|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2016 Avago Technologies.  All rights reserved. | 
|  | */ | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  | #include <linux/module.h> | 
|  | #include <linux/parser.h> | 
|  | #include <uapi/scsi/fc/fc_fs.h> | 
|  | #include <uapi/scsi/fc/fc_els.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/overflow.h> | 
|  |  | 
|  | #include "nvme.h" | 
|  | #include "fabrics.h" | 
|  | #include <linux/nvme-fc-driver.h> | 
|  | #include <linux/nvme-fc.h> | 
|  | #include <scsi/scsi_transport_fc.h> | 
|  |  | 
|  | /* *************************** Data Structures/Defines ****************** */ | 
|  |  | 
|  |  | 
|  | enum nvme_fc_queue_flags { | 
|  | NVME_FC_Q_CONNECTED = 0, | 
|  | NVME_FC_Q_LIVE, | 
|  | }; | 
|  |  | 
|  | #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */ | 
|  |  | 
|  | struct nvme_fc_queue { | 
|  | struct nvme_fc_ctrl	*ctrl; | 
|  | struct device		*dev; | 
|  | struct blk_mq_hw_ctx	*hctx; | 
|  | void			*lldd_handle; | 
|  | size_t			cmnd_capsule_len; | 
|  | u32			qnum; | 
|  | u32			rqcnt; | 
|  | u32			seqno; | 
|  |  | 
|  | u64			connection_id; | 
|  | atomic_t		csn; | 
|  |  | 
|  | unsigned long		flags; | 
|  | } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */ | 
|  |  | 
|  | enum nvme_fcop_flags { | 
|  | FCOP_FLAGS_TERMIO	= (1 << 0), | 
|  | FCOP_FLAGS_AEN		= (1 << 1), | 
|  | }; | 
|  |  | 
|  | struct nvmefc_ls_req_op { | 
|  | struct nvmefc_ls_req	ls_req; | 
|  |  | 
|  | struct nvme_fc_rport	*rport; | 
|  | struct nvme_fc_queue	*queue; | 
|  | struct request		*rq; | 
|  | u32			flags; | 
|  |  | 
|  | int			ls_error; | 
|  | struct completion	ls_done; | 
|  | struct list_head	lsreq_list;	/* rport->ls_req_list */ | 
|  | bool			req_queued; | 
|  | }; | 
|  |  | 
|  | enum nvme_fcpop_state { | 
|  | FCPOP_STATE_UNINIT	= 0, | 
|  | FCPOP_STATE_IDLE	= 1, | 
|  | FCPOP_STATE_ACTIVE	= 2, | 
|  | FCPOP_STATE_ABORTED	= 3, | 
|  | FCPOP_STATE_COMPLETE	= 4, | 
|  | }; | 
|  |  | 
|  | struct nvme_fc_fcp_op { | 
|  | struct nvme_request	nreq;		/* | 
|  | * nvme/host/core.c | 
|  | * requires this to be | 
|  | * the 1st element in the | 
|  | * private structure | 
|  | * associated with the | 
|  | * request. | 
|  | */ | 
|  | struct nvmefc_fcp_req	fcp_req; | 
|  |  | 
|  | struct nvme_fc_ctrl	*ctrl; | 
|  | struct nvme_fc_queue	*queue; | 
|  | struct request		*rq; | 
|  |  | 
|  | atomic_t		state; | 
|  | u32			flags; | 
|  | u32			rqno; | 
|  | u32			nents; | 
|  |  | 
|  | struct nvme_fc_cmd_iu	cmd_iu; | 
|  | struct nvme_fc_ersp_iu	rsp_iu; | 
|  | }; | 
|  |  | 
|  | struct nvme_fcp_op_w_sgl { | 
|  | struct nvme_fc_fcp_op	op; | 
|  | struct scatterlist	sgl[SG_CHUNK_SIZE]; | 
|  | uint8_t			priv[0]; | 
|  | }; | 
|  |  | 
|  | struct nvme_fc_lport { | 
|  | struct nvme_fc_local_port	localport; | 
|  |  | 
|  | struct ida			endp_cnt; | 
|  | struct list_head		port_list;	/* nvme_fc_port_list */ | 
|  | struct list_head		endp_list; | 
|  | struct device			*dev;	/* physical device for dma */ | 
|  | struct nvme_fc_port_template	*ops; | 
|  | struct kref			ref; | 
|  | atomic_t                        act_rport_cnt; | 
|  | } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */ | 
|  |  | 
|  | struct nvme_fc_rport { | 
|  | struct nvme_fc_remote_port	remoteport; | 
|  |  | 
|  | struct list_head		endp_list; /* for lport->endp_list */ | 
|  | struct list_head		ctrl_list; | 
|  | struct list_head		ls_req_list; | 
|  | struct list_head		disc_list; | 
|  | struct device			*dev;	/* physical device for dma */ | 
|  | struct nvme_fc_lport		*lport; | 
|  | spinlock_t			lock; | 
|  | struct kref			ref; | 
|  | atomic_t                        act_ctrl_cnt; | 
|  | unsigned long			dev_loss_end; | 
|  | } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */ | 
|  |  | 
|  | enum nvme_fcctrl_flags { | 
|  | FCCTRL_TERMIO		= (1 << 0), | 
|  | }; | 
|  |  | 
|  | struct nvme_fc_ctrl { | 
|  | spinlock_t		lock; | 
|  | struct nvme_fc_queue	*queues; | 
|  | struct device		*dev; | 
|  | struct nvme_fc_lport	*lport; | 
|  | struct nvme_fc_rport	*rport; | 
|  | u32			cnum; | 
|  |  | 
|  | bool			ioq_live; | 
|  | bool			assoc_active; | 
|  | atomic_t		err_work_active; | 
|  | u64			association_id; | 
|  |  | 
|  | struct list_head	ctrl_list;	/* rport->ctrl_list */ | 
|  |  | 
|  | struct blk_mq_tag_set	admin_tag_set; | 
|  | struct blk_mq_tag_set	tag_set; | 
|  |  | 
|  | struct delayed_work	connect_work; | 
|  | struct work_struct	err_work; | 
|  |  | 
|  | struct kref		ref; | 
|  | u32			flags; | 
|  | u32			iocnt; | 
|  | wait_queue_head_t	ioabort_wait; | 
|  |  | 
|  | struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS]; | 
|  |  | 
|  | struct nvme_ctrl	ctrl; | 
|  | }; | 
|  |  | 
|  | static inline struct nvme_fc_ctrl * | 
|  | to_fc_ctrl(struct nvme_ctrl *ctrl) | 
|  | { | 
|  | return container_of(ctrl, struct nvme_fc_ctrl, ctrl); | 
|  | } | 
|  |  | 
|  | static inline struct nvme_fc_lport * | 
|  | localport_to_lport(struct nvme_fc_local_port *portptr) | 
|  | { | 
|  | return container_of(portptr, struct nvme_fc_lport, localport); | 
|  | } | 
|  |  | 
|  | static inline struct nvme_fc_rport * | 
|  | remoteport_to_rport(struct nvme_fc_remote_port *portptr) | 
|  | { | 
|  | return container_of(portptr, struct nvme_fc_rport, remoteport); | 
|  | } | 
|  |  | 
|  | static inline struct nvmefc_ls_req_op * | 
|  | ls_req_to_lsop(struct nvmefc_ls_req *lsreq) | 
|  | { | 
|  | return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); | 
|  | } | 
|  |  | 
|  | static inline struct nvme_fc_fcp_op * | 
|  | fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) | 
|  | { | 
|  | return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* *************************** Globals **************************** */ | 
|  |  | 
|  |  | 
|  | static DEFINE_SPINLOCK(nvme_fc_lock); | 
|  |  | 
|  | static LIST_HEAD(nvme_fc_lport_list); | 
|  | static DEFINE_IDA(nvme_fc_local_port_cnt); | 
|  | static DEFINE_IDA(nvme_fc_ctrl_cnt); | 
|  |  | 
|  | static struct workqueue_struct *nvme_fc_wq; | 
|  |  | 
|  | /* | 
|  | * These items are short-term. They will eventually be moved into | 
|  | * a generic FC class. See comments in module init. | 
|  | */ | 
|  | static struct device *fc_udev_device; | 
|  |  | 
|  |  | 
|  | /* *********************** FC-NVME Port Management ************************ */ | 
|  |  | 
|  | static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, | 
|  | struct nvme_fc_queue *, unsigned int); | 
|  |  | 
|  | static void | 
|  | nvme_fc_free_lport(struct kref *ref) | 
|  | { | 
|  | struct nvme_fc_lport *lport = | 
|  | container_of(ref, struct nvme_fc_lport, ref); | 
|  | unsigned long flags; | 
|  |  | 
|  | WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); | 
|  | WARN_ON(!list_empty(&lport->endp_list)); | 
|  |  | 
|  | /* remove from transport list */ | 
|  | spin_lock_irqsave(&nvme_fc_lock, flags); | 
|  | list_del(&lport->port_list); | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); | 
|  | ida_destroy(&lport->endp_cnt); | 
|  |  | 
|  | put_device(lport->dev); | 
|  |  | 
|  | kfree(lport); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_lport_put(struct nvme_fc_lport *lport) | 
|  | { | 
|  | kref_put(&lport->ref, nvme_fc_free_lport); | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_lport_get(struct nvme_fc_lport *lport) | 
|  | { | 
|  | return kref_get_unless_zero(&lport->ref); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct nvme_fc_lport * | 
|  | nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, | 
|  | struct nvme_fc_port_template *ops, | 
|  | struct device *dev) | 
|  | { | 
|  | struct nvme_fc_lport *lport; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&nvme_fc_lock, flags); | 
|  |  | 
|  | list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { | 
|  | if (lport->localport.node_name != pinfo->node_name || | 
|  | lport->localport.port_name != pinfo->port_name) | 
|  | continue; | 
|  |  | 
|  | if (lport->dev != dev) { | 
|  | lport = ERR_PTR(-EXDEV); | 
|  | goto out_done; | 
|  | } | 
|  |  | 
|  | if (lport->localport.port_state != FC_OBJSTATE_DELETED) { | 
|  | lport = ERR_PTR(-EEXIST); | 
|  | goto out_done; | 
|  | } | 
|  |  | 
|  | if (!nvme_fc_lport_get(lport)) { | 
|  | /* | 
|  | * fails if ref cnt already 0. If so, | 
|  | * act as if lport already deleted | 
|  | */ | 
|  | lport = NULL; | 
|  | goto out_done; | 
|  | } | 
|  |  | 
|  | /* resume the lport */ | 
|  |  | 
|  | lport->ops = ops; | 
|  | lport->localport.port_role = pinfo->port_role; | 
|  | lport->localport.port_id = pinfo->port_id; | 
|  | lport->localport.port_state = FC_OBJSTATE_ONLINE; | 
|  |  | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | return lport; | 
|  | } | 
|  |  | 
|  | lport = NULL; | 
|  |  | 
|  | out_done: | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | return lport; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nvme_fc_register_localport - transport entry point called by an | 
|  | *                              LLDD to register the existence of a NVME | 
|  | *                              host FC port. | 
|  | * @pinfo:     pointer to information about the port to be registered | 
|  | * @template:  LLDD entrypoints and operational parameters for the port | 
|  | * @dev:       physical hardware device node port corresponds to. Will be | 
|  | *             used for DMA mappings | 
|  | * @portptr:   pointer to a local port pointer. Upon success, the routine | 
|  | *             will allocate a nvme_fc_local_port structure and place its | 
|  | *             address in the local port pointer. Upon failure, local port | 
|  | *             pointer will be set to 0. | 
|  | * | 
|  | * Returns: | 
|  | * a completion status. Must be 0 upon success; a negative errno | 
|  | * (ex: -ENXIO) upon failure. | 
|  | */ | 
|  | int | 
|  | nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, | 
|  | struct nvme_fc_port_template *template, | 
|  | struct device *dev, | 
|  | struct nvme_fc_local_port **portptr) | 
|  | { | 
|  | struct nvme_fc_lport *newrec; | 
|  | unsigned long flags; | 
|  | int ret, idx; | 
|  |  | 
|  | if (!template->localport_delete || !template->remoteport_delete || | 
|  | !template->ls_req || !template->fcp_io || | 
|  | !template->ls_abort || !template->fcp_abort || | 
|  | !template->max_hw_queues || !template->max_sgl_segments || | 
|  | !template->max_dif_sgl_segments || !template->dma_boundary) { | 
|  | ret = -EINVAL; | 
|  | goto out_reghost_failed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look to see if there is already a localport that had been | 
|  | * deregistered and in the process of waiting for all the | 
|  | * references to fully be removed.  If the references haven't | 
|  | * expired, we can simply re-enable the localport. Remoteports | 
|  | * and controller reconnections should resume naturally. | 
|  | */ | 
|  | newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); | 
|  |  | 
|  | /* found an lport, but something about its state is bad */ | 
|  | if (IS_ERR(newrec)) { | 
|  | ret = PTR_ERR(newrec); | 
|  | goto out_reghost_failed; | 
|  |  | 
|  | /* found existing lport, which was resumed */ | 
|  | } else if (newrec) { | 
|  | *portptr = &newrec->localport; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* nothing found - allocate a new localport struct */ | 
|  |  | 
|  | newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), | 
|  | GFP_KERNEL); | 
|  | if (!newrec) { | 
|  | ret = -ENOMEM; | 
|  | goto out_reghost_failed; | 
|  | } | 
|  |  | 
|  | idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); | 
|  | if (idx < 0) { | 
|  | ret = -ENOSPC; | 
|  | goto out_fail_kfree; | 
|  | } | 
|  |  | 
|  | if (!get_device(dev) && dev) { | 
|  | ret = -ENODEV; | 
|  | goto out_ida_put; | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&newrec->port_list); | 
|  | INIT_LIST_HEAD(&newrec->endp_list); | 
|  | kref_init(&newrec->ref); | 
|  | atomic_set(&newrec->act_rport_cnt, 0); | 
|  | newrec->ops = template; | 
|  | newrec->dev = dev; | 
|  | ida_init(&newrec->endp_cnt); | 
|  | newrec->localport.private = &newrec[1]; | 
|  | newrec->localport.node_name = pinfo->node_name; | 
|  | newrec->localport.port_name = pinfo->port_name; | 
|  | newrec->localport.port_role = pinfo->port_role; | 
|  | newrec->localport.port_id = pinfo->port_id; | 
|  | newrec->localport.port_state = FC_OBJSTATE_ONLINE; | 
|  | newrec->localport.port_num = idx; | 
|  |  | 
|  | spin_lock_irqsave(&nvme_fc_lock, flags); | 
|  | list_add_tail(&newrec->port_list, &nvme_fc_lport_list); | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | if (dev) | 
|  | dma_set_seg_boundary(dev, template->dma_boundary); | 
|  |  | 
|  | *portptr = &newrec->localport; | 
|  | return 0; | 
|  |  | 
|  | out_ida_put: | 
|  | ida_simple_remove(&nvme_fc_local_port_cnt, idx); | 
|  | out_fail_kfree: | 
|  | kfree(newrec); | 
|  | out_reghost_failed: | 
|  | *portptr = NULL; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nvme_fc_register_localport); | 
|  |  | 
|  | /** | 
|  | * nvme_fc_unregister_localport - transport entry point called by an | 
|  | *                              LLDD to deregister/remove a previously | 
|  | *                              registered a NVME host FC port. | 
|  | * @portptr: pointer to the (registered) local port that is to be deregistered. | 
|  | * | 
|  | * Returns: | 
|  | * a completion status. Must be 0 upon success; a negative errno | 
|  | * (ex: -ENXIO) upon failure. | 
|  | */ | 
|  | int | 
|  | nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) | 
|  | { | 
|  | struct nvme_fc_lport *lport = localport_to_lport(portptr); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!portptr) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&nvme_fc_lock, flags); | 
|  |  | 
|  | if (portptr->port_state != FC_OBJSTATE_ONLINE) { | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  | return -EINVAL; | 
|  | } | 
|  | portptr->port_state = FC_OBJSTATE_DELETED; | 
|  |  | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | if (atomic_read(&lport->act_rport_cnt) == 0) | 
|  | lport->ops->localport_delete(&lport->localport); | 
|  |  | 
|  | nvme_fc_lport_put(lport); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); | 
|  |  | 
|  | /* | 
|  | * TRADDR strings, per FC-NVME are fixed format: | 
|  | *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters | 
|  | * udev event will only differ by prefix of what field is | 
|  | * being specified: | 
|  | *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters | 
|  | *  19 + 43 + null_fudge = 64 characters | 
|  | */ | 
|  | #define FCNVME_TRADDR_LENGTH		64 | 
|  |  | 
|  | static void | 
|  | nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, | 
|  | struct nvme_fc_rport *rport) | 
|  | { | 
|  | char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/ | 
|  | char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/ | 
|  | char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; | 
|  |  | 
|  | if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) | 
|  | return; | 
|  |  | 
|  | snprintf(hostaddr, sizeof(hostaddr), | 
|  | "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", | 
|  | lport->localport.node_name, lport->localport.port_name); | 
|  | snprintf(tgtaddr, sizeof(tgtaddr), | 
|  | "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", | 
|  | rport->remoteport.node_name, rport->remoteport.port_name); | 
|  | kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_free_rport(struct kref *ref) | 
|  | { | 
|  | struct nvme_fc_rport *rport = | 
|  | container_of(ref, struct nvme_fc_rport, ref); | 
|  | struct nvme_fc_lport *lport = | 
|  | localport_to_lport(rport->remoteport.localport); | 
|  | unsigned long flags; | 
|  |  | 
|  | WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); | 
|  | WARN_ON(!list_empty(&rport->ctrl_list)); | 
|  |  | 
|  | /* remove from lport list */ | 
|  | spin_lock_irqsave(&nvme_fc_lock, flags); | 
|  | list_del(&rport->endp_list); | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | WARN_ON(!list_empty(&rport->disc_list)); | 
|  | ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); | 
|  |  | 
|  | kfree(rport); | 
|  |  | 
|  | nvme_fc_lport_put(lport); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_rport_put(struct nvme_fc_rport *rport) | 
|  | { | 
|  | kref_put(&rport->ref, nvme_fc_free_rport); | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_rport_get(struct nvme_fc_rport *rport) | 
|  | { | 
|  | return kref_get_unless_zero(&rport->ref); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | switch (ctrl->ctrl.state) { | 
|  | case NVME_CTRL_NEW: | 
|  | case NVME_CTRL_CONNECTING: | 
|  | /* | 
|  | * As all reconnects were suppressed, schedule a | 
|  | * connect. | 
|  | */ | 
|  | dev_info(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: connectivity re-established. " | 
|  | "Attempting reconnect\n", ctrl->cnum); | 
|  |  | 
|  | queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); | 
|  | break; | 
|  |  | 
|  | case NVME_CTRL_RESETTING: | 
|  | /* | 
|  | * Controller is already in the process of terminating the | 
|  | * association. No need to do anything further. The reconnect | 
|  | * step will naturally occur after the reset completes. | 
|  | */ | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* no action to take - let it delete */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct nvme_fc_rport * | 
|  | nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, | 
|  | struct nvme_fc_port_info *pinfo) | 
|  | { | 
|  | struct nvme_fc_rport *rport; | 
|  | struct nvme_fc_ctrl *ctrl; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&nvme_fc_lock, flags); | 
|  |  | 
|  | list_for_each_entry(rport, &lport->endp_list, endp_list) { | 
|  | if (rport->remoteport.node_name != pinfo->node_name || | 
|  | rport->remoteport.port_name != pinfo->port_name) | 
|  | continue; | 
|  |  | 
|  | if (!nvme_fc_rport_get(rport)) { | 
|  | rport = ERR_PTR(-ENOLCK); | 
|  | goto out_done; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  |  | 
|  | /* has it been unregistered */ | 
|  | if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { | 
|  | /* means lldd called us twice */ | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  | nvme_fc_rport_put(rport); | 
|  | return ERR_PTR(-ESTALE); | 
|  | } | 
|  |  | 
|  | rport->remoteport.port_role = pinfo->port_role; | 
|  | rport->remoteport.port_id = pinfo->port_id; | 
|  | rport->remoteport.port_state = FC_OBJSTATE_ONLINE; | 
|  | rport->dev_loss_end = 0; | 
|  |  | 
|  | /* | 
|  | * kick off a reconnect attempt on all associations to the | 
|  | * remote port. A successful reconnects will resume i/o. | 
|  | */ | 
|  | list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) | 
|  | nvme_fc_resume_controller(ctrl); | 
|  |  | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  |  | 
|  | return rport; | 
|  | } | 
|  |  | 
|  | rport = NULL; | 
|  |  | 
|  | out_done: | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | return rport; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, | 
|  | struct nvme_fc_port_info *pinfo) | 
|  | { | 
|  | if (pinfo->dev_loss_tmo) | 
|  | rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; | 
|  | else | 
|  | rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nvme_fc_register_remoteport - transport entry point called by an | 
|  | *                              LLDD to register the existence of a NVME | 
|  | *                              subsystem FC port on its fabric. | 
|  | * @localport: pointer to the (registered) local port that the remote | 
|  | *             subsystem port is connected to. | 
|  | * @pinfo:     pointer to information about the port to be registered | 
|  | * @portptr:   pointer to a remote port pointer. Upon success, the routine | 
|  | *             will allocate a nvme_fc_remote_port structure and place its | 
|  | *             address in the remote port pointer. Upon failure, remote port | 
|  | *             pointer will be set to 0. | 
|  | * | 
|  | * Returns: | 
|  | * a completion status. Must be 0 upon success; a negative errno | 
|  | * (ex: -ENXIO) upon failure. | 
|  | */ | 
|  | int | 
|  | nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, | 
|  | struct nvme_fc_port_info *pinfo, | 
|  | struct nvme_fc_remote_port **portptr) | 
|  | { | 
|  | struct nvme_fc_lport *lport = localport_to_lport(localport); | 
|  | struct nvme_fc_rport *newrec; | 
|  | unsigned long flags; | 
|  | int ret, idx; | 
|  |  | 
|  | if (!nvme_fc_lport_get(lport)) { | 
|  | ret = -ESHUTDOWN; | 
|  | goto out_reghost_failed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look to see if there is already a remoteport that is waiting | 
|  | * for a reconnect (within dev_loss_tmo) with the same WWN's. | 
|  | * If so, transition to it and reconnect. | 
|  | */ | 
|  | newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); | 
|  |  | 
|  | /* found an rport, but something about its state is bad */ | 
|  | if (IS_ERR(newrec)) { | 
|  | ret = PTR_ERR(newrec); | 
|  | goto out_lport_put; | 
|  |  | 
|  | /* found existing rport, which was resumed */ | 
|  | } else if (newrec) { | 
|  | nvme_fc_lport_put(lport); | 
|  | __nvme_fc_set_dev_loss_tmo(newrec, pinfo); | 
|  | nvme_fc_signal_discovery_scan(lport, newrec); | 
|  | *portptr = &newrec->remoteport; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* nothing found - allocate a new remoteport struct */ | 
|  |  | 
|  | newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), | 
|  | GFP_KERNEL); | 
|  | if (!newrec) { | 
|  | ret = -ENOMEM; | 
|  | goto out_lport_put; | 
|  | } | 
|  |  | 
|  | idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); | 
|  | if (idx < 0) { | 
|  | ret = -ENOSPC; | 
|  | goto out_kfree_rport; | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&newrec->endp_list); | 
|  | INIT_LIST_HEAD(&newrec->ctrl_list); | 
|  | INIT_LIST_HEAD(&newrec->ls_req_list); | 
|  | INIT_LIST_HEAD(&newrec->disc_list); | 
|  | kref_init(&newrec->ref); | 
|  | atomic_set(&newrec->act_ctrl_cnt, 0); | 
|  | spin_lock_init(&newrec->lock); | 
|  | newrec->remoteport.localport = &lport->localport; | 
|  | newrec->dev = lport->dev; | 
|  | newrec->lport = lport; | 
|  | newrec->remoteport.private = &newrec[1]; | 
|  | newrec->remoteport.port_role = pinfo->port_role; | 
|  | newrec->remoteport.node_name = pinfo->node_name; | 
|  | newrec->remoteport.port_name = pinfo->port_name; | 
|  | newrec->remoteport.port_id = pinfo->port_id; | 
|  | newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; | 
|  | newrec->remoteport.port_num = idx; | 
|  | __nvme_fc_set_dev_loss_tmo(newrec, pinfo); | 
|  |  | 
|  | spin_lock_irqsave(&nvme_fc_lock, flags); | 
|  | list_add_tail(&newrec->endp_list, &lport->endp_list); | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | nvme_fc_signal_discovery_scan(lport, newrec); | 
|  |  | 
|  | *portptr = &newrec->remoteport; | 
|  | return 0; | 
|  |  | 
|  | out_kfree_rport: | 
|  | kfree(newrec); | 
|  | out_lport_put: | 
|  | nvme_fc_lport_put(lport); | 
|  | out_reghost_failed: | 
|  | *portptr = NULL; | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); | 
|  |  | 
|  | static int | 
|  | nvme_fc_abort_lsops(struct nvme_fc_rport *rport) | 
|  | { | 
|  | struct nvmefc_ls_req_op *lsop; | 
|  | unsigned long flags; | 
|  |  | 
|  | restart: | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  |  | 
|  | list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { | 
|  | if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { | 
|  | lsop->flags |= FCOP_FLAGS_TERMIO; | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  | rport->lport->ops->ls_abort(&rport->lport->localport, | 
|  | &rport->remoteport, | 
|  | &lsop->ls_req); | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | dev_info(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: controller connectivity lost. Awaiting " | 
|  | "Reconnect", ctrl->cnum); | 
|  |  | 
|  | switch (ctrl->ctrl.state) { | 
|  | case NVME_CTRL_NEW: | 
|  | case NVME_CTRL_LIVE: | 
|  | /* | 
|  | * Schedule a controller reset. The reset will terminate the | 
|  | * association and schedule the reconnect timer.  Reconnects | 
|  | * will be attempted until either the ctlr_loss_tmo | 
|  | * (max_retries * connect_delay) expires or the remoteport's | 
|  | * dev_loss_tmo expires. | 
|  | */ | 
|  | if (nvme_reset_ctrl(&ctrl->ctrl)) { | 
|  | dev_warn(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: Couldn't schedule reset.\n", | 
|  | ctrl->cnum); | 
|  | nvme_delete_ctrl(&ctrl->ctrl); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case NVME_CTRL_CONNECTING: | 
|  | /* | 
|  | * The association has already been terminated and the | 
|  | * controller is attempting reconnects.  No need to do anything | 
|  | * futher.  Reconnects will be attempted until either the | 
|  | * ctlr_loss_tmo (max_retries * connect_delay) expires or the | 
|  | * remoteport's dev_loss_tmo expires. | 
|  | */ | 
|  | break; | 
|  |  | 
|  | case NVME_CTRL_RESETTING: | 
|  | /* | 
|  | * Controller is already in the process of terminating the | 
|  | * association.  No need to do anything further. The reconnect | 
|  | * step will kick in naturally after the association is | 
|  | * terminated. | 
|  | */ | 
|  | break; | 
|  |  | 
|  | case NVME_CTRL_DELETING: | 
|  | default: | 
|  | /* no action to take - let it delete */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nvme_fc_unregister_remoteport - transport entry point called by an | 
|  | *                              LLDD to deregister/remove a previously | 
|  | *                              registered a NVME subsystem FC port. | 
|  | * @portptr: pointer to the (registered) remote port that is to be | 
|  | *           deregistered. | 
|  | * | 
|  | * Returns: | 
|  | * a completion status. Must be 0 upon success; a negative errno | 
|  | * (ex: -ENXIO) upon failure. | 
|  | */ | 
|  | int | 
|  | nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) | 
|  | { | 
|  | struct nvme_fc_rport *rport = remoteport_to_rport(portptr); | 
|  | struct nvme_fc_ctrl *ctrl; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!portptr) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  |  | 
|  | if (portptr->port_state != FC_OBJSTATE_ONLINE) { | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  | return -EINVAL; | 
|  | } | 
|  | portptr->port_state = FC_OBJSTATE_DELETED; | 
|  |  | 
|  | rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); | 
|  |  | 
|  | list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { | 
|  | /* if dev_loss_tmo==0, dev loss is immediate */ | 
|  | if (!portptr->dev_loss_tmo) { | 
|  | dev_warn(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: controller connectivity lost.\n", | 
|  | ctrl->cnum); | 
|  | nvme_delete_ctrl(&ctrl->ctrl); | 
|  | } else | 
|  | nvme_fc_ctrl_connectivity_loss(ctrl); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  |  | 
|  | nvme_fc_abort_lsops(rport); | 
|  |  | 
|  | if (atomic_read(&rport->act_ctrl_cnt) == 0) | 
|  | rport->lport->ops->remoteport_delete(portptr); | 
|  |  | 
|  | /* | 
|  | * release the reference, which will allow, if all controllers | 
|  | * go away, which should only occur after dev_loss_tmo occurs, | 
|  | * for the rport to be torn down. | 
|  | */ | 
|  | nvme_fc_rport_put(rport); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); | 
|  |  | 
|  | /** | 
|  | * nvme_fc_rescan_remoteport - transport entry point called by an | 
|  | *                              LLDD to request a nvme device rescan. | 
|  | * @remoteport: pointer to the (registered) remote port that is to be | 
|  | *              rescanned. | 
|  | * | 
|  | * Returns: N/A | 
|  | */ | 
|  | void | 
|  | nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) | 
|  | { | 
|  | struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); | 
|  |  | 
|  | nvme_fc_signal_discovery_scan(rport->lport, rport); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); | 
|  |  | 
|  | int | 
|  | nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, | 
|  | u32 dev_loss_tmo) | 
|  | { | 
|  | struct nvme_fc_rport *rport = remoteport_to_rport(portptr); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  |  | 
|  | if (portptr->port_state != FC_OBJSTATE_ONLINE) { | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ | 
|  | rport->remoteport.dev_loss_tmo = dev_loss_tmo; | 
|  |  | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); | 
|  |  | 
|  |  | 
|  | /* *********************** FC-NVME DMA Handling **************************** */ | 
|  |  | 
|  | /* | 
|  | * The fcloop device passes in a NULL device pointer. Real LLD's will | 
|  | * pass in a valid device pointer. If NULL is passed to the dma mapping | 
|  | * routines, depending on the platform, it may or may not succeed, and | 
|  | * may crash. | 
|  | * | 
|  | * As such: | 
|  | * Wrapper all the dma routines and check the dev pointer. | 
|  | * | 
|  | * If simple mappings (return just a dma address, we'll noop them, | 
|  | * returning a dma address of 0. | 
|  | * | 
|  | * On more complex mappings (dma_map_sg), a pseudo routine fills | 
|  | * in the scatter list, setting all dma addresses to 0. | 
|  | */ | 
|  |  | 
|  | static inline dma_addr_t | 
|  | fc_dma_map_single(struct device *dev, void *ptr, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
|  | { | 
|  | return dev ? dma_mapping_error(dev, dma_addr) : 0; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | if (dev) | 
|  | dma_unmap_single(dev, addr, size, dir); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | if (dev) | 
|  | dma_sync_single_for_cpu(dev, addr, size, dir); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | if (dev) | 
|  | dma_sync_single_for_device(dev, addr, size, dir); | 
|  | } | 
|  |  | 
|  | /* pseudo dma_map_sg call */ | 
|  | static int | 
|  | fc_map_sg(struct scatterlist *sg, int nents) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | WARN_ON(nents == 0 || sg[0].length == 0); | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) { | 
|  | s->dma_address = 0L; | 
|  | #ifdef CONFIG_NEED_SG_DMA_LENGTH | 
|  | s->dma_length = s->length; | 
|  | #endif | 
|  | } | 
|  | return nents; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | if (dev) | 
|  | dma_unmap_sg(dev, sg, nents, dir); | 
|  | } | 
|  |  | 
|  | /* *********************** FC-NVME LS Handling **************************** */ | 
|  |  | 
|  | static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); | 
|  | static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); | 
|  |  | 
|  |  | 
|  | static void | 
|  | __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) | 
|  | { | 
|  | struct nvme_fc_rport *rport = lsop->rport; | 
|  | struct nvmefc_ls_req *lsreq = &lsop->ls_req; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  |  | 
|  | if (!lsop->req_queued) { | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | list_del(&lsop->lsreq_list); | 
|  |  | 
|  | lsop->req_queued = false; | 
|  |  | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  |  | 
|  | fc_dma_unmap_single(rport->dev, lsreq->rqstdma, | 
|  | (lsreq->rqstlen + lsreq->rsplen), | 
|  | DMA_BIDIRECTIONAL); | 
|  |  | 
|  | nvme_fc_rport_put(rport); | 
|  | } | 
|  |  | 
|  | static int | 
|  | __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, | 
|  | struct nvmefc_ls_req_op *lsop, | 
|  | void (*done)(struct nvmefc_ls_req *req, int status)) | 
|  | { | 
|  | struct nvmefc_ls_req *lsreq = &lsop->ls_req; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) | 
|  | return -ECONNREFUSED; | 
|  |  | 
|  | if (!nvme_fc_rport_get(rport)) | 
|  | return -ESHUTDOWN; | 
|  |  | 
|  | lsreq->done = done; | 
|  | lsop->rport = rport; | 
|  | lsop->req_queued = false; | 
|  | INIT_LIST_HEAD(&lsop->lsreq_list); | 
|  | init_completion(&lsop->ls_done); | 
|  |  | 
|  | lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, | 
|  | lsreq->rqstlen + lsreq->rsplen, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { | 
|  | ret = -EFAULT; | 
|  | goto out_putrport; | 
|  | } | 
|  | lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; | 
|  |  | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  |  | 
|  | list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); | 
|  |  | 
|  | lsop->req_queued = true; | 
|  |  | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  |  | 
|  | ret = rport->lport->ops->ls_req(&rport->lport->localport, | 
|  | &rport->remoteport, lsreq); | 
|  | if (ret) | 
|  | goto out_unlink; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unlink: | 
|  | lsop->ls_error = ret; | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  | lsop->req_queued = false; | 
|  | list_del(&lsop->lsreq_list); | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  | fc_dma_unmap_single(rport->dev, lsreq->rqstdma, | 
|  | (lsreq->rqstlen + lsreq->rsplen), | 
|  | DMA_BIDIRECTIONAL); | 
|  | out_putrport: | 
|  | nvme_fc_rport_put(rport); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) | 
|  | { | 
|  | struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); | 
|  |  | 
|  | lsop->ls_error = status; | 
|  | complete(&lsop->ls_done); | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) | 
|  | { | 
|  | struct nvmefc_ls_req *lsreq = &lsop->ls_req; | 
|  | struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; | 
|  | int ret; | 
|  |  | 
|  | ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); | 
|  |  | 
|  | if (!ret) { | 
|  | /* | 
|  | * No timeout/not interruptible as we need the struct | 
|  | * to exist until the lldd calls us back. Thus mandate | 
|  | * wait until driver calls back. lldd responsible for | 
|  | * the timeout action | 
|  | */ | 
|  | wait_for_completion(&lsop->ls_done); | 
|  |  | 
|  | __nvme_fc_finish_ls_req(lsop); | 
|  |  | 
|  | ret = lsop->ls_error; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* ACC or RJT payload ? */ | 
|  | if (rjt->w0.ls_cmd == FCNVME_LS_RJT) | 
|  | return -ENXIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, | 
|  | struct nvmefc_ls_req_op *lsop, | 
|  | void (*done)(struct nvmefc_ls_req *req, int status)) | 
|  | { | 
|  | /* don't wait for completion */ | 
|  |  | 
|  | return __nvme_fc_send_ls_req(rport, lsop, done); | 
|  | } | 
|  |  | 
|  | /* Validation Error indexes into the string table below */ | 
|  | enum { | 
|  | VERR_NO_ERROR		= 0, | 
|  | VERR_LSACC		= 1, | 
|  | VERR_LSDESC_RQST	= 2, | 
|  | VERR_LSDESC_RQST_LEN	= 3, | 
|  | VERR_ASSOC_ID		= 4, | 
|  | VERR_ASSOC_ID_LEN	= 5, | 
|  | VERR_CONN_ID		= 6, | 
|  | VERR_CONN_ID_LEN	= 7, | 
|  | VERR_CR_ASSOC		= 8, | 
|  | VERR_CR_ASSOC_ACC_LEN	= 9, | 
|  | VERR_CR_CONN		= 10, | 
|  | VERR_CR_CONN_ACC_LEN	= 11, | 
|  | VERR_DISCONN		= 12, | 
|  | VERR_DISCONN_ACC_LEN	= 13, | 
|  | }; | 
|  |  | 
|  | static char *validation_errors[] = { | 
|  | "OK", | 
|  | "Not LS_ACC", | 
|  | "Not LSDESC_RQST", | 
|  | "Bad LSDESC_RQST Length", | 
|  | "Not Association ID", | 
|  | "Bad Association ID Length", | 
|  | "Not Connection ID", | 
|  | "Bad Connection ID Length", | 
|  | "Not CR_ASSOC Rqst", | 
|  | "Bad CR_ASSOC ACC Length", | 
|  | "Not CR_CONN Rqst", | 
|  | "Bad CR_CONN ACC Length", | 
|  | "Not Disconnect Rqst", | 
|  | "Bad Disconnect ACC Length", | 
|  | }; | 
|  |  | 
|  | static int | 
|  | nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, | 
|  | struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) | 
|  | { | 
|  | struct nvmefc_ls_req_op *lsop; | 
|  | struct nvmefc_ls_req *lsreq; | 
|  | struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; | 
|  | struct fcnvme_ls_cr_assoc_acc *assoc_acc; | 
|  | int ret, fcret = 0; | 
|  |  | 
|  | lsop = kzalloc((sizeof(*lsop) + | 
|  | ctrl->lport->ops->lsrqst_priv_sz + | 
|  | sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); | 
|  | if (!lsop) { | 
|  | ret = -ENOMEM; | 
|  | goto out_no_memory; | 
|  | } | 
|  | lsreq = &lsop->ls_req; | 
|  |  | 
|  | lsreq->private = (void *)&lsop[1]; | 
|  | assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) | 
|  | (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); | 
|  | assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; | 
|  |  | 
|  | assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; | 
|  | assoc_rqst->desc_list_len = | 
|  | cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); | 
|  |  | 
|  | assoc_rqst->assoc_cmd.desc_tag = | 
|  | cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); | 
|  | assoc_rqst->assoc_cmd.desc_len = | 
|  | fcnvme_lsdesc_len( | 
|  | sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); | 
|  |  | 
|  | assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); | 
|  | assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); | 
|  | /* Linux supports only Dynamic controllers */ | 
|  | assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); | 
|  | uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); | 
|  | strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, | 
|  | min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); | 
|  | strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, | 
|  | min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); | 
|  |  | 
|  | lsop->queue = queue; | 
|  | lsreq->rqstaddr = assoc_rqst; | 
|  | lsreq->rqstlen = sizeof(*assoc_rqst); | 
|  | lsreq->rspaddr = assoc_acc; | 
|  | lsreq->rsplen = sizeof(*assoc_acc); | 
|  | lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; | 
|  |  | 
|  | ret = nvme_fc_send_ls_req(ctrl->rport, lsop); | 
|  | if (ret) | 
|  | goto out_free_buffer; | 
|  |  | 
|  | /* process connect LS completion */ | 
|  |  | 
|  | /* validate the ACC response */ | 
|  | if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) | 
|  | fcret = VERR_LSACC; | 
|  | else if (assoc_acc->hdr.desc_list_len != | 
|  | fcnvme_lsdesc_len( | 
|  | sizeof(struct fcnvme_ls_cr_assoc_acc))) | 
|  | fcret = VERR_CR_ASSOC_ACC_LEN; | 
|  | else if (assoc_acc->hdr.rqst.desc_tag != | 
|  | cpu_to_be32(FCNVME_LSDESC_RQST)) | 
|  | fcret = VERR_LSDESC_RQST; | 
|  | else if (assoc_acc->hdr.rqst.desc_len != | 
|  | fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) | 
|  | fcret = VERR_LSDESC_RQST_LEN; | 
|  | else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) | 
|  | fcret = VERR_CR_ASSOC; | 
|  | else if (assoc_acc->associd.desc_tag != | 
|  | cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) | 
|  | fcret = VERR_ASSOC_ID; | 
|  | else if (assoc_acc->associd.desc_len != | 
|  | fcnvme_lsdesc_len( | 
|  | sizeof(struct fcnvme_lsdesc_assoc_id))) | 
|  | fcret = VERR_ASSOC_ID_LEN; | 
|  | else if (assoc_acc->connectid.desc_tag != | 
|  | cpu_to_be32(FCNVME_LSDESC_CONN_ID)) | 
|  | fcret = VERR_CONN_ID; | 
|  | else if (assoc_acc->connectid.desc_len != | 
|  | fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) | 
|  | fcret = VERR_CONN_ID_LEN; | 
|  |  | 
|  | if (fcret) { | 
|  | ret = -EBADF; | 
|  | dev_err(ctrl->dev, | 
|  | "q %d connect failed: %s\n", | 
|  | queue->qnum, validation_errors[fcret]); | 
|  | } else { | 
|  | ctrl->association_id = | 
|  | be64_to_cpu(assoc_acc->associd.association_id); | 
|  | queue->connection_id = | 
|  | be64_to_cpu(assoc_acc->connectid.connection_id); | 
|  | set_bit(NVME_FC_Q_CONNECTED, &queue->flags); | 
|  | } | 
|  |  | 
|  | out_free_buffer: | 
|  | kfree(lsop); | 
|  | out_no_memory: | 
|  | if (ret) | 
|  | dev_err(ctrl->dev, | 
|  | "queue %d connect admin queue failed (%d).\n", | 
|  | queue->qnum, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, | 
|  | u16 qsize, u16 ersp_ratio) | 
|  | { | 
|  | struct nvmefc_ls_req_op *lsop; | 
|  | struct nvmefc_ls_req *lsreq; | 
|  | struct fcnvme_ls_cr_conn_rqst *conn_rqst; | 
|  | struct fcnvme_ls_cr_conn_acc *conn_acc; | 
|  | int ret, fcret = 0; | 
|  |  | 
|  | lsop = kzalloc((sizeof(*lsop) + | 
|  | ctrl->lport->ops->lsrqst_priv_sz + | 
|  | sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); | 
|  | if (!lsop) { | 
|  | ret = -ENOMEM; | 
|  | goto out_no_memory; | 
|  | } | 
|  | lsreq = &lsop->ls_req; | 
|  |  | 
|  | lsreq->private = (void *)&lsop[1]; | 
|  | conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) | 
|  | (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); | 
|  | conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; | 
|  |  | 
|  | conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; | 
|  | conn_rqst->desc_list_len = cpu_to_be32( | 
|  | sizeof(struct fcnvme_lsdesc_assoc_id) + | 
|  | sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); | 
|  |  | 
|  | conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); | 
|  | conn_rqst->associd.desc_len = | 
|  | fcnvme_lsdesc_len( | 
|  | sizeof(struct fcnvme_lsdesc_assoc_id)); | 
|  | conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); | 
|  | conn_rqst->connect_cmd.desc_tag = | 
|  | cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); | 
|  | conn_rqst->connect_cmd.desc_len = | 
|  | fcnvme_lsdesc_len( | 
|  | sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); | 
|  | conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); | 
|  | conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum); | 
|  | conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); | 
|  |  | 
|  | lsop->queue = queue; | 
|  | lsreq->rqstaddr = conn_rqst; | 
|  | lsreq->rqstlen = sizeof(*conn_rqst); | 
|  | lsreq->rspaddr = conn_acc; | 
|  | lsreq->rsplen = sizeof(*conn_acc); | 
|  | lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; | 
|  |  | 
|  | ret = nvme_fc_send_ls_req(ctrl->rport, lsop); | 
|  | if (ret) | 
|  | goto out_free_buffer; | 
|  |  | 
|  | /* process connect LS completion */ | 
|  |  | 
|  | /* validate the ACC response */ | 
|  | if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) | 
|  | fcret = VERR_LSACC; | 
|  | else if (conn_acc->hdr.desc_list_len != | 
|  | fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) | 
|  | fcret = VERR_CR_CONN_ACC_LEN; | 
|  | else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) | 
|  | fcret = VERR_LSDESC_RQST; | 
|  | else if (conn_acc->hdr.rqst.desc_len != | 
|  | fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) | 
|  | fcret = VERR_LSDESC_RQST_LEN; | 
|  | else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) | 
|  | fcret = VERR_CR_CONN; | 
|  | else if (conn_acc->connectid.desc_tag != | 
|  | cpu_to_be32(FCNVME_LSDESC_CONN_ID)) | 
|  | fcret = VERR_CONN_ID; | 
|  | else if (conn_acc->connectid.desc_len != | 
|  | fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) | 
|  | fcret = VERR_CONN_ID_LEN; | 
|  |  | 
|  | if (fcret) { | 
|  | ret = -EBADF; | 
|  | dev_err(ctrl->dev, | 
|  | "q %d connect failed: %s\n", | 
|  | queue->qnum, validation_errors[fcret]); | 
|  | } else { | 
|  | queue->connection_id = | 
|  | be64_to_cpu(conn_acc->connectid.connection_id); | 
|  | set_bit(NVME_FC_Q_CONNECTED, &queue->flags); | 
|  | } | 
|  |  | 
|  | out_free_buffer: | 
|  | kfree(lsop); | 
|  | out_no_memory: | 
|  | if (ret) | 
|  | dev_err(ctrl->dev, | 
|  | "queue %d connect command failed (%d).\n", | 
|  | queue->qnum, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) | 
|  | { | 
|  | struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); | 
|  |  | 
|  | __nvme_fc_finish_ls_req(lsop); | 
|  |  | 
|  | /* fc-nvme initiator doesn't care about success or failure of cmd */ | 
|  |  | 
|  | kfree(lsop); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine sends a FC-NVME LS to disconnect (aka terminate) | 
|  | * the FC-NVME Association.  Terminating the association also | 
|  | * terminates the FC-NVME connections (per queue, both admin and io | 
|  | * queues) that are part of the association. E.g. things are torn | 
|  | * down, and the related FC-NVME Association ID and Connection IDs | 
|  | * become invalid. | 
|  | * | 
|  | * The behavior of the fc-nvme initiator is such that it's | 
|  | * understanding of the association and connections will implicitly | 
|  | * be torn down. The action is implicit as it may be due to a loss of | 
|  | * connectivity with the fc-nvme target, so you may never get a | 
|  | * response even if you tried.  As such, the action of this routine | 
|  | * is to asynchronously send the LS, ignore any results of the LS, and | 
|  | * continue on with terminating the association. If the fc-nvme target | 
|  | * is present and receives the LS, it too can tear down. | 
|  | */ | 
|  | static void | 
|  | nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | struct fcnvme_ls_disconnect_rqst *discon_rqst; | 
|  | struct fcnvme_ls_disconnect_acc *discon_acc; | 
|  | struct nvmefc_ls_req_op *lsop; | 
|  | struct nvmefc_ls_req *lsreq; | 
|  | int ret; | 
|  |  | 
|  | lsop = kzalloc((sizeof(*lsop) + | 
|  | ctrl->lport->ops->lsrqst_priv_sz + | 
|  | sizeof(*discon_rqst) + sizeof(*discon_acc)), | 
|  | GFP_KERNEL); | 
|  | if (!lsop) | 
|  | /* couldn't sent it... too bad */ | 
|  | return; | 
|  |  | 
|  | lsreq = &lsop->ls_req; | 
|  |  | 
|  | lsreq->private = (void *)&lsop[1]; | 
|  | discon_rqst = (struct fcnvme_ls_disconnect_rqst *) | 
|  | (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); | 
|  | discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1]; | 
|  |  | 
|  | discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT; | 
|  | discon_rqst->desc_list_len = cpu_to_be32( | 
|  | sizeof(struct fcnvme_lsdesc_assoc_id) + | 
|  | sizeof(struct fcnvme_lsdesc_disconn_cmd)); | 
|  |  | 
|  | discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); | 
|  | discon_rqst->associd.desc_len = | 
|  | fcnvme_lsdesc_len( | 
|  | sizeof(struct fcnvme_lsdesc_assoc_id)); | 
|  |  | 
|  | discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); | 
|  |  | 
|  | discon_rqst->discon_cmd.desc_tag = cpu_to_be32( | 
|  | FCNVME_LSDESC_DISCONN_CMD); | 
|  | discon_rqst->discon_cmd.desc_len = | 
|  | fcnvme_lsdesc_len( | 
|  | sizeof(struct fcnvme_lsdesc_disconn_cmd)); | 
|  | discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION; | 
|  | discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id); | 
|  |  | 
|  | lsreq->rqstaddr = discon_rqst; | 
|  | lsreq->rqstlen = sizeof(*discon_rqst); | 
|  | lsreq->rspaddr = discon_acc; | 
|  | lsreq->rsplen = sizeof(*discon_acc); | 
|  | lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; | 
|  |  | 
|  | ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, | 
|  | nvme_fc_disconnect_assoc_done); | 
|  | if (ret) | 
|  | kfree(lsop); | 
|  |  | 
|  | /* only meaningful part to terminating the association */ | 
|  | ctrl->association_id = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* *********************** NVME Ctrl Routines **************************** */ | 
|  |  | 
|  | static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); | 
|  |  | 
|  | static void | 
|  | __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, | 
|  | struct nvme_fc_fcp_op *op) | 
|  | { | 
|  | fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, | 
|  | sizeof(op->rsp_iu), DMA_FROM_DEVICE); | 
|  | fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, | 
|  | sizeof(op->cmd_iu), DMA_TO_DEVICE); | 
|  |  | 
|  | atomic_set(&op->state, FCPOP_STATE_UNINIT); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, | 
|  | unsigned int hctx_idx) | 
|  | { | 
|  | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | 
|  |  | 
|  | return __nvme_fc_exit_request(set->driver_data, op); | 
|  | } | 
|  |  | 
|  | static int | 
|  | __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) | 
|  | { | 
|  | unsigned long flags; | 
|  | int opstate; | 
|  |  | 
|  | spin_lock_irqsave(&ctrl->lock, flags); | 
|  | opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); | 
|  | if (opstate != FCPOP_STATE_ACTIVE) | 
|  | atomic_set(&op->state, opstate); | 
|  | else if (ctrl->flags & FCCTRL_TERMIO) | 
|  | ctrl->iocnt++; | 
|  | spin_unlock_irqrestore(&ctrl->lock, flags); | 
|  |  | 
|  | if (opstate != FCPOP_STATE_ACTIVE) | 
|  | return -ECANCELED; | 
|  |  | 
|  | ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, | 
|  | &ctrl->rport->remoteport, | 
|  | op->queue->lldd_handle, | 
|  | &op->fcp_req); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; | 
|  | int i; | 
|  |  | 
|  | /* ensure we've initialized the ops once */ | 
|  | if (!(aen_op->flags & FCOP_FLAGS_AEN)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) | 
|  | __nvme_fc_abort_op(ctrl, aen_op); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, | 
|  | struct nvme_fc_fcp_op *op, int opstate) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (opstate == FCPOP_STATE_ABORTED) { | 
|  | spin_lock_irqsave(&ctrl->lock, flags); | 
|  | if (ctrl->flags & FCCTRL_TERMIO) { | 
|  | if (!--ctrl->iocnt) | 
|  | wake_up(&ctrl->ioabort_wait); | 
|  | } | 
|  | spin_unlock_irqrestore(&ctrl->lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) | 
|  | { | 
|  | struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); | 
|  | struct request *rq = op->rq; | 
|  | struct nvmefc_fcp_req *freq = &op->fcp_req; | 
|  | struct nvme_fc_ctrl *ctrl = op->ctrl; | 
|  | struct nvme_fc_queue *queue = op->queue; | 
|  | struct nvme_completion *cqe = &op->rsp_iu.cqe; | 
|  | struct nvme_command *sqe = &op->cmd_iu.sqe; | 
|  | __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); | 
|  | union nvme_result result; | 
|  | bool terminate_assoc = true; | 
|  | int opstate; | 
|  |  | 
|  | /* | 
|  | * WARNING: | 
|  | * The current linux implementation of a nvme controller | 
|  | * allocates a single tag set for all io queues and sizes | 
|  | * the io queues to fully hold all possible tags. Thus, the | 
|  | * implementation does not reference or care about the sqhd | 
|  | * value as it never needs to use the sqhd/sqtail pointers | 
|  | * for submission pacing. | 
|  | * | 
|  | * This affects the FC-NVME implementation in two ways: | 
|  | * 1) As the value doesn't matter, we don't need to waste | 
|  | *    cycles extracting it from ERSPs and stamping it in the | 
|  | *    cases where the transport fabricates CQEs on successful | 
|  | *    completions. | 
|  | * 2) The FC-NVME implementation requires that delivery of | 
|  | *    ERSP completions are to go back to the nvme layer in order | 
|  | *    relative to the rsn, such that the sqhd value will always | 
|  | *    be "in order" for the nvme layer. As the nvme layer in | 
|  | *    linux doesn't care about sqhd, there's no need to return | 
|  | *    them in order. | 
|  | * | 
|  | * Additionally: | 
|  | * As the core nvme layer in linux currently does not look at | 
|  | * every field in the cqe - in cases where the FC transport must | 
|  | * fabricate a CQE, the following fields will not be set as they | 
|  | * are not referenced: | 
|  | *      cqe.sqid,  cqe.sqhd,  cqe.command_id | 
|  | * | 
|  | * Failure or error of an individual i/o, in a transport | 
|  | * detected fashion unrelated to the nvme completion status, | 
|  | * potentially cause the initiator and target sides to get out | 
|  | * of sync on SQ head/tail (aka outstanding io count allowed). | 
|  | * Per FC-NVME spec, failure of an individual command requires | 
|  | * the connection to be terminated, which in turn requires the | 
|  | * association to be terminated. | 
|  | */ | 
|  |  | 
|  | opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); | 
|  |  | 
|  | fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, | 
|  | sizeof(op->rsp_iu), DMA_FROM_DEVICE); | 
|  |  | 
|  | if (opstate == FCPOP_STATE_ABORTED) | 
|  | status = cpu_to_le16(NVME_SC_ABORT_REQ << 1); | 
|  | else if (freq->status) | 
|  | status = cpu_to_le16(NVME_SC_INTERNAL << 1); | 
|  |  | 
|  | /* | 
|  | * For the linux implementation, if we have an unsuccesful | 
|  | * status, they blk-mq layer can typically be called with the | 
|  | * non-zero status and the content of the cqe isn't important. | 
|  | */ | 
|  | if (status) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * command completed successfully relative to the wire | 
|  | * protocol. However, validate anything received and | 
|  | * extract the status and result from the cqe (create it | 
|  | * where necessary). | 
|  | */ | 
|  |  | 
|  | switch (freq->rcv_rsplen) { | 
|  |  | 
|  | case 0: | 
|  | case NVME_FC_SIZEOF_ZEROS_RSP: | 
|  | /* | 
|  | * No response payload or 12 bytes of payload (which | 
|  | * should all be zeros) are considered successful and | 
|  | * no payload in the CQE by the transport. | 
|  | */ | 
|  | if (freq->transferred_length != | 
|  | be32_to_cpu(op->cmd_iu.data_len)) { | 
|  | status = cpu_to_le16(NVME_SC_INTERNAL << 1); | 
|  | goto done; | 
|  | } | 
|  | result.u64 = 0; | 
|  | break; | 
|  |  | 
|  | case sizeof(struct nvme_fc_ersp_iu): | 
|  | /* | 
|  | * The ERSP IU contains a full completion with CQE. | 
|  | * Validate ERSP IU and look at cqe. | 
|  | */ | 
|  | if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != | 
|  | (freq->rcv_rsplen / 4) || | 
|  | be32_to_cpu(op->rsp_iu.xfrd_len) != | 
|  | freq->transferred_length || | 
|  | op->rsp_iu.status_code || | 
|  | sqe->common.command_id != cqe->command_id)) { | 
|  | status = cpu_to_le16(NVME_SC_INTERNAL << 1); | 
|  | goto done; | 
|  | } | 
|  | result = cqe->result; | 
|  | status = cqe->status; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | status = cpu_to_le16(NVME_SC_INTERNAL << 1); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | terminate_assoc = false; | 
|  |  | 
|  | done: | 
|  | if (op->flags & FCOP_FLAGS_AEN) { | 
|  | nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); | 
|  | __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); | 
|  | atomic_set(&op->state, FCPOP_STATE_IDLE); | 
|  | op->flags = FCOP_FLAGS_AEN;	/* clear other flags */ | 
|  | nvme_fc_ctrl_put(ctrl); | 
|  | goto check_error; | 
|  | } | 
|  |  | 
|  | __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); | 
|  | nvme_end_request(rq, status, result); | 
|  |  | 
|  | check_error: | 
|  | if (terminate_assoc) | 
|  | nvme_fc_error_recovery(ctrl, "transport detected io error"); | 
|  | } | 
|  |  | 
|  | static int | 
|  | __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, | 
|  | struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, | 
|  | struct request *rq, u32 rqno) | 
|  | { | 
|  | struct nvme_fcp_op_w_sgl *op_w_sgl = | 
|  | container_of(op, typeof(*op_w_sgl), op); | 
|  | struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; | 
|  | int ret = 0; | 
|  |  | 
|  | memset(op, 0, sizeof(*op)); | 
|  | op->fcp_req.cmdaddr = &op->cmd_iu; | 
|  | op->fcp_req.cmdlen = sizeof(op->cmd_iu); | 
|  | op->fcp_req.rspaddr = &op->rsp_iu; | 
|  | op->fcp_req.rsplen = sizeof(op->rsp_iu); | 
|  | op->fcp_req.done = nvme_fc_fcpio_done; | 
|  | op->ctrl = ctrl; | 
|  | op->queue = queue; | 
|  | op->rq = rq; | 
|  | op->rqno = rqno; | 
|  |  | 
|  | cmdiu->scsi_id = NVME_CMD_SCSI_ID; | 
|  | cmdiu->fc_id = NVME_CMD_FC_ID; | 
|  | cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); | 
|  |  | 
|  | op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, | 
|  | &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); | 
|  | if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { | 
|  | dev_err(ctrl->dev, | 
|  | "FCP Op failed - cmdiu dma mapping failed.\n"); | 
|  | ret = EFAULT; | 
|  | goto out_on_error; | 
|  | } | 
|  |  | 
|  | op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, | 
|  | &op->rsp_iu, sizeof(op->rsp_iu), | 
|  | DMA_FROM_DEVICE); | 
|  | if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { | 
|  | dev_err(ctrl->dev, | 
|  | "FCP Op failed - rspiu dma mapping failed.\n"); | 
|  | ret = EFAULT; | 
|  | } | 
|  |  | 
|  | atomic_set(&op->state, FCPOP_STATE_IDLE); | 
|  | out_on_error: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, | 
|  | unsigned int hctx_idx, unsigned int numa_node) | 
|  | { | 
|  | struct nvme_fc_ctrl *ctrl = set->driver_data; | 
|  | struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); | 
|  | int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; | 
|  | struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; | 
|  | int res; | 
|  |  | 
|  | res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); | 
|  | if (res) | 
|  | return res; | 
|  | op->op.fcp_req.first_sgl = &op->sgl[0]; | 
|  | op->op.fcp_req.private = &op->priv[0]; | 
|  | nvme_req(rq)->ctrl = &ctrl->ctrl; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | struct nvme_fc_fcp_op *aen_op; | 
|  | struct nvme_fc_cmd_iu *cmdiu; | 
|  | struct nvme_command *sqe; | 
|  | void *private; | 
|  | int i, ret; | 
|  |  | 
|  | aen_op = ctrl->aen_ops; | 
|  | for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { | 
|  | private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, | 
|  | GFP_KERNEL); | 
|  | if (!private) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cmdiu = &aen_op->cmd_iu; | 
|  | sqe = &cmdiu->sqe; | 
|  | ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], | 
|  | aen_op, (struct request *)NULL, | 
|  | (NVME_AQ_BLK_MQ_DEPTH + i)); | 
|  | if (ret) { | 
|  | kfree(private); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | aen_op->flags = FCOP_FLAGS_AEN; | 
|  | aen_op->fcp_req.private = private; | 
|  |  | 
|  | memset(sqe, 0, sizeof(*sqe)); | 
|  | sqe->common.opcode = nvme_admin_async_event; | 
|  | /* Note: core layer may overwrite the sqe.command_id value */ | 
|  | sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | struct nvme_fc_fcp_op *aen_op; | 
|  | int i; | 
|  |  | 
|  | aen_op = ctrl->aen_ops; | 
|  | for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { | 
|  | if (!aen_op->fcp_req.private) | 
|  | continue; | 
|  |  | 
|  | __nvme_fc_exit_request(ctrl, aen_op); | 
|  |  | 
|  | kfree(aen_op->fcp_req.private); | 
|  | aen_op->fcp_req.private = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, | 
|  | unsigned int qidx) | 
|  | { | 
|  | struct nvme_fc_queue *queue = &ctrl->queues[qidx]; | 
|  |  | 
|  | hctx->driver_data = queue; | 
|  | queue->hctx = hctx; | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, | 
|  | unsigned int hctx_idx) | 
|  | { | 
|  | struct nvme_fc_ctrl *ctrl = data; | 
|  |  | 
|  | __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, | 
|  | unsigned int hctx_idx) | 
|  | { | 
|  | struct nvme_fc_ctrl *ctrl = data; | 
|  |  | 
|  | __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) | 
|  | { | 
|  | struct nvme_fc_queue *queue; | 
|  |  | 
|  | queue = &ctrl->queues[idx]; | 
|  | memset(queue, 0, sizeof(*queue)); | 
|  | queue->ctrl = ctrl; | 
|  | queue->qnum = idx; | 
|  | atomic_set(&queue->csn, 0); | 
|  | queue->dev = ctrl->dev; | 
|  |  | 
|  | if (idx > 0) | 
|  | queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; | 
|  | else | 
|  | queue->cmnd_capsule_len = sizeof(struct nvme_command); | 
|  |  | 
|  | /* | 
|  | * Considered whether we should allocate buffers for all SQEs | 
|  | * and CQEs and dma map them - mapping their respective entries | 
|  | * into the request structures (kernel vm addr and dma address) | 
|  | * thus the driver could use the buffers/mappings directly. | 
|  | * It only makes sense if the LLDD would use them for its | 
|  | * messaging api. It's very unlikely most adapter api's would use | 
|  | * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload | 
|  | * structures were used instead. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine terminates a queue at the transport level. | 
|  | * The transport has already ensured that all outstanding ios on | 
|  | * the queue have been terminated. | 
|  | * The transport will send a Disconnect LS request to terminate | 
|  | * the queue's connection. Termination of the admin queue will also | 
|  | * terminate the association at the target. | 
|  | */ | 
|  | static void | 
|  | nvme_fc_free_queue(struct nvme_fc_queue *queue) | 
|  | { | 
|  | if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) | 
|  | return; | 
|  |  | 
|  | clear_bit(NVME_FC_Q_LIVE, &queue->flags); | 
|  | /* | 
|  | * Current implementation never disconnects a single queue. | 
|  | * It always terminates a whole association. So there is never | 
|  | * a disconnect(queue) LS sent to the target. | 
|  | */ | 
|  |  | 
|  | queue->connection_id = 0; | 
|  | atomic_set(&queue->csn, 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, | 
|  | struct nvme_fc_queue *queue, unsigned int qidx) | 
|  | { | 
|  | if (ctrl->lport->ops->delete_queue) | 
|  | ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, | 
|  | queue->lldd_handle); | 
|  | queue->lldd_handle = NULL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i < ctrl->ctrl.queue_count; i++) | 
|  | nvme_fc_free_queue(&ctrl->queues[i]); | 
|  | } | 
|  |  | 
|  | static int | 
|  | __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, | 
|  | struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | queue->lldd_handle = NULL; | 
|  | if (ctrl->lport->ops->create_queue) | 
|  | ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, | 
|  | qidx, qsize, &queue->lldd_handle); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; | 
|  | int i; | 
|  |  | 
|  | for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) | 
|  | __nvme_fc_delete_hw_queue(ctrl, queue, i); | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) | 
|  | { | 
|  | struct nvme_fc_queue *queue = &ctrl->queues[1]; | 
|  | int i, ret; | 
|  |  | 
|  | for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { | 
|  | ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); | 
|  | if (ret) | 
|  | goto delete_queues; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | delete_queues: | 
|  | for (; i >= 0; i--) | 
|  | __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) | 
|  | { | 
|  | int i, ret = 0; | 
|  |  | 
|  | for (i = 1; i < ctrl->ctrl.queue_count; i++) { | 
|  | ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, | 
|  | (qsize / 5)); | 
|  | if (ret) | 
|  | break; | 
|  | ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i < ctrl->ctrl.queue_count; i++) | 
|  | nvme_fc_init_queue(ctrl, i); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_ctrl_free(struct kref *ref) | 
|  | { | 
|  | struct nvme_fc_ctrl *ctrl = | 
|  | container_of(ref, struct nvme_fc_ctrl, ref); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (ctrl->ctrl.tagset) { | 
|  | blk_cleanup_queue(ctrl->ctrl.connect_q); | 
|  | blk_mq_free_tag_set(&ctrl->tag_set); | 
|  | } | 
|  |  | 
|  | /* remove from rport list */ | 
|  | spin_lock_irqsave(&ctrl->rport->lock, flags); | 
|  | list_del(&ctrl->ctrl_list); | 
|  | spin_unlock_irqrestore(&ctrl->rport->lock, flags); | 
|  |  | 
|  | blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); | 
|  | blk_cleanup_queue(ctrl->ctrl.admin_q); | 
|  | blk_mq_free_tag_set(&ctrl->admin_tag_set); | 
|  |  | 
|  | kfree(ctrl->queues); | 
|  |  | 
|  | put_device(ctrl->dev); | 
|  | nvme_fc_rport_put(ctrl->rport); | 
|  |  | 
|  | ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); | 
|  | if (ctrl->ctrl.opts) | 
|  | nvmf_free_options(ctrl->ctrl.opts); | 
|  | kfree(ctrl); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | kref_put(&ctrl->ref, nvme_fc_ctrl_free); | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | return kref_get_unless_zero(&ctrl->ref); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All accesses from nvme core layer done - can now free the | 
|  | * controller. Called after last nvme_put_ctrl() call | 
|  | */ | 
|  | static void | 
|  | nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) | 
|  | { | 
|  | struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); | 
|  |  | 
|  | WARN_ON(nctrl != &ctrl->ctrl); | 
|  |  | 
|  | nvme_fc_ctrl_put(ctrl); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) | 
|  | { | 
|  | int active; | 
|  |  | 
|  | /* | 
|  | * if an error (io timeout, etc) while (re)connecting, | 
|  | * it's an error on creating the new association. | 
|  | * Start the error recovery thread if it hasn't already | 
|  | * been started. It is expected there could be multiple | 
|  | * ios hitting this path before things are cleaned up. | 
|  | */ | 
|  | if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) { | 
|  | active = atomic_xchg(&ctrl->err_work_active, 1); | 
|  | if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) { | 
|  | atomic_set(&ctrl->err_work_active, 0); | 
|  | WARN_ON(1); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Otherwise, only proceed if in LIVE state - e.g. on first error */ | 
|  | if (ctrl->ctrl.state != NVME_CTRL_LIVE) | 
|  | return; | 
|  |  | 
|  | dev_warn(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: transport association error detected: %s\n", | 
|  | ctrl->cnum, errmsg); | 
|  | dev_warn(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: resetting controller\n", ctrl->cnum); | 
|  |  | 
|  | nvme_reset_ctrl(&ctrl->ctrl); | 
|  | } | 
|  |  | 
|  | static enum blk_eh_timer_return | 
|  | nvme_fc_timeout(struct request *rq, bool reserved) | 
|  | { | 
|  | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | 
|  | struct nvme_fc_ctrl *ctrl = op->ctrl; | 
|  |  | 
|  | /* | 
|  | * we can't individually ABTS an io without affecting the queue, | 
|  | * thus killing the queue, and thus the association. | 
|  | * So resolve by performing a controller reset, which will stop | 
|  | * the host/io stack, terminate the association on the link, | 
|  | * and recreate an association on the link. | 
|  | */ | 
|  | nvme_fc_error_recovery(ctrl, "io timeout error"); | 
|  |  | 
|  | /* | 
|  | * the io abort has been initiated. Have the reset timer | 
|  | * restarted and the abort completion will complete the io | 
|  | * shortly. Avoids a synchronous wait while the abort finishes. | 
|  | */ | 
|  | return BLK_EH_RESET_TIMER; | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, | 
|  | struct nvme_fc_fcp_op *op) | 
|  | { | 
|  | struct nvmefc_fcp_req *freq = &op->fcp_req; | 
|  | enum dma_data_direction dir; | 
|  | int ret; | 
|  |  | 
|  | freq->sg_cnt = 0; | 
|  |  | 
|  | if (!blk_rq_nr_phys_segments(rq)) | 
|  | return 0; | 
|  |  | 
|  | freq->sg_table.sgl = freq->first_sgl; | 
|  | ret = sg_alloc_table_chained(&freq->sg_table, | 
|  | blk_rq_nr_phys_segments(rq), freq->sg_table.sgl); | 
|  | if (ret) | 
|  | return -ENOMEM; | 
|  |  | 
|  | op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); | 
|  | WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); | 
|  | dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; | 
|  | freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, | 
|  | op->nents, dir); | 
|  | if (unlikely(freq->sg_cnt <= 0)) { | 
|  | sg_free_table_chained(&freq->sg_table, true); | 
|  | freq->sg_cnt = 0; | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: blk_integrity_rq(rq)  for DIF | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, | 
|  | struct nvme_fc_fcp_op *op) | 
|  | { | 
|  | struct nvmefc_fcp_req *freq = &op->fcp_req; | 
|  |  | 
|  | if (!freq->sg_cnt) | 
|  | return; | 
|  |  | 
|  | fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, | 
|  | ((rq_data_dir(rq) == WRITE) ? | 
|  | DMA_TO_DEVICE : DMA_FROM_DEVICE)); | 
|  |  | 
|  | nvme_cleanup_cmd(rq); | 
|  |  | 
|  | sg_free_table_chained(&freq->sg_table, true); | 
|  |  | 
|  | freq->sg_cnt = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In FC, the queue is a logical thing. At transport connect, the target | 
|  | * creates its "queue" and returns a handle that is to be given to the | 
|  | * target whenever it posts something to the corresponding SQ.  When an | 
|  | * SQE is sent on a SQ, FC effectively considers the SQE, or rather the | 
|  | * command contained within the SQE, an io, and assigns a FC exchange | 
|  | * to it. The SQE and the associated SQ handle are sent in the initial | 
|  | * CMD IU sents on the exchange. All transfers relative to the io occur | 
|  | * as part of the exchange.  The CQE is the last thing for the io, | 
|  | * which is transferred (explicitly or implicitly) with the RSP IU | 
|  | * sent on the exchange. After the CQE is received, the FC exchange is | 
|  | * terminaed and the Exchange may be used on a different io. | 
|  | * | 
|  | * The transport to LLDD api has the transport making a request for a | 
|  | * new fcp io request to the LLDD. The LLDD then allocates a FC exchange | 
|  | * resource and transfers the command. The LLDD will then process all | 
|  | * steps to complete the io. Upon completion, the transport done routine | 
|  | * is called. | 
|  | * | 
|  | * So - while the operation is outstanding to the LLDD, there is a link | 
|  | * level FC exchange resource that is also outstanding. This must be | 
|  | * considered in all cleanup operations. | 
|  | */ | 
|  | static blk_status_t | 
|  | nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, | 
|  | struct nvme_fc_fcp_op *op, u32 data_len, | 
|  | enum nvmefc_fcp_datadir	io_dir) | 
|  | { | 
|  | struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; | 
|  | struct nvme_command *sqe = &cmdiu->sqe; | 
|  | int ret, opstate; | 
|  |  | 
|  | /* | 
|  | * before attempting to send the io, check to see if we believe | 
|  | * the target device is present | 
|  | */ | 
|  | if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) | 
|  | return BLK_STS_RESOURCE; | 
|  |  | 
|  | if (!nvme_fc_ctrl_get(ctrl)) | 
|  | return BLK_STS_IOERR; | 
|  |  | 
|  | /* format the FC-NVME CMD IU and fcp_req */ | 
|  | cmdiu->connection_id = cpu_to_be64(queue->connection_id); | 
|  | cmdiu->data_len = cpu_to_be32(data_len); | 
|  | switch (io_dir) { | 
|  | case NVMEFC_FCP_WRITE: | 
|  | cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; | 
|  | break; | 
|  | case NVMEFC_FCP_READ: | 
|  | cmdiu->flags = FCNVME_CMD_FLAGS_READ; | 
|  | break; | 
|  | case NVMEFC_FCP_NODATA: | 
|  | cmdiu->flags = 0; | 
|  | break; | 
|  | } | 
|  | op->fcp_req.payload_length = data_len; | 
|  | op->fcp_req.io_dir = io_dir; | 
|  | op->fcp_req.transferred_length = 0; | 
|  | op->fcp_req.rcv_rsplen = 0; | 
|  | op->fcp_req.status = NVME_SC_SUCCESS; | 
|  | op->fcp_req.sqid = cpu_to_le16(queue->qnum); | 
|  |  | 
|  | /* | 
|  | * validate per fabric rules, set fields mandated by fabric spec | 
|  | * as well as those by FC-NVME spec. | 
|  | */ | 
|  | WARN_ON_ONCE(sqe->common.metadata); | 
|  | sqe->common.flags |= NVME_CMD_SGL_METABUF; | 
|  |  | 
|  | /* | 
|  | * format SQE DPTR field per FC-NVME rules: | 
|  | *    type=0x5     Transport SGL Data Block Descriptor | 
|  | *    subtype=0xA  Transport-specific value | 
|  | *    address=0 | 
|  | *    length=length of the data series | 
|  | */ | 
|  | sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | | 
|  | NVME_SGL_FMT_TRANSPORT_A; | 
|  | sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); | 
|  | sqe->rw.dptr.sgl.addr = 0; | 
|  |  | 
|  | if (!(op->flags & FCOP_FLAGS_AEN)) { | 
|  | ret = nvme_fc_map_data(ctrl, op->rq, op); | 
|  | if (ret < 0) { | 
|  | nvme_cleanup_cmd(op->rq); | 
|  | nvme_fc_ctrl_put(ctrl); | 
|  | if (ret == -ENOMEM || ret == -EAGAIN) | 
|  | return BLK_STS_RESOURCE; | 
|  | return BLK_STS_IOERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, | 
|  | sizeof(op->cmd_iu), DMA_TO_DEVICE); | 
|  |  | 
|  | atomic_set(&op->state, FCPOP_STATE_ACTIVE); | 
|  |  | 
|  | if (!(op->flags & FCOP_FLAGS_AEN)) | 
|  | blk_mq_start_request(op->rq); | 
|  |  | 
|  | cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); | 
|  | ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, | 
|  | &ctrl->rport->remoteport, | 
|  | queue->lldd_handle, &op->fcp_req); | 
|  |  | 
|  | if (ret) { | 
|  | /* | 
|  | * If the lld fails to send the command is there an issue with | 
|  | * the csn value?  If the command that fails is the Connect, | 
|  | * no - as the connection won't be live.  If it is a command | 
|  | * post-connect, it's possible a gap in csn may be created. | 
|  | * Does this matter?  As Linux initiators don't send fused | 
|  | * commands, no.  The gap would exist, but as there's nothing | 
|  | * that depends on csn order to be delivered on the target | 
|  | * side, it shouldn't hurt.  It would be difficult for a | 
|  | * target to even detect the csn gap as it has no idea when the | 
|  | * cmd with the csn was supposed to arrive. | 
|  | */ | 
|  | opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); | 
|  | __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); | 
|  |  | 
|  | if (!(op->flags & FCOP_FLAGS_AEN)) | 
|  | nvme_fc_unmap_data(ctrl, op->rq, op); | 
|  |  | 
|  | nvme_fc_ctrl_put(ctrl); | 
|  |  | 
|  | if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && | 
|  | ret != -EBUSY) | 
|  | return BLK_STS_IOERR; | 
|  |  | 
|  | return BLK_STS_RESOURCE; | 
|  | } | 
|  |  | 
|  | return BLK_STS_OK; | 
|  | } | 
|  |  | 
|  | static blk_status_t | 
|  | nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, | 
|  | const struct blk_mq_queue_data *bd) | 
|  | { | 
|  | struct nvme_ns *ns = hctx->queue->queuedata; | 
|  | struct nvme_fc_queue *queue = hctx->driver_data; | 
|  | struct nvme_fc_ctrl *ctrl = queue->ctrl; | 
|  | struct request *rq = bd->rq; | 
|  | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | 
|  | struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; | 
|  | struct nvme_command *sqe = &cmdiu->sqe; | 
|  | enum nvmefc_fcp_datadir	io_dir; | 
|  | bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); | 
|  | u32 data_len; | 
|  | blk_status_t ret; | 
|  |  | 
|  | if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || | 
|  | !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) | 
|  | return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); | 
|  |  | 
|  | ret = nvme_setup_cmd(ns, rq, sqe); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * nvme core doesn't quite treat the rq opaquely. Commands such | 
|  | * as WRITE ZEROES will return a non-zero rq payload_bytes yet | 
|  | * there is no actual payload to be transferred. | 
|  | * To get it right, key data transmission on there being 1 or | 
|  | * more physical segments in the sg list. If there is no | 
|  | * physical segments, there is no payload. | 
|  | */ | 
|  | if (blk_rq_nr_phys_segments(rq)) { | 
|  | data_len = blk_rq_payload_bytes(rq); | 
|  | io_dir = ((rq_data_dir(rq) == WRITE) ? | 
|  | NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); | 
|  | } else { | 
|  | data_len = 0; | 
|  | io_dir = NVMEFC_FCP_NODATA; | 
|  | } | 
|  |  | 
|  |  | 
|  | return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_submit_async_event(struct nvme_ctrl *arg) | 
|  | { | 
|  | struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); | 
|  | struct nvme_fc_fcp_op *aen_op; | 
|  | unsigned long flags; | 
|  | bool terminating = false; | 
|  | blk_status_t ret; | 
|  |  | 
|  | spin_lock_irqsave(&ctrl->lock, flags); | 
|  | if (ctrl->flags & FCCTRL_TERMIO) | 
|  | terminating = true; | 
|  | spin_unlock_irqrestore(&ctrl->lock, flags); | 
|  |  | 
|  | if (terminating) | 
|  | return; | 
|  |  | 
|  | aen_op = &ctrl->aen_ops[0]; | 
|  |  | 
|  | ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, | 
|  | NVMEFC_FCP_NODATA); | 
|  | if (ret) | 
|  | dev_err(ctrl->ctrl.device, | 
|  | "failed async event work\n"); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_complete_rq(struct request *rq) | 
|  | { | 
|  | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | 
|  | struct nvme_fc_ctrl *ctrl = op->ctrl; | 
|  |  | 
|  | atomic_set(&op->state, FCPOP_STATE_IDLE); | 
|  |  | 
|  | nvme_fc_unmap_data(ctrl, rq, op); | 
|  | nvme_complete_rq(rq); | 
|  | nvme_fc_ctrl_put(ctrl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is used by the transport when it needs to find active | 
|  | * io on a queue that is to be terminated. The transport uses | 
|  | * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke | 
|  | * this routine to kill them on a 1 by 1 basis. | 
|  | * | 
|  | * As FC allocates FC exchange for each io, the transport must contact | 
|  | * the LLDD to terminate the exchange, thus releasing the FC exchange. | 
|  | * After terminating the exchange the LLDD will call the transport's | 
|  | * normal io done path for the request, but it will have an aborted | 
|  | * status. The done path will return the io request back to the block | 
|  | * layer with an error status. | 
|  | */ | 
|  | static bool | 
|  | nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) | 
|  | { | 
|  | struct nvme_ctrl *nctrl = data; | 
|  | struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); | 
|  | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); | 
|  |  | 
|  | __nvme_fc_abort_op(ctrl, op); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | static const struct blk_mq_ops nvme_fc_mq_ops = { | 
|  | .queue_rq	= nvme_fc_queue_rq, | 
|  | .complete	= nvme_fc_complete_rq, | 
|  | .init_request	= nvme_fc_init_request, | 
|  | .exit_request	= nvme_fc_exit_request, | 
|  | .init_hctx	= nvme_fc_init_hctx, | 
|  | .timeout	= nvme_fc_timeout, | 
|  | }; | 
|  |  | 
|  | static int | 
|  | nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; | 
|  | unsigned int nr_io_queues; | 
|  | int ret; | 
|  |  | 
|  | nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), | 
|  | ctrl->lport->ops->max_hw_queues); | 
|  | ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); | 
|  | if (ret) { | 
|  | dev_info(ctrl->ctrl.device, | 
|  | "set_queue_count failed: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ctrl->ctrl.queue_count = nr_io_queues + 1; | 
|  | if (!nr_io_queues) | 
|  | return 0; | 
|  |  | 
|  | nvme_fc_init_io_queues(ctrl); | 
|  |  | 
|  | memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); | 
|  | ctrl->tag_set.ops = &nvme_fc_mq_ops; | 
|  | ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; | 
|  | ctrl->tag_set.reserved_tags = 1; /* fabric connect */ | 
|  | ctrl->tag_set.numa_node = ctrl->ctrl.numa_node; | 
|  | ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; | 
|  | ctrl->tag_set.cmd_size = | 
|  | struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, | 
|  | ctrl->lport->ops->fcprqst_priv_sz); | 
|  | ctrl->tag_set.driver_data = ctrl; | 
|  | ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; | 
|  | ctrl->tag_set.timeout = NVME_IO_TIMEOUT; | 
|  |  | 
|  | ret = blk_mq_alloc_tag_set(&ctrl->tag_set); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ctrl->ctrl.tagset = &ctrl->tag_set; | 
|  |  | 
|  | ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); | 
|  | if (IS_ERR(ctrl->ctrl.connect_q)) { | 
|  | ret = PTR_ERR(ctrl->ctrl.connect_q); | 
|  | goto out_free_tag_set; | 
|  | } | 
|  |  | 
|  | ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); | 
|  | if (ret) | 
|  | goto out_cleanup_blk_queue; | 
|  |  | 
|  | ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); | 
|  | if (ret) | 
|  | goto out_delete_hw_queues; | 
|  |  | 
|  | ctrl->ioq_live = true; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_delete_hw_queues: | 
|  | nvme_fc_delete_hw_io_queues(ctrl); | 
|  | out_cleanup_blk_queue: | 
|  | blk_cleanup_queue(ctrl->ctrl.connect_q); | 
|  | out_free_tag_set: | 
|  | blk_mq_free_tag_set(&ctrl->tag_set); | 
|  | nvme_fc_free_io_queues(ctrl); | 
|  |  | 
|  | /* force put free routine to ignore io queues */ | 
|  | ctrl->ctrl.tagset = NULL; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; | 
|  | u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; | 
|  | unsigned int nr_io_queues; | 
|  | int ret; | 
|  |  | 
|  | nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), | 
|  | ctrl->lport->ops->max_hw_queues); | 
|  | ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); | 
|  | if (ret) { | 
|  | dev_info(ctrl->ctrl.device, | 
|  | "set_queue_count failed: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!nr_io_queues && prior_ioq_cnt) { | 
|  | dev_info(ctrl->ctrl.device, | 
|  | "Fail Reconnect: At least 1 io queue " | 
|  | "required (was %d)\n", prior_ioq_cnt); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | ctrl->ctrl.queue_count = nr_io_queues + 1; | 
|  | /* check for io queues existing */ | 
|  | if (ctrl->ctrl.queue_count == 1) | 
|  | return 0; | 
|  |  | 
|  | ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); | 
|  | if (ret) | 
|  | goto out_free_io_queues; | 
|  |  | 
|  | ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); | 
|  | if (ret) | 
|  | goto out_delete_hw_queues; | 
|  |  | 
|  | if (prior_ioq_cnt != nr_io_queues) | 
|  | dev_info(ctrl->ctrl.device, | 
|  | "reconnect: revising io queue count from %d to %d\n", | 
|  | prior_ioq_cnt, nr_io_queues); | 
|  | blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_delete_hw_queues: | 
|  | nvme_fc_delete_hw_io_queues(ctrl); | 
|  | out_free_io_queues: | 
|  | nvme_fc_free_io_queues(ctrl); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) | 
|  | { | 
|  | struct nvme_fc_lport *lport = rport->lport; | 
|  |  | 
|  | atomic_inc(&lport->act_rport_cnt); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) | 
|  | { | 
|  | struct nvme_fc_lport *lport = rport->lport; | 
|  | u32 cnt; | 
|  |  | 
|  | cnt = atomic_dec_return(&lport->act_rport_cnt); | 
|  | if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) | 
|  | lport->ops->localport_delete(&lport->localport); | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | struct nvme_fc_rport *rport = ctrl->rport; | 
|  | u32 cnt; | 
|  |  | 
|  | if (ctrl->assoc_active) | 
|  | return 1; | 
|  |  | 
|  | ctrl->assoc_active = true; | 
|  | cnt = atomic_inc_return(&rport->act_ctrl_cnt); | 
|  | if (cnt == 1) | 
|  | nvme_fc_rport_active_on_lport(rport); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | struct nvme_fc_rport *rport = ctrl->rport; | 
|  | struct nvme_fc_lport *lport = rport->lport; | 
|  | u32 cnt; | 
|  |  | 
|  | /* ctrl->assoc_active=false will be set independently */ | 
|  |  | 
|  | cnt = atomic_dec_return(&rport->act_ctrl_cnt); | 
|  | if (cnt == 0) { | 
|  | if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) | 
|  | lport->ops->remoteport_delete(&rport->remoteport); | 
|  | nvme_fc_rport_inactive_on_lport(rport); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine restarts the controller on the host side, and | 
|  | * on the link side, recreates the controller association. | 
|  | */ | 
|  | static int | 
|  | nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; | 
|  | int ret; | 
|  | bool changed; | 
|  |  | 
|  | ++ctrl->ctrl.nr_reconnects; | 
|  |  | 
|  | if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (nvme_fc_ctlr_active_on_rport(ctrl)) | 
|  | return -ENOTUNIQ; | 
|  |  | 
|  | /* | 
|  | * Create the admin queue | 
|  | */ | 
|  |  | 
|  | ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, | 
|  | NVME_AQ_DEPTH); | 
|  | if (ret) | 
|  | goto out_free_queue; | 
|  |  | 
|  | ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], | 
|  | NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); | 
|  | if (ret) | 
|  | goto out_delete_hw_queue; | 
|  |  | 
|  | blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); | 
|  |  | 
|  | ret = nvmf_connect_admin_queue(&ctrl->ctrl); | 
|  | if (ret) | 
|  | goto out_disconnect_admin_queue; | 
|  |  | 
|  | set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); | 
|  |  | 
|  | /* | 
|  | * Check controller capabilities | 
|  | * | 
|  | * todo:- add code to check if ctrl attributes changed from | 
|  | * prior connection values | 
|  | */ | 
|  |  | 
|  | ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap); | 
|  | if (ret) { | 
|  | dev_err(ctrl->ctrl.device, | 
|  | "prop_get NVME_REG_CAP failed\n"); | 
|  | goto out_disconnect_admin_queue; | 
|  | } | 
|  |  | 
|  | ctrl->ctrl.sqsize = | 
|  | min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); | 
|  |  | 
|  | ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); | 
|  | if (ret) | 
|  | goto out_disconnect_admin_queue; | 
|  |  | 
|  | ctrl->ctrl.max_hw_sectors = | 
|  | (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9); | 
|  |  | 
|  | ret = nvme_init_identify(&ctrl->ctrl); | 
|  | if (ret) | 
|  | goto out_disconnect_admin_queue; | 
|  |  | 
|  | /* sanity checks */ | 
|  |  | 
|  | /* FC-NVME does not have other data in the capsule */ | 
|  | if (ctrl->ctrl.icdoff) { | 
|  | dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", | 
|  | ctrl->ctrl.icdoff); | 
|  | goto out_disconnect_admin_queue; | 
|  | } | 
|  |  | 
|  | /* FC-NVME supports normal SGL Data Block Descriptors */ | 
|  |  | 
|  | if (opts->queue_size > ctrl->ctrl.maxcmd) { | 
|  | /* warn if maxcmd is lower than queue_size */ | 
|  | dev_warn(ctrl->ctrl.device, | 
|  | "queue_size %zu > ctrl maxcmd %u, reducing " | 
|  | "to queue_size\n", | 
|  | opts->queue_size, ctrl->ctrl.maxcmd); | 
|  | opts->queue_size = ctrl->ctrl.maxcmd; | 
|  | } | 
|  |  | 
|  | if (opts->queue_size > ctrl->ctrl.sqsize + 1) { | 
|  | /* warn if sqsize is lower than queue_size */ | 
|  | dev_warn(ctrl->ctrl.device, | 
|  | "queue_size %zu > ctrl sqsize %u, clamping down\n", | 
|  | opts->queue_size, ctrl->ctrl.sqsize + 1); | 
|  | opts->queue_size = ctrl->ctrl.sqsize + 1; | 
|  | } | 
|  |  | 
|  | ret = nvme_fc_init_aen_ops(ctrl); | 
|  | if (ret) | 
|  | goto out_term_aen_ops; | 
|  |  | 
|  | /* | 
|  | * Create the io queues | 
|  | */ | 
|  |  | 
|  | if (ctrl->ctrl.queue_count > 1) { | 
|  | if (!ctrl->ioq_live) | 
|  | ret = nvme_fc_create_io_queues(ctrl); | 
|  | else | 
|  | ret = nvme_fc_recreate_io_queues(ctrl); | 
|  | if (ret) | 
|  | goto out_term_aen_ops; | 
|  | } | 
|  |  | 
|  | changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); | 
|  |  | 
|  | ctrl->ctrl.nr_reconnects = 0; | 
|  |  | 
|  | if (changed) | 
|  | nvme_start_ctrl(&ctrl->ctrl); | 
|  |  | 
|  | return 0;	/* Success */ | 
|  |  | 
|  | out_term_aen_ops: | 
|  | nvme_fc_term_aen_ops(ctrl); | 
|  | out_disconnect_admin_queue: | 
|  | /* send a Disconnect(association) LS to fc-nvme target */ | 
|  | nvme_fc_xmt_disconnect_assoc(ctrl); | 
|  | out_delete_hw_queue: | 
|  | __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); | 
|  | out_free_queue: | 
|  | nvme_fc_free_queue(&ctrl->queues[0]); | 
|  | ctrl->assoc_active = false; | 
|  | nvme_fc_ctlr_inactive_on_rport(ctrl); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine stops operation of the controller on the host side. | 
|  | * On the host os stack side: Admin and IO queues are stopped, | 
|  | *   outstanding ios on them terminated via FC ABTS. | 
|  | * On the link side: the association is terminated. | 
|  | */ | 
|  | static void | 
|  | nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!ctrl->assoc_active) | 
|  | return; | 
|  | ctrl->assoc_active = false; | 
|  |  | 
|  | spin_lock_irqsave(&ctrl->lock, flags); | 
|  | ctrl->flags |= FCCTRL_TERMIO; | 
|  | ctrl->iocnt = 0; | 
|  | spin_unlock_irqrestore(&ctrl->lock, flags); | 
|  |  | 
|  | /* | 
|  | * If io queues are present, stop them and terminate all outstanding | 
|  | * ios on them. As FC allocates FC exchange for each io, the | 
|  | * transport must contact the LLDD to terminate the exchange, | 
|  | * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() | 
|  | * to tell us what io's are busy and invoke a transport routine | 
|  | * to kill them with the LLDD.  After terminating the exchange | 
|  | * the LLDD will call the transport's normal io done path, but it | 
|  | * will have an aborted status. The done path will return the | 
|  | * io requests back to the block layer as part of normal completions | 
|  | * (but with error status). | 
|  | */ | 
|  | if (ctrl->ctrl.queue_count > 1) { | 
|  | nvme_stop_queues(&ctrl->ctrl); | 
|  | blk_mq_tagset_busy_iter(&ctrl->tag_set, | 
|  | nvme_fc_terminate_exchange, &ctrl->ctrl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Other transports, which don't have link-level contexts bound | 
|  | * to sqe's, would try to gracefully shutdown the controller by | 
|  | * writing the registers for shutdown and polling (call | 
|  | * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially | 
|  | * just aborted and we will wait on those contexts, and given | 
|  | * there was no indication of how live the controlelr is on the | 
|  | * link, don't send more io to create more contexts for the | 
|  | * shutdown. Let the controller fail via keepalive failure if | 
|  | * its still present. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * clean up the admin queue. Same thing as above. | 
|  | * use blk_mq_tagset_busy_itr() and the transport routine to | 
|  | * terminate the exchanges. | 
|  | */ | 
|  | blk_mq_quiesce_queue(ctrl->ctrl.admin_q); | 
|  | blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, | 
|  | nvme_fc_terminate_exchange, &ctrl->ctrl); | 
|  |  | 
|  | /* kill the aens as they are a separate path */ | 
|  | nvme_fc_abort_aen_ops(ctrl); | 
|  |  | 
|  | /* wait for all io that had to be aborted */ | 
|  | spin_lock_irq(&ctrl->lock); | 
|  | wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); | 
|  | ctrl->flags &= ~FCCTRL_TERMIO; | 
|  | spin_unlock_irq(&ctrl->lock); | 
|  |  | 
|  | nvme_fc_term_aen_ops(ctrl); | 
|  |  | 
|  | /* | 
|  | * send a Disconnect(association) LS to fc-nvme target | 
|  | * Note: could have been sent at top of process, but | 
|  | * cleaner on link traffic if after the aborts complete. | 
|  | * Note: if association doesn't exist, association_id will be 0 | 
|  | */ | 
|  | if (ctrl->association_id) | 
|  | nvme_fc_xmt_disconnect_assoc(ctrl); | 
|  |  | 
|  | if (ctrl->ctrl.tagset) { | 
|  | nvme_fc_delete_hw_io_queues(ctrl); | 
|  | nvme_fc_free_io_queues(ctrl); | 
|  | } | 
|  |  | 
|  | __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); | 
|  | nvme_fc_free_queue(&ctrl->queues[0]); | 
|  |  | 
|  | /* re-enable the admin_q so anything new can fast fail */ | 
|  | blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); | 
|  |  | 
|  | /* resume the io queues so that things will fast fail */ | 
|  | nvme_start_queues(&ctrl->ctrl); | 
|  |  | 
|  | nvme_fc_ctlr_inactive_on_rport(ctrl); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) | 
|  | { | 
|  | struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); | 
|  |  | 
|  | cancel_work_sync(&ctrl->err_work); | 
|  | cancel_delayed_work_sync(&ctrl->connect_work); | 
|  | /* | 
|  | * kill the association on the link side.  this will block | 
|  | * waiting for io to terminate | 
|  | */ | 
|  | nvme_fc_delete_association(ctrl); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) | 
|  | { | 
|  | struct nvme_fc_rport *rport = ctrl->rport; | 
|  | struct nvme_fc_remote_port *portptr = &rport->remoteport; | 
|  | unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; | 
|  | bool recon = true; | 
|  |  | 
|  | if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) | 
|  | return; | 
|  |  | 
|  | if (portptr->port_state == FC_OBJSTATE_ONLINE) | 
|  | dev_info(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", | 
|  | ctrl->cnum, status); | 
|  | else if (time_after_eq(jiffies, rport->dev_loss_end)) | 
|  | recon = false; | 
|  |  | 
|  | if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { | 
|  | if (portptr->port_state == FC_OBJSTATE_ONLINE) | 
|  | dev_info(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: Reconnect attempt in %ld " | 
|  | "seconds\n", | 
|  | ctrl->cnum, recon_delay / HZ); | 
|  | else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) | 
|  | recon_delay = rport->dev_loss_end - jiffies; | 
|  |  | 
|  | queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); | 
|  | } else { | 
|  | if (portptr->port_state == FC_OBJSTATE_ONLINE) | 
|  | dev_warn(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: Max reconnect attempts (%d) " | 
|  | "reached.\n", | 
|  | ctrl->cnum, ctrl->ctrl.nr_reconnects); | 
|  | else | 
|  | dev_warn(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: dev_loss_tmo (%d) expired " | 
|  | "while waiting for remoteport connectivity.\n", | 
|  | ctrl->cnum, portptr->dev_loss_tmo); | 
|  | WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl) | 
|  | { | 
|  | nvme_stop_keep_alive(&ctrl->ctrl); | 
|  |  | 
|  | /* will block will waiting for io to terminate */ | 
|  | nvme_fc_delete_association(ctrl); | 
|  |  | 
|  | if (ctrl->ctrl.state != NVME_CTRL_CONNECTING && | 
|  | !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) | 
|  | dev_err(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: error_recovery: Couldn't change state " | 
|  | "to CONNECTING\n", ctrl->cnum); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_reset_ctrl_work(struct work_struct *work) | 
|  | { | 
|  | struct nvme_fc_ctrl *ctrl = | 
|  | container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); | 
|  | int ret; | 
|  |  | 
|  | __nvme_fc_terminate_io(ctrl); | 
|  |  | 
|  | nvme_stop_ctrl(&ctrl->ctrl); | 
|  |  | 
|  | if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) | 
|  | ret = nvme_fc_create_association(ctrl); | 
|  | else | 
|  | ret = -ENOTCONN; | 
|  |  | 
|  | if (ret) | 
|  | nvme_fc_reconnect_or_delete(ctrl, ret); | 
|  | else | 
|  | dev_info(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: controller reset complete\n", | 
|  | ctrl->cnum); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvme_fc_connect_err_work(struct work_struct *work) | 
|  | { | 
|  | struct nvme_fc_ctrl *ctrl = | 
|  | container_of(work, struct nvme_fc_ctrl, err_work); | 
|  |  | 
|  | __nvme_fc_terminate_io(ctrl); | 
|  |  | 
|  | atomic_set(&ctrl->err_work_active, 0); | 
|  |  | 
|  | /* | 
|  | * Rescheduling the connection after recovering | 
|  | * from the io error is left to the reconnect work | 
|  | * item, which is what should have stalled waiting on | 
|  | * the io that had the error that scheduled this work. | 
|  | */ | 
|  | } | 
|  |  | 
|  | static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { | 
|  | .name			= "fc", | 
|  | .module			= THIS_MODULE, | 
|  | .flags			= NVME_F_FABRICS, | 
|  | .reg_read32		= nvmf_reg_read32, | 
|  | .reg_read64		= nvmf_reg_read64, | 
|  | .reg_write32		= nvmf_reg_write32, | 
|  | .free_ctrl		= nvme_fc_nvme_ctrl_freed, | 
|  | .submit_async_event	= nvme_fc_submit_async_event, | 
|  | .delete_ctrl		= nvme_fc_delete_ctrl, | 
|  | .get_address		= nvmf_get_address, | 
|  | }; | 
|  |  | 
|  | static void | 
|  | nvme_fc_connect_ctrl_work(struct work_struct *work) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | struct nvme_fc_ctrl *ctrl = | 
|  | container_of(to_delayed_work(work), | 
|  | struct nvme_fc_ctrl, connect_work); | 
|  |  | 
|  | ret = nvme_fc_create_association(ctrl); | 
|  | if (ret) | 
|  | nvme_fc_reconnect_or_delete(ctrl, ret); | 
|  | else | 
|  | dev_info(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: controller connect complete\n", | 
|  | ctrl->cnum); | 
|  | } | 
|  |  | 
|  |  | 
|  | static const struct blk_mq_ops nvme_fc_admin_mq_ops = { | 
|  | .queue_rq	= nvme_fc_queue_rq, | 
|  | .complete	= nvme_fc_complete_rq, | 
|  | .init_request	= nvme_fc_init_request, | 
|  | .exit_request	= nvme_fc_exit_request, | 
|  | .init_hctx	= nvme_fc_init_admin_hctx, | 
|  | .timeout	= nvme_fc_timeout, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Fails a controller request if it matches an existing controller | 
|  | * (association) with the same tuple: | 
|  | * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> | 
|  | * | 
|  | * The ports don't need to be compared as they are intrinsically | 
|  | * already matched by the port pointers supplied. | 
|  | */ | 
|  | static bool | 
|  | nvme_fc_existing_controller(struct nvme_fc_rport *rport, | 
|  | struct nvmf_ctrl_options *opts) | 
|  | { | 
|  | struct nvme_fc_ctrl *ctrl; | 
|  | unsigned long flags; | 
|  | bool found = false; | 
|  |  | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  | list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { | 
|  | found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); | 
|  | if (found) | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static struct nvme_ctrl * | 
|  | nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, | 
|  | struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) | 
|  | { | 
|  | struct nvme_fc_ctrl *ctrl; | 
|  | unsigned long flags; | 
|  | int ret, idx; | 
|  |  | 
|  | if (!(rport->remoteport.port_role & | 
|  | (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { | 
|  | ret = -EBADR; | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | if (!opts->duplicate_connect && | 
|  | nvme_fc_existing_controller(rport, opts)) { | 
|  | ret = -EALREADY; | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); | 
|  | if (!ctrl) { | 
|  | ret = -ENOMEM; | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); | 
|  | if (idx < 0) { | 
|  | ret = -ENOSPC; | 
|  | goto out_free_ctrl; | 
|  | } | 
|  |  | 
|  | ctrl->ctrl.opts = opts; | 
|  | ctrl->ctrl.nr_reconnects = 0; | 
|  | if (lport->dev) | 
|  | ctrl->ctrl.numa_node = dev_to_node(lport->dev); | 
|  | else | 
|  | ctrl->ctrl.numa_node = NUMA_NO_NODE; | 
|  | INIT_LIST_HEAD(&ctrl->ctrl_list); | 
|  | ctrl->lport = lport; | 
|  | ctrl->rport = rport; | 
|  | ctrl->dev = lport->dev; | 
|  | ctrl->cnum = idx; | 
|  | ctrl->ioq_live = false; | 
|  | ctrl->assoc_active = false; | 
|  | atomic_set(&ctrl->err_work_active, 0); | 
|  | init_waitqueue_head(&ctrl->ioabort_wait); | 
|  |  | 
|  | get_device(ctrl->dev); | 
|  | kref_init(&ctrl->ref); | 
|  |  | 
|  | INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); | 
|  | INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); | 
|  | INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work); | 
|  | spin_lock_init(&ctrl->lock); | 
|  |  | 
|  | /* io queue count */ | 
|  | ctrl->ctrl.queue_count = min_t(unsigned int, | 
|  | opts->nr_io_queues, | 
|  | lport->ops->max_hw_queues); | 
|  | ctrl->ctrl.queue_count++;	/* +1 for admin queue */ | 
|  |  | 
|  | ctrl->ctrl.sqsize = opts->queue_size - 1; | 
|  | ctrl->ctrl.kato = opts->kato; | 
|  | ctrl->ctrl.cntlid = 0xffff; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | ctrl->queues = kcalloc(ctrl->ctrl.queue_count, | 
|  | sizeof(struct nvme_fc_queue), GFP_KERNEL); | 
|  | if (!ctrl->queues) | 
|  | goto out_free_ida; | 
|  |  | 
|  | nvme_fc_init_queue(ctrl, 0); | 
|  |  | 
|  | memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); | 
|  | ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; | 
|  | ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; | 
|  | ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ | 
|  | ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node; | 
|  | ctrl->admin_tag_set.cmd_size = | 
|  | struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, | 
|  | ctrl->lport->ops->fcprqst_priv_sz); | 
|  | ctrl->admin_tag_set.driver_data = ctrl; | 
|  | ctrl->admin_tag_set.nr_hw_queues = 1; | 
|  | ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; | 
|  | ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; | 
|  |  | 
|  | ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); | 
|  | if (ret) | 
|  | goto out_free_queues; | 
|  | ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; | 
|  |  | 
|  | ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); | 
|  | if (IS_ERR(ctrl->ctrl.admin_q)) { | 
|  | ret = PTR_ERR(ctrl->ctrl.admin_q); | 
|  | goto out_free_admin_tag_set; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Would have been nice to init io queues tag set as well. | 
|  | * However, we require interaction from the controller | 
|  | * for max io queue count before we can do so. | 
|  | * Defer this to the connect path. | 
|  | */ | 
|  |  | 
|  | ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); | 
|  | if (ret) | 
|  | goto out_cleanup_admin_q; | 
|  |  | 
|  | /* at this point, teardown path changes to ref counting on nvme ctrl */ | 
|  |  | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  | list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  |  | 
|  | if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) || | 
|  | !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { | 
|  | dev_err(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); | 
|  | goto fail_ctrl; | 
|  | } | 
|  |  | 
|  | nvme_get_ctrl(&ctrl->ctrl); | 
|  |  | 
|  | if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { | 
|  | nvme_put_ctrl(&ctrl->ctrl); | 
|  | dev_err(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: failed to schedule initial connect\n", | 
|  | ctrl->cnum); | 
|  | goto fail_ctrl; | 
|  | } | 
|  |  | 
|  | flush_delayed_work(&ctrl->connect_work); | 
|  |  | 
|  | dev_info(ctrl->ctrl.device, | 
|  | "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", | 
|  | ctrl->cnum, ctrl->ctrl.opts->subsysnqn); | 
|  |  | 
|  | return &ctrl->ctrl; | 
|  |  | 
|  | fail_ctrl: | 
|  | nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); | 
|  | cancel_work_sync(&ctrl->ctrl.reset_work); | 
|  | cancel_work_sync(&ctrl->err_work); | 
|  | cancel_delayed_work_sync(&ctrl->connect_work); | 
|  |  | 
|  | ctrl->ctrl.opts = NULL; | 
|  |  | 
|  | /* initiate nvme ctrl ref counting teardown */ | 
|  | nvme_uninit_ctrl(&ctrl->ctrl); | 
|  |  | 
|  | /* Remove core ctrl ref. */ | 
|  | nvme_put_ctrl(&ctrl->ctrl); | 
|  |  | 
|  | /* as we're past the point where we transition to the ref | 
|  | * counting teardown path, if we return a bad pointer here, | 
|  | * the calling routine, thinking it's prior to the | 
|  | * transition, will do an rport put. Since the teardown | 
|  | * path also does a rport put, we do an extra get here to | 
|  | * so proper order/teardown happens. | 
|  | */ | 
|  | nvme_fc_rport_get(rport); | 
|  |  | 
|  | return ERR_PTR(-EIO); | 
|  |  | 
|  | out_cleanup_admin_q: | 
|  | blk_cleanup_queue(ctrl->ctrl.admin_q); | 
|  | out_free_admin_tag_set: | 
|  | blk_mq_free_tag_set(&ctrl->admin_tag_set); | 
|  | out_free_queues: | 
|  | kfree(ctrl->queues); | 
|  | out_free_ida: | 
|  | put_device(ctrl->dev); | 
|  | ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); | 
|  | out_free_ctrl: | 
|  | kfree(ctrl); | 
|  | out_fail: | 
|  | /* exit via here doesn't follow ctlr ref points */ | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  |  | 
|  | struct nvmet_fc_traddr { | 
|  | u64	nn; | 
|  | u64	pn; | 
|  | }; | 
|  |  | 
|  | static int | 
|  | __nvme_fc_parse_u64(substring_t *sstr, u64 *val) | 
|  | { | 
|  | u64 token64; | 
|  |  | 
|  | if (match_u64(sstr, &token64)) | 
|  | return -EINVAL; | 
|  | *val = token64; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine validates and extracts the WWN's from the TRADDR string. | 
|  | * As kernel parsers need the 0x to determine number base, universally | 
|  | * build string to parse with 0x prefix before parsing name strings. | 
|  | */ | 
|  | static int | 
|  | nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) | 
|  | { | 
|  | char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; | 
|  | substring_t wwn = { name, &name[sizeof(name)-1] }; | 
|  | int nnoffset, pnoffset; | 
|  |  | 
|  | /* validate if string is one of the 2 allowed formats */ | 
|  | if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && | 
|  | !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && | 
|  | !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], | 
|  | "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { | 
|  | nnoffset = NVME_FC_TRADDR_OXNNLEN; | 
|  | pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + | 
|  | NVME_FC_TRADDR_OXNNLEN; | 
|  | } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && | 
|  | !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && | 
|  | !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], | 
|  | "pn-", NVME_FC_TRADDR_NNLEN))) { | 
|  | nnoffset = NVME_FC_TRADDR_NNLEN; | 
|  | pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; | 
|  | } else | 
|  | goto out_einval; | 
|  |  | 
|  | name[0] = '0'; | 
|  | name[1] = 'x'; | 
|  | name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; | 
|  |  | 
|  | memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); | 
|  | if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) | 
|  | goto out_einval; | 
|  |  | 
|  | memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); | 
|  | if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) | 
|  | goto out_einval; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_einval: | 
|  | pr_warn("%s: bad traddr string\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static struct nvme_ctrl * | 
|  | nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) | 
|  | { | 
|  | struct nvme_fc_lport *lport; | 
|  | struct nvme_fc_rport *rport; | 
|  | struct nvme_ctrl *ctrl; | 
|  | struct nvmet_fc_traddr laddr = { 0L, 0L }; | 
|  | struct nvmet_fc_traddr raddr = { 0L, 0L }; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); | 
|  | if (ret || !raddr.nn || !raddr.pn) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); | 
|  | if (ret || !laddr.nn || !laddr.pn) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* find the host and remote ports to connect together */ | 
|  | spin_lock_irqsave(&nvme_fc_lock, flags); | 
|  | list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { | 
|  | if (lport->localport.node_name != laddr.nn || | 
|  | lport->localport.port_name != laddr.pn) | 
|  | continue; | 
|  |  | 
|  | list_for_each_entry(rport, &lport->endp_list, endp_list) { | 
|  | if (rport->remoteport.node_name != raddr.nn || | 
|  | rport->remoteport.port_name != raddr.pn) | 
|  | continue; | 
|  |  | 
|  | /* if fail to get reference fall through. Will error */ | 
|  | if (!nvme_fc_rport_get(rport)) | 
|  | break; | 
|  |  | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); | 
|  | if (IS_ERR(ctrl)) | 
|  | nvme_fc_rport_put(rport); | 
|  | return ctrl; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | pr_warn("%s: %s - %s combination not found\n", | 
|  | __func__, opts->traddr, opts->host_traddr); | 
|  | return ERR_PTR(-ENOENT); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct nvmf_transport_ops nvme_fc_transport = { | 
|  | .name		= "fc", | 
|  | .module		= THIS_MODULE, | 
|  | .required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, | 
|  | .allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, | 
|  | .create_ctrl	= nvme_fc_create_ctrl, | 
|  | }; | 
|  |  | 
|  | /* Arbitrary successive failures max. With lots of subsystems could be high */ | 
|  | #define DISCOVERY_MAX_FAIL	20 | 
|  |  | 
|  | static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, | 
|  | struct device_attribute *attr, const char *buf, size_t count) | 
|  | { | 
|  | unsigned long flags; | 
|  | LIST_HEAD(local_disc_list); | 
|  | struct nvme_fc_lport *lport; | 
|  | struct nvme_fc_rport *rport; | 
|  | int failcnt = 0; | 
|  |  | 
|  | spin_lock_irqsave(&nvme_fc_lock, flags); | 
|  | restart: | 
|  | list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { | 
|  | list_for_each_entry(rport, &lport->endp_list, endp_list) { | 
|  | if (!nvme_fc_lport_get(lport)) | 
|  | continue; | 
|  | if (!nvme_fc_rport_get(rport)) { | 
|  | /* | 
|  | * This is a temporary condition. Upon restart | 
|  | * this rport will be gone from the list. | 
|  | * | 
|  | * Revert the lport put and retry.  Anything | 
|  | * added to the list already will be skipped (as | 
|  | * they are no longer list_empty).  Loops should | 
|  | * resume at rports that were not yet seen. | 
|  | */ | 
|  | nvme_fc_lport_put(lport); | 
|  |  | 
|  | if (failcnt++ < DISCOVERY_MAX_FAIL) | 
|  | goto restart; | 
|  |  | 
|  | pr_err("nvme_discovery: too many reference " | 
|  | "failures\n"); | 
|  | goto process_local_list; | 
|  | } | 
|  | if (list_empty(&rport->disc_list)) | 
|  | list_add_tail(&rport->disc_list, | 
|  | &local_disc_list); | 
|  | } | 
|  | } | 
|  |  | 
|  | process_local_list: | 
|  | while (!list_empty(&local_disc_list)) { | 
|  | rport = list_first_entry(&local_disc_list, | 
|  | struct nvme_fc_rport, disc_list); | 
|  | list_del_init(&rport->disc_list); | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | lport = rport->lport; | 
|  | /* signal discovery. Won't hurt if it repeats */ | 
|  | nvme_fc_signal_discovery_scan(lport, rport); | 
|  | nvme_fc_rport_put(rport); | 
|  | nvme_fc_lport_put(lport); | 
|  |  | 
|  | spin_lock_irqsave(&nvme_fc_lock, flags); | 
|  | } | 
|  | spin_unlock_irqrestore(&nvme_fc_lock, flags); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); | 
|  |  | 
|  | static struct attribute *nvme_fc_attrs[] = { | 
|  | &dev_attr_nvme_discovery.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct attribute_group nvme_fc_attr_group = { | 
|  | .attrs = nvme_fc_attrs, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group *nvme_fc_attr_groups[] = { | 
|  | &nvme_fc_attr_group, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct class fc_class = { | 
|  | .name = "fc", | 
|  | .dev_groups = nvme_fc_attr_groups, | 
|  | .owner = THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init nvme_fc_init_module(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0); | 
|  | if (!nvme_fc_wq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * NOTE: | 
|  | * It is expected that in the future the kernel will combine | 
|  | * the FC-isms that are currently under scsi and now being | 
|  | * added to by NVME into a new standalone FC class. The SCSI | 
|  | * and NVME protocols and their devices would be under this | 
|  | * new FC class. | 
|  | * | 
|  | * As we need something to post FC-specific udev events to, | 
|  | * specifically for nvme probe events, start by creating the | 
|  | * new device class.  When the new standalone FC class is | 
|  | * put in place, this code will move to a more generic | 
|  | * location for the class. | 
|  | */ | 
|  | ret = class_register(&fc_class); | 
|  | if (ret) { | 
|  | pr_err("couldn't register class fc\n"); | 
|  | goto out_destroy_wq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a device for the FC-centric udev events | 
|  | */ | 
|  | fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, | 
|  | "fc_udev_device"); | 
|  | if (IS_ERR(fc_udev_device)) { | 
|  | pr_err("couldn't create fc_udev device!\n"); | 
|  | ret = PTR_ERR(fc_udev_device); | 
|  | goto out_destroy_class; | 
|  | } | 
|  |  | 
|  | ret = nvmf_register_transport(&nvme_fc_transport); | 
|  | if (ret) | 
|  | goto out_destroy_device; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_destroy_device: | 
|  | device_destroy(&fc_class, MKDEV(0, 0)); | 
|  | out_destroy_class: | 
|  | class_unregister(&fc_class); | 
|  | out_destroy_wq: | 
|  | destroy_workqueue(nvme_fc_wq); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __exit nvme_fc_exit_module(void) | 
|  | { | 
|  | /* sanity check - all lports should be removed */ | 
|  | if (!list_empty(&nvme_fc_lport_list)) | 
|  | pr_warn("%s: localport list not empty\n", __func__); | 
|  |  | 
|  | nvmf_unregister_transport(&nvme_fc_transport); | 
|  |  | 
|  | ida_destroy(&nvme_fc_local_port_cnt); | 
|  | ida_destroy(&nvme_fc_ctrl_cnt); | 
|  |  | 
|  | device_destroy(&fc_class, MKDEV(0, 0)); | 
|  | class_unregister(&fc_class); | 
|  | destroy_workqueue(nvme_fc_wq); | 
|  | } | 
|  |  | 
|  | module_init(nvme_fc_init_module); | 
|  | module_exit(nvme_fc_exit_module); | 
|  |  | 
|  | MODULE_LICENSE("GPL v2"); |