SUSPENDED) | 
|  | usb_hcd_resume_root_hub(hcd); | 
|  |  | 
|  | pstatus = fotg210_readl(fotg210, status_reg); | 
|  |  | 
|  | if (test_bit(0, &fotg210->suspended_ports) && | 
|  | ((pstatus & PORT_RESUME) || | 
|  | !(pstatus & PORT_SUSPEND)) && | 
|  | (pstatus & PORT_PE) && | 
|  | fotg210->reset_done[0] == 0) { | 
|  |  | 
|  | /* start 20 msec resume signaling from this port, | 
|  | * and make hub_wq collect PORT_STAT_C_SUSPEND to | 
|  | * stop that signaling.  Use 5 ms extra for safety, | 
|  | * like usb_port_resume() does. | 
|  | */ | 
|  | fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25); | 
|  | set_bit(0, &fotg210->resuming_ports); | 
|  | fotg210_dbg(fotg210, "port 1 remote wakeup\n"); | 
|  | mod_timer(&hcd->rh_timer, fotg210->reset_done[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* PCI errors [4.15.2.4] */ | 
|  | if (unlikely((status & STS_FATAL) != 0)) { | 
|  | fotg210_err(fotg210, "fatal error\n"); | 
|  | dbg_cmd(fotg210, "fatal", cmd); | 
|  | dbg_status(fotg210, "fatal", status); | 
|  | dead: | 
|  | usb_hc_died(hcd); | 
|  |  | 
|  | /* Don't let the controller do anything more */ | 
|  | fotg210->shutdown = true; | 
|  | fotg210->rh_state = FOTG210_RH_STOPPING; | 
|  | fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE); | 
|  | fotg210_writel(fotg210, fotg210->command, | 
|  | &fotg210->regs->command); | 
|  | fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); | 
|  | fotg210_handle_controller_death(fotg210); | 
|  |  | 
|  | /* Handle completions when the controller stops */ | 
|  | bh = 0; | 
|  | } | 
|  |  | 
|  | if (bh) | 
|  | fotg210_work(fotg210); | 
|  | spin_unlock(&fotg210->lock); | 
|  | if (pcd_status) | 
|  | usb_hcd_poll_rh_status(hcd); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* non-error returns are a promise to giveback() the urb later | 
|  | * we drop ownership so next owner (or urb unlink) can get it | 
|  | * | 
|  | * urb + dev is in hcd.self.controller.urb_list | 
|  | * we're queueing TDs onto software and hardware lists | 
|  | * | 
|  | * hcd-specific init for hcpriv hasn't been done yet | 
|  | * | 
|  | * NOTE:  control, bulk, and interrupt share the same code to append TDs | 
|  | * to a (possibly active) QH, and the same QH scanning code. | 
|  | */ | 
|  | static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  | struct list_head qtd_list; | 
|  |  | 
|  | INIT_LIST_HEAD(&qtd_list); | 
|  |  | 
|  | switch (usb_pipetype(urb->pipe)) { | 
|  | case PIPE_CONTROL: | 
|  | /* qh_completions() code doesn't handle all the fault cases | 
|  | * in multi-TD control transfers.  Even 1KB is rare anyway. | 
|  | */ | 
|  | if (urb->transfer_buffer_length > (16 * 1024)) | 
|  | return -EMSGSIZE; | 
|  | fallthrough; | 
|  | /* case PIPE_BULK: */ | 
|  | default: | 
|  | if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) | 
|  | return -ENOMEM; | 
|  | return submit_async(fotg210, urb, &qtd_list, mem_flags); | 
|  |  | 
|  | case PIPE_INTERRUPT: | 
|  | if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) | 
|  | return -ENOMEM; | 
|  | return intr_submit(fotg210, urb, &qtd_list, mem_flags); | 
|  |  | 
|  | case PIPE_ISOCHRONOUS: | 
|  | return itd_submit(fotg210, urb, mem_flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* remove from hardware lists | 
|  | * completions normally happen asynchronously | 
|  | */ | 
|  |  | 
|  | static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  | struct fotg210_qh *qh; | 
|  | unsigned long flags; | 
|  | int rc; | 
|  |  | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | rc = usb_hcd_check_unlink_urb(hcd, urb, status); | 
|  | if (rc) | 
|  | goto done; | 
|  |  | 
|  | switch (usb_pipetype(urb->pipe)) { | 
|  | /* case PIPE_CONTROL: */ | 
|  | /* case PIPE_BULK:*/ | 
|  | default: | 
|  | qh = (struct fotg210_qh *) urb->hcpriv; | 
|  | if (!qh) | 
|  | break; | 
|  | switch (qh->qh_state) { | 
|  | case QH_STATE_LINKED: | 
|  | case QH_STATE_COMPLETING: | 
|  | start_unlink_async(fotg210, qh); | 
|  | break; | 
|  | case QH_STATE_UNLINK: | 
|  | case QH_STATE_UNLINK_WAIT: | 
|  | /* already started */ | 
|  | break; | 
|  | case QH_STATE_IDLE: | 
|  | /* QH might be waiting for a Clear-TT-Buffer */ | 
|  | qh_completions(fotg210, qh); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PIPE_INTERRUPT: | 
|  | qh = (struct fotg210_qh *) urb->hcpriv; | 
|  | if (!qh) | 
|  | break; | 
|  | switch (qh->qh_state) { | 
|  | case QH_STATE_LINKED: | 
|  | case QH_STATE_COMPLETING: | 
|  | start_unlink_intr(fotg210, qh); | 
|  | break; | 
|  | case QH_STATE_IDLE: | 
|  | qh_completions(fotg210, qh); | 
|  | break; | 
|  | default: | 
|  | fotg210_dbg(fotg210, "bogus qh %p state %d\n", | 
|  | qh, qh->qh_state); | 
|  | goto done; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PIPE_ISOCHRONOUS: | 
|  | /* itd... */ | 
|  |  | 
|  | /* wait till next completion, do it then. */ | 
|  | /* completion irqs can wait up to 1024 msec, */ | 
|  | break; | 
|  | } | 
|  | done: | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* bulk qh holds the data toggle */ | 
|  |  | 
|  | static void fotg210_endpoint_disable(struct usb_hcd *hcd, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  | unsigned long flags; | 
|  | struct fotg210_qh *qh, *tmp; | 
|  |  | 
|  | /* ASSERT:  any requests/urbs are being unlinked */ | 
|  | /* ASSERT:  nobody can be submitting urbs for this any more */ | 
|  |  | 
|  | rescan: | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | qh = ep->hcpriv; | 
|  | if (!qh) | 
|  | goto done; | 
|  |  | 
|  | /* endpoints can be iso streams.  for now, we don't | 
|  | * accelerate iso completions ... so spin a while. | 
|  | */ | 
|  | if (qh->hw == NULL) { | 
|  | struct fotg210_iso_stream *stream = ep->hcpriv; | 
|  |  | 
|  | if (!list_empty(&stream->td_list)) | 
|  | goto idle_timeout; | 
|  |  | 
|  | /* BUG_ON(!list_empty(&stream->free_list)); */ | 
|  | kfree(stream); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (fotg210->rh_state < FOTG210_RH_RUNNING) | 
|  | qh->qh_state = QH_STATE_IDLE; | 
|  | switch (qh->qh_state) { | 
|  | case QH_STATE_LINKED: | 
|  | case QH_STATE_COMPLETING: | 
|  | for (tmp = fotg210->async->qh_next.qh; | 
|  | tmp && tmp != qh; | 
|  | tmp = tmp->qh_next.qh) | 
|  | continue; | 
|  | /* periodic qh self-unlinks on empty, and a COMPLETING qh | 
|  | * may already be unlinked. | 
|  | */ | 
|  | if (tmp) | 
|  | start_unlink_async(fotg210, qh); | 
|  | fallthrough; | 
|  | case QH_STATE_UNLINK:		/* wait for hw to finish? */ | 
|  | case QH_STATE_UNLINK_WAIT: | 
|  | idle_timeout: | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | schedule_timeout_uninterruptible(1); | 
|  | goto rescan; | 
|  | case QH_STATE_IDLE:		/* fully unlinked */ | 
|  | if (qh->clearing_tt) | 
|  | goto idle_timeout; | 
|  | if (list_empty(&qh->qtd_list)) { | 
|  | qh_destroy(fotg210, qh); | 
|  | break; | 
|  | } | 
|  | fallthrough; | 
|  | default: | 
|  | /* caller was supposed to have unlinked any requests; | 
|  | * that's not our job.  just leak this memory. | 
|  | */ | 
|  | fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n", | 
|  | qh, ep->desc.bEndpointAddress, qh->qh_state, | 
|  | list_empty(&qh->qtd_list) ? "" : "(has tds)"); | 
|  | break; | 
|  | } | 
|  | done: | 
|  | ep->hcpriv = NULL; | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | } | 
|  |  | 
|  | static void fotg210_endpoint_reset(struct usb_hcd *hcd, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  | struct fotg210_qh *qh; | 
|  | int eptype = usb_endpoint_type(&ep->desc); | 
|  | int epnum = usb_endpoint_num(&ep->desc); | 
|  | int is_out = usb_endpoint_dir_out(&ep->desc); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&fotg210->lock, flags); | 
|  | qh = ep->hcpriv; | 
|  |  | 
|  | /* For Bulk and Interrupt endpoints we maintain the toggle state | 
|  | * in the hardware; the toggle bits in udev aren't used at all. | 
|  | * When an endpoint is reset by usb_clear_halt() we must reset | 
|  | * the toggle bit in the QH. | 
|  | */ | 
|  | if (qh) { | 
|  | usb_settoggle(qh->dev, epnum, is_out, 0); | 
|  | if (!list_empty(&qh->qtd_list)) { | 
|  | WARN_ONCE(1, "clear_halt for a busy endpoint\n"); | 
|  | } else if (qh->qh_state == QH_STATE_LINKED || | 
|  | qh->qh_state == QH_STATE_COMPLETING) { | 
|  |  | 
|  | /* The toggle value in the QH can't be updated | 
|  | * while the QH is active.  Unlink it now; | 
|  | * re-linking will call qh_refresh(). | 
|  | */ | 
|  | if (eptype == USB_ENDPOINT_XFER_BULK) | 
|  | start_unlink_async(fotg210, qh); | 
|  | else | 
|  | start_unlink_intr(fotg210, qh); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&fotg210->lock, flags); | 
|  | } | 
|  |  | 
|  | static int fotg210_get_frame(struct usb_hcd *hcd) | 
|  | { | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  |  | 
|  | return (fotg210_read_frame_index(fotg210) >> 3) % | 
|  | fotg210->periodic_size; | 
|  | } | 
|  |  | 
|  | /* The EHCI in ChipIdea HDRC cannot be a separate module or device, | 
|  | * because its registers (and irq) are shared between host/gadget/otg | 
|  | * functions  and in order to facilitate role switching we cannot | 
|  | * give the fotg210 driver exclusive access to those. | 
|  | */ | 
|  | MODULE_DESCRIPTION(DRIVER_DESC); | 
|  | MODULE_AUTHOR(DRIVER_AUTHOR); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static const struct hc_driver fotg210_fotg210_hc_driver = { | 
|  | .description		= hcd_name, | 
|  | .product_desc		= "Faraday USB2.0 Host Controller", | 
|  | .hcd_priv_size		= sizeof(struct fotg210_hcd), | 
|  |  | 
|  | /* | 
|  | * generic hardware linkage | 
|  | */ | 
|  | .irq			= fotg210_irq, | 
|  | .flags			= HCD_MEMORY | HCD_DMA | HCD_USB2, | 
|  |  | 
|  | /* | 
|  | * basic lifecycle operations | 
|  | */ | 
|  | .reset			= hcd_fotg210_init, | 
|  | .start			= fotg210_run, | 
|  | .stop			= fotg210_stop, | 
|  | .shutdown		= fotg210_shutdown, | 
|  |  | 
|  | /* | 
|  | * managing i/o requests and associated device resources | 
|  | */ | 
|  | .urb_enqueue		= fotg210_urb_enqueue, | 
|  | .urb_dequeue		= fotg210_urb_dequeue, | 
|  | .endpoint_disable	= fotg210_endpoint_disable, | 
|  | .endpoint_reset		= fotg210_endpoint_reset, | 
|  |  | 
|  | /* | 
|  | * scheduling support | 
|  | */ | 
|  | .get_frame_number	= fotg210_get_frame, | 
|  |  | 
|  | /* | 
|  | * root hub support | 
|  | */ | 
|  | .hub_status_data	= fotg210_hub_status_data, | 
|  | .hub_control		= fotg210_hub_control, | 
|  | .bus_suspend		= fotg210_bus_suspend, | 
|  | .bus_resume		= fotg210_bus_resume, | 
|  |  | 
|  | .relinquish_port	= fotg210_relinquish_port, | 
|  | .port_handed_over	= fotg210_port_handed_over, | 
|  |  | 
|  | .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete, | 
|  | }; | 
|  |  | 
|  | static void fotg210_init(struct fotg210_hcd *fotg210) | 
|  | { | 
|  | u32 value; | 
|  |  | 
|  | iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY, | 
|  | &fotg210->regs->gmir); | 
|  |  | 
|  | value = ioread32(&fotg210->regs->otgcsr); | 
|  | value &= ~OTGCSR_A_BUS_DROP; | 
|  | value |= OTGCSR_A_BUS_REQ; | 
|  | iowrite32(value, &fotg210->regs->otgcsr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fotg210_hcd_probe - initialize faraday FOTG210 HCDs | 
|  | * | 
|  | * Allocates basic resources for this USB host controller, and | 
|  | * then invokes the start() method for the HCD associated with it | 
|  | * through the hotplug entry's driver_data. | 
|  | */ | 
|  | static int fotg210_hcd_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | struct usb_hcd *hcd; | 
|  | struct resource *res; | 
|  | int irq; | 
|  | int retval; | 
|  | struct fotg210_hcd *fotg210; | 
|  |  | 
|  | if (usb_disabled()) | 
|  | return -ENODEV; | 
|  |  | 
|  | pdev->dev.power.power_state = PMSG_ON; | 
|  |  | 
|  | res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); | 
|  | if (!res) { | 
|  | dev_err(dev, "Found HC with no IRQ. Check %s setup!\n", | 
|  | dev_name(dev)); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | irq = res->start; | 
|  |  | 
|  | hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev, | 
|  | dev_name(dev)); | 
|  | if (!hcd) { | 
|  | dev_err(dev, "failed to create hcd\n"); | 
|  | retval = -ENOMEM; | 
|  | goto fail_create_hcd; | 
|  | } | 
|  |  | 
|  | hcd->has_tt = 1; | 
|  |  | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | hcd->regs = devm_ioremap_resource(&pdev->dev, res); | 
|  | if (IS_ERR(hcd->regs)) { | 
|  | retval = PTR_ERR(hcd->regs); | 
|  | goto failed_put_hcd; | 
|  | } | 
|  |  | 
|  | hcd->rsrc_start = res->start; | 
|  | hcd->rsrc_len = resource_size(res); | 
|  |  | 
|  | fotg210 = hcd_to_fotg210(hcd); | 
|  |  | 
|  | fotg210->caps = hcd->regs; | 
|  |  | 
|  | /* It's OK not to supply this clock */ | 
|  | fotg210->pclk = clk_get(dev, "PCLK"); | 
|  | if (!IS_ERR(fotg210->pclk)) { | 
|  | retval = clk_prepare_enable(fotg210->pclk); | 
|  | if (retval) { | 
|  | dev_err(dev, "failed to enable PCLK\n"); | 
|  | goto failed_put_hcd; | 
|  | } | 
|  | } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) { | 
|  | /* | 
|  | * Percolate deferrals, for anything else, | 
|  | * just live without the clocking. | 
|  | */ | 
|  | retval = PTR_ERR(fotg210->pclk); | 
|  | goto failed_dis_clk; | 
|  | } | 
|  |  | 
|  | retval = fotg210_setup(hcd); | 
|  | if (retval) | 
|  | goto failed_dis_clk; | 
|  |  | 
|  | fotg210_init(fotg210); | 
|  |  | 
|  | retval = usb_add_hcd(hcd, irq, IRQF_SHARED); | 
|  | if (retval) { | 
|  | dev_err(dev, "failed to add hcd with err %d\n", retval); | 
|  | goto failed_dis_clk; | 
|  | } | 
|  | device_wakeup_enable(hcd->self.controller); | 
|  | platform_set_drvdata(pdev, hcd); | 
|  |  | 
|  | return retval; | 
|  |  | 
|  | failed_dis_clk: | 
|  | if (!IS_ERR(fotg210->pclk)) { | 
|  | clk_disable_unprepare(fotg210->pclk); | 
|  | clk_put(fotg210->pclk); | 
|  | } | 
|  | failed_put_hcd: | 
|  | usb_put_hcd(hcd); | 
|  | fail_create_hcd: | 
|  | dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fotg210_hcd_remove - shutdown processing for EHCI HCDs | 
|  | * @dev: USB Host Controller being removed | 
|  | * | 
|  | */ | 
|  | static int fotg210_hcd_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct usb_hcd *hcd = platform_get_drvdata(pdev); | 
|  | struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); | 
|  |  | 
|  | if (!IS_ERR(fotg210->pclk)) { | 
|  | clk_disable_unprepare(fotg210->pclk); | 
|  | clk_put(fotg210->pclk); | 
|  | } | 
|  |  | 
|  | usb_remove_hcd(hcd); | 
|  | usb_put_hcd(hcd); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  | static const struct of_device_id fotg210_of_match[] = { | 
|  | { .compatible = "faraday,fotg210" }, | 
|  | {}, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, fotg210_of_match); | 
|  | #endif | 
|  |  | 
|  | static struct platform_driver fotg210_hcd_driver = { | 
|  | .driver = { | 
|  | .name   = "fotg210-hcd", | 
|  | .of_match_table = of_match_ptr(fotg210_of_match), | 
|  | }, | 
|  | .probe  = fotg210_hcd_probe, | 
|  | .remove = fotg210_hcd_remove, | 
|  | }; | 
|  |  | 
|  | static int __init fotg210_hcd_init(void) | 
|  | { | 
|  | int retval = 0; | 
|  |  | 
|  | if (usb_disabled()) | 
|  | return -ENODEV; | 
|  |  | 
|  | pr_info("%s: " DRIVER_DESC "\n", hcd_name); | 
|  | set_bit(USB_EHCI_LOADED, &usb_hcds_loaded); | 
|  | if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) || | 
|  | test_bit(USB_OHCI_LOADED, &usb_hcds_loaded)) | 
|  | pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n"); | 
|  |  | 
|  | pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n", | 
|  | hcd_name, sizeof(struct fotg210_qh), | 
|  | sizeof(struct fotg210_qtd), | 
|  | sizeof(struct fotg210_itd)); | 
|  |  | 
|  | fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root); | 
|  |  | 
|  | retval = platform_driver_register(&fotg210_hcd_driver); | 
|  | if (retval < 0) | 
|  | goto clean; | 
|  | return retval; | 
|  |  | 
|  | clean: | 
|  | debugfs_remove(fotg210_debug_root); | 
|  | fotg210_debug_root = NULL; | 
|  |  | 
|  | clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); | 
|  | return retval; | 
|  | } | 
|  | module_init(fotg210_hcd_init); | 
|  |  | 
|  | static void __exit fotg210_hcd_cleanup(void) | 
|  | { | 
|  | platform_driver_unregister(&fotg210_hcd_driver); | 
|  | debugfs_remove(fotg210_debug_root); | 
|  | clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); | 
|  | } | 
|  | module_exit(fotg210_hcd_cleanup); |